EP2237347B1 - Positives Elektrodenmaterial, sein Verfahren zur Herstellung, und Lithium Batterien - Google Patents

Positives Elektrodenmaterial, sein Verfahren zur Herstellung, und Lithium Batterien Download PDF

Info

Publication number
EP2237347B1
EP2237347B1 EP10006263.7A EP10006263A EP2237347B1 EP 2237347 B1 EP2237347 B1 EP 2237347B1 EP 10006263 A EP10006263 A EP 10006263A EP 2237347 B1 EP2237347 B1 EP 2237347B1
Authority
EP
European Patent Office
Prior art keywords
positive electrode
primary particles
particles
electrode material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP10006263.7A
Other languages
English (en)
French (fr)
Other versions
EP2237347A3 (de
EP2237347A2 (de
Inventor
Toyotaka c/o Hitachi Ltd. Yuasa
Masahiro c/o Hitachi Ltd. Kasai
Genei c/o Hitachi Metals Ltd. Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Proterial Ltd
Resonac Corp
Original Assignee
Hitachi Ltd
Hitachi Metals Ltd
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Metals Ltd, Shin Kobe Electric Machinery Co Ltd filed Critical Hitachi Ltd
Publication of EP2237347A2 publication Critical patent/EP2237347A2/de
Publication of EP2237347A3 publication Critical patent/EP2237347A3/de
Application granted granted Critical
Publication of EP2237347B1 publication Critical patent/EP2237347B1/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G19/00Table service
    • A47G19/22Drinking vessels or saucers used for table service
    • A47G19/23Drinking vessels or saucers used for table service of stackable type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G2400/00Details not otherwise provided for in A47G19/00-A47G23/16
    • A47G2400/02Hygiene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a new positive electrode, its manufacturing method and a lithium battery using the positive electrode.
  • Lithium secondary batteries using a non-aqueous electrolyte solution are suitable as batteries for these purposes, because the voltage is high and the energy density is high, and their development is energetically advanced in this field.
  • a long life characteristic, stable voltage controllability, resistance to environment, large-sizing and the reduction of the cost are demanded in addition to the characteristics of conventional type batteries for portable electric devices.
  • JP-A-245106/ 1995 discloses a lithium secondary battery being excellent in a high discharge rate characteristic by using a positive electrode material having a high specific surface.
  • JP-A-37576/ 1995 proposes a positive electrode material provided with a large capacity and being excellent in its charging/ discharging efficiency due to secondary particles having such a particle structure that the layer-structure surface of monocrystalline particles of the positive electrode material having a layer crystal structure is exposed outside of the secondary particles.
  • JP-A-85006/2001 a lithium secondary battery is proposed the capacity of which is large and which is made satisfactory in the cycle characteristic by defining voids in the secondary particles of the positive electrode material so as to optimize the particle structure in a lithium-nickel composite oxide.
  • a secure operation in a wide temperature range from low temperatures to high temperatures is demanded for an automobile battery.
  • the ionic conductivity of the electrolyte solution is extremely deteriorated.
  • the ionic conductivity at -30 °C of an electrolyte solution including LiPF 6 which is an electrolyte solution in a mixed solvent of ethyl carbonate (EC) and dimethyl carbonate (DMC) is approximately 1/4 of that at room temperature. Therefore, even a lithium secondary battery that provides a sufficient characteristic at room temperature can have only a poor battery characteristic at low temperature.
  • the maintenance of the cycle characteristic is also essential at the same time as the low-temperature characteristic.
  • JP-A-245106/1995 a positive efficiency is achieved to some extent at room temperature, however, in an environment of low temperature, the discharge rate characteristic demanded for an electric vehicle or a hybrid electric vehicle is insufficient. Besides, in the above-mentioned JP-A-37576/1995 , the discharge rate characteristic at low temperature is also insufficient with the above-mentioned particle structure. Further, with the positive electrode material disclosed in JP-A-85006/2001 indicated above, as the quantity of Ni included in the transition metal is 50 % or more, the expansion/ contraction of the crystal lattice caused by charge/discharge is large.
  • the cycle characteristic is enhanced by increasing the voidage in the secondary particles up to 10 % or more from a value below 10 % so as to reduce the effect of the change in volume of the lattice in the composition.
  • the density of the positive electrode material is enhanced by setting the voidage to 30 % or less, and the rechargeable capacity is increased.
  • the discharge rate at low temperature is insufficient.
  • the crystal orientations of the c-axes of 60 % or more of the primary particles of a secondary particle are within a range of 20 degrees and preferably within a range of 10 degrees.
  • the cross-sectional area of the voids between the primary particles of a secondary particle in a substantially central cross-section of the secondary particle is 2.5 to 35 % and preferably 2.5 to 10 % of the whole cross-sectional area of the secondary particle.
  • the secondary particles are composed of crystals having a layered crystal structure and have a composition of Li a Ni x Mn y Co z O 2 wherein a, x, y and z meet the following conditions:
  • the mean diameter of the primary particles is preferably 0.2 to 10 ⁇ m and/or the mean diameter of the secondary particles is preferably 5 to 30 ⁇ m.
  • a method for manufacturing the positive electrode material comprises the steps of
  • a mixture of lithium carbonate, nickel oxide, manganese dioxide and cobalt oxide is used as powder composition.
  • the ratio of Ni:Mn:Co in the starting powder composition is made 1:1:1, and the ratio of Li:(NiMnCo) in the starting composition is made 1.02:1.
  • the method for manufacturing a positive electrode for a lithium battery comprises the following steps:
  • the lithium batteries of the invention comprise a positive electrode made of the positive electrode material according to the invention, a negative electrode and a non-aqueous electrolyte.
  • the negative electrode is a lithium electrode
  • the electrolyte is LiPF 6 in a mixed solvent of ethyl carbonate and dimethyl carbonate.
  • the present inventors paid attention to the particle structure of the secondary particles in which plural primary particles are combined and arranged in a specific network. It has been found that as the ionic conductivity of the electrolytic solution is deteriorated at low temperature, the conductive network between the primary particles locally decreased because in the secondary particles of the positive electrode material formed by primary particles which were apart from each other, and electrolyte solution filled the voidage between the primary particles, the resistance increased and a voltage drop of the battery occurred.
  • a structure is proposed in which the conductive network can be also maintained in an environment of low temperature by increasing the contact area of the primary particles in consideration of the fact that the contact area of the primary particles in consideration of the fact that the contact area of the primary particles is important because in an environment of low temperature, not the Li ionic conduction via the electrolyte solution, but the Li ionic diffusion between the primary particles is the dominant factor, and therefore, the ionic conductivity of the electrolyte solution is deteriorated at low temperatures.
  • the voids are necessary to maintain a discharge rate and a charge capacity at room temperature at which the ionic conductivity of the electrolyte solution is high. Therefore, as voids exist in the secondary particles, the contact between the primary particles is limited as follows. It was found that when a primary particle was in contact with other primary particles and the sum of the lengths of their shared sides was 70 % or less, compared with the periphery of the section of each touched or contacting primary particle, the amount required to maintain the rechargeable capacity of voids existing in a secondary particle was determined. The preferred range is 50 to 70 %.
  • the conductive network in an environment of low temperature is inhibited. Therefore, a minimum of voids must be present in the secondary particles such that the voids do not cover the primary particles, and the cross-sectional area of the voids formed between the primary particles of a secondary particle in a substantially central cross-section of the whole secondary particle is 2.5 to 35 % and preferably 2.5 to 10 %.
  • the voidage is 2.5 % or less, the electrolyte solution could not be kept in the voids of the secondary particles, the room-temperature characteristic is deteriorated, and therefore, the voidage for maintaining the rechargeable capacity at room temperature is 2.5 % or more. On the other hand, if the voidage is 35 % or more, the conductive network is inhibited, and the low-temperature characteristic is deteriorated.
  • the range of the diameters of the primary particles forming the secondary particles is also important. That is, in case the primary particle diameter is smaller than 0.2 ⁇ m, the amount of primary particles which can be filled in a spatial volume is limited, the voidage increases and the above-defined range of the voidage of the secondary particles cannot be achieved. On the other hand, in case the primary particle diameter is larger than 10 ⁇ m, the diameter of the secondary particles formed by the primary particles exceeds 40 ⁇ m, and it is difficult to form the electrode of a lithium secondary battery suited for an electric vehicle or a hybrid electric vehicle.
  • the conductivity of the Li ions in the positive electrode material having a two-dimensional layered crystal structure when the conductivity of the Li ions in the positive electrode material having a two-dimensional layered crystal structure is considered, the greater the number of primary particles with uniform orientations of the c-axes within a secondary particle is, the higher is the probability that the Li ion conductivity of the whole secondary particle is enhanced.
  • lithium carbonate was used to function as a flux by adding lithium carbonate in a more than stoichiometric amount in a process for burning the positive electrode material having a layered crystal structure.
  • the orientation of the a-b planes of the crystals was preferentially grown, and 60% or more of the primary particles in a secondary particle are plate crystals having a layered crystal structure with unified orientations of the c-axes of crystals within a range of 20 degrees (i.e., within ⁇ 10 degrees), and preferably could be unified within a range of 10 degrees ( ⁇ 5 degrees).
  • test batteries with positive electrode materials having a layered crystal structure and which were manufactured with variation of the amount of added lithium carbonate and of the burning temperature.
  • the discharge rate characteristic at low temperature was tested, and the situation of the acquired contact between the primary particles was observed on a section of secondary particles of the positive electrode material having the acquired layered crystal structure, and the relation among the orientations of the c-axes of the primary particles was examined.
  • the invention further provides a method of manufacturing the positive electrode material by grinding a material powder including Li, Ni, Mn and Co after the material powder was sintered at 950 to 1100 °C, desirably at 1000 to 1050 °C.
  • the powder composition includes lithium carbonate preferably in more that stoichiometric amount, nickel oxide, manganese dioxide and cobalt oxide and/or that the powder composition is sintered after it is granulated and dried, preferably with a spray dryer.
  • the present invention is based on the finding that a layered positive electrode material excellent in the discharge rate at low temperature can be produced by optimizing the structure of the layered positive electrode material and its manufacturing method and controlling the powder characteristics such as the diameter of the primary particles forming the layered positive electrode material, the particle size distribution of the secondary particles which comprise a network body of primary particles and the voidage of the secondary particles as a result of examining the fine particle structures and the low-temperature discharge rates of various layered positive electrode materials.
  • the size of the primary particles and of the secondary particles, the voidage of the secondary particles, the contact between the primary particles and their distribution in the structure of the secondary particles in which the primary particles form a network are all particularly important for the positive electrode material having a layered crystal structure, and the control of the structure of the secondary particles by the particle size of the starting substances, the burning temperature and the reaction time when Li is doped are particularly important.
  • manganese dioxide, cobalt oxide, nickel oxide and lithium carbonate are used; they are balanced in the atomic percentages such that the ratio of Ni, Mn and Co is 1:1:1 and the ratio of Li to (NiMnCo) is 1.02:1.
  • Demineralized water is added thereto, and they are ground and mixed in a ball mill using a pot made of resin and a zirconia ball for 20 hours in a wet process.
  • polyvinylalcohol (PVA) solution is added to the mixed liquid in an amount of 1 % by mass in terms of solid content ratio, the mixed liquid is mixed further for one hour, is granulated and dried by a spray dryer and particles of 5 to 100 ⁇ m in size are produced.
  • a crystal having a layered structure is produced by burning these particles at 1000 °C for 3 to 10 hours, which afterward is ground, and a positive electrode material is obtained.
  • Fig. 1 shows a microphotograph (magnification 5000 times) obtained by scanning electron microscopy and showing a section of the positive electrode material powder according to the present invention.
  • Fig. 2 is a schematic drawing showing a section of a secondary particle of the positive electrode material having a layered crystal structure according to the invention.
  • the positive electrode material primary particles 1 form a network, and thus form the secondary particles 2.
  • Fig: 2 is a schematic drawing serving for an easy understanding of the principle of the present invention and not showing an actual, concrete particle form.
  • the sectional area of the secondary particle is defined by the area encircled by the outer periphery of the primary particles forming the secondary particle as shown in Fig. 1 .
  • a method of measuring the secondary particle sectional structure in this respect is as follows.
  • a sample obtained by cutting the substantial center of a secondary particle by a focused ion beam or by burying the secondary particle in a resin, cutting and polishing the vicinity of the center is observed at a magnification of 3000 times using an electron microscope, and the diameter of the primary particles, the diameter of the secondary particle and the length of the contact of the primary particles with each other are measured by image processing.
  • the diameter of each the primary and the secondary particles is defined as the fretted diameter of each longest part.
  • the sectional area of the secondary particle and the sectional area of the voids 5 are obtained by image processing of an image acquired by electron microscopy.
  • the sectional area of the secondary particle is the area when the outside periphery of the primary particles forming the unfixed shape of the secondary particle is linked together.
  • the primary particle diameter 3 is defined as a fretted diameter; the mean particle diameter 3 of the primary particles is 0.2 to 10 ⁇ m and the secondary particle diameter 4 is 5 to 30 ⁇ m.
  • the value of the ratio of the sum in length of the shared and mutually linked sides of individual primary particles in the section of the primary particle forming the secondary particle by the outside periphery of the section of the primary particle is calculated. In other words, this ratio is the sum in length of the shared sides with the outside periphery of the primary particle to the total length of the outside periphery of the primary particle.
  • the ratio is calculated for all primary particles in the secondary particle, the mean value is calculated and as a result, the ratio of the shared sides of the primary particles to the outside periphery is 50 to 70 %.
  • a minimum of voids 5 exists in the secondary particle, and the voidage obtained by dividing the area of the voids 5 by the section of the secondary particle is 2.5 to 35 %.
  • a positive electrode for evaluating the characteristics of the positive electrode material having a layered crystal structure In producing a positive electrode for evaluating the characteristics of the positive electrode material having a layered crystal structure, after positive electrode material having the layered crystal structure, carbonaceous conductive material and a binder are mixed at a ratio of 85:10.7:4.3 in terms of mass percentage, and the uniformly mixed slurry is applied on a 15 ⁇ m thick aluminum foil used as current collector; after drying at 110 °C, the coated aluminum foil is pressurized with a pressure of 1.47 kbar (1.5 ton/cm 2 ) by a press, and a dry paint film approximately 40 ⁇ m thick is formed.
  • a battery for testing is produced using the positive electrode and a lithium electrode as a counter electrode.
  • electrolyte solution a mixed solvent of ethyl carbonate and dimethyl carbonate containing 1.0 M LiPF 6 is used.
  • Table 1 shows the discharge characteristics and the relation between the voltage and the rechargeable capacity at -30 °C of this battery for testing. After the battery is charged up to 4.2 V under a charging condition of 0.5 C, it is discharged up to 3.0 V at -30 °C and under a discharging condition of 1 C. As shown in Table 1, the voltage and the rechargeable capacity at -30 °C in example 1 both have high values, compared with those of a comparative example 1 described later. Further, the rechargeable capacity at the voltage of 3.5 V in example 1 is also 4.5 mAh/g and excellent. Table 1 Rechargeable capacity at low temperature at 3.5 V (mAh/g) Rechargeable capacity at low temperature at 3.0 V (mAh/g) Example 1 4.5 13 Example 2 6 9.8 Comparative Example 1 2 4
  • positive electrode materials having a layered crystal structure have been produced wherein the contact of the primary particles and the voidage in the secondary particle have been varied by changing the burning conditions of the positive electrode material having the layered crystal structure. In this case, when the burning time is extended, the contact or touch area of the primary particles is increased because the crystal growth further proceeds.
  • Prototype batteries have been produced based upon these materials, and discharge rate tests at room temperature of 25 °C and at the low temperature of -30 °C were made.
  • Fig. 3 is a diagram showing the relation between the voidage and the rechargeable capacity.
  • the room-temperature rechargeable capacity is 100 mAh/g and low; on the other hand, when the voidage exceeds 35 %, the rechargeable capacity at the low temperature of -30 °C is rapidly deteriorated.
  • the voidage is in the range of 2.5 to 35 % according to the invention, a high rechargeable capacity of approximately 150 mAh/g at 25 °C and of 10 mAh/g or more at -30 °C is achieved.
  • the positive electrode material having the layered crystal structure described in Example 1 is burnt at 900 °C.
  • Fig. 4 shows a microphotograph (magnification 5000 times) obtained by scanning electron microscopy (SEM) of a section of the positive electrode material having the layered crystal structure.
  • Fig. 5 is a schematic sectional view of a secondary particle thereof.
  • the burning temperature is low, the crystal growth is insufficient, and there are only a few locations in which primary particles 1 are in contact.
  • the diameter 3 of each primary particle forming the secondary particle 2 is also short, and the contact or touch area between the primary particles is small.
  • the result of calculating the ratio of the shared sides of the primary particles to the outside periphery for all of the primary particles in the secondary particle as in Example 1 and calculating the mean value, the ratio is 10 % or less.
  • voids 5 are widely formed. The result of measuring the voidage as in Example 1, the voidage is 41 % or more.
  • a testing battery has been produced using that positive electrode material having the layered crystal structure in the electrode production process and the testing battery production process respectively, as described in Example 1.
  • the discharge rate at low temperature is low as shown in Table 1.
  • the touch area between the primary particles is small, the low-temperature rate characteristic at -30 °C is deteriorated.
  • a mixture has been made so that, in atomic percentages, the ratio of Ni to Co was 0.85:0.15 and the ratio of Li to NiCo was 1.02:1.
  • a positive electrode material was produced by a method similar to that of Example 1.
  • Example 2 The materials were mixed, and a positive electrode material having the layered crystal structure as described in Example 1 was produced, whereby the ratio of Li to NiMnCo was 1.1:1, and a positive electrode material having a layered crystal structure was obtained.
  • a sample for measurement was produced by cutting substantially the center of a secondary particle of the material by a focused ion beam or by polishing after the secondary particle had been buried in a resin.
  • the method of measuring the orientation of the primary particles in the sectional structure of the secondary particle at this time is as follows.
  • the sample for measurement is produced by cutting substantially the center of the secondary particle by a focused ion beam or polishing after the secondary particle is buried in resin.
  • the crystal orientation of the sample is determined by electron backscatter diffraction (EBSD).
  • EBSD electron backscatter diffraction
  • Fig. 6 is a chart showing the relation between the angle representing the orientation of the c-axis of a primary particle in a secondary particle and the cumulative frequency.
  • the angles on the x-axis are the plus and minus values based upon the c-axis.
  • burning is also tested for various burning conditions.
  • Fig. 6 shows that 60 % of the primary particles are within ⁇ 10 degrees (20 degrees) based upon the orientation of the c-axis. Approximately 5 % of the primary particles are within ⁇ 15 degrees or more based upon the c-axis.
  • 95 % or more of the primary particles in the secondary particle are within ⁇ 15 degrees based upon the c-axis, and further, approximately 35 % of the primary particles are within ⁇ 15 degrees exceeding ⁇ 10 degrees, approximately 55 % of the primary particles are within ⁇ 10 degrees exceeding ⁇ 5 degrees, and approximately 5 % of the primary particles are within ⁇ 5 degrees.
  • a battery for testing was produced by the electrode production method and the testing battery production method respectively disclosed in example 1 using the positive electrode material having the layered crystal structure.
  • the voltage is 3.5 V as shown in Table 1
  • the rechargeable capacity is 6 mAh/g
  • the battery has an excellent discharge rate at lower temperature still better than that of example 1.
  • the touch area between the primary particles is great, and the orientations of the c-axes of the primary particles are unified within a small range, the low-temperature rate characteristic at -30 °C is excellent.
  • Fig. 7 shows the relation between the relative lattice volume change rate ⁇ V achieved by producing electrodes with the positive electrode materials described in Example 1 and Comparative example 2 and measuring the lattice constants of the positive electrode materials when they are charged up to 4.2 V and 3.4 V using Xray diffraction for varying x in LiN x Mn y Co z O 2 .
  • the relative lattice volume change rate is the value obtained by dividing the lattice volume in charge up to 4.2 V by the lattice volume in charge up to 3.4 V.
  • the percentage content of Ni is 50 % or less, the relative lattice volume change rate decreases.
  • 18650-type batteries were produced using the positive electrode materials of Example 1 and of Comparative example 2 for charge/discharge cyclic testing.
  • the production of the batteries was as follows. First, the positive electrode material of Example 1, graphite conductive material, carbon black conductive material and polyvinylidene fluoride (PVDF) are mixed in weight percentages of 80:12:3:5; then, N-methyl-2-pyrrolidone in a suitable amount is added and a slurry is produced. The slurry is agitated 3 h in a planetary mill to mix sufficiently. Next, the slurry is coated on an aluminum foil of 15 ⁇ m in thickness using a roller printing-type coater.
  • PVDF polyvinylidene fluoride
  • This compound is pressed with a roller press so that the electrode composite density is 2.5 g/cm 3 . Further, an electrode is similarly produced on the reverse side of the coated surface.
  • Polyvinylidene fluoride (PVDF) is added to amorphous carbon used as negative electrode in an amount of 6.5 wt.-%. Then the amorphous carbon is agitated for 30 min in a slurry mixer for sufficient mixing. The slurry is then coated on both sides of an electrolytic copper foil of 15 ⁇ m in thickness with the coater; after drying it is pressed with the roller press, and the negative electrode is obtained.
  • PVDF Polyvinylidene fluoride
  • the positive electrode and the negative electrode are cut to a predetermined size, and a current collecting tab is installed in an uncoated part of each electrode by ultrasonic welding. After a polyethylene film is cylindrically wound between the positive electrode and the negative electrode, they are inserted into a 18650-type battery can. After the collecting tab and a battery can lid are connected, the battery can lid and the battery can are welded by laser welding, and the battery is sealed.
  • the electrolyte is injected from an inlet provided to the battery can, and the 18650-type battery is obtained.
  • Charge/discharge cyclic testing is applied to the 18650-type battery, and the cycle characteristic is investigated.
  • the condition of the charge/discharge cyclic testing is that charging is performed at a constant current of 1 mA/cm 2 and constant voltage up to the charge final voltage of 4.2 V, and discharging is performed at a constant current of 1 mA/cm 2 up to the discharge final voltage of 3.0 V after a pause of 30 min, and this process is repeated by 500 cycles.
  • the testing environment temperature is set to 60 °C.
  • Table 2 shows the capacity retention rate (percentage obtained by dividing the rechargeable capacity in the first cycle by the rechargeable capacity in the 500th cycle) of each testing battery when the positive electrode material described in Example 1 and that of Comparative example 2 are used.
  • the lattice volume hardly changes in the composition of Example 1, the secondary particles are hardly deteriorated in a charge/discharge cycle, and a satisfactory cycle characteristic where the rechargeable capacity in the 500th cycle is equivalent to 85 % of the rechargeable capacity in the first cycle can be achieved.
  • the lattice volume greatly changes in the composition of the positive electrode material of Comparative example 2 the rechargeable capacity in the 500th cycle is equivalent to only 40 % of the rechargeable capacity in the first cycle, and the cycle characteristic is inferior.
  • Table 2 Percentage content (%) of Ni in transition metal Voidage (%) of positive electrode material Capacity retention rate (%) of lithium secondary battery Example 1 33 3.6 85 Comparative example 2 85 3.6 40
  • a positive electrode material and a lithium secondary battery excellent in discharge rate characteristic and battery capacity at low temperature using the positive electrode material having the layered crystal structure improved in its particle structure, its manufacturing method and high-output and high-energy density non-aqueous lithium secondary batteries using the positive electrode material of the invention are provided.

Claims (12)

  1. Lithium-Akkumulator für Fahrzeuge,
    mit
    - einer positiven Elektrode aus einem positiven Elektrodenmaterial, das sekundäre Partikel umfasst, die aus primären Partikeln aus einem Lithium-Übergangsmetall-Verbundoxid hergestellt sind und Hohlräume umfassen,
    - einer negativen Elektrode,
    und
    - einem nicht-wässrigen Elektrolyt,
    dadurch gekennzeichnet, dass
    - die sekundären Partikel (2) aus einem Netzwerk kristalliner gesinterter primärer Partikel (1) zusammengesetzt sind, die miteinander in Kontakt sind,
    - der Leerraum, der als die Querschnittsfläche der Hohlräume zwischen den primären Partikeln (1) eines sekundären Partikels (2) in einem im Wesentlichen mittigen Querschnitt des sekundären Partikels (2) definiert ist, 2,5 bis 35% beträgt,
    - die Kristallausrichtungen der c-Achsen von mindestens 60% der primären Partikel (1) eines sekundären Partikels (2) in einem Bereich von 20 Grad liegen,
    und
    - die sekundären Partikel aus Kristallen zusammengesetzt sind, die eine geschichtete Kristallstruktur haben und eine Zusammensetzung von LiaNixMnyCozO2 aufweisen,
    wobei a, x, y und z die folgenden Bedingungen erfüllen:
    1 ≤ a ≤ 1,2,
    0,33 ≤ x ≤ 0,5,
    0 < y ≤ 0,65,
    0 < z ≤ 0,65 und
    x + y + z = 1.
  2. Lithium-Akkumulator nach Anspruch 1, dadurch gekennzeichnet, dass der mittlere Durchmesser der sekundären Partikel (2) 5 bis 30 µm beträgt.
  3. Lithium-Akkumulator nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der mittlere Durchmesser der primären Partikel (1) 0,2 bis 10 µm beträgt.
  4. Lithium-Akkumulator nach irgendeinem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Kristallausrichtungen der c-Achsen von mindestens 60% der primären Partikel (1) eines sekundären Partikels (2) in einem Bereich von 10 Grad liegen.
  5. Lithium-Akkumulator nach irgendeinem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Leerraum der sekundären Partikel 2,5 bis 10% beträgt.
  6. Lithium-Akkumulator nach irgendeinem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das positive Elektrodenmaterial der positiven Elektrode hergestellt wird durch
    - Sintern einer Pulverzusammensetzung, die Verbindungen von Li, Ni, Mn und Co umfasst, bei 950 bis 1100°C Und
    - Vermahlen des Produkts zu einem Pulver.
  7. Lithium-Akkumulator nach Anspruch 6, dadurch gekennzeichnet, dass ein Gemisch aus Lithumcarbonat, Nickeloxid, Mangandioxid und Cobaltoxid als Pulverzusammensetzung verwendet wird.
  8. Lithium-Akkumulator nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Pulverzusammensetzung vor dem Sintern granuliert und getrocknet wird, vorzugsweise mittels eines Sprühtrockners.
  9. Lithium-Akkumulator nach irgendeinem der Ansprüche 6 oder 8, dadurch gekennzeichnet, dass das Verhältnis von Ni:Mn:Co in der Startpulverzusammensetzung 1:1:1 1 und das Verhältnis von Li:(NiMnCo) in der Startzusammensetzung 1,02:1 ausgeführt wird.
  10. Lithium-Akkumulator nach irgendeinem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die positive Elektrode hergestellt wird durch
    (I) Vermischen eines positiven Elektrodenmaterials (A), das hergestellt wird durch
    • Sintern einer Pulverzusammensetzung, die Verbindungen von Li, Ni, Mn und Co umfasst, bei 950 bis 1100°C und
    • Vermahlen des Produkts zu einem Pulver,
    mit einem kohlenstoffhaltigen leitenden Material (B) und einem Bindemittel (C) und Bilden einer Schlämme mit einer Flüssigkeit,
    (II) Auftragen der Schlämme auf einem Aluminiumblech, das als Stromkollektor dient, das vorzugsweise eine Dicke von ungefähr 15 µm hat,
    (III) Trocknen des Überzugs auf dem Aluminiumblech, vorzugsweise bei ungefähr 110°C,
    und
    (IV) Unterdrucksetzen des Überzugs auf dem Aluminiumblech mit einem Druck von ungefähr 1,47 kbar (ungefähr 1,5 t/cm2).
  11. Lithium-Akkumulator nach Anspruch 10, dadurch gekennzeichnet, dass in Schritt (I) ein Mischungsverhältnis A:B:C von 85:10,7:4,3 oder von 80:15:5 hinsichtlich Massenanteilen angewendet wird.
  12. Lithium-Akkumulator nach irgendeinem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die negative Elektrode eine Lithiumelektrode ist und die Elektrode LiPF6 in einem gemischten Lösungsmittel von Diethylcarbonat und Dimethylcarbonat ist.
EP10006263.7A 2003-06-11 2004-03-15 Positives Elektrodenmaterial, sein Verfahren zur Herstellung, und Lithium Batterien Expired - Fee Related EP2237347B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003166685A JP4740409B2 (ja) 2003-06-11 2003-06-11 電気自動車或いはハイブリット自動車用リチウム二次電池
EP04006130.1A EP1487038B1 (de) 2003-06-11 2004-03-15 Positives Elektrodenmaterial, Verfahren zu seiner Herstellung, und Lithium Batterien

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP04006130.1 Division 2004-03-15

Publications (3)

Publication Number Publication Date
EP2237347A2 EP2237347A2 (de) 2010-10-06
EP2237347A3 EP2237347A3 (de) 2011-03-02
EP2237347B1 true EP2237347B1 (de) 2013-11-20

Family

ID=33296850

Family Applications (2)

Application Number Title Priority Date Filing Date
EP04006130.1A Expired - Fee Related EP1487038B1 (de) 2003-06-11 2004-03-15 Positives Elektrodenmaterial, Verfahren zu seiner Herstellung, und Lithium Batterien
EP10006263.7A Expired - Fee Related EP2237347B1 (de) 2003-06-11 2004-03-15 Positives Elektrodenmaterial, sein Verfahren zur Herstellung, und Lithium Batterien

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP04006130.1A Expired - Fee Related EP1487038B1 (de) 2003-06-11 2004-03-15 Positives Elektrodenmaterial, Verfahren zu seiner Herstellung, und Lithium Batterien

Country Status (6)

Country Link
US (4) US7910246B2 (de)
EP (2) EP1487038B1 (de)
JP (1) JP4740409B2 (de)
KR (2) KR101116764B1 (de)
CN (5) CN100530778C (de)
TW (1) TWI287889B (de)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4784085B2 (ja) * 2004-12-10 2011-09-28 新神戸電機株式会社 リチウム二次電池用正極材料とその製造法及びリチウム二次電池
EP1876664B1 (de) * 2005-04-28 2011-06-15 Nissan Motor Co., Ltd. Positiv-elektrodenmaterial für eine lithiumionenbatterie mit wasserfreiem elektrolyt und batterie damit
CN100341174C (zh) * 2005-06-13 2007-10-03 西安交通大学 锂离子电池阴极的改性方法
JP2007048692A (ja) * 2005-08-12 2007-02-22 Hitachi Vehicle Energy Ltd リチウム二次電池用正極材料、リチウム二次電池用正極板及びこれを用いたリチウム二次電池
CN100336248C (zh) * 2005-10-10 2007-09-05 西安交通大学 锂离子电池阴极活性材料的表面改性方法
CN100527480C (zh) * 2005-10-27 2009-08-12 比亚迪股份有限公司 锂离子电池正极材料锂镍锰钴氧的制备方法
CN101501898A (zh) * 2006-06-26 2009-08-05 松下电器产业株式会社 非水电解质二次电池用正极活性物质以及非水电解质二次电池
US8962195B2 (en) 2007-09-04 2015-02-24 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder, method for manufacturing the same, spray-dried substance serving as firing precursor thereof, and lithium secondary battery positive electrode and lithium secondary battery using the same
US20090104517A1 (en) * 2007-10-17 2009-04-23 Toyotaka Yuasa Cathode active material and lithium ion secondary battery containing the same
WO2010064504A1 (ja) * 2008-12-05 2010-06-10 日鉱金属株式会社 リチウムイオン電池用正極活物質、同正極活物質を用いた二次電池用正極及び二次電池正極を用いたリチウムイオン二次電池
WO2010107084A1 (ja) * 2009-03-18 2010-09-23 株式会社三徳 全固体リチウム電池
KR101117623B1 (ko) 2009-06-05 2012-02-29 에스비리모티브 주식회사 리튬 이차 전지용 양극 및 상기 양극을 포함하는 리튬 이차 전지
US20110052995A1 (en) * 2009-08-28 2011-03-03 Tdk Corporation Active material, electrode containing the same, lithium secondary battery provided therewith and method for manufacture of the active material
JP4937405B1 (ja) * 2009-12-28 2012-05-23 住友化学株式会社 リチウム複合金属酸化物の製造方法
US8765007B2 (en) 2010-01-15 2014-07-01 Toyota Jidosha Kabushiki Kaisha Method of evaluating positive electrode active material
JP2012048959A (ja) * 2010-08-26 2012-03-08 Sanyo Electric Co Ltd 非水電解質二次電池用電極及び非水電解質二次電池
US9225008B2 (en) * 2010-10-15 2015-12-29 Toyota Jidosha Kabushiki Kaisha Secondary battery
US20120258358A1 (en) * 2011-04-07 2012-10-11 Ngk Insulators, Ltd. Cathode active material for a lithium ion secondary battery and a lithium ion secondary battery
WO2012137533A1 (ja) * 2011-04-07 2012-10-11 日本碍子株式会社 正極活物質前駆体粒子及びその製造方法、並びにリチウム二次電池の正極活物質粒子の製造方法
JP5651547B2 (ja) * 2011-06-29 2015-01-14 日立オートモティブシステムズ株式会社 リチウムイオン二次電池
KR20130138073A (ko) * 2012-06-08 2013-12-18 한양대학교 산학협력단 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지
KR101539843B1 (ko) * 2012-07-13 2015-07-27 주식회사 엘지화학 고밀도 음극 활물질 및 이의 제조방법
WO2014038394A1 (ja) * 2012-09-04 2014-03-13 日本碍子株式会社 リチウム二次電池用正極活物質
JP6088923B2 (ja) * 2012-09-04 2017-03-01 日本碍子株式会社 リチウム二次電池用正極活物質又はその前駆体の製造方法
WO2014090575A1 (en) 2012-12-14 2014-06-19 Umicore Low porosity electrodes for rechargeable batteries
US8968669B2 (en) 2013-05-06 2015-03-03 Llang-Yuh Chen Multi-stage system for producing a material of a battery cell
KR101785262B1 (ko) 2013-07-08 2017-10-16 삼성에스디아이 주식회사 양극 활물질, 그 제조방법, 이를 채용한 양극 및 리튬이차전지
JP6350150B2 (ja) 2013-09-30 2018-07-04 株式会社Gsユアサ 蓄電素子
CN106030872B (zh) * 2013-11-29 2018-12-18 株式会社半导体能源研究所 锂锰复合氧化物及二次电池
WO2015079664A1 (ja) * 2013-11-29 2015-06-04 三洋電機株式会社 非水電解質二次電池用正極
US9559536B2 (en) 2014-04-30 2017-01-31 Johnson Controls Technology Company State of charge indicator method and system
US9437850B2 (en) 2014-04-30 2016-09-06 Johnson Controls Technology Company Battery construction for integration of battery management system and method
US9431837B2 (en) 2014-04-30 2016-08-30 Johnson Controls Technology Company Integrated battery management system and method
US9692240B2 (en) 2014-04-30 2017-06-27 Johnson Controls Technology Company Battery sleep mode management method and system
WO2015183568A1 (en) * 2014-05-27 2015-12-03 Dow Global Technologies Llc Improved lithium metal oxide cathode materials and method to make them
EP2963593A1 (de) 2014-07-02 2016-01-06 Sara Penco Verfahren zur klassifizierung, katalogisierung und verfolgung von wertvollen anlagen, insbesondere für kunstwerke
JP6627758B2 (ja) * 2014-07-30 2020-01-08 三洋電機株式会社 非水電解質二次電池用正極及びそれを用いた非水電解質二次電池
JP2016054101A (ja) * 2014-09-04 2016-04-14 株式会社日立製作所 リチウムイオン二次電池
KR102435473B1 (ko) 2015-08-04 2022-08-23 삼성전자주식회사 다결정 소결체를 갖는 이차전지 양극, 상기 이차전지 양극을 포함하는 이차전지, 및 상기 이차전지 양극을 제조하는 방법
CN108370036A (zh) 2015-12-15 2018-08-03 株式会社杰士汤浅国际 锂二次电池用正极活性物质、正极活性物质的前体的制造方法、正极活性物质的制造方法、锂二次电池用正极和锂二次电池
WO2017160852A1 (en) 2016-03-14 2017-09-21 Apple Inc. Cathode active materials for lithium-ion batteries
CN109075310B (zh) * 2016-04-04 2022-04-29 株式会社杰士汤浅国际 蓄电元件
CN109803928A (zh) * 2016-07-29 2019-05-24 住友金属矿山株式会社 镍锰复合氢氧化物及其制造方法、非水系电解质二次电池用正极活性物质及其制造方法、以及非水系电解质二次电池
CN106299357B (zh) * 2016-10-14 2019-06-18 成都理工大学 具有特定形貌结构的硫化铋电极材料及其应用
KR102609884B1 (ko) * 2017-11-09 2023-12-05 주식회사 엘지에너지솔루션 높은 결정화도를 가지는 바인더를 포함하는 이차전지용 다층 전극
KR20190075729A (ko) * 2017-12-21 2019-07-01 재단법인 포항산업과학연구원 리튬 이차 전지용 양극 활물질 및 이의 제조 방법, 상기 양극 활물질을 포함하는 리튬 이차 전지
US10787368B2 (en) * 2018-06-06 2020-09-29 Basf Corporation Process for producing lithiated transition metal oxides
US11695108B2 (en) 2018-08-02 2023-07-04 Apple Inc. Oxide mixture and complex oxide coatings for cathode materials
US11749799B2 (en) 2018-08-17 2023-09-05 Apple Inc. Coatings for cathode active materials
JP7010183B2 (ja) * 2018-09-11 2022-01-26 トヨタ自動車株式会社 帯状電極板の製造方法、電池の製造方法及び電極板製造装置
JP7166452B2 (ja) * 2018-11-23 2022-11-07 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー リチウム二次電池用正極活物質、その製造方法、および前記正極活物質を含むリチウム二次電池
EP3890060A4 (de) * 2018-11-29 2021-12-08 Kabushiki Kaisha Toshiba Elektrode, zelle und zellenpackung
CN111653756B (zh) * 2019-03-04 2021-06-08 屏南时代新材料技术有限公司 正极活性物质前驱体、其制备方法及正极活性物质
US11673112B2 (en) 2020-06-28 2023-06-13 eJoule, Inc. System and process with assisted gas flow inside a reaction chamber
US11376559B2 (en) 2019-06-28 2022-07-05 eJoule, Inc. Processing system and method for producing a particulate material
US11121354B2 (en) 2019-06-28 2021-09-14 eJoule, Inc. System with power jet modules and method thereof
US11757096B2 (en) 2019-08-21 2023-09-12 Apple Inc. Aluminum-doped lithium cobalt manganese oxide batteries
KR102066461B1 (ko) * 2019-09-27 2020-01-15 재단법인 포항산업과학연구원 리튬 이차 전지용 양극 활물질의 제조 방법
KR102147293B1 (ko) * 2019-09-27 2020-08-24 재단법인 포항산업과학연구원 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
KR20210097058A (ko) * 2020-01-29 2021-08-06 주식회사 엘지화학 이차전지용 양극 활물질 전구체, 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299092A (ja) * 1992-01-17 1993-11-12 Matsushita Electric Ind Co Ltd 非水電解質リチウム二次電池及びその製造方法
US5393622A (en) * 1992-02-07 1995-02-28 Matsushita Electric Industrial Co., Ltd. Process for production of positive electrode active material
US5326545A (en) * 1993-03-30 1994-07-05 Valence Technology, Inc. Method of making lithium battery electrode compositions
US5334334A (en) * 1993-03-30 1994-08-02 Valence Technology, Inc. Method of preparing lithium battery electrode compositions
US5512214A (en) * 1993-03-30 1996-04-30 Koksbang; Rene Lithium battery electrode compositions
JP3047693B2 (ja) 1993-07-22 2000-05-29 松下電器産業株式会社 非水電解液二次電池およびその正極活物質の製造法
JPH07245106A (ja) 1994-03-02 1995-09-19 Masayuki Yoshio リチウム二次電池用LixM▲n2▼▲O4▼の製造方法とその非水電池への応用
JPH08213015A (ja) 1995-01-31 1996-08-20 Sony Corp リチウム二次電池用正極活物質及びリチウム二次電池
JP3047827B2 (ja) * 1996-07-16 2000-06-05 株式会社村田製作所 リチウム二次電池
US6066413A (en) * 1997-03-06 2000-05-23 Telcordia Technologies, Inc. Method for increasing reversible lithium intercalation capacity in carbon electrode secondary batteries
DE69827700T2 (de) * 1997-05-22 2005-10-06 Matsushita Electric Industrial Co., Ltd., Kadoma Sekundärbatterie mit nichtwässrigem Elektrolyten
US6383235B1 (en) * 1997-09-26 2002-05-07 Mitsubishi Denki Kabushiki Kaisha Cathode materials, process for the preparation thereof and secondary lithium ion battery using the cathode materials
US6982132B1 (en) * 1997-10-15 2006-01-03 Trustees Of Tufts College Rechargeable thin film battery and method for making the same
JP3032757B1 (ja) 1999-02-18 2000-04-17 株式会社東芝 非水電解液二次電池
JP3110728B1 (ja) * 1999-05-06 2000-11-20 同和鉱業株式会社 非水系二次電池用正極活物質および正極
CN1179437C (zh) * 1999-07-07 2004-12-08 昭和电工株式会社 正极活性物质、其制备方法及二次电池
JP2001076727A (ja) * 1999-09-08 2001-03-23 Sony Corp 非水電解質電池用正極活物質及び非水電解質電池
JP2001085006A (ja) * 1999-09-14 2001-03-30 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウムニッケル複合酸化物およびそれを用いたリチウム二次電池
JP2001155729A (ja) 1999-11-24 2001-06-08 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質および該正極活物質を用いた非水系電解質二次電池
JP2001243951A (ja) * 2000-02-28 2001-09-07 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質および該正極活物質を用いた非水系電解質二次電池
CN1310357C (zh) * 2000-05-24 2007-04-11 三菱电线工业株式会社 锂蓄电池及其正极活性物质、正极板及它们的制造方法
TW499397B (en) 2000-06-02 2002-08-21 Synergy Scientech Corp Manufacture method of LiMn2O4 powder for positive electrode material of secondary lithium battery
JP2002042811A (ja) 2000-07-24 2002-02-08 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質および該正極活物質を用いた非水系電解質二次電池
JP5034136B2 (ja) * 2000-11-14 2012-09-26 株式会社Gsユアサ 非水電解質二次電池用正極活物質およびそれを用いた非水電解質二次電池
EP1207572A1 (de) 2000-11-15 2002-05-22 Dr. Sugnaux Consulting Mesoporöse Elektroden für elektrochemische Zellen und Hestellungsverfahren
US6706446B2 (en) 2000-12-26 2004-03-16 Shin-Kobe Electric Machinery Co., Ltd. Non-aqueous electrolytic solution secondary battery
JP2002243951A (ja) 2001-02-21 2002-08-28 Sumitomo Electric Ind Ltd 光ケーブルクロージャ及び光ケーブルの接続方法
JP4868271B2 (ja) 2001-03-15 2012-02-01 日立金属株式会社 非水系リチウム二次電池用正極活物質の製造方法およびこの活物質を用いた正極、並びに非水系リチウム二次電池
JP4986098B2 (ja) 2001-03-15 2012-07-25 日立金属株式会社 非水系リチウム二次電池用正極およびそれを用いた非水系リチウム二次電池
JP4080337B2 (ja) 2001-03-22 2008-04-23 松下電器産業株式会社 正極活物質およびこれを含む非水電解質二次電池
EP2144314B1 (de) 2001-04-20 2015-01-28 GS Yuasa International Ltd. Positive aktive Materialien und Herstellungsverfahren dafür, positive Elektrode für eine Sekundärbatterie mit nichtwässrigem Elektrolyten und Sekundärbatterie mit nichtwässrigem Elektrolyten damit
JP4092950B2 (ja) * 2001-05-17 2008-05-28 三菱化学株式会社 リチウムニッケルマンガン複合酸化物の製造方法
US8658125B2 (en) 2001-10-25 2014-02-25 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7393476B2 (en) 2001-11-22 2008-07-01 Gs Yuasa Corporation Positive electrode active material for lithium secondary cell and lithium secondary cell
JP2003229124A (ja) * 2002-01-31 2003-08-15 Hitachi Metals Ltd 非水系リチウム二次電池用正極活物質とその製造方法及びそれを用いた非水系リチウム二次電池
JP4254267B2 (ja) * 2002-02-21 2009-04-15 東ソー株式会社 リチウムマンガン複合酸化物顆粒二次粒子及びその製造方法並びにその用途
JP4594605B2 (ja) * 2002-08-05 2010-12-08 パナソニック株式会社 正極活物質およびこれを含む非水電解質二次電池
JP3709446B2 (ja) * 2002-12-09 2005-10-26 三井金属鉱業株式会社 リチウム二次電池用正極活物質及びその製造方法
TWI279019B (en) 2003-01-08 2007-04-11 Nikko Materials Co Ltd Material for lithium secondary battery positive electrode and manufacturing method thereof
JP2004281253A (ja) * 2003-03-17 2004-10-07 Hitachi Metals Ltd 非水系リチウム二次電池用正極活物質とその製造方法及びその正極活物質を用いた非水系リチウム二次電池

Also Published As

Publication number Publication date
JP4740409B2 (ja) 2011-08-03
US20040253516A1 (en) 2004-12-16
KR20040106207A (ko) 2004-12-17
EP1487038A3 (de) 2010-02-17
KR101129333B1 (ko) 2012-03-26
CN100530778C (zh) 2009-08-19
CN1841818A (zh) 2006-10-04
CN1574429A (zh) 2005-02-02
CN101009390A (zh) 2007-08-01
EP1487038A2 (de) 2004-12-15
US7604898B2 (en) 2009-10-20
TW200428693A (en) 2004-12-16
TWI287889B (en) 2007-10-01
CN1282265C (zh) 2006-10-25
CN101009369A (zh) 2007-08-01
EP2237347A3 (de) 2011-03-02
US20110127463A1 (en) 2011-06-02
CN100565984C (zh) 2009-12-02
CN101009369B (zh) 2010-12-08
JP2005005105A (ja) 2005-01-06
US20070259266A1 (en) 2007-11-08
KR101116764B1 (ko) 2012-03-13
US8097363B2 (en) 2012-01-17
CN101114708A (zh) 2008-01-30
US20070212602A1 (en) 2007-09-13
KR20110122809A (ko) 2011-11-11
CN100477372C (zh) 2009-04-08
EP1487038B1 (de) 2013-06-12
EP2237347A2 (de) 2010-10-06
US7910246B2 (en) 2011-03-22

Similar Documents

Publication Publication Date Title
EP2237347B1 (de) Positives Elektrodenmaterial, sein Verfahren zur Herstellung, und Lithium Batterien
EP1291941B1 (de) Aktivmaterial für Batterie und Verfahren zu seiner Herstellung
CN101350407B (zh) 锂离子二次电池的负极材料和锂离子二次电池
KR20150079603A (ko) 리튬이온 2차 전지용 음극 재료, 리튬이온 2차 전지용 음극 및 리튬이온 2차 전지
KR20130107892A (ko) 리튬 이차 전지용 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR20150063620A (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
US9077034B2 (en) High manganese polycrystalline anode material, preparation method thereof and dynamic lithium ion battery
WO2001091211A1 (fr) Accumulateur au lithium et materiau actif d&#39;electrode positive, plaque positive et leur procede de fabrication
US11784314B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery including the same
JP4740415B2 (ja) 電気自動車或いはハイブリッド自動車用リチウム二次電池
EP3709397A1 (de) Positivelektrode für batterie mit wasserfreiem elektrolyt und batterie mit wasserfreiem elektrolyt
JP2002093417A (ja) Li−Co系複合酸化物、ならびにそれを用いた正極板およびリチウムイオン二次電池
US20230084916A1 (en) Negative electrode material for lithium-ion secondary battery and method of producing same, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
KR20220122714A (ko) 음극 활물질, 그의 제조방법, 2차전지 및 2차전지를 포함하는 배터리 모듈, 배터리 팩 및 디바이스
JP5636689B2 (ja) 黒鉛粒子、これを用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
KR100693397B1 (ko) 충전지용 음의 전극들
WO2020141573A1 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP4053763B2 (ja) リチウムイオン二次電池
Wang et al. Improvement of the electrochemical performance of LiNi 0.33 Mn 0.33 Co 0.33 O 2 cathode material by chromium doping
JP7444322B1 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2001052682A (ja) リチウムイオン二次電池
WO2024048732A1 (ja) 二次電池用負極、二次電池、および二次電池用負極の製造方法
WO2024048733A1 (ja) 二次電池用負極、二次電池、および二次電池用負極の製造方法
Jayswal et al. Mimics on Li-ion full-cell fabrication in coin and pouch cell geometries
JP2010157519A (ja) 正極活物質の製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1487038

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

AX Request for extension of the european patent

Extension state: AL LT LV MK

RIC1 Information provided on ipc code assigned before grant

Ipc: H01M 4/48 20100101AFI20110124BHEP

Ipc: H01M 4/50 20100101ALI20110124BHEP

Ipc: H01M 4/52 20100101ALI20110124BHEP

Ipc: H01M 4/04 20060101ALI20110124BHEP

17P Request for examination filed

Effective date: 20110902

17Q First examination report despatched

Effective date: 20120111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602004043867

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01M0004505000

Ipc: H01M0004480000

RIC1 Information provided on ipc code assigned before grant

Ipc: H01M 4/1391 20100101ALI20121213BHEP

Ipc: H01M 4/131 20100101ALI20121213BHEP

Ipc: H01M 4/04 20060101ALI20121213BHEP

Ipc: H01M 4/48 20100101AFI20121213BHEP

Ipc: H01M 4/525 20100101ALI20121213BHEP

Ipc: H01M 4/52 20100101ALI20121213BHEP

Ipc: H01M 4/505 20100101ALI20121213BHEP

Ipc: H01M 4/50 20100101ALI20121213BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KASAI, MASAHIRO C/O HITACHI LTD.,

Inventor name: NAKAJIMA, GENEI C/O HITACHI METALS, LTD.,

Inventor name: YUASA, TOYOTAKA C/O HITACHI, LTD.,

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HITACHI METALS, LTD.

Owner name: SHIN-KOBE ELECTRIC MACHINERY CO., LTD.

Owner name: HITACHI, LTD.

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KASAI, MASAHIRO C/O HITACHI LTD.,

Inventor name: NAKAJIMA, GENEI C/O HITACHI METALS, LTD.,

Inventor name: YUASA, TOYOTAKA C/O HITACHI, LTD.,

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130726

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1487038

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

RIN2 Information on inventor provided after grant (corrected)

Inventor name: YUASA, TOYOTAKA C/O HITACHI, LTD.,

Inventor name: NAKAJIMA, GENEI C/O HITACHI METALS, LTD.,

Inventor name: KASAI, MASAHIRO C/O HITACHI LTD.,

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602004043867

Country of ref document: DE

Effective date: 20140116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004043867

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140821

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004043867

Country of ref document: DE

Effective date: 20140821

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180314

Year of fee payment: 15

Ref country code: DE

Payment date: 20180227

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180223

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004043867

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190315

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331