EP2171367A1 - Integrated solar energy receiver-storage unit - Google Patents

Integrated solar energy receiver-storage unit

Info

Publication number
EP2171367A1
EP2171367A1 EP08768175A EP08768175A EP2171367A1 EP 2171367 A1 EP2171367 A1 EP 2171367A1 EP 08768175 A EP08768175 A EP 08768175A EP 08768175 A EP08768175 A EP 08768175A EP 2171367 A1 EP2171367 A1 EP 2171367A1
Authority
EP
European Patent Office
Prior art keywords
receiver
core
solar radiation
aperture
working fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08768175A
Other languages
German (de)
French (fr)
Inventor
David R. Mills
Peter K. Le Lievre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Areva Solar Inc
Original Assignee
Ausra Inc
Areva Solar Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ausra Inc, Areva Solar Inc filed Critical Ausra Inc
Priority to EP12168701A priority Critical patent/EP2492609A1/en
Publication of EP2171367A1 publication Critical patent/EP2171367A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/10Details of absorbing elements characterised by the absorbing material
    • F24S70/16Details of absorbing elements characterised by the absorbing material made of ceramic; made of concrete; made of natural stone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/50Preventing overheating or overpressure
    • F24S40/52Preventing overheating or overpressure by modifying the heat collection, e.g. by defocusing or by changing the position of heat-receiving elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • F24S60/10Arrangements for storing heat collected by solar heat collectors using latent heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • This application relates to a receiver for a solar energy system, and in particular to an integrated solar energy receiver-thermal energy storage unit.
  • the receivers and integrated units disclosed here may be suitable for receiving concentrated solar radiation from a field of heliostat-type reflectors.
  • a receiver e.g., an integrated receiver-thermal energy storage unit, in some of its applications, may be employed as a tower-mounted receiver or elevated in some other manner.
  • a receiver e.g., an integrated receiver-thermal energy storage unit, may be located elsewhere than on a tower, for example at or near ground level, e.g., when employed as a secondary receiver.
  • Tower-mounted receivers are well known in the context of solar energy collector systems and may take various forms, depending upon whether they are employed, for example, in the transfer of radiative energy to photovoltaic cells or in the transfer of thermal energy to a heat exchange fluid such as water, a molten salt or air.
  • More efficient tower-mounted receivers may incorporate a cavity having a relatively small aperture through which concentrated (reflected) radiation is focused from a field of reflectors and, in receivers that have relevance to the present application, provision is made for the transporting of thermal energy that is generated within the receiver as a consequence of absorption of solar energy in the wall of the cavity.
  • these receivers do not make specific provision for integrated storage of thermal energy that is generated in the receiver by absorption of solar energy.
  • a solar energy receiver that does provide for integrated thermal energy storage is disclosed in U.S. Patent No. 4,815,443, issued March 28, 1989, and assigned to Rockwell International Corporation ('443 patent).
  • the receiver as described in the '443 patent has specific application to a space station.
  • the receiver comprises a first (helical-form) fluid conduit that is located within a cavity of the receiver, and a second fluid conduit that is located within a thermal energy storage layer that is formed from a metallic material that surrounds the cavity.
  • the first conduit and the thermal energy storage layer are both exposed to solar radiation that is focused into the cavity during insolation periods.
  • a first heat exchange fluid is cycled through the first conduit.
  • a second heat exchange fluid is cycled through the second conduit during in-shadow periods.
  • the first and second heat exchange fluids are then used alternately for heat exchange with a working fluid that is used to energize an associated heat engine.
  • thermal energy storage system as disclosed in International Patent publication WO2005/088218, by Larkden Pty Ltd, in which a substantially solid body of graphite is employed to store heat energy for subsequent release to a fluid through surface-mounted heat exchangers.
  • thermal energy is generated in the graphite body by electrical resistance heating in a cavity within the graphite body.
  • tower solar arrays e.g., a multi-tower solar array
  • receivers that include integrated thermal energy storage.
  • the present application describes receivers for use in solar energy collector systems and solar-powered electrical energy generating plants.
  • the receivers comprise a solar radiation absorbing core that converts absorbed solar radiation to thermal energy.
  • the core comprises a refractory material to allow the receivers to operate continuously at high temperatures reached by absorbing concentrated solar radiation.
  • the thermal energy so generated in the core may be stored in the receiver for a transitory period, or for a more extended period.
  • a receiver may function as an integrated receiver- thermal energy storage unit, and the terms "receiver” and “integrated receiver-thermal energy storage unit,” and “integrated receiver-storage unit” are used interchangeably herein.
  • a working fluid e.g., air, may be employed to extract stored thermal energy from the receivers.
  • refractory material is to be understood in the context of the present application as one that is substantially opaque to solar radiation and remains substantially stable (physically and/or chemically) when exposed to temperatures (for example of the order of about 800°C to about 2500 0 C, or about 800°C to about 3000°C, e.g., at least about 800°C, at least about 1000°C, at least about 1200°C, at least about 1400°C, at least about 1600°C, at least about 1800°C, at least about 2000°C, at least about 2200°C, or at least about 2500°C) that may be established with absorption of concentrated solar radiation.
  • temperatures for example of the order of about 800°C to about 2500 0 C, or about 800°C to about 3000°C, e.g., at least about 800°C, at least about 1000°C, at least about 1200°C, at least about 1400°C, at least about 1600°C, at least about 1800°C, at least about 2000°C, at least about 2200
  • Such "refractory material” may, for example, comprise a refractory metal, a ceramic, a cermet, or any combination thereof.
  • Refractory materials may for example comprise alumina, silica, carbon, magnesia, zirconia, silicon carbide, titanium carbide, tantalum carbide, chromium carbide, niobium carbide, zirconium carbide, molybdenum disilicide, calcium oxide, graphite, chromite, dolomite, magnesite, quartzite, aluminium silicate, tungsten, molybdenum, niobium, tantalum, rhenium, beryllium, and combinations thereof.
  • a receiver element that is composed primarily of a refractory material comprises at least about 50% by any measure (e.g., by weight or volume) of that refractory material.
  • the term "pipe” as used herein is meant to encompass any tube, conduit or the like. Pipes may have any configuration, e.g., may have a round cross-sectional shape, or a polygonal cross-sectional shape, may be straight, bent, or curved, and may be joined to other pipes, valves, end caps, junctions, vessels, and the like.
  • a “pipe manifold” as used herein is meant to refer to an arrangement of multiple pipes, including any associated pipe joints, valves, end caps, junctions, and the like.
  • a “receiver body” and “body” refer to a portion of a receiver that comprises a solar radiation absorbing refractory material.
  • the refractory material may be primarily contained in or confined to a subportion of a body, e.g., an interior subportion, which may be referred to herein as a "receiver core” or a "core.”
  • the refractory material may not be localized within the body (e.g., the body as a whole may comprise the refractory material), in which case the receiver body and the receiver core are synonymous.
  • a “substantially horizontal” aperture may be generally parallel to ground, e.g., within about +/- 10 degrees or less, within about +/- 8 degrees, within about +/- 5 degrees, within about +/- 3 degrees, or within about +/- 1 degree of a horizontal direction, relative to ground.
  • a material that remains “substantially stable” is one that is not exposed to conditions that would degrade the material prematurely.
  • a ceramic or other material would be substantially stable if maintained within normally accepted operating temperatures or below the temperature at which e.g. spalling or other surface and/or internal damage occurs.
  • the terms "a” “an” and “the” are meant to encompass singular as well as plural referents unless the context clearly indicates otherwise. Numerical ranges as used herein are meant to be inclusive of any endpoints indicated for the ranges, as well as any number included in the ranges.
  • the receivers comprise a core composed primarily of a refractory material.
  • the core is configured to absorb solar radiation that has been directed through an aperture in the receiver, so that the absorbed solar radiation is converted to thermal energy stored in the core.
  • the core also comprises one or more fluid passageways for conveying a working fluid through and/or around the core to facilitate extraction of stored thermal energy from the core.
  • These receivers may be tower-mounted or mounted at or near ground level, e.g., for a solar array comprising a beam down receiver configuration.
  • the working fluid used with these receivers may for example comprise primarily air.
  • the refractory material in a receiver may be any refractory material that is substantially opaque to solar radiation and remains substantially stable when exposed to temperatures that are established with absorption of concentrated solar radiation.
  • the refractory material may be selected from the group of refractory metals, ceramics, and cermets. Some of the refractory materials may be able to withstand continuous operation at temperatures of at least about 1000 0 C, or at least about 1200 0 C, or even higher.
  • the refractory material in the receivers may comprise more than one refractory component.
  • a refractory material used in a receiver may be selected from the group consisting of alumina, silica, carbon, magnesia, zirconia, silicon carbide, titanium carbide, tantalum carbide, chromium carbide, niobium carbide, zirconium carbide, molybdenum disilicide, calcium oxide, graphite, chromite, dolomite, magnesite, quartzite, aluminum silicate, tungsten, molybdenum, niobium, tantalum, rhenium, beryllium, and combinations thereof
  • An incident surface of the core that is to receive and absorb solar radiation directed through the receiver aperture may have any suitable orientation and configuration within the receiver body.
  • an incident surface of the core may be substantially horizontal.
  • An incident surface of a core in certain receivers may be substantially vertical.
  • Some receiver core may comprise both substantially horizontal and substantially vertical incident surfaces.
  • a receiver with an inclined aperture may also be inclined so as to be approximately parallel to the receiver aperture
  • the bulk of the solar radiation absorbing refractory core may have a variety of configurations.
  • the core may comprise an exterior cladding layer, which may in some cases protect an interior portion of the refractory core underneath the cladding layer.
  • the one or more passageways in the core may have a variety of arrangements.
  • one or more passageways may be directed radially outward from an inner portion of the core to a peripheral portion of the core.
  • the core may comprise an aggregated material, and the aggregated material may have a particle size and packed density such that the working fluid can permeate through passageways between interstitial voids in the aggregate.
  • Variations of cores may comprise one or more metal structures, e.g., a mesh or fins, that may distribute heat through the core.
  • the aperture may be situated anywhere in the receiver, e.g., in a receiver housing or in the core itself.
  • the aperture may be a substantially horizontally oriented aperture that is situated on a lower surface of the receiver, so as to comprise a downward facing opening of the receiver.
  • a window e.g., a quartz window
  • a displacement between the aperture through which solar radiation is directed and the core may be adjusted to determine an energy density or intensity of the solar radiation that is incident on the core.
  • the displacement between the aperture and the core may be adjusted to increase an energy collection efficiency of the receiver.
  • a displacement between the aperture and the core may be selected to image an array of reflectors that direct solar radiation through the aperture.
  • receivers are tower mounted.
  • the receiver comprises a substantially horizontally oriented aperture situated on a lower surface of the body so as to comprise a downward facing opening.
  • the receivers also include a solar radiation absorbing core that comprises a refractory material.
  • the core is disposed within the body and above the aperture so that solar radiation directed through the aperture is incident on the core for bulk absorption in the core to generate stored thermal energy in the core.
  • Some variations of these tower mounted receivers may comprise at least one passageway in and/or around the core for conveying a working fluid, e.g., a working fluid that comprises primarily air, through and facilitating extraction of thermal energy from the core.
  • a window e.g., a quartz window, may but need not be used to at least partially cover the aperture.
  • the refractory core may have any suitable composition.
  • the core may be primarily composed of a refractive material that is substantially opaque to solar radiation and remains substantially stable when exposed to temperatures that are established with absorption of concentrated solar radiation.
  • the refractory material may be selected from the group of refractory metals, ceramics, and cermets.
  • the refractory materials may for example be able to withstand continuous operation at temperatures of at least about 1000 0 C, or at least about 1200 0 C, or even higher.
  • the refractory material in these receivers may comprise more than one refractory component.
  • the core may have a variety of configurations.
  • an incident surface of the core designed to receive and absorb incident solar radiation may be substantially horizontal.
  • an incident surface of the core may be substantially vertical.
  • a displacement between an incident surface of the core may be adjusted, e.g., to adjust a solar radiation energy density or intensity on the core, and/or to increase an energy collection efficiency of the receiver.
  • a displacement between the aperture and a substantially horizontal incident surface of the core may be selected to image or approximately image an array of reflectors directing reflected solar radiation through the aperture.
  • the solar radiation absorbing core itself may have a variety of configurations, and may for example comprise an exterior cladding layer, which may in some cases protect an interior portion of the core underneath the cladding layer.
  • the core comprises one or more passageways configured to convey a working fluid through and/or around the core, those one or more passageways may have a variety of arrangements.
  • one or more passageways may be directed radially outward from an inner portion of the core to a peripheral portion of the core.
  • the core may comprise an aggregate, and one or more fluid passageways in the core may comprise interconnected interstitial spaces between particles of the aggregate.
  • Cores in some instances may comprise one or more metal structures, e.g., a mesh or fins, that in operation may distribute heat through the core.
  • receiver-storage units for use in a solar energy collector system
  • receivers comprise a body having at least a major part of its volume composed of a refractory material, and a cavity provided within the body and having an aperture through which concentrated solar radiation is in use focused to impinge on a wall of the cavity, and at least one passageway located within the body for conveying a working fluid through and facilitating extraction of thermal energy from the body.
  • Methods for effecting energy exchange to generate thermal energy from solar energy are also described here. Some variations of these methods comprise directing concentrated solar radiation through a receiver aperture, so that the solar radiation is incident on a receiver core, where the core is composed primarily of a refractory material that is capable of absorbing solar radiation to generate thermal energy. The methods further comprise transferring thermal energy from the core to a working fluid by passing the working fluid through one or more passageways in and/or around the core. The methods may comprise directing concentrated solar radiation through the aperture to be incident on the core so that the core reaches a continuous operating temperature of about 1000 0 C or higher, or about 1200 0 C, or even higher. The working fluid used in these methods may for example comprise primarily air.
  • the methods may comprise passing a working fluid through any one of a variety of configurations of passageways.
  • methods may comprise flowing the working fluid through one or more passageways that are directed radially outward from an interior region of the core to a peripheral region of the core, or one or more serpentine or helical passageways through the core.
  • the core may comprise an aggregate, and the methods may comprise flowing the working fluid through one or more passageways comprising interconnected interstitial spaces in the aggregate.
  • a cross-sectional dimension of an aperture and/or a displacement between the aperture and an incident surface of the core may be adjusted, e.g., to adjust an energy density or intensity on a core and/or to increase a collection efficiency of the receiver.
  • the methods may comprise concentrating and directing the solar radiation through the aperture so that a point of maximum energy density or intensity occurs at or before the aperture, e.g., so that solar radiation is relatively divergent and less intense as it is incident on the core, alleviating local overheating.
  • the methods may comprise directing the concentrated solar radiation to be incident on a substantially horizontal surface of the core, or to be incident on a substantially vertical surface of the core, or to be incident on both a substantially horizontal surface and a substantially vertical surface of the core.
  • Certain ones of the methods may comprise imaging or approximately imaging an array of reflectors on a substantially horizontal incident surface of the core, where the array of reflectors is used to direct solar radiation through the aperture of the receiver to be incident on that substantially horizontal core surface.
  • any type of array of reflectors may be employed to direct concentrated solar radiation through the aperture to be incident on the core.
  • an array comprising fixed horizontal axis and/or fixed vertical axis heliostats may be used.
  • Additional methods for effecting energy exchange comprise directing concentrated solar radiation through a substantially horizontally oriented aperture in a lower portion of a body of a tower-mounted receiver so that the solar radiation is incident on and absorbed by a core disposed within the body to generate thermal energy in the core.
  • the methods further comprise transferring thermal energy from the core to a working fluid, e.g., a working fluid that comprises primarily air.
  • the methods may comprise transferring thermal energy from the core to the working fluid by flowing the working fluid through one or more fluid passageways in and/or around the core.
  • Such passageways may have a variety of configurations.
  • one or more passageways may be directed radially between an internal portion of the core and a peripheral region of the core, or through a serpentine passageway through the core.
  • the core may comprise an aggregate, and the methods may include flowing the working fluid through one or more passageways comprising interconnected interstitial spaces in the aggregate.
  • the methods may comprise adjusting a displacement between the aperture and an incident surface of the core so as to adjust an energy density or intensity on the core and/or an efficiency of the receiver.
  • Additional variations of methods for effecting energy exchange comprise directing concentrated solar radiation into an apertured cavity within a body of a receiver from reflectors within one or more fields of reflectors.
  • the body has at least a major part of its volume composed of a refractory material in which thermal energy is generated by bulk absorption of radiative energy.
  • the body also has at least one passageway located therein.
  • the methods further comprise transferring the thermal energy to a working fluid by passing the working fluid though one or more passageways within the body.
  • the solar energy collector systems comprise an array of reflectors configured to direct incident solar radiation to one or more of the receivers described herein, and a pipe manifold configured to contain a first working fluid.
  • the pipe manifold conveys the first working fluid that has extracted stored thermal energy from the one or more receivers so that the heated first working fluid can be used in generating electrical energy.
  • the first working fluid may be any suitable working fluid, but in some cases the first working fluid may comprise primarily air.
  • the reflectors may be any suitable reflectors, but in some instances, the reflectors may have one or more two-axis heliostats having fixed horizontal axes and/or one or more two-axis heliostats having fixed vertical axes.
  • the reflectors may be configured as tower-mounted receivers in some arrays, or the receivers may be mounted at or near ground level, e.g., in arrays utilizing beam down configurations.
  • Certain solar energy collector systems may include more than one receiver.
  • the receivers may be the same as or different from each other.
  • at least one of the reflectors e.g., a heliostat, may be configured to pivot so as to direct incident solar radiation to any of the multiple receivers, e.g., depending on a position of the sun and/or seasonal conditions.
  • Certain solar "energy collector systems may comprise a heat exchanger, where the heat exchanger is configured to transfer thermal energy contained in the first working fluid to a second working fluid.
  • Any suitable working fluids may be used as the first working fluid and as the second working fluid in these systems.
  • the first working fluid may for example comprise primarily air, and the second working fluid may comprise steam, water, and/or a steam/water mixture.
  • the plants may comprise one or more first or “top" thermodynamic cycle heat engines (e.g. a Brayton cycle heat engine) in which a receiver as described herein is used to heat a compressed working fluid so that the heated compressed fluid can be expanded to generate electrical energy.
  • the plants may have a first compressor configured to compress a first working fluid, a first heating stage configured to heat the compressed working fluid, and a first turbine configured to expand the compressed heated working fluid to drive an electrical generator.
  • the first heating stage comprises at least one of the solar energy receivers described herein.
  • some plants may comprise a receiver that comprises an aperture through which concentrated solar radiation is directed and a core comprising a refractory material, wherein the core absorbs incident solar radiation to generate thermal energy that is stored therein. That stored thermal energy in the core may then be used to heat the compressed first working fluid.
  • the first working fluid may be any suitable working fluid, but in many instances may comprise primarily air.
  • the receivers used in these plants may be configured as tower-mounted receivers, or may be mounted at or near ground level.
  • the plants may comprise an array of reflectors, e.g., heliostats, directing solar radiation to the tower mounted receiver to heat the compressed working fluid.
  • the plants may comprise an array of heliostats directing solar radiation to an elevated reflector that, in turn, redirects the solar radiation down to the receiver.
  • a receiver may be mounted so an outer surface and e.g. substantially planar core surface are each horizontal, or a receiver may be positioned so that an outer surface is inclined and faces toward a solar field below it in a manner that solar radiation is directed totally or partly from one side of the tower through the aperture and is incident on the core.
  • a receiver may be configured such that a beam from a field of reflectors converges to its smallest size in the vicinity of the aperture, and the core of the receiver is positioned a sufficient distance from the aperture to reduce incident light intensity so that the peak temperature on the core material is within normal operating range for the material and the core material remains substantially physically and chemically stable.
  • the beam may form an image on the core and e.g. on a substantially planar surface of the core, similar to an image formed by a camera such as a pinhole camera.
  • Image intensity may be substantially uniform as long as the surface of the core is not angled and/or curved with respect to the field of reflectors so that an approximate image of the reflector field is formed on the core, and the image is not skewed or distorted to an extent that peak intensity in a portion of the image creates a "hot spot" that exceeds to a significant extent the highest temperature in the temperature range of normal operation for the material.
  • Certain of these electrical energy plants may comprise one or more second or "bottom" thermodynamic cycle heat engines, in which the second cycle heat engine utilizes waste thermal energy recovered from the first working fluid following its expansion to heat a second working fluid powering the second cycle heat engine.
  • the second working fluid may be any suitable working fluid, but in many cases, may comprise steam, water, and/or a water/steam mixture.
  • the second cycle may be a Rankine cycle. Any type of Rankine cycle heat engine may be used, e.g., a Rankine cycle in which the second working fluid is compressed, heated by the recovered waste energy following expansion of the first working fluid, and then expanded through one or more turbines to drive an electrical generator.
  • FIG. 1 shows an example of a receiver comprising a refractory core.
  • FIG. 2 shows a sectional elevation view of another embodiment of a receiver- storage unit located within a surrounding chamber.
  • FIGS. 3 A and 3 B shows sectional perspective views of examples of receivers each comprising downward opening, horizontally oriented apertures.
  • FIG. 4 shows a sectional elevation view of another embodiment of a receiver.
  • FIG. 5 shows a sectional elevation view of yet another embodiment of a receiver.
  • FIG. 6 provides a sectional elevation view of still another embodiment of a receiver.
  • FIG. 7 shows a sectional elevation view of a variation of a receiver in which the core comprises a particulate material.
  • FIG. 8 illustrates an example of a receiver-storage unit including a heat exchanger in thermal contact with the solar radiation absorbing core of the receiver.
  • FIG. 9 illustrates a variation of a receiver in which a displacement between a solar radiation absorbing core and an aperture in the receiver body can be varied.
  • FIG. 10 depicts a receiver having an aperture and a core.
  • FIG. 1 1 illustrates an example of a tower-mounted receiver-storage unit positioned adjacent a field of heliostats.
  • FIG. 12 is a schematic representation of an electrical energy generating system configured to operate in a quasi-isothermal Brayton cycle and incorporating a receiver- storage unit of a type described herein.
  • FIG. 13 is a schematic representation of combined cycle electrical generating system incorporating a receiver-storage unit of a type described herein.
  • the present application discloses receivers for use in a solar energy collector system.
  • the receivers comprise a solar radiation absorbing core or body that converts the absorbed radiation to thermal energy.
  • the solar radiation absorbing core comprises a refractory material capable of operating continuously at high temperatures resulting from the absorption of concentrated solar radiation.
  • the core may then store the thermal energy so generated briefly, e.g., for a transient period such as less than about 15 minutes, or for a more extended period, e.g., about 15 minutes or longer, about 1 hour or longer, or for several hours.
  • a working fluid e.g., a fluid comprising primarily air such as ambient air, may be employed to extract stored thermal energy from the receivers.
  • a receiver may in some instances function as an integrated receiver-thermal energy storage unit. Also provided herein are methods and systems related to the receivers, e.g., methods for effecting heat exchange utilizing the receivers. Further, various solar energy collector systems and solar-driven electrical power plants incorporating the receivers are described.
  • any of the receivers may be used in combination with any of the methods, solar energy collection systems, or electrical power plants, and one or more aspects or features of the solar energy collection systems may be combined with one or more aspects or features of the electrical power plants.
  • the core comprises a refractory material.
  • the core may in some examples be composed primarily of one or more refractory materials.
  • the receivers comprise an aperture, located for example in a receiver housing or in the core itself, to control a region of irradiation, a surface of irradiation, and/or an energy density or intensity of irradiation on the core.
  • receivers may be tower mounted (or otherwise elevated on a hill, building, wall, etc.), e.g., for use in a tower solar array (e.g., a multi-tower solar array), so that solar radiation is directed generally upward through the aperture to be incident on the solar radiation absorbing core.
  • the receivers may be mounted at or near ground level, e.g., for use in a solar array configured for beam down operation, so that solar radiation is directed generally downward through the aperture to be incident on the core.
  • the receivers may be inclined between horizontal and vertical facing toward the solar field below so that solar radiation is directed totally or partly from one side of the tower through the aperture is incident on the core.
  • a solar energy collector system solar radiation is directed through the receiver aperture to be incident on a solar radiation absorbing receiver core by reflectors (e.g., heliostats) within one or more reflector fields.
  • Thermal energy may be generated in the body of the receiver by bulk absorption and/or absorption of the radiative energy at the core's surface, or by absorption in cavity or channel structures on the surface of the core medium.
  • the thermal energy may in some variations be transferred to a working fluid, e.g., to a working fluid passing through one or more fluid passage(s) within and/or around the body or core.
  • Thermal energy may be transferred to the working fluid either simultaneously with the generation and storage of the energy in the body or core, or optionally following a transitional period of storage of the thermal energy in the body or core.
  • the receivers may be employed to accommodate transitory loss or reduction of solar energy impingement in a receiver body, e.g., due to periods of low insolation.
  • a receiver body or core may in some cases be formed as a substantially solid unitary body, with or without binding materials, e.g., by a moulding or other similar such process.
  • a refractory material may be cast and then fired to form a desired size and shape to be assembled in a block-like matrix.
  • some receiver bodies or cores may be constructed from bonded blocks comprising one or more refractory materials, for example from bonded blocks comprising aluminum oxide.
  • a body may be cut, or otherwise machined or processed to form a desired size, shape and/or configuration.
  • some variations of receivers may comprise a core comprising (e.g., composed primarily of) a particulate refractory material.
  • a particulate refractory material may comprise any refractory material described herein or otherwise known, and in some instances may comprise more than one refractory material.
  • a refractory material may comprise an unbonded heat-conductive (mineral) earthen material such as quartzite.
  • a core comprising one or more particulate refractory materials may be located within a shell or housing.
  • a receiver may comprise a container containing one or more particulate refractory materials, or a bale of a loose refractory material in the form of chunks or pieces, rocks, stones, gravel (each of which may or may not be crushed), or even finer particles, or any combination thereof.
  • the shell or housing itself may comprise a refractory material.
  • such a shell or housing may comprise or be formed from bonded blocks comprising a refractory material, e.g., bonded blocks comprising aluminum oxide.
  • a refractory material incorporated into a shell or housing of a receiver body may be the same or different as a refractory material incorporated into a receiver core.
  • one or more metal structures such as fins, a mesh, or grid-like structures may be positioned within a receiver core and/or body, e.g., to promote spreading of absorbed thermal energy throughout the fluid within a receiver, and/or to promote channeling of thermal energy into one or more particular regions of a core or body.
  • the core may be contained within a casing, e.g., a metal casing.
  • a spacing which may or may not be at least partially filled with a thermally insulating material, may be provided between a core and a casing.
  • An incident surface of a receiver core or receiver body configured to receive and absorb solar radiation may have any desired configuration, e.g., an incident surface may be substantially planar or contoured. If generally planar, an incident surface may be for example substantially parallel to a plane defined by an aperture admitting solar radiation into the receiver, or substantially orthogonal to a plane defined by the aperture.
  • a receiver body or core may comprise a cavity into which concentrated solar radiation is directed to be incident on one or more cavity walls.
  • An incident surface of a receiver body or core may in some embodiments be substantially unclad such that the incident surface will, in use of the receiver, be exposed to concentrated solar radiation that is beamed through the aperture of the receiver.
  • an incident surface may be optionally clad, e.g., with a protective lining comprising a thermally conductive material that may for example inhibit ablation and/or sublimation of the underlying refractory material.
  • a protective lining comprising a thermally conductive material that may for example inhibit ablation and/or sublimation of the underlying refractory material.
  • a cladding if present, may in certain variations be removably secured to an incident surface (e.g., a cavity wall in a cavity).
  • such removable claddings may be employed where it is desired to replace the cladding, e.g., for periodic replacement and/or for repair.
  • a cavity in a receiver body or receiver core may be configured in various ways, for example as a cylindrical cavity, as a generally cubic-shaped cavity, or any other type of polyhedral shaped cavity.
  • a cavity may in certain instances be configured so as to induce reflection, e.g., total internal reflection of incoming radiation.
  • the aperture may optionally be closed with or at least partially covered by a window, e.g., a quartz window.
  • a window e.g., a quartz window.
  • it may be desired to omit a window e.g., to eliminate reflective losses from the window which may be on the order of about 5% to about 10%.
  • a receiver may be configured to reduce convective thermal losses by positioning a downward opening aperture in a substantially horizontal orientation.
  • receivers comprise one or more fluid passageways extending in and/or around a receiver body or core.
  • Such passageway or, more usually, passageways in and/or around a receiver body and/or receiver core (if distinct from the receiver body) may be arranged so as to extend generally linearly through the body or core, as the case may be.
  • one or more fluid passageways may follow a curvilinear, serpentine, or circuitous path in and/or around a receiver body or core.
  • a receiver body or core comprises one or more particulate refractory materials
  • particle sizes and/or a packing density may be optionally selected to provide natural passageways through the body or core; that is, passageways at least partially defined by interconnected interstices between the particles.
  • a working fluid or heat exchange fluid e.g., a gas such as ambient air
  • the heat exchange fluid may access the one or more passageways in a variety of manners. For example, a heat exchange fluid (which may comprise primarily air) may be forced into a cavity, which may be open to one or more fluid passageways.
  • a heat exchange fluid may enter one or more passageways without entering a cavity, e.g., via a side access or top access.
  • a plurality of passageways may be provided within a receiver body, with each passageway (which may optionally comprise an interstitial passageway as above mentioned) radiating outwardly to an exterior or peripheral region of the body from an interior region, e.g., a cavity.
  • ambient air may be employed as the heat exchange fluid and be drawn or forced through the cavity, through the radiating passageways and into a collecting chamber or the like. The resulting heated air may then be used as a working fluid or be used to transfer thermal energy to a (further) working fluid such as water, steam, or a mixture of water and steam.
  • the receiver may optionally be interposed between a compressor turbine and a turbo-generator, with the compressor being employed to force compressed gas (e.g., air) into the receiver and the turbo-generator being driven by high temperature-high pressure air following its passage through the body or core of the receiver.
  • the integrated receiver-storage unit may optionally be integrated with a turbo- compressor and a gas turbine to operate in a Brayton cycle.
  • Non-limiting examples of Brayton cycle heat engines and combined cycle power plants incorporating integrated receiver-storage units as described here are provided in U.S. Patent Application Serial No. , entitled “Combined Cycle Power Plant” (Attorney Docket No. 62715-2000700) and filed concurrently herewith, and in U.S. Provisional Patent Application Serial No. 60/933,619, entitled “Combined Cycle Power Plant” (Attorney Docket No. 62715-3000700), filed June 6, 2007, each of which has already been incorporated by reference herein in its entirety.
  • a passageway may optionally comprise a liner, e.g., a thermally conductive liner such as a carbon, graphite, or metal liner.
  • a liner if present, may be positioned within a hollow passageway or chamber within a receiver body or receiver core.
  • one or more spacer elements may be employed, e.g., to maintain separation of the liner from the core or body. By maintaining such separation between a liner and a passageway it may be possible to reduce or avoid problems such as passageway blockage flowing from differential coefficients of expansion between the liner and the receiver body or core.
  • Receivers may have any suitable dimensions, and a solar radiation absorbing body or core in a receiver may have any suitable dimensions.
  • one or more receiver and/or receiver body or core dimensions may be determined by an amount of solar radiation directed at the receiver, a thermal energy storage capacity desired, the composition of the receiver body or core, the thermal stability of the receiver core or window material at the temperature of operation, a height at which a receiver is to be used, or any combination thereof.
  • a receiver-storage unit may comprise a total volume in a range from about Im 3 to about 200m 3 .
  • a 500 ft. tower may have 1,000,000 square ft or 100,000 m 2 of accessible field, covered to about 50% with reflector. At 500 times optical concentration, the receiver aperture can be 100 m 2 .
  • an aperture through which solar radiation passes to be incident on the solar radiation absorbing core or body may therefore comprise an opening having an area of the order of about 0.8m 2 to about 100m 2 .
  • an aperture may be adjustable, e.g., to tune the size of the opening.
  • an aperture may be configured with an entry guide such as a flared entry guide, and/or with a focusing element or concentrator such as a compound parabolic concentrator.
  • receivers may be elevated (e.g. tower mounted receivers) or ground mounted receivers. If tower mounted, a receiver may be mounted atop a supporting tower having a height, typically on the order of about 15m to about any of (50m, 100m, and 150m), which may depend upon the size (ground area) occupied by one or more associated reflector fields, e.g., one or more heliostat fields.
  • the receiver aperture which may be located in a receiver housing or within a receiver body itself (e.g., as an aperture that leads to a cavity in a receiver body), may be positioned to best receive focused radiation from the reflectors (e.g., heliostats).
  • the aperture may optionally be positioned on the underside of a tower mounted receiver (e.g., on the underside of a receiver body).
  • a receiver aperture e.g., an aperture in a receiver housing or an aperture in a receiver body or core that leads to a cavity
  • the receiver may be illuminated as a secondary receiver, for example in a beam down system where a receiver may be mounted at or near ground level.
  • one or more fields of reflectors may reflect concentrated solar radiation to an elevated reflector that, in turn, redirects the solar radiation to the ground or near ground mounted receiver.
  • a receiver aperture may be optionally located in an upper region of the receiver (e.g., an upper region of the receiver body or core).
  • a solar radiation absorbing core or body, and an aperture that determines an irradiation region or surface on the body or core may be configured in various ways.
  • FIGS. 1-7 illustrate some examples of possible receiver configurations.
  • a variation of a receiver 100 is illustrated that comprises a housing 101 that, in turn, comprises an aperture 103.
  • a solar radiation absorbing body 105 that comprises a refractory material.
  • the refractory material in the body may for example be provided in the form of a monolithic mass, an aggregated material, a particulate material, a powder, a baled material, or any combination thereof.
  • solar radiation e.g., concentrated solar radiation directed from an array of reflectors (e.g., heliostats) can pass through the aperture 103 to be incident on a surface 107 of the core 105.
  • the incident surface 107 may be substantially parallel to a plane defined by the aperture 103, e.g., substantially horizontal if the aperture is horizontal.
  • a space 110 between the core and the housing may be at least partially filled with a thermally insulating material (not shown).
  • the core 105 may or may not comprise one or more passageways 109 directed through and/or around the core 105 to convey a working fluid (e.g., air) to extract thermal energy stored in the core via heat transfer.
  • a receiver and its solar radiation absorbing body may comprise a unitary structure.
  • FIG. 2 illustrates an example of such a receiver.
  • the receiver 200 comprises a generally solid unitary receiver body 201 that comprises a refractory material.
  • incident solar radiation can be directed through aperture 203 to be received into cavity 211 of the receiver core 201.
  • the incident solar radiation may be incident on any or all surfaces 208a and 208b of the cavity 21 1 to be absorbed and converted into thermal energy that can be stored in the body/core 201 for a desired length of time, e.g., a transient period less than about 15 minutes, or a more extended period (about an hour, several hours, or longer).
  • cavity 21 1 provides a top incident surface 208a that may be substantially parallel to a plane defined by aperture 203, as well as side incident surfaces 208b that may be substantially orthogonal to a plane defined by aperture 203.
  • receiver 200 may be used in a configuration where aperture 203 is substantially horizontal and opens downward, e.g., for a tower mounted receiver.
  • the body/core 201 may comprise one or more fluid passageways configured to convey a working fluid to extract thermal energy stored in the core.
  • receiver 300 comprises a housing 301 and a solar radiation absorbing body 305.
  • Solar radiation can be directed through an aperture 303 to be incident on the body 305.
  • the body 305 is formed around a peripheral region of the housing 301 so as to form an interior cavity 311.
  • the body 305 comprises multiple sections 310 that may be arranged in any manner in the housing 301, e.g., to form a cavity 311 having incident surfaces 308 for receiving and absorbing solar radiation 50 that is transmitted through the aperture 303.
  • sections 310 are illustrated as forming a block shaped cavity 31 1 having a cap 314 and sidewalls 315, other variations are possible, e.g., sections arranged to form a polygonal cavity.
  • the body 305 may comprise an incident surface 316 on cap 314 that is substantially parallel to a plane defined by the aperture 303, and an incident surface 317 on sidewalls 315 that is substantially orthogonal to the aperture plane.
  • Any space between the housing 301 e.g., space 320
  • space 320 may optionally be at least partially filled with a thermally insulating material. As shown in FIG.
  • the receiver housing 351 contains a receiver body 355 comprising a cylindrical section 352 (that may in turn comprise multiple subsections) and a cap section 353 to form a cavity 361 having a circular cross-sectional shape.
  • an incident surface 354 on the cap 353 may be substantially parallel to a plane defined by an aperture 357 in the receiver housing 351.
  • the body may comprise one or more fluid passageways (not shown) to convey a working fluid to extract stored thermal energy from the body.
  • Fluid passageways or fluid channels if present in a body, may have a variety of configurations, and in general any fluid passageway configuration may be used in combination with any receiver and/or body configuration. Examples of various fluid passageways that may be used to extract stored thermal energy from the refractory bodies described herein are provided in FIGS. 4-7. It should be noted that a single receiver may utilize more than one type of fluid channel; thus, variations are contemplated which include any combination of the fluid channel types. In any of the variations, the way in which the channels are positioned within the body of the receiver may be dependent upon the method employed from one unit to another to construct the receiver body.
  • receiver 400 comprises a housing 421 containing a solar radiation absorbing body or core 414.
  • the receiver body or core 414 may comprise, or be formed or constructed from a refractory material (as defined above).
  • the body or core 414 may be, but need not be, constructed from blocks that comprise (e.g., are composed primarily of) aluminum oxide in a fired, heat resistant clay binder or matrix. Solar radiation can be transmitted through an aperture 422 to enter an internal cavity 418 of the body 414.
  • a cladding layer 420 may at least partially line the cavity 411, e.g., as a protective layer for a refractory material contained within the body 414.
  • the receiver variation shown in FIG. 4 may have any dimensions, and may be formed approximately as a cube with approximately 2.5m side dimensions, although, depending upon the output power requirements of a system of which the receiver is a part, the receiver may be constructed with a volume within a range of, for example, about 1.0m to about 20.0m .
  • Fluid channels or passageways 415 are provided within the body 414 of the receiver for conveying a working fluid (typically a heat exchange fluid) through the body to extract stored thermal energy.
  • a working fluid typically a heat exchange fluid
  • the channels 415 are formed within the body itself, and are directed radially outward from an interior region of the body (e.g., cavity 418) to an outer peripheral region of the body.
  • a gas such as ambient air may be employed as a working fluid and be forced or drawn through the cavity 418, radially outward through the channels 415, and into a chamber 421 that generally surrounds the receiver body 414, all while the body 414 is being irradiated with concentrated solar radiation through aperture 422.
  • the resulting heated working fluid e.g., heated air
  • one or more fluid channels or passageways may be directed in a generally transverse manner across a receiver body or core.
  • receiver 500 comprises a body 515 that comprises two types of fluid channels, 515a and 515b.
  • Incident solar radiation may be transmitted through the aperture 518 and received on any or all of the incident surfaces of cavity 518 (e.g., sidewall surfaces 508b and/or top surface 508a).
  • both fluid channels 515a and 515b extend transversely across the body 514 to convey a working fluid (not shown) to extract thermal energy.
  • fluid channel 515a follows a generally straight path
  • fluid channel 515b follows a serpentine path, e.g., to increase a path length of the working fluid through the body 515 so as to extract more thermal energy.
  • the fluid channel 515b is illustrated as generally serpentine, any variation of a curvilinear or circuitous channel through the body may be employed to increase a path length.
  • receivers may comprise fluid channels that are located in discrete regions of a receiver body. Such an example is illustrated in FIG. 6.
  • receiver 600 comprises a solar radiation absorbing body or core 614, a cavity 618 and an aperture 611.
  • the fluid channels 616 may be located as a separate channel unit within one or more of the pocket-like chambers 617.
  • the pocket like chambers 617 may contain a fluid (e.g., a heat transfer fluid such as air), and the fluid channels 616 may for example comprise a conduit or pipe so as to allow a working fluid contained within the conduit to be heated by a fluid contained in the chambers 617.
  • a fluid e.g., a heat transfer fluid such as air
  • the pocket-like chambers may comprise a solid refractory material, e.g., a monolithic material, an aggregated material, rocks, gravel, sand, or any combination thereof, that may have a different composition and/or different density than the bulk of the core 614.
  • the composition of the core material within the chambers 617 may be selected to have an increased thermal conductivity so as to facilitate improved heat transfer to a working fluid in the fluid channels 616.
  • a receiver may comprise a core that, in turn, comprises one or more particulate refractory materials, as described above.
  • the core may be composed of, or primarily composed of one or more particulate refractory materials.
  • An example of such a receiver is provided in FIG. 7.
  • the core 722 of receiver 710 may comprise (e.g., be formed or constructed from), for example, one or more unbonded thermally conductive (mineral) earthen refractory materials such as rocks, stones, gravel, sand, and combinations thereof.
  • the thermally conductive refractory material may in some cases comprise quartzite.
  • the refractory core 722 is located within a shell or housing 723 that may comprise a refractory material that may be the same or different as that used in the core.
  • the housing 723 may be formed from bonded blocks of a refractory material, e.g., aluminum oxide.
  • metal structures such as fins or a grid or mesh 724 may be disposed within the core 722, e.g., to promote spreading of thermal energy though the core, and/or to promote channeling of the thermal energy into selected particular regions of the core.
  • an optional casing e.g., a metal casing, may be used to contain core 722.
  • a space that may or may not be at least partially filled with a thermally insulating material, may be provided between the core and the casing.
  • this particular variation is illustrated as comprising a cavity 718 for receiving incident solar radiation through the aperture 703
  • other variations are contemplated that comprise no cavity, so that solar radiation can be incident on a surface of core 722, e.g., a relatively planar surface.
  • particles sizes, particle size distribution, and a packing density may be such that one or more fluid passageways may be established though interconnected interstitial spaces in the core.
  • a heat exchange fluid such as ambient air may be drawn or forced through such passageways the core (e.g., via cavity 718, if present) and be conveyed form the receiver by a feed line 725, either directly or by way of a plenum or the like (not shown).
  • the resulting heated fluid e.g., heated air
  • the resulting heated fluid may then be used as a working fluid for example in an energy generating cycle.
  • the resulting heated fluid may be used to transfer thermal energy contained therein to a (further) working fluid such as water.
  • an incident surface e.g., a cavity surface such as 208a and 208b in FIG. 2
  • a protective cladding or liner e.g., cladding 420 as illustrated in FIG. 4
  • Such a cladding may function for example to inhibit ablation and/or sublimation of the refractory material in the body or core, e.g., a refractory material that forms one or more walls of a cavity into which solar radiation is directed.
  • Certain variations of claddings may b removably secured to an incident surface (e.g., in a cavity) so as to permit replacement, e.g., in the event of undesired surface erosion or damage.
  • a refractory material may have any suitable composition and may be in any form, e.g., monolithic, molded, aggregated, particulate, powdered, or any combination thereof.
  • the refractory material in the receiver may comprise any refractory material that is substantially opaque to solar radiation and remains substantially stable when exposed to temperatures that are established with absorption of concentrated solar radiation, e.g., continuous operation at a temperature of about 800 0 C or higher as described above, e.g., about 800 0 C to about 3000 0 C, or about 800 0 C to about 2500 0 C.
  • refractory materials may be able to withstand continuous operation at temperatures of at least about 1000 0 C, or at least about 1200 0 C, or even higher.
  • a receiver body or core may comprise a combination of refractory materials.
  • a refractory material may comprise a refractory metal, a ceramic, and/or a cermet.
  • Non- limiting examples of refractory materials that may be used include alumina, silica, carbon, magnesia, zirconia, silicon carbide, titanium carbide, tantalum carbide, chromium carbide, niobium carbide, zirconium carbide, molybdenum disilicide, calcium oxide, graphite, chromite, dolomite, magnesite, quartzite, aluminium silicate, tungsten, molybdenum, niobium, tantalum, rhenium, beryllium, and combinations thereof.
  • an aperture in a receiver may have a cross-sectional area of the order of about 0.8m 2 to about 7.0m 2 .
  • an aperture may be adjustable, e.g., to tune the size of the opening.
  • any aperture may be fitted with a window that is substantially transparent to the solar spectrum over a wavelength range of interest, e.g., a quartz window.
  • one or more optical elements e.g., a radiant energy concentrator, may be placed in the aperture to condition the incident solar radiation.
  • a heat exchange fluid may be thermally contacted with a surface of the receiver body or core to extract thermal energy from the surface.
  • This heat exchange scheme may be used alternately to or in addition to a thermal extraction scheme involving conveyance of a heat exchange fluid though a passageway in a core.
  • a heat exchange fluid in contact e.g., physical and/or thermal contact
  • one or more pipes containing the heat exchange fluid that is in thermal contact with a surface of the core may be used to extract thermal energy from the body or core.
  • FIG. 8 provides an example of receiver in which extraction of heat by a heat exchange fluid occurs at a surface of the receiver core.
  • receiver 800 comprises a solar radiation absorbing core 814 comprising a refractory material. Bulk absorption of solar energy that passes through the aperture 822 (and in this variation enters cavity 818) results in thermal energy generation and storage in the core 814.
  • a heat exchange fluid contained in a manifold 826 may be placed in thermal contact with an external surface 810 of the core 814 to extract stored thermal energy from the core for use, e.g., in driving an energy generating cycle.
  • the core itself may comprise one or more internal fluid passageways (e.g., as shown above) for conveying a working fluid to extract thermal energy from the bulk of the core 814.
  • receivers may comprise an external means for heat extraction via external thermal contact with an external surface of a refractory body or core, e.g., as illustrated in FIG. 8, and/or one or more fluid channels configured for conveying a working fluid in and/or around a refractory body or core, as described herein.
  • a displacement between the aperture through which solar radiation is directed and the solar radiation absorbing body may be adjusted or selected to determine an energy density or intensity of the solar radiation that is incident on the body.
  • the displacement between the aperture and the core may be adjusted or selected to increase an energy collection efficiency of the receiver.
  • Such adjustment may be completed at installation, may be carried out periodically or regularly, and may be completed manually or automatically. For example, such adjustment may be made to account for seasonal variations, and/or aging of a receiver.
  • FIG. 9 a variation of a receiver is illustrated in which a displacement between a receiver aperture and an incident surface of a receiver core can be varied.
  • receiver 900 comprises a housing 901 that, in turn, comprises an aperture 903.
  • a solar radiation absorbing body or core 914 Contained within the housing 901 is a solar radiation absorbing body or core 914.
  • Solar radiation e.g., concentrated solar radiation reflected by one or more reflectors such as heliostats
  • Body 914 comprises a refractory material, as described above, and may or may not comprise one or more fluid passageways, as described above.
  • the incoming solar radiation 50 has been focused by a reflector, so that an incident beam may be converging or diverging as it enters the aperture 903 and impinges upon surface 915, depending on where a focal point, or region of highest concentration, occurs in the reflected radiation's path from a reflector to the receiver 900.
  • a displacement 916 between a plane defined by the aperture 903 and the incident surface 915 may be adjusted to determine an energy density or intensity incident on the surface 915.
  • a cross-sectional dimension 917 of the aperture 903 may be adjusted, which may also affect the energy density or intensity incident on the surface 915.
  • receiver 1000 comprises a housing 1001 that, in turn, contains a refractory core 1014 having a surface 1015 for receiving incident solar radiation to allow bulk absorption of at least a portion of that radiation and subsequent bulk heating in the core 1014.
  • Solar radiation is incident on one or more reflectors 1040 in an array 1041.
  • the reflectors may be configured to track the sun and reflect incident solar radiation to the receiver 1000.
  • the reflectors 1040 are focusing reflectors.
  • a receiver may be positioned so that a focal point or region of highest energy concentration (e.g., indicated as region 1039 in FIG. 10) occurs approximately at or prior to the aperture, so that solar energy incident on a surface of a refractory core is divergent.
  • intensity variations on the incident surface may be reduced, e.g., so that approximately uniform irradiation of the incident surface of the solar radiation absorbing core may be achieved, which may allow overall higher incident solar radiation energy densities to be used, increase conversion efficiency of the receiver, and/or reduce local hotspots and the like that can degrade performance, and in some cases, lead to catastrophic failure.
  • a displacement between the aperture 1003 and the incident surface 1015 of the core may be adjusted so as to approximately image at least a portion of the reflector array 1041 on the surface 1015.
  • an energy density or intensity incident on the surface 1015 of the core 1014 may be controlled.
  • the receivers as described herein may be used in methods for effecting heat exchange to generate thermal energy from solar energy are also described here.
  • the methods comprise directing concentrated solar radiation through a receiver aperture so that solar radiation is incident on a receiver core.
  • Any of the receivers described above, including any variation of receiver core and any variation of aperture, may be used.
  • the methods may comprise utilizing a receiver that comprises a core composed primarily from a refractory material or a combination of refractory materials.
  • the methods further comprise transferring thermal energy stored in the core following bulk absorption of incident radiation by passing the working fluid through one or more passageways in and/or around the core, as described above.
  • the methods may comprise directing concentrated solar radiation through the aperture to be incident on the core so that the core reaches a continuous operating temperature of about 800 0 C or higher, e.g., about 1000 0 C or higher, or about 1200 0 C or higher.
  • the working fluid may be passed through the passageway or passageways by using any suitable technique, e.g., the working fluid may be pumped or drawn through a passageway.
  • the working fluid used in the methods may be any suitable working fluid, but in many cases may comprise primarily air.
  • the methods may comprise passing a working fluid through any one of a variety of configurations of passageways to extract stored thermal energy from the core.
  • methods may comprise flowing the working fluid through a passageway directed radially outward from an interior region to a peripheral region, or through a serpentine, helical or other circuitous passageway.
  • Certain methods may comprise flowing a working fluid through a refractory core comprising a particulate aggregate.
  • the methods may be used with tower mounted receivers, or receivers mounted at or near ground level.
  • the methods may comprise adjusting a cross-sectional dimension of a receiver aperture and/or a displacement between the aperture and an incident surface of a core, e.g., to adjust an energy density or intensity incident on the core and/or to increase a collection efficiency of the receiver.
  • the methods may comprise directing concentrated solar radiation through a receiver aperture so that a point or region of maximum energy density or intensity occurs at or before the aperture where materials which can overheat are not present, and so that the solar radiation is at least somewhat divergent as it impinges on the core.
  • certain methods may comprise directing the concentrated solar radiation to be incident on a substantially horizontal surface of the core, or to be incident on a substantially vertical surface of the core, or a combination thereof.
  • Certain ones of the methods may comprise at least partially imaging an array of reflectors on a substantially horizontal incident surface of the core, where the array of reflectors is used to direct solar radiation through the aperture.
  • Any type or configuration of reflectors may be employed to direct concentrated solar radiation through the aperture to be incident on the core.
  • an array comprising fixed horizontal axis and/or fixed vertical axis heliostats may be used.
  • These methods comprise directing concentrated solar radiation through a substantially horizontally oriented aperture in a lower portion of a body of a tower mounted receiver so that the solar radiation is incident on and absorbed by a core disposed within the body to generate thermal energy in the core.
  • the core comprises a refractory material.
  • the methods further comprise transferring thermal energy from the core to a working fluid, e.g., a working fluid that comprises air.
  • Variations of the methods may comprise flowing the working fluid through one or more passageways in and/or around the core to facilitate extraction of thermal energy from the core. Any type or configuration of passageway may be used in these methods.
  • these methods may comprise adjusting a displacement between the aperture and an incident surface of the core so as to adjust an energy density or intensity incident on the core and/or an efficiency of the receiver.
  • FIG. 11 An example of a tower mounted receiver for receiving energy from one or more reflector fields is provided in FIG. 11.
  • a receiver-storage unit (hereinafter referred to simply as a "receiver") 1110 is positioned at or near the top of a steel tower 1111 (e.g., a skeletal or space frame steel tower) that is located in proximity to (e.g., adjacent one end of) a field 1112 of reflectors 1113, which may for example comprise heliostat reflectors.
  • a steel tower 1111 e.g., a skeletal or space frame steel tower
  • a field 1112 of reflectors 1113 which may for example comprise heliostat reflectors.
  • Four only reflectors are for convenience shown in the figure but a single tower mounted receiver would normally be associated with a very much larger number of reflectors.
  • a plurality of spaced-apart tower-mounted receivers might be positioned within or at the margins of a large field of reflectors.
  • the reflectors may be controlled and driven for orientation toward a single receiver or to be re-orientated from one receiver to another in order to optimise solar energy collection and to minimise the possibility of reflector shading.
  • the receiver 1110 is illustrated as being positioned on an end of field 1112 in FIG. 11 , the field 1 1 12 and the reflectors 11 13 within the field may have any suitable arrangement with respect to the receiver 1110.
  • reflectors 1 113 may be arranged circumferentially with respect to receiver 11 10, e.g., so that the solar radiation directed to the receiver takes on a generally conical shape.
  • the reflectors 1 113 may be arranged in arcs or rows. Such arcs or rows may be arranged symmetrically with respect to the receiver 11 10, or may be arranged preferentially on one or more sides of the receiver 1 1 10.
  • a receiver may be mounted at or near ground level, e.g., as a secondary receiver in a beam down configuration as described above.
  • an elevated reflector may be configured to receive reflectors solar radiation from one or more reflector fields, similar to field 1112 illustrated in FIG. 11. The elevated receiver may redirect the reflected radiation downward so as to be transmitted through an upward opening aperture of a receiver as described herein. Larger refractive cores may be accommodated in such a ground mounted arrangement.
  • the height of the tower 1111 may be determined, at least in part in any given case by the size (area) of the reflector field (and hence by the distance between the farthest reflector 1313 and the tower) and, to some extent, by the spatial relationship of the reflectors.
  • the tower may typically have a height in the range from about 15m to about 50m.
  • Each reflector 1313 may comprise a two-axis heliostat having a fixed vertical axis but, in the interest of achieving increase ground coverage with the reflectors, each reflector may desirably comprises one having a fixed horizontal axis, for example as disclosed in Australian Provisional Patent Application No. 2007900391, dated January 29, 2007 and
  • the reflectors may in use be driven to track east-to-west progression of the sun during each diurnal period and to reflect incident solar radiation into an aperture (referred to in more detail above) of the receiver 1 1 10.
  • various ones of the reflectors may be orientated to reflect radiation to one only of the receivers, or some of the reflectors may be driven selectively to pivot to such an extent as to shift the reflected radiation from one receiver to another.
  • Non-limiting examples of reflectors that may be reoriented to direct incident solar radiation from one tower to another are described in U.S. Patent No. 5,899,199 issued May 4, 1999 to David Mills, which is incorporated by reference herein in its entirety.
  • the reflectors may function collectively to concentrate solar radiation at or near the aperture of the receiver or, if more than one, multiple receivers, as is described above, e.g., in connection with FIGS. 9 and 10.
  • Receivers as described herein may function to heat a working fluid in a heat engine employing e.g. a Brayton cycle.
  • a heat engine employing e.g. a Brayton cycle.
  • Examples of energy generating cycles and combined cycle power plants using solar radiation absorbing refractory receivers to heat a working fluid are provided in U.S. Patent Application Serial No. , entitled "Combined Cycle Power
  • FIG. 12 provides an example of a heating stage that can be used to heat a working fluid (e.g., air).
  • heating stage 1200 comprises a receiver 1210 having any configuration as described herein that is interposed between a compressor- turbine 1226 and a turbo-generator 1227.
  • the compressor 1226 is employed to force compressed air into the cavity 1218 of the receiver 1210 and the turbo-generator 1227 is driven by high-energy-level air following its passage through the receiver.
  • the heating stage 1200 in this variation is solar powered, the energy storage capabilities of the receiver 1210 used to heat the working fluid may dampen or reduce fluctuations in heat that may result from periods of low insolation.
  • the storage capacity of the receiver 1210 may be selected so that the supply of heated compressed air is sufficiently stable to drive turbo generator 1227, e.g., without the need for auxiliary or supplemental fuel to power heating stage 1200.
  • the heating stage 1200 is illustrated in connection with a Brayton cycle heat engine in FIG. 12, the receivers as described herein may be used in other heating cycles that may be used in other types of energy generating cycles that employ a heated working fluid.
  • FIG. 13 illustrates an example of a combined cycle power plant utilizing a receiver as described herein.
  • power plant 1300 comprises two interconnected power generating systems; a first of which (designated by numeral 1310) is a heat engine employing a Brayton cycle and the second of which (designated by numeral 131 1) is a heat engine employing a Rankine cycle.
  • the first system 1310 comprises a turbo-compressor 1312, to which a first working fluid in the form of ambient air is admitted, and a gas turbine 1313 which provides rotary drive to both the turbo-compressor 1312 and an electric generator 1314. Following its compression the first working fluid is heated in a heating system 1315 and is delivered to the turbine 1313 where it expends a major part of its acquired energy by expanding through and driving the turbine 1313.
  • one or more receivers 1316 receives and absorbs concentrated solar radiation reflected by one or more fields of reflectors 1317, which may be for example any heliostats as described herein or otherwise known (e.g., fixed vertical axis two-axis heliostats or fixed horizontal axis two-axis heliostats). Only three reflectors 1317 are for convenience shown in FIG. 13 but, depending upon a desired power output capacity of the turbine 1313 - generator 1314 set, one or more reflector fields may normally comprise many hundreds of reflectors, e.g., heliostats. Although not so shown in FIG.
  • the compressor 1312, turbine 1313 and first generator 1314 may also be mounted on the tower as a quasi-integrated assembly on the tower. Such an arrangement may avoid or reduce the need to transport very high temperature gas from the receiver 1316 to ground level where the first turbine 1313 and first generator 1314 might alternatively be located.
  • the first working fluid may be directed to a mediating thermal energy storage system 1318 where residual thermal energy contained in the first working fluid is released (by heat exchange) to a thermal energy storage medium within the thermal energy storage system 1318. Examples of mediating thermal energy storage units are described in U.S. Patent Application Serial No. , entitled "Combined Cycle Power
  • the first working fluid may be exhausted to the atmosphere as indicated by numeral 1319.
  • the first working fluid may be exhausted immediately after turbine 1313.
  • the second system or cycle 1311 within the power plant 1300 comprises a second turbine 1320 (e.g., a steam turbine) through which a second working fluid is directed by way of a closed loop 1321.
  • the second working fluid comprises condensed water, saturated vapour (wet steam) and superheated steam, depending upon its position within the loop 1321.
  • Superheated steam is admitted to and expands through the turbine 1320 and the resultant expended energy is applied to drive a second electric generator 1322.
  • the electrical output from the first generator 1314 and the second generator 1322 may each be delivered to an electricity supply grid.
  • the condenser may comprise any one of a number of different types of condensers, including shell-and-tube condensers and direct contact condensers, but in certain variations a condenser may comprise a direct contact condenser in which coolant fluid is contacted with the second working fluid.
  • the condenser coolant fluid cooling system may embody evaporative cooling, forced air cooling, subterranean heat exchange, or any combination thereof.
  • air cooled condensing may be employed for condensing the output vapour from the turbine 1320.
  • the plant comprises a solar energy collector system such as that indicated by reflector field 1315
  • a plurality of air cooled condensers may be positioned within the reflector field 1315 and draw coolant air from a zone shaded by the reflectors 1317.
  • Non-limiting examples of air cooled condensers that may be used in connection with the power plants disclosed herein are provided in U.S. Patent Application Serial No. , entitled "Convective/Radiative
  • the second working fluid in its liquid phase may be delivered by a pump 1325 from the condenser 1323 to a heat exchanger (e.g., a heat exchanger within a thermal energy storage system 1318, if present, where thermal energy, e.g., residual thermal energy recovered from the first cycle 1311 which may or may not have been stored in a storage unit 1318, and/or thermal energy supplied by any type of energy source, is transferred by heat exchange to the second working fluid in an amount to generate superheated steam for delivery to the steam turbine 1320.
  • the first cycle or system 1310 combines with the second cycle or system 1311 to provide at least a portion of the thermal energy required to power the second system.

Abstract

Receivers for use in solar energy collector systems and solar-powered electrical energy generating plants are provided. The receivers (400) comprise a solar radiation absorbing core (414) that converts absorbed solar radiation to thermal energy. The core (414) comprises a refractory material to allow the receivers to operate continuously at high temperatures reached by absorbing concentrated solar radiation. The thermal energy so generated in the core may be stored in the receiver for a transitory period, or for a more extended period. Receivers (400) may comprise one or more fluid channels (415) in and/or around the core for conveying a working fluid to facilitate extraction of stored thermal energy from the core.

Description

INTEGRATED SOLAR ENERGY RECEIVER-STORAGE UNIT
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of priority from U.S. Provisional Patent Application Serial No. 60/933,620, entitled "Integrated Solar Energy Receiver-Storage Unit," filed June 6, 2007, which is hereby incorporated by reference herein in its entirety. This application is related to U.S. Patent Application Serial No. , entitled "Combined Cycle
Power Plant," filed concurrently herewith, which claims the benefit of priority from U.S. Provisional Patent Application Serial No. 60/933,619, entitled "Combined Cycle Power Plant," filed June 6, 2007, each of which is hereby incorporated by reference in its entirety.
FIELD
[0002] This application relates to a receiver for a solar energy system, and in particular to an integrated solar energy receiver-thermal energy storage unit. The receivers and integrated units disclosed here may be suitable for receiving concentrated solar radiation from a field of heliostat-type reflectors. A receiver, e.g., an integrated receiver-thermal energy storage unit, in some of its applications, may be employed as a tower-mounted receiver or elevated in some other manner. In other applications, a receiver, e.g., an integrated receiver-thermal energy storage unit, may be located elsewhere than on a tower, for example at or near ground level, e.g., when employed as a secondary receiver.
BACKGROUND
[0003] Tower-mounted receivers are well known in the context of solar energy collector systems and may take various forms, depending upon whether they are employed, for example, in the transfer of radiative energy to photovoltaic cells or in the transfer of thermal energy to a heat exchange fluid such as water, a molten salt or air.
[0004] More efficient tower-mounted receivers may incorporate a cavity having a relatively small aperture through which concentrated (reflected) radiation is focused from a field of reflectors and, in receivers that have relevance to the present application, provision is made for the transporting of thermal energy that is generated within the receiver as a consequence of absorption of solar energy in the wall of the cavity. However, these receivers do not make specific provision for integrated storage of thermal energy that is generated in the receiver by absorption of solar energy.
[0005] A solar energy receiver that does provide for integrated thermal energy storage is disclosed in U.S. Patent No. 4,815,443, issued March 28, 1989, and assigned to Rockwell International Corporation ('443 patent). However, the receiver as described in the '443 patent has specific application to a space station. There, the receiver comprises a first (helical-form) fluid conduit that is located within a cavity of the receiver, and a second fluid conduit that is located within a thermal energy storage layer that is formed from a metallic material that surrounds the cavity. The first conduit and the thermal energy storage layer are both exposed to solar radiation that is focused into the cavity during insolation periods. During these in- sun periods, a first heat exchange fluid is cycled through the first conduit. A second heat exchange fluid is cycled through the second conduit during in-shadow periods. The first and second heat exchange fluids are then used alternately for heat exchange with a working fluid that is used to energize an associated heat engine.
[0006] Also of relevance to the present application is a thermal energy storage system as disclosed in International Patent publication WO2005/088218, by Larkden Pty Ltd, in which a substantially solid body of graphite is employed to store heat energy for subsequent release to a fluid through surface-mounted heat exchangers. However, in this system, as disclosed, thermal energy is generated in the graphite body by electrical resistance heating in a cavity within the graphite body.
[0007] A need exists for improved receivers to be used with tower solar arrays (e.g., a multi-tower solar array), and in particular, receivers that include integrated thermal energy storage.
SUMMARY
[0008] The present application describes receivers for use in solar energy collector systems and solar-powered electrical energy generating plants. In general, the receivers comprise a solar radiation absorbing core that converts absorbed solar radiation to thermal energy. The core comprises a refractory material to allow the receivers to operate continuously at high temperatures reached by absorbing concentrated solar radiation. The thermal energy so generated in the core may be stored in the receiver for a transitory period, or for a more extended period. Thus, a receiver may function as an integrated receiver- thermal energy storage unit, and the terms "receiver" and "integrated receiver-thermal energy storage unit," and "integrated receiver-storage unit" are used interchangeably herein. A working fluid, e.g., air, may be employed to extract stored thermal energy from the receivers.
[0009] Also disclosed herein are methods and systems related to the receivers described in general terms above. For example, methods for effecting heat exchange utilizing the receivers are disclosed here. In addition, various solar energy collector systems incorporating the receivers are also disclosed. Further, variations of solar-powered electrical energy generating plants using the receivers are described.
[0010] The term "refractory material" is to be understood in the context of the present application as one that is substantially opaque to solar radiation and remains substantially stable (physically and/or chemically) when exposed to temperatures (for example of the order of about 800°C to about 25000C, or about 800°C to about 3000°C, e.g., at least about 800°C, at least about 1000°C, at least about 1200°C, at least about 1400°C, at least about 1600°C, at least about 1800°C, at least about 2000°C, at least about 2200°C, or at least about 2500°C) that may be established with absorption of concentrated solar radiation. Such "refractory material" may, for example, comprise a refractory metal, a ceramic, a cermet, or any combination thereof. Refractory materials may for example comprise alumina, silica, carbon, magnesia, zirconia, silicon carbide, titanium carbide, tantalum carbide, chromium carbide, niobium carbide, zirconium carbide, molybdenum disilicide, calcium oxide, graphite, chromite, dolomite, magnesite, quartzite, aluminium silicate, tungsten, molybdenum, niobium, tantalum, rhenium, beryllium, and combinations thereof.
[0011] As used herein, the terms "primarily" and "major part" are meant to mean at least about 50%. Thus a receiver element that is composed primarily of a refractory material comprises at least about 50% by any measure (e.g., by weight or volume) of that refractory material. The term "pipe" as used herein is meant to encompass any tube, conduit or the like. Pipes may have any configuration, e.g., may have a round cross-sectional shape, or a polygonal cross-sectional shape, may be straight, bent, or curved, and may be joined to other pipes, valves, end caps, junctions, vessels, and the like. A "pipe manifold" as used herein is meant to refer to an arrangement of multiple pipes, including any associated pipe joints, valves, end caps, junctions, and the like. A "receiver body" and "body" refer to a portion of a receiver that comprises a solar radiation absorbing refractory material. In some cases, the refractory material may be primarily contained in or confined to a subportion of a body, e.g., an interior subportion, which may be referred to herein as a "receiver core" or a "core." In other instances, the refractory material may not be localized within the body (e.g., the body as a whole may comprise the refractory material), in which case the receiver body and the receiver core are synonymous. As used herein "vertical" and "horizontal" are used in reference to ground. Further, descriptions such as "substantially horizontal," "substantially vertical," "substantially opaque," and "substantially stable" and the like are meant to encompass the relevant properties and minor deviations therefrom, e.g., deviations of about 10%, or about 5% or less. Thus, a "substantially horizontal" aperture may be generally parallel to ground, e.g., within about +/- 10 degrees or less, within about +/- 8 degrees, within about +/- 5 degrees, within about +/- 3 degrees, or within about +/- 1 degree of a horizontal direction, relative to ground. A material that remains "substantially stable" is one that is not exposed to conditions that would degrade the material prematurely. For instance, a ceramic or other material would be substantially stable if maintained within normally accepted operating temperatures or below the temperature at which e.g. spalling or other surface and/or internal damage occurs. It should also be noted that the terms "a" "an" and "the" are meant to encompass singular as well as plural referents unless the context clearly indicates otherwise. Numerical ranges as used herein are meant to be inclusive of any endpoints indicated for the ranges, as well as any number included in the ranges.
[0012] Some variations of the receivers comprise a core composed primarily of a refractory material. The core is configured to absorb solar radiation that has been directed through an aperture in the receiver, so that the absorbed solar radiation is converted to thermal energy stored in the core. The core also comprises one or more fluid passageways for conveying a working fluid through and/or around the core to facilitate extraction of stored thermal energy from the core. These receivers may be tower-mounted or mounted at or near ground level, e.g., for a solar array comprising a beam down receiver configuration. The working fluid used with these receivers may for example comprise primarily air.
[0013] The refractory material in a receiver may be any refractory material that is substantially opaque to solar radiation and remains substantially stable when exposed to temperatures that are established with absorption of concentrated solar radiation. The refractory material may be selected from the group of refractory metals, ceramics, and cermets. Some of the refractory materials may be able to withstand continuous operation at temperatures of at least about 10000C, or at least about 12000C, or even higher. The refractory material in the receivers may comprise more than one refractory component. A refractory material used in a receiver may be selected from the group consisting of alumina, silica, carbon, magnesia, zirconia, silicon carbide, titanium carbide, tantalum carbide, chromium carbide, niobium carbide, zirconium carbide, molybdenum disilicide, calcium oxide, graphite, chromite, dolomite, magnesite, quartzite, aluminum silicate, tungsten, molybdenum, niobium, tantalum, rhenium, beryllium, and combinations thereof
[0014] An incident surface of the core that is to receive and absorb solar radiation directed through the receiver aperture may have any suitable orientation and configuration within the receiver body. Thus, in some variations, an incident surface of the core may be substantially horizontal. An incident surface of a core in certain receivers may be substantially vertical. Some receiver core may comprise both substantially horizontal and substantially vertical incident surfaces. A receiver with an inclined aperture may also be inclined so as to be approximately parallel to the receiver aperture
[0015] Further, the bulk of the solar radiation absorbing refractory core may have a variety of configurations. For example, the core may comprise an exterior cladding layer, which may in some cases protect an interior portion of the refractory core underneath the cladding layer. Further, the one or more passageways in the core may have a variety of arrangements. For example, one or more passageways may be directed radially outward from an inner portion of the core to a peripheral portion of the core. In certain variations, the core may comprise an aggregated material, and the aggregated material may have a particle size and packed density such that the working fluid can permeate through passageways between interstitial voids in the aggregate. Variations of cores may comprise one or more metal structures, e.g., a mesh or fins, that may distribute heat through the core.
[0016] The aperture may be situated anywhere in the receiver, e.g., in a receiver housing or in the core itself. In some variations of receivers that are designed to be tower mounted, the aperture may be a substantially horizontally oriented aperture that is situated on a lower surface of the receiver, so as to comprise a downward facing opening of the receiver. Such an arrangement may reduce convective losses through the aperture, and may eliminate the need for an expensive quartz window, and also eliminate losses due to such window. However, in certain variations, a window, e.g., a quartz window, may cover or partially cover the aperture. [0017] In some variations, a displacement between the aperture through which solar radiation is directed and the core may be adjusted to determine an energy density or intensity of the solar radiation that is incident on the core. For example, the displacement between the aperture and the core may be adjusted to increase an energy collection efficiency of the receiver. In certain variations, a displacement between the aperture and the core may be selected to image an array of reflectors that direct solar radiation through the aperture.
[0018] Other types of receivers are disclosed herein. These receivers are tower mounted. The receiver comprises a substantially horizontally oriented aperture situated on a lower surface of the body so as to comprise a downward facing opening. The receivers also include a solar radiation absorbing core that comprises a refractory material. The core is disposed within the body and above the aperture so that solar radiation directed through the aperture is incident on the core for bulk absorption in the core to generate stored thermal energy in the core. Some variations of these tower mounted receivers may comprise at least one passageway in and/or around the core for conveying a working fluid, e.g., a working fluid that comprises primarily air, through and facilitating extraction of thermal energy from the core. A window, e.g., a quartz window, may but need not be used to at least partially cover the aperture.
[0019] The refractory core may have any suitable composition. For example, in some variations the core may be primarily composed of a refractive material that is substantially opaque to solar radiation and remains substantially stable when exposed to temperatures that are established with absorption of concentrated solar radiation. The refractory material may be selected from the group of refractory metals, ceramics, and cermets. The refractory materials may for example be able to withstand continuous operation at temperatures of at least about 10000C, or at least about 12000C, or even higher. The refractory material in these receivers may comprise more than one refractory component.
[0020] The core may have a variety of configurations. For example, in some variations an incident surface of the core designed to receive and absorb incident solar radiation may be substantially horizontal. In other variations, an incident surface of the core may be substantially vertical. Further, a displacement between an incident surface of the core may be adjusted, e.g., to adjust a solar radiation energy density or intensity on the core, and/or to increase an energy collection efficiency of the receiver. In certain variations, a displacement between the aperture and a substantially horizontal incident surface of the core may be selected to image or approximately image an array of reflectors directing reflected solar radiation through the aperture.
[0021] The solar radiation absorbing core itself may have a variety of configurations, and may for example comprise an exterior cladding layer, which may in some cases protect an interior portion of the core underneath the cladding layer. Further, if the core comprises one or more passageways configured to convey a working fluid through and/or around the core, those one or more passageways may have a variety of arrangements. For example, one or more passageways may be directed radially outward from an inner portion of the core to a peripheral portion of the core. The core may comprise an aggregate, and one or more fluid passageways in the core may comprise interconnected interstitial spaces between particles of the aggregate. Cores in some instances may comprise one or more metal structures, e.g., a mesh or fins, that in operation may distribute heat through the core.
[0022] Other variations of receiver-storage units (receivers) for use in a solar energy collector system are described here. These receivers comprise a body having at least a major part of its volume composed of a refractory material, and a cavity provided within the body and having an aperture through which concentrated solar radiation is in use focused to impinge on a wall of the cavity, and at least one passageway located within the body for conveying a working fluid through and facilitating extraction of thermal energy from the body.
[0023] Methods for effecting energy exchange to generate thermal energy from solar energy are also described here. Some variations of these methods comprise directing concentrated solar radiation through a receiver aperture, so that the solar radiation is incident on a receiver core, where the core is composed primarily of a refractory material that is capable of absorbing solar radiation to generate thermal energy. The methods further comprise transferring thermal energy from the core to a working fluid by passing the working fluid through one or more passageways in and/or around the core. The methods may comprise directing concentrated solar radiation through the aperture to be incident on the core so that the core reaches a continuous operating temperature of about 10000C or higher, or about 12000C, or even higher. The working fluid used in these methods may for example comprise primarily air. [0024] The methods may comprise passing a working fluid through any one of a variety of configurations of passageways. For example, methods may comprise flowing the working fluid through one or more passageways that are directed radially outward from an interior region of the core to a peripheral region of the core, or one or more serpentine or helical passageways through the core. In certain methods, the core may comprise an aggregate, and the methods may comprise flowing the working fluid through one or more passageways comprising interconnected interstitial spaces in the aggregate.
[0025] These methods may be used in context of tower mounted receivers, or receivers mounted at or near ground level, e.g., receivers in a solar array configured in a beam down arrangement. For either tower mounted or ground mounted receivers, a cross-sectional dimension of an aperture and/or a displacement between the aperture and an incident surface of the core may be adjusted, e.g., to adjust an energy density or intensity on a core and/or to increase a collection efficiency of the receiver. For example, the methods may comprise concentrating and directing the solar radiation through the aperture so that a point of maximum energy density or intensity occurs at or before the aperture, e.g., so that solar radiation is relatively divergent and less intense as it is incident on the core, alleviating local overheating.
[0026] In certain variations, the methods may comprise directing the concentrated solar radiation to be incident on a substantially horizontal surface of the core, or to be incident on a substantially vertical surface of the core, or to be incident on both a substantially horizontal surface and a substantially vertical surface of the core. Certain ones of the methods may comprise imaging or approximately imaging an array of reflectors on a substantially horizontal incident surface of the core, where the array of reflectors is used to direct solar radiation through the aperture of the receiver to be incident on that substantially horizontal core surface.
[0027] In the methods, any type of array of reflectors may be employed to direct concentrated solar radiation through the aperture to be incident on the core. For example, an array comprising fixed horizontal axis and/or fixed vertical axis heliostats may be used.
[0028] Additional methods for effecting energy exchange are disclosed herein. These methods comprise directing concentrated solar radiation through a substantially horizontally oriented aperture in a lower portion of a body of a tower-mounted receiver so that the solar radiation is incident on and absorbed by a core disposed within the body to generate thermal energy in the core. The methods further comprise transferring thermal energy from the core to a working fluid, e.g., a working fluid that comprises primarily air.
[0029] The methods may comprise transferring thermal energy from the core to the working fluid by flowing the working fluid through one or more fluid passageways in and/or around the core. Such passageways may have a variety of configurations. For example, one or more passageways may be directed radially between an internal portion of the core and a peripheral region of the core, or through a serpentine passageway through the core. In some variations, the core may comprise an aggregate, and the methods may include flowing the working fluid through one or more passageways comprising interconnected interstitial spaces in the aggregate.
[0030] Further, the methods may comprise adjusting a displacement between the aperture and an incident surface of the core so as to adjust an energy density or intensity on the core and/or an efficiency of the receiver.
[0031] Additional variations of methods for effecting energy exchange are provided. These methods comprise directing concentrated solar radiation into an apertured cavity within a body of a receiver from reflectors within one or more fields of reflectors. The body has at least a major part of its volume composed of a refractory material in which thermal energy is generated by bulk absorption of radiative energy. The body also has at least one passageway located therein. The methods further comprise transferring the thermal energy to a working fluid by passing the working fluid though one or more passageways within the body.
[0032] Variations of solar energy collector systems are described here. In general, the solar energy collector systems comprise an array of reflectors configured to direct incident solar radiation to one or more of the receivers described herein, and a pipe manifold configured to contain a first working fluid. In operation, the pipe manifold conveys the first working fluid that has extracted stored thermal energy from the one or more receivers so that the heated first working fluid can be used in generating electrical energy. The first working fluid may be any suitable working fluid, but in some cases the first working fluid may comprise primarily air. In these systems, the reflectors may be any suitable reflectors, but in some instances, the reflectors may have one or more two-axis heliostats having fixed horizontal axes and/or one or more two-axis heliostats having fixed vertical axes. The reflectors may be configured as tower-mounted receivers in some arrays, or the receivers may be mounted at or near ground level, e.g., in arrays utilizing beam down configurations.
[0033] Certain solar energy collector systems may include more than one receiver. In these systems, the receivers may be the same as or different from each other. Where more than one receiver is present in a solar energy collector system, at least one of the reflectors, e.g., a heliostat, may be configured to pivot so as to direct incident solar radiation to any of the multiple receivers, e.g., depending on a position of the sun and/or seasonal conditions.
[0034] Certain solar "energy collector systems may comprise a heat exchanger, where the heat exchanger is configured to transfer thermal energy contained in the first working fluid to a second working fluid. Any suitable working fluids may be used as the first working fluid and as the second working fluid in these systems. The first working fluid may for example comprise primarily air, and the second working fluid may comprise steam, water, and/or a steam/water mixture.
[0035] Variations of electrical energy generating plants are provided here. In general, the plants may comprise one or more first or "top" thermodynamic cycle heat engines (e.g. a Brayton cycle heat engine) in which a receiver as described herein is used to heat a compressed working fluid so that the heated compressed fluid can be expanded to generate electrical energy. That is, the plants may have a first compressor configured to compress a first working fluid, a first heating stage configured to heat the compressed working fluid, and a first turbine configured to expand the compressed heated working fluid to drive an electrical generator. In these plants, the first heating stage comprises at least one of the solar energy receivers described herein. Thus, some plants may comprise a receiver that comprises an aperture through which concentrated solar radiation is directed and a core comprising a refractory material, wherein the core absorbs incident solar radiation to generate thermal energy that is stored therein. That stored thermal energy in the core may then be used to heat the compressed first working fluid. The first working fluid may be any suitable working fluid, but in many instances may comprise primarily air.
[0036] The receivers used in these plants may be configured as tower-mounted receivers, or may be mounted at or near ground level. In instances where a receiver is tower mounted, the plants may comprise an array of reflectors, e.g., heliostats, directing solar radiation to the tower mounted receiver to heat the compressed working fluid. In instances where a receiver is mounted at or near ground level, the plants may comprise an array of heliostats directing solar radiation to an elevated reflector that, in turn, redirects the solar radiation down to the receiver.
[0037] A receiver may be mounted so an outer surface and e.g. substantially planar core surface are each horizontal, or a receiver may be positioned so that an outer surface is inclined and faces toward a solar field below it in a manner that solar radiation is directed totally or partly from one side of the tower through the aperture and is incident on the core.
[0038] A receiver may be configured such that a beam from a field of reflectors converges to its smallest size in the vicinity of the aperture, and the core of the receiver is positioned a sufficient distance from the aperture to reduce incident light intensity so that the peak temperature on the core material is within normal operating range for the material and the core material remains substantially physically and chemically stable. The beam may form an image on the core and e.g. on a substantially planar surface of the core, similar to an image formed by a camera such as a pinhole camera. Image intensity may be substantially uniform as long as the surface of the core is not angled and/or curved with respect to the field of reflectors so that an approximate image of the reflector field is formed on the core, and the image is not skewed or distorted to an extent that peak intensity in a portion of the image creates a "hot spot" that exceeds to a significant extent the highest temperature in the temperature range of normal operation for the material.
[0039] Certain of these electrical energy plants may comprise one or more second or "bottom" thermodynamic cycle heat engines, in which the second cycle heat engine utilizes waste thermal energy recovered from the first working fluid following its expansion to heat a second working fluid powering the second cycle heat engine. The second working fluid may be any suitable working fluid, but in many cases, may comprise steam, water, and/or a water/steam mixture. The second cycle may be a Rankine cycle. Any type of Rankine cycle heat engine may be used, e.g., a Rankine cycle in which the second working fluid is compressed, heated by the recovered waste energy following expansion of the first working fluid, and then expanded through one or more turbines to drive an electrical generator. [0040] The following description provides exemplary embodiments of receiver-storage units for use in solar energy collector systems and electrical power plants. The description is provided in reference to the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0041] The invention will be more fully understood from the following description of an exemplary embodiment of a receiver-storage unit for use in a solar energy collector system, the description being provided with reference to the accompanying diagrammatic drawings.
[0042] FIG. 1 shows an example of a receiver comprising a refractory core.
[0043] FIG. 2 shows a sectional elevation view of another embodiment of a receiver- storage unit located within a surrounding chamber.
[0044] FIGS. 3 A and 3 B shows sectional perspective views of examples of receivers each comprising downward opening, horizontally oriented apertures.
[0045] FIG. 4 shows a sectional elevation view of another embodiment of a receiver.
[0046] FIG. 5 shows a sectional elevation view of yet another embodiment of a receiver.
[0047] FIG. 6 provides a sectional elevation view of still another embodiment of a receiver.
[0048] FIG. 7 shows a sectional elevation view of a variation of a receiver in which the core comprises a particulate material.
[0049] FIG. 8 illustrates an example of a receiver-storage unit including a heat exchanger in thermal contact with the solar radiation absorbing core of the receiver.
[0050] FIG. 9 illustrates a variation of a receiver in which a displacement between a solar radiation absorbing core and an aperture in the receiver body can be varied.
[0051] FIG. 10 depicts a receiver having an aperture and a core.
[0052] FIG. 1 1 illustrates an example of a tower-mounted receiver-storage unit positioned adjacent a field of heliostats. [0053] FIG. 12 is a schematic representation of an electrical energy generating system configured to operate in a quasi-isothermal Brayton cycle and incorporating a receiver- storage unit of a type described herein.
[0054] FIG. 13 is a schematic representation of combined cycle electrical generating system incorporating a receiver-storage unit of a type described herein.
DETAILED DESCRIPTION
[0055] The present application discloses receivers for use in a solar energy collector system. In general, the receivers comprise a solar radiation absorbing core or body that converts the absorbed radiation to thermal energy. The solar radiation absorbing core comprises a refractory material capable of operating continuously at high temperatures resulting from the absorption of concentrated solar radiation. The core may then store the thermal energy so generated briefly, e.g., for a transient period such as less than about 15 minutes, or for a more extended period, e.g., about 15 minutes or longer, about 1 hour or longer, or for several hours. A working fluid, e.g., a fluid comprising primarily air such as ambient air, may be employed to extract stored thermal energy from the receivers. Thus, a receiver may in some instances function as an integrated receiver-thermal energy storage unit. Also provided herein are methods and systems related to the receivers, e.g., methods for effecting heat exchange utilizing the receivers. Further, various solar energy collector systems and solar-driven electrical power plants incorporating the receivers are described.
[0056] It should be noted that any of the receivers may be used in combination with any of the methods, solar energy collection systems, or electrical power plants, and one or more aspects or features of the solar energy collection systems may be combined with one or more aspects or features of the electrical power plants.
[0057] Several variations of receivers comprising a solar radiation absorbing body or core are disclosed here. As stated above, the core comprises a refractory material. The core may in some examples be composed primarily of one or more refractory materials. The receivers comprise an aperture, located for example in a receiver housing or in the core itself, to control a region of irradiation, a surface of irradiation, and/or an energy density or intensity of irradiation on the core. Variations of receivers may be tower mounted (or otherwise elevated on a hill, building, wall, etc.), e.g., for use in a tower solar array (e.g., a multi-tower solar array), so that solar radiation is directed generally upward through the aperture to be incident on the solar radiation absorbing core. In certain variations, the receivers may be mounted at or near ground level, e.g., for use in a solar array configured for beam down operation, so that solar radiation is directed generally downward through the aperture to be incident on the core. In certain variations, the receivers may be inclined between horizontal and vertical facing toward the solar field below so that solar radiation is directed totally or partly from one side of the tower through the aperture is incident on the core.
[0058] In a solar energy collector system, solar radiation is directed through the receiver aperture to be incident on a solar radiation absorbing receiver core by reflectors (e.g., heliostats) within one or more reflector fields. Thermal energy may be generated in the body of the receiver by bulk absorption and/or absorption of the radiative energy at the core's surface, or by absorption in cavity or channel structures on the surface of the core medium. The thermal energy may in some variations be transferred to a working fluid, e.g., to a working fluid passing through one or more fluid passage(s) within and/or around the body or core. Thermal energy may be transferred to the working fluid either simultaneously with the generation and storage of the energy in the body or core, or optionally following a transitional period of storage of the thermal energy in the body or core. Thus, the receivers may be employed to accommodate transitory loss or reduction of solar energy impingement in a receiver body, e.g., due to periods of low insolation.
[0059] Depending upon the refractory material employed, a receiver body or core may in some cases be formed as a substantially solid unitary body, with or without binding materials, e.g., by a moulding or other similar such process. For example, a refractory material may be cast and then fired to form a desired size and shape to be assembled in a block-like matrix. Alternatively or in addition, some receiver bodies or cores may be constructed from bonded blocks comprising one or more refractory materials, for example from bonded blocks comprising aluminum oxide. A body may be cut, or otherwise machined or processed to form a desired size, shape and/or configuration.
[0060] As a further form of construction, some variations of receivers may comprise a core comprising (e.g., composed primarily of) a particulate refractory material. Such particulate refractory material may comprise any refractory material described herein or otherwise known, and in some instances may comprise more than one refractory material. For example, a refractory material may comprise an unbonded heat-conductive (mineral) earthen material such as quartzite. In such variations, a core comprising one or more particulate refractory materials may be located within a shell or housing. For example a receiver may comprise a container containing one or more particulate refractory materials, or a bale of a loose refractory material in the form of chunks or pieces, rocks, stones, gravel (each of which may or may not be crushed), or even finer particles, or any combination thereof. The shell or housing itself may comprise a refractory material. For example, such a shell or housing may comprise or be formed from bonded blocks comprising a refractory material, e.g., bonded blocks comprising aluminum oxide. A refractory material incorporated into a shell or housing of a receiver body may be the same or different as a refractory material incorporated into a receiver core. In certain variations, one or more metal structures such as fins, a mesh, or grid-like structures may be positioned within a receiver core and/or body, e.g., to promote spreading of absorbed thermal energy throughout the fluid within a receiver, and/or to promote channeling of thermal energy into one or more particular regions of a core or body. Also, in some variations, e.g., in this latter form of construction, the core may be contained within a casing, e.g., a metal casing. A spacing, which may or may not be at least partially filled with a thermally insulating material, may be provided between a core and a casing.
[0061] An incident surface of a receiver core or receiver body configured to receive and absorb solar radiation may have any desired configuration, e.g., an incident surface may be substantially planar or contoured. If generally planar, an incident surface may be for example substantially parallel to a plane defined by an aperture admitting solar radiation into the receiver, or substantially orthogonal to a plane defined by the aperture. In certain variations, a receiver body or core may comprise a cavity into which concentrated solar radiation is directed to be incident on one or more cavity walls.
[0062] An incident surface of a receiver body or core may in some embodiments be substantially unclad such that the incident surface will, in use of the receiver, be exposed to concentrated solar radiation that is beamed through the aperture of the receiver. In certain variations, an incident surface may be optionally clad, e.g., with a protective lining comprising a thermally conductive material that may for example inhibit ablation and/or sublimation of the underlying refractory material. Thus, for those receiver bodies or cores comprising a cavity into which solar radiation is directed, one or more cavity walls may be clad as described. A cladding, if present, may in certain variations be removably secured to an incident surface (e.g., a cavity wall in a cavity). For example, such removable claddings may be employed where it is desired to replace the cladding, e.g., for periodic replacement and/or for repair.
[0063] If present, a cavity in a receiver body or receiver core may be configured in various ways, for example as a cylindrical cavity, as a generally cubic-shaped cavity, or any other type of polyhedral shaped cavity. A cavity may in certain instances be configured so as to induce reflection, e.g., total internal reflection of incoming radiation.
[0064] During those periods when it is not necessary that the aperture be open, for example to permit air flow into the receiver (e.g., into a cavity in a receiver body), the aperture may optionally be closed with or at least partially covered by a window, e.g., a quartz window. In some cases it may be desired to omit a window, e.g., to eliminate reflective losses from the window which may be on the order of about 5% to about 10%. In those situations, a receiver may be configured to reduce convective thermal losses by positioning a downward opening aperture in a substantially horizontal orientation.
[0065] As stated above, some variations of receivers comprise one or more fluid passageways extending in and/or around a receiver body or core. Such passageway or, more usually, passageways in and/or around a receiver body and/or receiver core (if distinct from the receiver body) may be arranged so as to extend generally linearly through the body or core, as the case may be. Optionally, e.g., when it is desired to increase a residence time of a working fluid (heat exchange fluid) in the body or core, one or more fluid passageways may follow a curvilinear, serpentine, or circuitous path in and/or around a receiver body or core. If a receiver body or core comprises one or more particulate refractory materials, particle sizes and/or a packing density may be optionally selected to provide natural passageways through the body or core; that is, passageways at least partially defined by interconnected interstices between the particles. A working fluid or heat exchange fluid (e.g., a gas such as ambient air) may be forced (e.g., pumped or drawn) through the one or more passageways to extract stored thermal energy from the receiver core or body. The heat exchange fluid may access the one or more passageways in a variety of manners. For example, a heat exchange fluid (which may comprise primarily air) may be forced into a cavity, which may be open to one or more fluid passageways. In other variations, a heat exchange fluid may enter one or more passageways without entering a cavity, e.g., via a side access or top access. [0066] In one particular embodiment, a plurality of passageways may be provided within a receiver body, with each passageway (which may optionally comprise an interstitial passageway as above mentioned) radiating outwardly to an exterior or peripheral region of the body from an interior region, e.g., a cavity. With this arrangement, ambient air may be employed as the heat exchange fluid and be drawn or forced through the cavity, through the radiating passageways and into a collecting chamber or the like. The resulting heated air may then be used as a working fluid or be used to transfer thermal energy to a (further) working fluid such as water, steam, or a mixture of water and steam.
[0067] When a gaseous working fluid (e.g., a working fluid that comprises primarily air (e.g., ambient air)) is used to extract stored thermal energy from a solar radiation absorbing core or body, as above described, the receiver may optionally be interposed between a compressor turbine and a turbo-generator, with the compressor being employed to force compressed gas (e.g., air) into the receiver and the turbo-generator being driven by high temperature-high pressure air following its passage through the body or core of the receiver. Thus, the integrated receiver-storage unit may optionally be integrated with a turbo- compressor and a gas turbine to operate in a Brayton cycle. Non-limiting examples of Brayton cycle heat engines and combined cycle power plants incorporating integrated receiver-storage units as described here are provided in U.S. Patent Application Serial No. , entitled "Combined Cycle Power Plant" (Attorney Docket No. 62715-2000700) and filed concurrently herewith, and in U.S. Provisional Patent Application Serial No. 60/933,619, entitled "Combined Cycle Power Plant" (Attorney Docket No. 62715-3000700), filed June 6, 2007, each of which has already been incorporated by reference herein in its entirety.
[0068] In some embodiments, a passageway, or if more than one, passageways may optionally comprise a liner, e.g., a thermally conductive liner such as a carbon, graphite, or metal liner. A liner, if present, may be positioned within a hollow passageway or chamber within a receiver body or receiver core. In some circumstances, one or more spacer elements may be employed, e.g., to maintain separation of the liner from the core or body. By maintaining such separation between a liner and a passageway it may be possible to reduce or avoid problems such as passageway blockage flowing from differential coefficients of expansion between the liner and the receiver body or core. [0069] Receivers may have any suitable dimensions, and a solar radiation absorbing body or core in a receiver may have any suitable dimensions. For example, one or more receiver and/or receiver body or core dimensions may be determined by an amount of solar radiation directed at the receiver, a thermal energy storage capacity desired, the composition of the receiver body or core, the thermal stability of the receiver core or window material at the temperature of operation, a height at which a receiver is to be used, or any combination thereof. Thus, a receiver-storage unit may comprise a total volume in a range from about Im3 to about 200m3. (A 500 ft. tower may have 1,000,000 square ft or 100,000 m2 of accessible field, covered to about 50% with reflector. At 500 times optical concentration, the receiver aperture can be 100 m2. If the aperture is 1 m in depth and horizontal, the top surface would be 100 m2 and the minimum volume would be 100 m3. An aperture through which solar radiation passes to be incident on the solar radiation absorbing core or body may therefore comprise an opening having an area of the order of about 0.8m2 to about 100m2. In some variations, an aperture may be adjustable, e.g., to tune the size of the opening. In certain variations, an aperture may be configured with an entry guide such as a flared entry guide, and/or with a focusing element or concentrator such as a compound parabolic concentrator.
[0070] As stated above, receivers may be elevated (e.g. tower mounted receivers) or ground mounted receivers. If tower mounted, a receiver may be mounted atop a supporting tower having a height, typically on the order of about 15m to about any of (50m, 100m, and 150m), which may depend upon the size (ground area) occupied by one or more associated reflector fields, e.g., one or more heliostat fields. The receiver aperture, which may be located in a receiver housing or within a receiver body itself (e.g., as an aperture that leads to a cavity in a receiver body), may be positioned to best receive focused radiation from the reflectors (e.g., heliostats). Thus, the aperture may optionally be positioned on the underside of a tower mounted receiver (e.g., on the underside of a receiver body). For example, as described above, if the aperture is substantially horizontal in a tower mounted receiver, thermal losses due to convection at the aperture may be reduced. If a receiver is located adjacent one end of a reflector field, a receiver aperture (e.g., an aperture in a receiver housing or an aperture in a receiver body or core that leads to a cavity) may for example be positioned adjacent a lower marginal edge of the receiver body. In an alternate arrangement, the receiver may be illuminated as a secondary receiver, for example in a beam down system where a receiver may be mounted at or near ground level. There, one or more fields of reflectors (e.g., heliostats) may reflect concentrated solar radiation to an elevated reflector that, in turn, redirects the solar radiation to the ground or near ground mounted receiver. In such arrangements, a receiver aperture may be optionally located in an upper region of the receiver (e.g., an upper region of the receiver body or core).
[0071] Within a receiver, a solar radiation absorbing core or body, and an aperture that determines an irradiation region or surface on the body or core may be configured in various ways. FIGS. 1-7 illustrate some examples of possible receiver configurations.
[0072] Referring first to FIG. 1 , a variation of a receiver 100 is illustrated that comprises a housing 101 that, in turn, comprises an aperture 103. Within the housing 101 is a solar radiation absorbing body 105 that comprises a refractory material. The refractory material in the body may for example be provided in the form of a monolithic mass, an aggregated material, a particulate material, a powder, a baled material, or any combination thereof. Thus solar radiation, e.g., concentrated solar radiation directed from an array of reflectors (e.g., heliostats) can pass through the aperture 103 to be incident on a surface 107 of the core 105. In this particular variation, the incident surface 107 may be substantially parallel to a plane defined by the aperture 103, e.g., substantially horizontal if the aperture is horizontal. A space 110 between the core and the housing may be at least partially filled with a thermally insulating material (not shown). As described in further detail herein, the core 105 may or may not comprise one or more passageways 109 directed through and/or around the core 105 to convey a working fluid (e.g., air) to extract thermal energy stored in the core via heat transfer.
[0073] In some instances a receiver and its solar radiation absorbing body may comprise a unitary structure. FIG. 2 illustrates an example of such a receiver. There, the receiver 200 comprises a generally solid unitary receiver body 201 that comprises a refractory material. Thus, incident solar radiation can be directed through aperture 203 to be received into cavity 211 of the receiver core 201. The incident solar radiation may be incident on any or all surfaces 208a and 208b of the cavity 21 1 to be absorbed and converted into thermal energy that can be stored in the body/core 201 for a desired length of time, e.g., a transient period less than about 15 minutes, or a more extended period (about an hour, several hours, or longer). In this particular variation, cavity 21 1 provides a top incident surface 208a that may be substantially parallel to a plane defined by aperture 203, as well as side incident surfaces 208b that may be substantially orthogonal to a plane defined by aperture 203. In some variations, receiver 200 may be used in a configuration where aperture 203 is substantially horizontal and opens downward, e.g., for a tower mounted receiver. Although not shown, the body/core 201 may comprise one or more fluid passageways configured to convey a working fluid to extract thermal energy stored in the core.
[0074] Additional variations of receivers are shown in FIGS. 3A-3B. Referring first to FIG. 3A, receiver 300 comprises a housing 301 and a solar radiation absorbing body 305. Solar radiation can be directed through an aperture 303 to be incident on the body 305. In this particular variation, the body 305 is formed around a peripheral region of the housing 301 so as to form an interior cavity 311. In this particular variation, the body 305 comprises multiple sections 310 that may be arranged in any manner in the housing 301, e.g., to form a cavity 311 having incident surfaces 308 for receiving and absorbing solar radiation 50 that is transmitted through the aperture 303. Although the sections 310 are illustrated as forming a block shaped cavity 31 1 having a cap 314 and sidewalls 315, other variations are possible, e.g., sections arranged to form a polygonal cavity. The body 305 may comprise an incident surface 316 on cap 314 that is substantially parallel to a plane defined by the aperture 303, and an incident surface 317 on sidewalls 315 that is substantially orthogonal to the aperture plane. Any space between the housing 301 (e.g., space 320) may optionally be at least partially filled with a thermally insulating material. As shown in FIG. 3B, a variation of a receiver 350 is shown in which the receiver housing 351 contains a receiver body 355 comprising a cylindrical section 352 (that may in turn comprise multiple subsections) and a cap section 353 to form a cavity 361 having a circular cross-sectional shape. Thus, an incident surface 354 on the cap 353 may be substantially parallel to a plane defined by an aperture 357 in the receiver housing 351. For either of the variations shown in FIGS. 3 A and 3B, the body may comprise one or more fluid passageways (not shown) to convey a working fluid to extract stored thermal energy from the body.
[0075] Fluid passageways or fluid channels, if present in a body, may have a variety of configurations, and in general any fluid passageway configuration may be used in combination with any receiver and/or body configuration. Examples of various fluid passageways that may be used to extract stored thermal energy from the refractory bodies described herein are provided in FIGS. 4-7. It should be noted that a single receiver may utilize more than one type of fluid channel; thus, variations are contemplated which include any combination of the fluid channel types. In any of the variations, the way in which the channels are positioned within the body of the receiver may be dependent upon the method employed from one unit to another to construct the receiver body.
[0076] In some variations, the fluid passageways may be directed radially outward from an interior, e.g., central, region of the body to a periphery of the body. Referring now to FIG. 4, receiver 400 comprises a housing 421 containing a solar radiation absorbing body or core 414. The receiver body or core 414 may comprise, or be formed or constructed from a refractory material (as defined above). In some variations, the body or core 414 may be, but need not be, constructed from blocks that comprise (e.g., are composed primarily of) aluminum oxide in a fired, heat resistant clay binder or matrix. Solar radiation can be transmitted through an aperture 422 to enter an internal cavity 418 of the body 414. Optionally, a cladding layer 420 may at least partially line the cavity 411, e.g., as a protective layer for a refractory material contained within the body 414. The receiver variation shown in FIG. 4 may have any dimensions, and may be formed approximately as a cube with approximately 2.5m side dimensions, although, depending upon the output power requirements of a system of which the receiver is a part, the receiver may be constructed with a volume within a range of, for example, about 1.0m to about 20.0m .
[0077] Fluid channels or passageways 415 are provided within the body 414 of the receiver for conveying a working fluid (typically a heat exchange fluid) through the body to extract stored thermal energy. In this particular example, the channels 415 are formed within the body itself, and are directed radially outward from an interior region of the body (e.g., cavity 418) to an outer peripheral region of the body. Thus, in use of this embodiment, a gas such as ambient air may be employed as a working fluid and be forced or drawn through the cavity 418, radially outward through the channels 415, and into a chamber 421 that generally surrounds the receiver body 414, all while the body 414 is being irradiated with concentrated solar radiation through aperture 422. The resulting heated working fluid, e.g., heated air, may be used downstream as a working fluid, or be used to transfer thermal energy to a (further) working fluid, for example to produce superheated steam.
[0078] In certain variations, one or more fluid channels or passageways may be directed in a generally transverse manner across a receiver body or core. For example, referring to FIG. 5, receiver 500 comprises a body 515 that comprises two types of fluid channels, 515a and 515b. Incident solar radiation may be transmitted through the aperture 518 and received on any or all of the incident surfaces of cavity 518 (e.g., sidewall surfaces 508b and/or top surface 508a). In this particular example, both fluid channels 515a and 515b extend transversely across the body 514 to convey a working fluid (not shown) to extract thermal energy. In this example, fluid channel 515a follows a generally straight path, whereas fluid channel 515b follows a serpentine path, e.g., to increase a path length of the working fluid through the body 515 so as to extract more thermal energy. Although the fluid channel 515b is illustrated as generally serpentine, any variation of a curvilinear or circuitous channel through the body may be employed to increase a path length.
[0079] Some receivers may comprise fluid channels that are located in discrete regions of a receiver body. Such an example is illustrated in FIG. 6. There, receiver 600 comprises a solar radiation absorbing body or core 614, a cavity 618 and an aperture 611. Located within body 614 are one or more pocket-like chambers 617. In these variations, the fluid channels 616 may be located as a separate channel unit within one or more of the pocket-like chambers 617. The pocket like chambers 617 may contain a fluid (e.g., a heat transfer fluid such as air), and the fluid channels 616 may for example comprise a conduit or pipe so as to allow a working fluid contained within the conduit to be heated by a fluid contained in the chambers 617. In other variations, the pocket-like chambers may comprise a solid refractory material, e.g., a monolithic material, an aggregated material, rocks, gravel, sand, or any combination thereof, that may have a different composition and/or different density than the bulk of the core 614. For example, the composition of the core material within the chambers 617 may be selected to have an increased thermal conductivity so as to facilitate improved heat transfer to a working fluid in the fluid channels 616.
[0080] As an alternate construction, a receiver may comprise a core that, in turn, comprises one or more particulate refractory materials, as described above. The core may be composed of, or primarily composed of one or more particulate refractory materials. An example of such a receiver is provided in FIG. 7. In this particular example, the core 722 of receiver 710 may comprise (e.g., be formed or constructed from), for example, one or more unbonded thermally conductive (mineral) earthen refractory materials such as rocks, stones, gravel, sand, and combinations thereof. The thermally conductive refractory material may in some cases comprise quartzite. In this embodiment, the refractory core 722 is located within a shell or housing 723 that may comprise a refractory material that may be the same or different as that used in the core. In certain examples, the housing 723 may be formed from bonded blocks of a refractory material, e.g., aluminum oxide. Also metal structures such as fins or a grid or mesh 724 may be disposed within the core 722, e.g., to promote spreading of thermal energy though the core, and/or to promote channeling of the thermal energy into selected particular regions of the core. Although not shown in FIG. 7, an optional casing, e.g., a metal casing, may be used to contain core 722. In those variations, a space that may or may not be at least partially filled with a thermally insulating material, may be provided between the core and the casing. Although this particular variation is illustrated as comprising a cavity 718 for receiving incident solar radiation through the aperture 703, other variations are contemplated that comprise no cavity, so that solar radiation can be incident on a surface of core 722, e.g., a relatively planar surface.
[0081] For receivers comprising a particulate core, such as illustrated in FIG. 7, particles sizes, particle size distribution, and a packing density may be such that one or more fluid passageways may be established though interconnected interstitial spaces in the core. With this arrangement, a heat exchange fluid such as ambient air may be drawn or forced through such passageways the core (e.g., via cavity 718, if present) and be conveyed form the receiver by a feed line 725, either directly or by way of a plenum or the like (not shown). The resulting heated fluid (e.g., heated air) may then be used as a working fluid for example in an energy generating cycle. Alternatively or in addition, the resulting heated fluid may be used to transfer thermal energy contained therein to a (further) working fluid such as water.
[0082] For any of the receiver variations, an incident surface (e.g., a cavity surface such as 208a and 208b in FIG. 2) of the receiver body or core may be clad with a protective cladding or liner (e.g., cladding 420 as illustrated in FIG. 4). Such a cladding, if present, may function for example to inhibit ablation and/or sublimation of the refractory material in the body or core, e.g., a refractory material that forms one or more walls of a cavity into which solar radiation is directed. Certain variations of claddings may b removably secured to an incident surface (e.g., in a cavity) so as to permit replacement, e.g., in the event of undesired surface erosion or damage.
[0083] For any of the receiver variations, a refractory material may have any suitable composition and may be in any form, e.g., monolithic, molded, aggregated, particulate, powdered, or any combination thereof. In general, the refractory material in the receiver may comprise any refractory material that is substantially opaque to solar radiation and remains substantially stable when exposed to temperatures that are established with absorption of concentrated solar radiation, e.g., continuous operation at a temperature of about 8000C or higher as described above, e.g., about 8000C to about 30000C, or about 8000C to about 25000C. Some of the refractory materials may be able to withstand continuous operation at temperatures of at least about 10000C, or at least about 12000C, or even higher. In certain variations, a receiver body or core may comprise a combination of refractory materials. A refractory material may comprise a refractory metal, a ceramic, and/or a cermet. Non- limiting examples of refractory materials that may be used include alumina, silica, carbon, magnesia, zirconia, silicon carbide, titanium carbide, tantalum carbide, chromium carbide, niobium carbide, zirconium carbide, molybdenum disilicide, calcium oxide, graphite, chromite, dolomite, magnesite, quartzite, aluminium silicate, tungsten, molybdenum, niobium, tantalum, rhenium, beryllium, and combinations thereof.
[0084] As stated above, an aperture in a receiver (e.g., in a housing or in a receiver body or core itself), may have a cross-sectional area of the order of about 0.8m2 to about 7.0m2. In some variations, an aperture may be adjustable, e.g., to tune the size of the opening. Although not so shown in the variations of receivers illustrated herein, any aperture may be fitted with a window that is substantially transparent to the solar spectrum over a wavelength range of interest, e.g., a quartz window. In certain variations (and also not shown), one or more optical elements, e.g., a radiant energy concentrator, may be placed in the aperture to condition the incident solar radiation.
[0085] For any of the receiver variations described herein, a heat exchange fluid may be thermally contacted with a surface of the receiver body or core to extract thermal energy from the surface. This heat exchange scheme may be used alternately to or in addition to a thermal extraction scheme involving conveyance of a heat exchange fluid though a passageway in a core. For example, a heat exchange fluid in contact (e.g., physical and/or thermal contact) with a surface of the receiver body or core, or one or more pipes containing the heat exchange fluid that is in thermal contact with a surface of the core, may be used to extract thermal energy from the body or core.
[0086] FIG. 8 provides an example of receiver in which extraction of heat by a heat exchange fluid occurs at a surface of the receiver core. There, receiver 800 comprises a solar radiation absorbing core 814 comprising a refractory material. Bulk absorption of solar energy that passes through the aperture 822 (and in this variation enters cavity 818) results in thermal energy generation and storage in the core 814. A heat exchange fluid contained in a manifold 826 may be placed in thermal contact with an external surface 810 of the core 814 to extract stored thermal energy from the core for use, e.g., in driving an energy generating cycle. Although not shown in FIG. 8, the core itself may comprise one or more internal fluid passageways (e.g., as shown above) for conveying a working fluid to extract thermal energy from the bulk of the core 814. Thus, receivers may comprise an external means for heat extraction via external thermal contact with an external surface of a refractory body or core, e.g., as illustrated in FIG. 8, and/or one or more fluid channels configured for conveying a working fluid in and/or around a refractory body or core, as described herein.
[0087] In some variations of receivers, a displacement between the aperture through which solar radiation is directed and the solar radiation absorbing body may be adjusted or selected to determine an energy density or intensity of the solar radiation that is incident on the body. For example, the displacement between the aperture and the core may be adjusted or selected to increase an energy collection efficiency of the receiver. Such adjustment may be completed at installation, may be carried out periodically or regularly, and may be completed manually or automatically. For example, such adjustment may be made to account for seasonal variations, and/or aging of a receiver. Referring now to FIG. 9, a variation of a receiver is illustrated in which a displacement between a receiver aperture and an incident surface of a receiver core can be varied. There, receiver 900 comprises a housing 901 that, in turn, comprises an aperture 903. Contained within the housing 901 is a solar radiation absorbing body or core 914. Solar radiation (e.g., concentrated solar radiation reflected by one or more reflectors such as heliostats) is transmitted through the aperture 903 to be incident on an incident surface 915 of the receiver body or core 914. Body 914 comprises a refractory material, as described above, and may or may not comprise one or more fluid passageways, as described above. In general the incoming solar radiation 50 has been focused by a reflector, so that an incident beam may be converging or diverging as it enters the aperture 903 and impinges upon surface 915, depending on where a focal point, or region of highest concentration, occurs in the reflected radiation's path from a reflector to the receiver 900. Thus, a displacement 916 between a plane defined by the aperture 903 and the incident surface 915 may be adjusted to determine an energy density or intensity incident on the surface 915. Further, a cross-sectional dimension 917 of the aperture 903 may be adjusted, which may also affect the energy density or intensity incident on the surface 915.
[0088] In certain variations, focusing properties of a reflector and a distance between the reflector and the receiver may be adjusted so that reflected solar radiation reaches a focal point, or region of highest energy concentration approximately at or prior to reaching a plane defined by the aperture. Such a situation is illustrated in FIG. 10. There, receiver 1000 comprises a housing 1001 that, in turn, contains a refractory core 1014 having a surface 1015 for receiving incident solar radiation to allow bulk absorption of at least a portion of that radiation and subsequent bulk heating in the core 1014. Solar radiation is incident on one or more reflectors 1040 in an array 1041. The reflectors (e.g., fixed horizontal axis and/or fixed vertical axis heliostats) may be configured to track the sun and reflect incident solar radiation to the receiver 1000. In this particular variation, the reflectors 1040 are focusing reflectors. A distance between a reflector and a receiver, combined with focusing properties of that reflector, determine a focal point, or at least a region of highest energy concentration for radiation that is not sharply focused, of the reflected solar radiation 50. In some cases, a receiver may be positioned so that a focal point or region of highest energy concentration (e.g., indicated as region 1039 in FIG. 10) occurs approximately at or prior to the aperture, so that solar energy incident on a surface of a refractory core is divergent. Thus, intensity variations on the incident surface may be reduced, e.g., so that approximately uniform irradiation of the incident surface of the solar radiation absorbing core may be achieved, which may allow overall higher incident solar radiation energy densities to be used, increase conversion efficiency of the receiver, and/or reduce local hotspots and the like that can degrade performance, and in some cases, lead to catastrophic failure. In some instances, a displacement between the aperture 1003 and the incident surface 1015 of the core may be adjusted so as to approximately image at least a portion of the reflector array 1041 on the surface 1015. By adjusting a displacement 1016 between the incident surface 1015, and optionally a cross-sectional dimension of the aperture 1003, and optionally a position of the focal point of the reflected solar radiation 50 relative to the aperture, an energy density or intensity incident on the surface 1015 of the core 1014 may be controlled.
[0089] The receivers as described herein may be used in methods for effecting heat exchange to generate thermal energy from solar energy are also described here. In general, the methods comprise directing concentrated solar radiation through a receiver aperture so that solar radiation is incident on a receiver core. Any of the receivers described above, including any variation of receiver core and any variation of aperture, may be used. Thus, the methods may comprise utilizing a receiver that comprises a core composed primarily from a refractory material or a combination of refractory materials. The methods further comprise transferring thermal energy stored in the core following bulk absorption of incident radiation by passing the working fluid through one or more passageways in and/or around the core, as described above. The methods may comprise directing concentrated solar radiation through the aperture to be incident on the core so that the core reaches a continuous operating temperature of about 8000C or higher, e.g., about 10000C or higher, or about 12000C or higher. The working fluid may be passed through the passageway or passageways by using any suitable technique, e.g., the working fluid may be pumped or drawn through a passageway. The working fluid used in the methods may be any suitable working fluid, but in many cases may comprise primarily air.
[0090] The methods may comprise passing a working fluid through any one of a variety of configurations of passageways to extract stored thermal energy from the core. For example, methods may comprise flowing the working fluid through a passageway directed radially outward from an interior region to a peripheral region, or through a serpentine, helical or other circuitous passageway. Certain methods may comprise flowing a working fluid through a refractory core comprising a particulate aggregate.
[0091] The methods may be used with tower mounted receivers, or receivers mounted at or near ground level. In any case, the methods may comprise adjusting a cross-sectional dimension of a receiver aperture and/or a displacement between the aperture and an incident surface of a core, e.g., to adjust an energy density or intensity incident on the core and/or to increase a collection efficiency of the receiver. For example, the methods may comprise directing concentrated solar radiation through a receiver aperture so that a point or region of maximum energy density or intensity occurs at or before the aperture where materials which can overheat are not present, and so that the solar radiation is at least somewhat divergent as it impinges on the core. As described above, certain methods may comprise directing the concentrated solar radiation to be incident on a substantially horizontal surface of the core, or to be incident on a substantially vertical surface of the core, or a combination thereof. Certain ones of the methods may comprise at least partially imaging an array of reflectors on a substantially horizontal incident surface of the core, where the array of reflectors is used to direct solar radiation through the aperture. Any type or configuration of reflectors may be employed to direct concentrated solar radiation through the aperture to be incident on the core. For example, an array comprising fixed horizontal axis and/or fixed vertical axis heliostats may be used. [0092] Certain other methods for effecting energy exchange between solar radiation and a working fluid are disclosed. These methods comprise directing concentrated solar radiation through a substantially horizontally oriented aperture in a lower portion of a body of a tower mounted receiver so that the solar radiation is incident on and absorbed by a core disposed within the body to generate thermal energy in the core. The core comprises a refractory material. The methods further comprise transferring thermal energy from the core to a working fluid, e.g., a working fluid that comprises air. Variations of the methods may comprise flowing the working fluid through one or more passageways in and/or around the core to facilitate extraction of thermal energy from the core. Any type or configuration of passageway may be used in these methods. Further, these methods may comprise adjusting a displacement between the aperture and an incident surface of the core so as to adjust an energy density or intensity incident on the core and/or an efficiency of the receiver.
[0093] The receivers and methods as described herein may be used in a variety of configurations in solar energy collector systems. An example of a tower mounted receiver for receiving energy from one or more reflector fields is provided in FIG. 11. There, a receiver-storage unit (hereinafter referred to simply as a "receiver") 1110 is positioned at or near the top of a steel tower 1111 (e.g., a skeletal or space frame steel tower) that is located in proximity to (e.g., adjacent one end of) a field 1112 of reflectors 1113, which may for example comprise heliostat reflectors. Four only reflectors are for convenience shown in the figure but a single tower mounted receiver would normally be associated with a very much larger number of reflectors. Also, in an alternative arrangement a plurality of spaced-apart tower-mounted receivers might be positioned within or at the margins of a large field of reflectors. In either of these optional cases, the reflectors may be controlled and driven for orientation toward a single receiver or to be re-orientated from one receiver to another in order to optimise solar energy collection and to minimise the possibility of reflector shading. Although the receiver 1110 is illustrated as being positioned on an end of field 1112 in FIG. 11 , the field 1 1 12 and the reflectors 11 13 within the field may have any suitable arrangement with respect to the receiver 1110. For example, in some variations, reflectors 1 113 may be arranged circumferentially with respect to receiver 11 10, e.g., so that the solar radiation directed to the receiver takes on a generally conical shape. In other variations, the reflectors 1 113 may be arranged in arcs or rows. Such arcs or rows may be arranged symmetrically with respect to the receiver 11 10, or may be arranged preferentially on one or more sides of the receiver 1 1 10. [0094] In certain other alternative arrangements, a receiver may be mounted at or near ground level, e.g., as a secondary receiver in a beam down configuration as described above. There, an elevated reflector may be configured to receive reflectors solar radiation from one or more reflector fields, similar to field 1112 illustrated in FIG. 11. The elevated receiver may redirect the reflected radiation downward so as to be transmitted through an upward opening aperture of a receiver as described herein. Larger refractive cores may be accommodated in such a ground mounted arrangement.
[0095] The height of the tower 1111 may be determined, at least in part in any given case by the size (area) of the reflector field (and hence by the distance between the farthest reflector 1313 and the tower) and, to some extent, by the spatial relationship of the reflectors. However, the tower may typically have a height in the range from about 15m to about 50m.
[0096] Each reflector 1313 may comprise a two-axis heliostat having a fixed vertical axis but, in the interest of achieving increase ground coverage with the reflectors, each reflector may desirably comprises one having a fixed horizontal axis, for example as disclosed in Australian Provisional Patent Application No. 2007900391, dated January 29, 2007 and
International Patent Application No. PCT/AU2008/ , entitled "Solar Energy Collector
Heliostats" filed January 29, 2008, each of which is incorporated by reference herein in its entirety. In some variations, a collision avoiding solar tracking system of the type disclosed in Australian Provisional Patent application No. 2007900390, dated January 29, 2007 and in International Patent Application No. PCT/AU2008/000096, dated January 29, 2008, each of which is incorporated by reference herein in its entirety, may be employed for driving heliostats.
[0097] The reflectors (e.g., heliostats) may in use be driven to track east-to-west progression of the sun during each diurnal period and to reflect incident solar radiation into an aperture (referred to in more detail above) of the receiver 1 1 10. In the case where a plurality of spaced-apart receivers 11 10 is located within a reflector field 11 12 or the receivers are located at, for example, opposite ends of a field, various ones of the reflectors may be orientated to reflect radiation to one only of the receivers, or some of the reflectors may be driven selectively to pivot to such an extent as to shift the reflected radiation from one receiver to another. Non-limiting examples of reflectors that may be reoriented to direct incident solar radiation from one tower to another are described in U.S. Patent No. 5,899,199 issued May 4, 1999 to David Mills, which is incorporated by reference herein in its entirety. In any event, the reflectors may function collectively to concentrate solar radiation at or near the aperture of the receiver or, if more than one, multiple receivers, as is described above, e.g., in connection with FIGS. 9 and 10.
[0098] Receivers as described herein may function to heat a working fluid in a heat engine employing e.g. a Brayton cycle. Examples of energy generating cycles and combined cycle power plants using solar radiation absorbing refractory receivers to heat a working fluid are provided in U.S. Patent Application Serial No. , entitled "Combined Cycle Power
Plant," (Attorney Docket No. 62715-2000700), filed concurrently herewith, and U.S. Provisional Patent Application Serial No. 60/933,619, entitled "Combined Cycle Power Plant" (Attorney Docket No. 62715-3000700), filed June 6, 2007.
[0099] FIG. 12 provides an example of a heating stage that can be used to heat a working fluid (e.g., air). There, heating stage 1200 comprises a receiver 1210 having any configuration as described herein that is interposed between a compressor- turbine 1226 and a turbo-generator 1227. The compressor 1226 is employed to force compressed air into the cavity 1218 of the receiver 1210 and the turbo-generator 1227 is driven by high-energy-level air following its passage through the receiver. Even though the heating stage 1200 in this variation is solar powered, the energy storage capabilities of the receiver 1210 used to heat the working fluid may dampen or reduce fluctuations in heat that may result from periods of low insolation. The storage capacity of the receiver 1210 may be selected so that the supply of heated compressed air is sufficiently stable to drive turbo generator 1227, e.g., without the need for auxiliary or supplemental fuel to power heating stage 1200. Although the heating stage 1200 is illustrated in connection with a Brayton cycle heat engine in FIG. 12, the receivers as described herein may be used in other heating cycles that may be used in other types of energy generating cycles that employ a heated working fluid.
[0100] FIG. 13 illustrates an example of a combined cycle power plant utilizing a receiver as described herein. There, power plant 1300 comprises two interconnected power generating systems; a first of which (designated by numeral 1310) is a heat engine employing a Brayton cycle and the second of which (designated by numeral 131 1) is a heat engine employing a Rankine cycle. The first system 1310 comprises a turbo-compressor 1312, to which a first working fluid in the form of ambient air is admitted, and a gas turbine 1313 which provides rotary drive to both the turbo-compressor 1312 and an electric generator 1314. Following its compression the first working fluid is heated in a heating system 1315 and is delivered to the turbine 1313 where it expends a major part of its acquired energy by expanding through and driving the turbine 1313.
[0101] In the power plant variation illustrated in FIG. 13, one or more receivers 1316 (as described herein, and which may be tower mounted or ground mounted) receives and absorbs concentrated solar radiation reflected by one or more fields of reflectors 1317, which may be for example any heliostats as described herein or otherwise known (e.g., fixed vertical axis two-axis heliostats or fixed horizontal axis two-axis heliostats). Only three reflectors 1317 are for convenience shown in FIG. 13 but, depending upon a desired power output capacity of the turbine 1313 - generator 1314 set, one or more reflector fields may normally comprise many hundreds of reflectors, e.g., heliostats. Although not so shown in FIG. 13, if the receiver 1316 is a tower-mounted receiver, the compressor 1312, turbine 1313 and first generator 1314 may also be mounted on the tower as a quasi-integrated assembly on the tower. Such an arrangement may avoid or reduce the need to transport very high temperature gas from the receiver 1316 to ground level where the first turbine 1313 and first generator 1314 might alternatively be located. Having expanded through the gas (first) turbine 13, in certain variations at least a portion of the first working fluid may be directed to a mediating thermal energy storage system 1318 where residual thermal energy contained in the first working fluid is released (by heat exchange) to a thermal energy storage medium within the thermal energy storage system 1318. Examples of mediating thermal energy storage units are described in U.S. Patent Application Serial No. , entitled "Combined Cycle Power
Plant" (Attorney Docket 62715-2000700), filed concurrently herewith, and U.S. Provisional Patent Application Serial No. 60/933,619, filed June 6, 2007, each of which has already been incorporated by reference herein in its entirety. Then, having expended all (or, at least, a majority) of its acquired energy, the first working fluid may be exhausted to the atmosphere as indicated by numeral 1319. Of course, if no mediating thermal energy storage unit is employed, the first working fluid may be exhausted immediately after turbine 1313.
[0102] The second system or cycle 1311 within the power plant 1300 comprises a second turbine 1320 (e.g., a steam turbine) through which a second working fluid is directed by way of a closed loop 1321. The second working fluid comprises condensed water, saturated vapour (wet steam) and superheated steam, depending upon its position within the loop 1321. Superheated steam is admitted to and expands through the turbine 1320 and the resultant expended energy is applied to drive a second electric generator 1322. Although not shown, the electrical output from the first generator 1314 and the second generator 1322 may each be delivered to an electricity supply grid.
[0103] Having expanded through the steam turbine 1320, residual steam/vapour is delivered to a condenser 1323 where sensible and latent heat is removed by a condenser coolant fluid that is recirculated through a condenser fluid coolant system 1324. The condenser may comprise any one of a number of different types of condensers, including shell-and-tube condensers and direct contact condensers, but in certain variations a condenser may comprise a direct contact condenser in which coolant fluid is contacted with the second working fluid. The condenser coolant fluid cooling system may embody evaporative cooling, forced air cooling, subterranean heat exchange, or any combination thereof.
[0104] In an alternative (not illustrated) embodiment, air cooled condensing may be employed for condensing the output vapour from the turbine 1320. In such case, and if the plant comprises a solar energy collector system such as that indicated by reflector field 1315, a plurality of air cooled condensers may be positioned within the reflector field 1315 and draw coolant air from a zone shaded by the reflectors 1317. Non-limiting examples of air cooled condensers that may be used in connection with the power plants disclosed herein are provided in U.S. Patent Application Serial No. , entitled "Convective/Radiative
Cooling Of Condenser Coolant" (Attorney Docket No. 62715-2000500), filed June 6, 2008, and U.S. Provisional Patent Application Serial No. 60/933,574, entitled "Convective/Radiative Cooling Of Condenser Coolant" (Attorney Docket No. 62715- 3000500), filed June 6, 2007, each of which is incorporated by reference herein in its entirety.
[0105] Still referring to FIG. 13, the second working fluid in its liquid phase may be delivered by a pump 1325 from the condenser 1323 to a heat exchanger (e.g., a heat exchanger within a thermal energy storage system 1318, if present, where thermal energy, e.g., residual thermal energy recovered from the first cycle 1311 which may or may not have been stored in a storage unit 1318, and/or thermal energy supplied by any type of energy source, is transferred by heat exchange to the second working fluid in an amount to generate superheated steam for delivery to the steam turbine 1320. Thus, the first cycle or system 1310 combines with the second cycle or system 1311 to provide at least a portion of the thermal energy required to power the second system. [0106] This disclosure is illustrative and not limiting. Further modifications will be apparent to one skilled in the art in light of this disclosure and such modifications are intended to fall within the scope of the appended claims. Each publication and patent application cited in the specification is incorporated herein by reference in its entirety as if each individual publication or patent application were specifically and individually put forth herein.

Claims

CLAIMSWhat is claimed is:
1. A receiver for use in a solar energy collector system, the receiver comprising: a core configured to absorb solar radiation directed through an aperture in the receiver, the core composed primarily of a refractory material; and one or more fluid passageways in the core for conveying a working fluid through and facilitating extraction of thermal energy from the core.
2. The receiver of claim 1, wherein the aperture is situated on a lower surface of the receiver and is substantially horizontally oriented.
3. The receiver of claim 1, wherein an incident surface of the core is substantially horizontal.
4. The receiver of claim 1, wherein an incident surface of the core is substantially vertical.
5. The receiver of claim 1, wherein a displacement between the aperture and the core is selected to determine an energy density of the solar radiation incident on the core.
6. The receiver of claim 1, wherein the refractory material comprises one that is substantially opaque to solar radiation and remains substantially stable when exposed to temperatures that are established with absorption of concentrated solar radiation.
7. The receiver of claim 1, wherein the refractory material is selected from the group consisting of alumina, silica, carbon, magnesia, zirconia, silicon carbide, titanium carbide, tantalum carbide, chromium carbide, niobium carbide, zirconium carbide, molybdenum disilicide, calcium oxide, graphite, chromite, dolomite, magnesite, quartzite, aluminium silicate, tungsten, molybdenum, niobium, tantalum, rhenium, beryllium, and combinations thereof.
8. The receiver of claim 1, comprising a cladding layer disposed on the core.
9. The receiver of claim 1, wherein the core comprises an aggregate, and the one or more fluid passageways are formed from interconnected interstitial spaces in the aggregate.
10. The receiver of claim 1, wherein at least one passageway is directly radially from an interior portion of the core to a peripheral portion of the core.
11. The receiver of claim 1 , wherein the core comprises one or more metal structures configured to distribute heat in the core or into a fluid such as air passing through the core.
12. A receiver for use in a solar energy collector system, the receiver mounted on a tower, and the receiver comprising: a horizontally oriented downward opening aperture; and a solar radiation absorbing core comprising a refractory material disposed above the aperture, so that solar radiation directed through the aperture is incident on the core to generate thermal energy in the core.
13. The receiver of claim 12, further comprising at least one passageway located within the core for conveying a working fluid through and facilitating extraction of thermal energy from the core.
14. The receiver of claim 12, wherein an incident surface of the core is substantially horizontal.
15. The receiver of claim 12 wherein a displacement between the aperture and an incident surface of the core is selected to determine an energy density of solar radiation on the core.
16. The receiver of claim 12, wherein the refractory material comprises one that is substantially opaque or absorbing to solar radiation and remains substantially stable when exposed to temperatures that are established with absorption of concentrated solar radiation.
17. The receiver of claim 12, wherein the refractory material is selected from the group consisting of alumina, silica, carbon, magnesia, zirconia, silicon carbide, titanium carbide, tantalum carbide, chromium carbide, niobium carbide, zirconium carbide, molybdenum disilicide, calcium oxide, graphite, chromite, dolomite, magnesite, quartzite, aluminium silicate, tungsten, molybdenum, niobium, tantalum, rhenium, beryllium, and combinations thereof.
18. The receiver of claim 12, comprising a cladding layer disposed on the core.
19. The receiver of claim 13, wherein the core comprises an aggregate, and the one or more fluid passageways comprise interconnected interstitial spaces in the aggregate.
20. The receiver of claim 13, wherein at least one passageway is directly radially from an interior portion of the core to a peripheral portion of the core.
21. The receiver of claim 13, wherein the core comprises one or more metal structures configured to distribute heat in the core.
22. A method of effecting energy exchange, the method comprising: directing concentrated solar radiation through an aperture in a receiver to be incident on a receiver core, the core composed primarily of a refractory material and being capable of absorbing solar radiation; and transferring thermal energy contained in the core to a working fluid by passing the working fluid through one or more passageways in and/or around the core of the receiver.
23. The method of claim 22, comprising directing concentrated solar radiation through a substantially horizontally oriented downward opening aperture situated in a lower portion of the receiver, the receiver mounted on a tower.
24. The method of claim 22, comprising directing concentrated solar radiation through the aperture so that a point of highest energy density of the concentrated radiation occurs substantially at or before the aperture.
25. The method of claim 22, comprising adjusting a displacement between the aperture and an incident surface of the core to determine an energy density of the solar radiation on the core.
26. The method of claim 22, comprising employing one or more heliostats to direct concentrated solar radiation through the aperture.
27. The method of claim 22, comprising flowing the working fluid through one or more passageways that are directed radially outward from an interior region of the core to a peripheral region of the core.
28. The method of claim 22, wherein the core comprises an aggregate, the method comprising flowing the working fluid through one or more passageways comprising interstitial spaces between particles of the aggregate.
29. The method of claim 22, comprising adjusting a cross-sectional dimension of the aperture and a displacement of the target to increase collection efficiency in the receiver.
30. A method of effecting energy exchange, the method comprising: directing concentrated solar radiation into an apertured cavity within a body of a receiver from reflectors within a field of the reflectors, the body having at least a major part of its volume composed of a refractory material in which thermal energy is generated by bulk absorption of radiative energy and having at least one passageway located therein, and transferring the thermal energy to a working fluid by passing the working fluid through the at least one passageway.
31. A solar energy collector system comprising: one or more heliostats; a receiver comprising an aperture and a core composed primarily of a refractory material; a pipe manifold containing a first working fluid, wherein at least one of the heliostats directs solar radiation to the aperture receiver, and the pipe manifold conveys the first working fluid that has extracted stored thermal energy from the core for use in generating electrical energy.
32. The solar energy collector system of claim 31 , wherein the receiver is ground mounted, and the array further comprises an elevated reflector configured to redirect reflected solar radiation from the heliostats to the ground-mounted receiver.
33. The solar energy collector system of claim 31, wherein the receiver is one of two or more spaced apart receivers, and wherein at least of one heliostats is configured to pivot so as to direct incident solar radiation to either of the two receivers.
34. The solar energy collector system of claim 31, comprising a heat exchanger, the heat exchanger configured to transfer thermal energy contained in the first working fluid to a second working fluid.
35. An electrical energy generating system comprising: a first compressor configured to compress a working fluid; a first heating stage configured to heat the compressed working fluid; and a first turbine configured to expand the compressed, heated working fluid to drive an electrical generator, wherein the first heating stage comprises a solar energy receiver, the receiver comprising: an aperture through which concentrated solar radiation is directed; a core comprising a solar radiation absorbing refractory material, and wherein the working fluid extracts thermal energy that has been generated and stored in the core via absorption of incident solar radiation by the core.
36. The electrical energy generating plant of claim 35, combined with a heat engine employing a second thermodynamic cycle, wherein the heat engine utilizes waste thermal energy remaining in the first working fluid following expansion in the first turbine to heat a second working fluid.
37. The electrical energy generating plant of claim 36, wherein the heat engine employs a Rankine cycle.
38. A receiver for use in a solar energy collector system, the receiver comprising: a body having at least a major part of its volume composed of a refractory material; a cavity provided within the body and having an aperture through which concentrated solar radiation is in used focused to impinge on a wall of the cavity; and at least one passageway located within the body for conveying a working fluid through and facilitating extraction of thermal energy from the body.
39. The receiver of claim 1, wherein an incident surface of the core is substantially inclined toward a field substantially positioned on one side of the tower.
40. The receiver of claim 1, wherein the refractory material is formed of a compound that absorbs the majority of solar radiation in the bulk medium of the receiver and remains substantially stable when exposed to temperatures that are established with absorption of concentrated solar radiation.
41. The receiver of claim 1, wherein the refractory material surface has features such as cavities or channels that absorb the majority of solar radiation and such that the receiver remains substantially stable when exposed to temperatures that are established by absorption of concentrated solar radiation.
42. The receiver of claim 12, wherein the aperture is offset from a center of the receiver to receive at least a majority of radiation from a field of reflectors positioned to a side of the receiver.
43. The receiver of claim 12, wherein the core is offset from a center of the receiver to receive at least a majority of radiation from a field of reflectors positioned to a side of the receiver.
44. A receiver for use in a solar energy collector system, the receiver mounted on a tower, and the receiver comprising (1) an aperture and (2) a solar radiation absorbing core comprising a refractory material disposed above the aperture, so that solar radiation directed through the aperture is incident on the core to generate thermal energy in the core, wherein the receiver is inclined and faces toward a solar field below in a manner that solar radiation is directed totally or partly from one side of the tower through the aperture and is incident on the core.
45. The method of claim 24, wherein the beam converges to its smallest size in the vicinity of the aperture, and wherein the core is positioned a sufficient distance from the aperture to reduce incident light intensity and maintain peak temperature on the core material below a temperature at which the core material remains substantially physically and chemically stable.
46. The method of claim 22 comprising approximately imaging a reflector field on a substantially planar surface of the core.
47. The method of claim 46 wherein the intensity across the image is substantially uniform.
48. The method of claim 45 where incident light forms an image of a reflector field forming the beam.
EP08768175A 2007-06-06 2008-06-06 Integrated solar energy receiver-storage unit Withdrawn EP2171367A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12168701A EP2492609A1 (en) 2007-06-06 2008-06-06 Integrated solar energy receiver-storage unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US93362007P 2007-06-06 2007-06-06
PCT/US2008/007098 WO2008153922A1 (en) 2007-06-06 2008-06-06 Integrated solar energy receiver-storage unit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP12168701A Division EP2492609A1 (en) 2007-06-06 2008-06-06 Integrated solar energy receiver-storage unit

Publications (1)

Publication Number Publication Date
EP2171367A1 true EP2171367A1 (en) 2010-04-07

Family

ID=39739562

Family Applications (2)

Application Number Title Priority Date Filing Date
EP12168701A Withdrawn EP2492609A1 (en) 2007-06-06 2008-06-06 Integrated solar energy receiver-storage unit
EP08768175A Withdrawn EP2171367A1 (en) 2007-06-06 2008-06-06 Integrated solar energy receiver-storage unit

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP12168701A Withdrawn EP2492609A1 (en) 2007-06-06 2008-06-06 Integrated solar energy receiver-storage unit

Country Status (5)

Country Link
EP (2) EP2492609A1 (en)
CN (1) CN101802511B (en)
AU (1) AU2008262380B2 (en)
WO (1) WO2008153922A1 (en)
ZA (1) ZA201000037B (en)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010034071A1 (en) 2008-09-25 2010-04-01 Solfast Pty Ltd Solar collector
WO2010085574A1 (en) * 2009-01-21 2010-07-29 Ausra, Inc. Thermal energy storage for superheat applications
EP2391854A4 (en) 2009-02-02 2017-01-04 Glasspoint Solar, Inc. Concentrating solar power with glasshouses
ES2345379B1 (en) * 2009-03-20 2011-09-16 Abengoa Solar New Technologies S.A. SOLAR PLANT COMBINED AIR AND STEAM TECHNOLOGY.
ES2350991B1 (en) 2009-06-03 2011-10-14 Abengoa Solar New Technologies S.A. SOLAR CONCENTRATION PLANT TOWER TECHNOLOGY WITH NATURAL SHOT.
ES2370552B1 (en) 2009-06-19 2013-02-15 Abengoa Solar New Technologies, S.A. NATURAL SHOT COOLING PROCEDURE OF A SOLAR CONCENTRATION PLANT.
JP2011007150A (en) * 2009-06-29 2011-01-13 Mitsubishi Heavy Ind Ltd Heat receiver
US8530990B2 (en) 2009-07-20 2013-09-10 Sunpower Corporation Optoelectronic device with heat spreader unit
IN2012DN02495A (en) 2009-09-18 2015-08-28 Massachusetts Inst Technology
US8304644B2 (en) 2009-11-20 2012-11-06 Sunpower Corporation Device and method for solar power generation
US8809671B2 (en) 2009-12-08 2014-08-19 Sunpower Corporation Optoelectronic device with bypass diode
ES2365286B1 (en) * 2010-03-16 2012-06-07 Abengoa Solar New Technologies S.A. ECONOMIZER IN SOLAR PLANT TOWER AND METHOD OF OPERATION OF SUCH PLANT.
US9911882B2 (en) 2010-06-24 2018-03-06 Sunpower Corporation Passive flow accelerator
US8604404B1 (en) 2010-07-01 2013-12-10 Sunpower Corporation Thermal tracking for solar systems
US8701773B2 (en) 2010-07-05 2014-04-22 Glasspoint Solar, Inc. Oilfield application of solar energy collection
WO2012006288A2 (en) 2010-07-05 2012-01-12 Glasspoint Solar, Inc. Subsurface thermal energy storage of heat generated by concentrating solar power
WO2012128877A2 (en) 2011-02-22 2012-09-27 Glasspoint Solar, Inc. Concentrating solar power with glasshouses
AU2011276377B2 (en) 2010-07-05 2016-05-19 Glasspoint Solar, Inc. Concentrating solar power with glasshouses
CN105927953B (en) 2010-07-05 2019-02-15 玻点太阳能有限公司 Solar energy directly generates steam
US8563849B2 (en) 2010-08-03 2013-10-22 Sunpower Corporation Diode and heat spreader for solar module
US8336539B2 (en) 2010-08-03 2012-12-25 Sunpower Corporation Opposing row linear concentrator architecture
US9897346B2 (en) 2010-08-03 2018-02-20 Sunpower Corporation Opposing row linear concentrator architecture
DE102010034986A1 (en) 2010-08-20 2012-02-23 Philipp Schramek Solar central receiver system with a heliostat field
CN113776203A (en) 2010-09-16 2021-12-10 威尔逊太阳能公司 Concentrator for solar receiver
US9246037B2 (en) 2010-12-03 2016-01-26 Sunpower Corporation Folded fin heat sink
US8839784B2 (en) 2010-12-22 2014-09-23 Sunpower Corporation Locating connectors and methods for mounting solar hardware
US8893713B2 (en) 2010-12-22 2014-11-25 Sunpower Corporation Locating connectors and methods for mounting solar hardware
US9038421B2 (en) 2011-07-01 2015-05-26 Sunpower Corporation Glass-bending apparatus and method
US8796535B2 (en) 2011-09-30 2014-08-05 Sunpower Corporation Thermal tracking for solar systems
JP2013113459A (en) 2011-11-25 2013-06-10 Mitsubishi Heavy Ind Ltd Solar heat receiver and solar heat power generation device
US9035168B2 (en) 2011-12-21 2015-05-19 Sunpower Corporation Support for solar energy collectors
US8528366B2 (en) 2011-12-22 2013-09-10 Sunpower Corporation Heat-regulating glass bending apparatus and method
AU2013235508B2 (en) 2012-03-21 2018-02-08 Wilson 247Solar, Inc. Multi-thermal storage unit systems, fluid flow control devices, and low pressure solar receivers for solar power systems, and related components and uses thereof
US9397611B2 (en) 2012-03-27 2016-07-19 Sunpower Corporation Photovoltaic systems with local maximum power point tracking prevention and methods for operating same
US9784474B2 (en) 2012-04-26 2017-10-10 Stellenbosch University Solar power tower receiver
WO2014026703A1 (en) 2012-08-17 2014-02-20 Solar Tower Technologies Ag A solar receiver with a heliostat field
US8636198B1 (en) 2012-09-28 2014-01-28 Sunpower Corporation Methods and structures for forming and improving solder joint thickness and planarity control features for solar cells
GB201220230D0 (en) * 2012-11-09 2012-12-26 Carding Spec Canada Heat storage apparatus
US9874359B2 (en) 2013-01-07 2018-01-23 Glasspoint Solar, Inc. Systems and methods for selectively producing steam from solar collectors and heaters
US9200799B2 (en) 2013-01-07 2015-12-01 Glasspoint Solar, Inc. Systems and methods for selectively producing steam from solar collectors and heaters for processes including enhanced oil recovery
CN103344048B (en) * 2013-07-18 2015-02-11 北京航空航天大学 Narrowing tube bundle structural-cavity solar receiver
DE102014005530B3 (en) 2014-04-16 2015-08-06 Solar Tower Technologies Ag Receiver arrangement of a tower solar power plant
CN106461270B (en) 2014-05-13 2019-07-26 麻省理工学院 For concentrating the parabolic cylinder slot of the low cost of solar power generation
CN107003033A (en) 2014-10-23 2017-08-01 玻点太阳能有限公司 The regenerative apparatus and the system and method for correlation occurred for solar steam
WO2016064927A1 (en) 2014-10-23 2016-04-28 Glasspoint Solar, Inc. Gas purification using solar energy, and associated systems and methods
US20160290680A1 (en) * 2015-03-30 2016-10-06 Stellar Generation, Inc. Ultra High Temperature Solar-Driven Gas Heating System
CN107667263B (en) * 2015-04-01 2020-11-17 G·A·蒂博特 Solar energy collection system and method thereof
WO2017004222A1 (en) 2015-06-30 2017-01-05 Glasspoint Solar, Inc. Phase change materials for cooling enclosed electronic components, including for solar energy collection, and associated systems and methods
ITUB20152907A1 (en) * 2015-08-05 2017-02-05 Magaldi Ind Srl HIGH LEVEL DEVICE, PLANT AND METHOD OF ENERGY EFFICIENCY FOR THE USE OF THERMAL SOLAR ENERGY
EP3329086A1 (en) 2015-09-01 2018-06-06 Glasspoint Solar, Inc. Variable rate steam injection, including via solar power for enhanced oil recovery, and associated systems and methods
CN105483632B (en) * 2015-12-24 2017-12-12 中国科学院兰州化学物理研究所 High temperature solar energy selective absorption coating with double ceramic structures and preparation method thereof
CN108603656A (en) 2016-02-01 2018-09-28 玻点太阳能有限公司 Separator and mixer for the steam for the solar energy generation quality controlled for long distance delivery for improving oil recovery and relevant system and method
TW201839259A (en) * 2017-02-01 2018-11-01 義大利商馬加帝電力公司 High energy-efficient device, system and method for the use of thermal energy of solar origin

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5128115A (en) * 1991-04-08 1992-07-07 The United States Of America As Represented By The United States Department Of Energy Manufacture of silicon carbide using solar energy
US5994681A (en) * 1994-03-16 1999-11-30 Larkden Pty. Limited Apparatus for eddy current heating a body of graphite
US6065284A (en) * 1997-07-25 2000-05-23 General Atomics Refractory heat transfer module
US20040163697A1 (en) * 2001-04-12 2004-08-26 Alexandros Papadopoulos Triple hybrid solar concentrated type system for the simultaneous production of electrical, thermal and cooling energy

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2793018A (en) * 1952-07-24 1957-05-21 Centre Nat Rech Scient Furnace for the treatment of substances by means of the energy supplied by a concentrated radiation
US4676068A (en) * 1972-05-12 1987-06-30 Funk Harald F System for solar energy collection and recovery
US4263895A (en) * 1977-10-17 1981-04-28 Sanders Associates, Inc. Solar energy receiver
US4312324A (en) * 1978-08-09 1982-01-26 Sanders Associates, Inc. Wind loss prevention for open cavity solar receivers
DE3010882A1 (en) * 1980-03-21 1981-10-01 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München RADIATION RECEIVER
US4394859A (en) * 1981-10-27 1983-07-26 The United States Of America As Represented By The United States Department Of Energy Central solar energy receiver
AU3817885A (en) * 1984-02-02 1985-08-08 Babcock & Wilcox Co., The Solar receiver and absorber panel
US4815443A (en) 1986-09-10 1989-03-28 Rockwell International Corporation Solar energy focusing assembly and storage unit
AUPN201395A0 (en) 1995-03-28 1995-04-27 University Of Sydney, The Solar energy collector system
DE19740644C2 (en) * 1997-09-16 2001-05-17 Deutsch Zentr Luft & Raumfahrt Solar receiver with at least one porous absorber body made of ceramic material
CN2416441Y (en) * 2000-02-01 2001-01-24 张耀明 Automatic tracking solar heat collector
US6594984B1 (en) * 2002-01-15 2003-07-22 The Boeing Company Combined thrust and power generator for a satellite
DK1730460T3 (en) 2004-03-12 2020-11-23 Graphite Energy Assets Pty Ltd Method and apparatus for storing heat energy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5128115A (en) * 1991-04-08 1992-07-07 The United States Of America As Represented By The United States Department Of Energy Manufacture of silicon carbide using solar energy
US5994681A (en) * 1994-03-16 1999-11-30 Larkden Pty. Limited Apparatus for eddy current heating a body of graphite
US6065284A (en) * 1997-07-25 2000-05-23 General Atomics Refractory heat transfer module
US20040163697A1 (en) * 2001-04-12 2004-08-26 Alexandros Papadopoulos Triple hybrid solar concentrated type system for the simultaneous production of electrical, thermal and cooling energy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2008153922A1 *

Also Published As

Publication number Publication date
AU2008262380A1 (en) 2008-12-18
WO2008153922A1 (en) 2008-12-18
AU2008262380B2 (en) 2014-06-12
ZA201000037B (en) 2011-05-25
CN101802511B (en) 2013-10-09
CN101802511A (en) 2010-08-11
EP2492609A1 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
AU2008262380B2 (en) Integrated solar energy receiver-storage unit
US8378280B2 (en) Integrated solar energy receiver-storage unit
EP2326886B1 (en) Solar collector
US8739512B2 (en) Combined cycle power plant
EP0229373B1 (en) System for solar energy collection and recovery
US20120111006A1 (en) Solar energy transfer and storage apparatus
EP2278249A1 (en) Heat storage system
US20150292771A1 (en) Heat storage apparatus
WO2011096339A1 (en) Solar heat receiver
JP2016217223A (en) Solar thermal gas turbine power generation system
US11085424B2 (en) Solar power collection system and methods thereof
WO2015033249A1 (en) Solar energy transfer and storage apparatus
WO2009147651A2 (en) A solar energy generator
WO2001096791A1 (en) High temperature solar radiation heat converter
Terpstra et al. Application of Heat Pipes, Heat Pipe Equipped Heat Exchangers
WO2012066314A1 (en) Energy transfer and storage apparatus
WO2017035043A1 (en) Solar receiver using heat pipes and granular thermal storage medium
KR20150021939A (en) Absorber arrangement for a trough collector

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100105

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17Q First examination report despatched

Effective date: 20100512

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AREVA SOLAR, INC

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: LE LIEVRE, PETER, K.

Inventor name: MILLS, DAVID, R.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140624

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20141105