EP2165790A1 - Procédé de fabrication d'un élément d'un materiau composite et élément d'un materiau composite - Google Patents

Procédé de fabrication d'un élément d'un materiau composite et élément d'un materiau composite Download PDF

Info

Publication number
EP2165790A1
EP2165790A1 EP09168127A EP09168127A EP2165790A1 EP 2165790 A1 EP2165790 A1 EP 2165790A1 EP 09168127 A EP09168127 A EP 09168127A EP 09168127 A EP09168127 A EP 09168127A EP 2165790 A1 EP2165790 A1 EP 2165790A1
Authority
EP
European Patent Office
Prior art keywords
output
sintering
output part
connection
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09168127A
Other languages
German (de)
English (en)
Inventor
Jochen Rager
Arne Huber
Antje Winkelmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2165790A1 publication Critical patent/EP2165790A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts

Definitions

  • the invention relates to a method for producing a component from a composite material and in particular a manufactured by this method component from a composite material.
  • Composites offer the possibility to combine the advantages of different material groups and in this way to obtain components with outstanding properties compared to the base materials.
  • a hard, highly wear-resistant material hard metal, cermet, ceramic
  • a steel body of high toughness and ductility of high toughness and ductility.
  • Screw connections are only suitable for quite large components and also here the corresponding production cost for the production of the holes and threads is very high. Further disadvantages arise from stress concentrations on the screw connections, which can lead to failure long before the actual load capacity of the individual materials is reached. Furthermore, screw connections can become loose due to vibrations or cyclical loading.
  • EP 630713 A1 and EP 810051 A1 describes methods for diffusion brazing of steel and carbide components using various high temperature solders in powder or paste form.
  • a disadvantage here proves to be the low strength of the solder joint compared to the base materials, partially by additional Force or positive connection must be compensated.
  • a compensation of mechanical stresses due to temperature changes is limited.
  • a steel-cemented carbide composite roll is proposed for cold strip rolling of metal sheets.
  • a composite body with high thermal shock resistance is realized by means of vacuum sintering or hot isostatic pressing.
  • a thin cermet intermediate layer is applied between the steel core and the hard-metal outer layer. This then forms a metallurgical connection between the steel core and the hard metal under the influence of temperature.
  • the invention is based on the object to propose a method with which components of different materials, in particular steel and hard metal components, without the use of other tools, such as brazing materials, interlayers or mechanical fasteners, are interconnected.
  • a component made of a composite material in particular the composite of a hard, highly wear-resistant material and a material with high toughness and ductility.
  • the method according to the invention therefore provides a first starting part made of a porous sintered material.
  • the first output part is present as a partially compacted sintered component, green part or brown part. It is therefore not or not completely compressed, for example by a sintering process.
  • the method according to the invention provides at least one second output part, which is introduced at least partially into a cavity of the first output part, preferably as a clearance fit. This is followed by a sintering process, in which the output parts are compressed under the influence of temperature.
  • a connection between the starting parts is generated in at least partially filled by the second output part cavity.
  • This compound forms due to chemical compounds, in particular of atomic bonds, between the materials of the starting parts in the form of a material bond.
  • the material bond can be found at the points where both starting parts are in contact with each other.
  • a contact formation of both output parts to one another during the sintering process is ensured by the expected sintering shrinkage of at least the first starting part.
  • a sintering shrinkage whereby a possibly present before the sintering clearance of the two output parts is bridged.
  • the sintering process reduces the porosity and the volume of at least the first starting part.
  • the second output part to at least partially filled by him cavity of the first output part prefers a theoretical excess. This excess is compensated by material transport during the sintering process, which further favors a uniform and complete production of the compound of both starting parts.
  • a further advantage is that a compression of the material of at least the first output part as well as the generation of the compound in a process step take place.
  • the present invention makes it possible to combine the two process steps of compaction and joining of steel-cemented carbide composites. This contributes greatly to a reduction in unit costs.
  • all Augangswel the same sintering temperature exposed in contrast to a conventional shrinking of a heated part to a non-heated part according to the invention all Augangswel the same sintering temperature exposed. As a result, no thermal shock-induced material failure of the output parts at the point of connection is to be expected in an advantageous manner.
  • connection is additionally formed in the form of a press fit.
  • the press fit arises in particular during cooling after the sintering process due to different thermal expansion coefficients of the materials of the output parts.
  • the first output part should have a greater coefficient of expansion than the other output parts.
  • a composite material produced by this method has a high mechanical stability of the connection even at high temperatures.
  • Such composite materials can be used in a variety of applications as materials for components used there.
  • These components of a composite material can be used for various wear parts in which a material connection with a steel component or a component made of another material is advantageous (for example, drilling and cutting tools, rollers, pump parts).
  • Also conceivable is the use in highly loaded assemblies from the automotive sector (for example, injection technology, exhaust gas turbocharger, rolling bearing, gearbox).
  • Fig. 1 shows schematically a steel-carbide composite before sintering according to the inventive method.
  • 10 denotes a first output part.
  • the output part 10 is made of a sintered material, preferably a porous sintered material.
  • the sintered material is at least partially in an uncompacted state, preferably in a non-compacted state before. This means that the first output part 10 has not yet undergone any or no complete sintering treatment by a temperature treatment.
  • non-compacted sintered components are also referred to as green parts (with organic binders) or brown parts (in the binder-free state).
  • the first output part 10 is in Fig. 1 designed as a hollow cylinder. In general, any part shape is possible for the first output part 10, wherein this part has at least one cavity 15. Such a cavity 15 is in in Fig.1 shown first output part 10, the inner bore with an inner surface 11 of the hollow cylinder. In the cavity 15 of the first output part 10, a second output part 20 is at least partially introduced. Preferably, the outer contour of the second output part 20 is formed complementary to the inner contour of the cavity 15. So that is in the Fig. 1 illustrated second output member 20 formed within the cavity 15 as a cylinder having an outer surface 21. In this case, a cavity 15 is possible in which the second output part 20 is surrounded on all sides by the first output part 10.
  • Fig. 1 provides within the cavity 15 before a clearance between the first and the second output part 10, 20 before.
  • a gap 16 is then present between the inner surface 11 of the first output part 10 and the outer surface 21 of the second output part 20.
  • the output parts 10 and 20 are then subjected to a sintering process.
  • the first output part 10 shrinks and consequently loses volume.
  • the sintered material of the first starting part 10 thus undergoes compression. It is provided that the sintering shrinkage of the first output part 10 is so large that the gap 16 between the inner surface 11 and the outer surface 21 is closed. Due to the sintering shrinkage, a contact of both output parts 10 and 20 is to be ensured.
  • Fig. 2 is made of steel-carbide composite Fig. 1 after sintering, shown as a composite part 50. Due to the sintering shrinkage, in particular of the first output part 10, at least partially the inner surface 11 of the first output part 10 and the outer surface 21 of the second output member 20 in contact with each other.
  • connection 30 has been produced in the form of a press fit. Characterized in that the first output member 10 is selected with a larger coefficient of thermal expansion than that of the second output member 20, when cooling after the sintering process is a greater shrinkage of the first output member 10 in comparison to at least the second output member 20 before.
  • the inner surface 11 and the outer surface 21 nestle well even in the presence of minor bumps together, creating a complete and uniform contact of the output parts 10 and 20 is ensured at the connection 30.
  • a particularly uniform contact occurs at a roughness of the surfaces of the starting parts of Rz ⁇ 100 microns.
  • a transition fit or only a pointwise contact of the output parts 10 and 20 can be provided to each other.
  • connection 30 of both output parts 10 and 20 in particular by the formation of the excess of the second output part 20 during the sintering process, should largely be generated only at the end of the sintering process.
  • One possibility is to adapt the clearance of both output parts 10 and 20 to the expected sintering shrinkage of the output parts 10, 20 by the sintering process.
  • the sintering process is preferably carried out without pressure.
  • this invention realizes a very stable connection between the output parts in a very cost-effective manner.
  • other sintering methods such as pressure sintering, vacuum sintering, hot isostatic pressing and field-assisted sintering, can also be used.
  • pressure-assisted additionally a greater compression of the sintered materials and a better surface quality of the composite part 50 can be achieved in total. In principle, however, this involves a higher production cost.
  • An embodiment of the method according to the invention provides for the second output part 20 an already compacted, at least partially compressed state of a sintered material or a ceramic or a melt-metallurgically produced material, in particular a metal.
  • the second output part 20 is made of a sintered material as a green part or brown part.
  • the composite part 50 is formed from a steel and a hard metal as materials of the output parts 10 and 20.
  • sintered materials for the first and / or the second output part 10 and 20 in particular WC hard metals with Fe, Ni or Co binder metal (about 6-20 wt .-%) are proposed, said additional carbides based on Ti, Ta , V, or Nb.
  • sintered steels are used.
  • cermet or melt metallurgically produced materials are proposed alternatively.
  • the production of the output parts 10, 20 from a sintered material is preferably carried out by a powder technology process, for example by means of powder injection molding.
  • a powder technology process for example by means of powder injection molding.
  • complex and near-net shape components can be produced in large quantities via this method.
  • the shrinkage ratio of the two output parts 10, 20 can be adjusted to each other.
  • the second output part 20 can have a boundary layer with a higher binder metal content (> 20 wt. ) contain.
  • Possibilities for this are the use of a two-component material or a coating. As a result, an adaptation of the thermal expansion coefficients of the output parts 10, 20 to each other can be optimized. Other powder technology processes, such as extrusion or uniaxial or isostatic pressing, can also be used for producing the starting parts 10, 20 from a sintered material.
  • the method according to the invention provides that, in order to reduce residual stresses in the composite part 50 after the sintering process, several isothermal holding stages are run through during a cooling process.
  • Such residual stresses can arise during the cooling process with large differences in the thermal expansion coefficients of the output parts 10, 20.
  • steel has a thermal expansion coefficient of about 11-12 * 10 -6 / K and carbide a coefficient of thermal expansion of about 5-6 * 10 -6 / K.
  • the radial shrinkage of the output member 10 made of steel this leads to compressive stresses within the second made of hard metal output member 20. In the first place, these compressive stresses are unproblematic or even favorable due to the high compressive strength of the carbides.
  • axial stresses also occur, which can then lead to the failure of the carbide.
  • Several isothermal holding periods during the cooling process have a correspondingly favorable effect on a reduction of the residual stresses.
EP09168127A 2008-09-12 2009-08-19 Procédé de fabrication d'un élément d'un materiau composite et élément d'un materiau composite Withdrawn EP2165790A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200810042065 DE102008042065A1 (de) 2008-09-12 2008-09-12 Verfahren zur Herstellung eines Bauteiles aus einem Werkstoffverbund und Bauteil aus einem Werkstoffverbund

Publications (1)

Publication Number Publication Date
EP2165790A1 true EP2165790A1 (fr) 2010-03-24

Family

ID=41134527

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09168127A Withdrawn EP2165790A1 (fr) 2008-09-12 2009-08-19 Procédé de fabrication d'un élément d'un materiau composite et élément d'un materiau composite

Country Status (3)

Country Link
EP (1) EP2165790A1 (fr)
CN (1) CN101670439A (fr)
DE (1) DE102008042065A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014018235A3 (fr) * 2012-07-26 2014-03-20 TDY Industries, LLC Articles de métal pulvérulent fritté composite
DE102012017040A1 (de) * 2012-08-29 2014-03-27 Gkn Sinter Metals Holding Gmbh Verfahren zur Herstellung eines Verbundbauteils sowie ein Verbundbauteil
US8778259B2 (en) 2011-05-25 2014-07-15 Gerhard B. Beckmann Self-renewing cutting surface, tool and method for making same using powder metallurgy and densification techniques
US8790439B2 (en) 2008-06-02 2014-07-29 Kennametal Inc. Composite sintered powder metal articles
AT16369U1 (de) * 2018-03-12 2019-07-15 Ceratizit Austria Gmbh Verfahren zur Herstellung eines sintergefügten Verbundkörpers
US11105369B2 (en) 2015-03-06 2021-08-31 Gkn Sinter Metals, Llc Method of producing composite component having brass or bronze using sinter fit
SE2130173A1 (en) * 2021-06-22 2022-12-23 Sandvik Machining Solutions Ab Method for manufacturing an article comprising cemented carbide and an inserted object

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010014303A1 (de) * 2010-04-09 2011-10-13 Kennametal Inc. Verbundbauteil und Verfahren zu seiner Herstellung
DE102010061958A1 (de) 2010-11-25 2012-05-31 Rolls-Royce Deutschland Ltd & Co Kg Verfahren zur Herstellung von Triebwerksbauteilen mit geometrisch komplexer Struktur
CN102389962B (zh) * 2011-11-22 2014-12-24 北京科技大学 一种制备硬质合金/钢层合复合材料的颗粒熔浸铸造工艺
DE102011089260A1 (de) 2011-12-20 2013-06-20 Rolls-Royce Deutschland Ltd & Co Kg Verfahren zur Herstellung eines Bauteils durch Metallpulverspritzgießen
WO2014019588A1 (fr) * 2012-07-31 2014-02-06 Flsmidth A/S Procédé de production d'un élément résistant à l'usure
DE102013004807B4 (de) * 2013-03-15 2018-12-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von gesinterten Bauteilen
CN103978220A (zh) * 2014-05-29 2014-08-13 哈尔滨工具厂 复合成份粉末冶金高速钢及制备方法
CN105935775A (zh) * 2015-03-06 2016-09-14 Gkn烧结金属有限公司 采用烧结配合生产具有黄铜或青铜的复合组件的方法
DE102015213994A1 (de) * 2015-07-24 2017-01-26 Robert Bosch Gmbh Beschichtetes Formteil und Verfahren zur Herstellung eines beschichteten Formteils
CN108526471B (zh) * 2018-06-11 2023-05-05 陕西华夏粉末冶金有限责任公司 一种铁基粉末冶金摩擦轮的制备方法
EP3629453A1 (fr) * 2018-09-27 2020-04-01 Siemens Aktiengesellschaft Procédé de frittage permettant le frittage d'un outil de frittage à composants multiples, machine électrique et véhicule électrique
DE102018219191A1 (de) 2018-11-09 2020-05-28 Volkswagen Aktiengesellschaft Verfahren zum Herstellen eines Werkstoffverbundbauteils aus zumindest zwei Bauteilkomponenten sowie Werkstoffverbundbauteil aus zumindest zwei Bauteilkomponenten
CN109604609A (zh) * 2018-11-20 2019-04-12 广州市光铭金属制品有限责任公司 一种双联齿轮产品用组装烧结工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3208282A1 (de) * 1981-03-10 1982-10-21 Iscar Ltd., Nahariya Verfahren zum verbinden von sinter-hartmetall-koerpern und danach hergestellte hartmetall-verbund-erzeugnisse
GB2153850A (en) * 1984-02-07 1985-08-29 Nippon Piston Ring Co Ltd Method of manufacturing a camshaft
DE3736562A1 (de) * 1986-11-12 1988-05-26 Sumitomo Electric Industries Legierungswerkzeug aus hartmetall
EP0630713A1 (fr) 1993-06-25 1994-12-28 Saar-Hartmetall Und Werkzeuge Gmbh Corps composite fabriqué à partir de matériaux à propriétés thermiques et mécaniques différentes
EP0810051A1 (fr) 1996-05-31 1997-12-03 Peter Märzheuser Elément de liaison ainsi que sa fabrication
DE19944522A1 (de) * 1998-09-16 2000-03-30 Hitachi Powdered Metals Herstellungsverfahren für ein gesintertes Kompositmaschinenbauteil mit einem inneren Teil und einem äußeren Teil
DE10104632C2 (de) 2000-02-16 2002-12-12 Joerg Killguss Verfahren zum Verbinden zweier Metalle, insbesondere zum Befestigen von einem Körper aus Hartmetall an einem metallischen Grundkörper
EP1625896A1 (fr) 2004-08-12 2006-02-15 Hitachi Metals, Ltd. Cylindre composite de carbure cémenté pour le laminage d'une bande métallique

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3208282A1 (de) * 1981-03-10 1982-10-21 Iscar Ltd., Nahariya Verfahren zum verbinden von sinter-hartmetall-koerpern und danach hergestellte hartmetall-verbund-erzeugnisse
GB2153850A (en) * 1984-02-07 1985-08-29 Nippon Piston Ring Co Ltd Method of manufacturing a camshaft
DE3736562A1 (de) * 1986-11-12 1988-05-26 Sumitomo Electric Industries Legierungswerkzeug aus hartmetall
EP0630713A1 (fr) 1993-06-25 1994-12-28 Saar-Hartmetall Und Werkzeuge Gmbh Corps composite fabriqué à partir de matériaux à propriétés thermiques et mécaniques différentes
EP0810051A1 (fr) 1996-05-31 1997-12-03 Peter Märzheuser Elément de liaison ainsi que sa fabrication
DE19944522A1 (de) * 1998-09-16 2000-03-30 Hitachi Powdered Metals Herstellungsverfahren für ein gesintertes Kompositmaschinenbauteil mit einem inneren Teil und einem äußeren Teil
DE10104632C2 (de) 2000-02-16 2002-12-12 Joerg Killguss Verfahren zum Verbinden zweier Metalle, insbesondere zum Befestigen von einem Körper aus Hartmetall an einem metallischen Grundkörper
EP1625896A1 (fr) 2004-08-12 2006-02-15 Hitachi Metals, Ltd. Cylindre composite de carbure cémenté pour le laminage d'une bande métallique

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8790439B2 (en) 2008-06-02 2014-07-29 Kennametal Inc. Composite sintered powder metal articles
US8778259B2 (en) 2011-05-25 2014-07-15 Gerhard B. Beckmann Self-renewing cutting surface, tool and method for making same using powder metallurgy and densification techniques
WO2014018235A3 (fr) * 2012-07-26 2014-03-20 TDY Industries, LLC Articles de métal pulvérulent fritté composite
CN104582876A (zh) * 2012-07-26 2015-04-29 钴碳化钨硬质合金公司 烧结粉末金属复合材料制品
DE102012017040A1 (de) * 2012-08-29 2014-03-27 Gkn Sinter Metals Holding Gmbh Verfahren zur Herstellung eines Verbundbauteils sowie ein Verbundbauteil
US11105369B2 (en) 2015-03-06 2021-08-31 Gkn Sinter Metals, Llc Method of producing composite component having brass or bronze using sinter fit
AT16369U1 (de) * 2018-03-12 2019-07-15 Ceratizit Austria Gmbh Verfahren zur Herstellung eines sintergefügten Verbundkörpers
WO2019173855A1 (fr) * 2018-03-12 2019-09-19 Ceratizit Austria Gesellschaft M.B.H. Procédé de fabrication d'un corps composite fritté
SE2130173A1 (en) * 2021-06-22 2022-12-23 Sandvik Machining Solutions Ab Method for manufacturing an article comprising cemented carbide and an inserted object
WO2022268845A1 (fr) * 2021-06-22 2022-12-29 Sandvik Machining Solutions Ab Procédé de fabrication d'un article comprenant du carbure cémenté et un objet inséré
SE545894C2 (en) * 2021-06-22 2024-03-05 Sandvik Machining Solutions Ab Method for manufacturing an article comprising cemented carbide and an inserted object

Also Published As

Publication number Publication date
DE102008042065A1 (de) 2010-03-25
CN101670439A (zh) 2010-03-17

Similar Documents

Publication Publication Date Title
EP2165790A1 (fr) Procédé de fabrication d'un élément d'un materiau composite et élément d'un materiau composite
EP1882109B1 (fr) Anneau de roulement destine en particulier a des roulements soumis a de fortes contraintes dans des reacteurs d'avions, et procede de realisation
DE2642757C2 (fr)
EP2870328B1 (fr) Siège de soupape rapporté à conductivité thermique élevée
DE19944522C2 (de) Herstellungsverfahren für ein gesintertes Kompositmaschinenbauteil mit einem inneren Teil und einem äußeren Teil
DE102006026005A1 (de) Kaltgepresste Sputtertargets
DE102016214742A1 (de) Verfahren zum Fügen von Werkstoffen und Werkstoffverbund
EP3150304A1 (fr) Procede de fabrication d'un siege de soupape
DE112015005533T5 (de) Verfahren zur Herstellung einer Sinterkomponente und Sinterkomponente
AT509868A4 (de) Bauelement mit reduzierter metallhaftung
DE19652223A1 (de) Formkörper aus einem Werkstoffverbund und Verfahren zu seiner Herstellung
DE19681350C2 (de) Sinter-Verbindungsverfahren und damit hergestelltes gesintertes Verbundelement
DE102009004881A1 (de) Ladeeinrichtung
DE2733925A1 (de) Verfahren zur herstellung eines gegenstandes mit einem im inneren eines zylindrischen elementes pressgeformten teil
AT505698B1 (de) Verfahren zur herstellung eines sinterhärtbaren sinterformteils
DE10130395A1 (de) Reibwerkstoff und Verfahren zu seiner Herstellung sowie Reibelement
DE102007010839B4 (de) Verfahren zur Herstellung eines Kolbens und Kolben mit einer ringförmigen Verstärkung bestehend aus mehreren Verstärkungssegmenten
DE102004042775B4 (de) Verfahren zur Herstellung komplexer hochfester Bauteile oder Werkzeuge und dessen Verwendung
DE10206728B4 (de) Hohlkolben und Verfahren zu dessen Herstellung durch Sintern
AT521546B1 (de) Verfahren zur Herstellung einer Verbindung zwischen zwei metallischen Bauteilen
DE10239093B4 (de) In einem Medium laufende Reibschicht
AT519625A1 (de) Lagerdeckel
EP0928654A1 (fr) Procédé de fabrication des pièces composites avec des matériaux liquides ou semi liquides
EP1753887B1 (fr) Composant moteur soumis a des contraintes elevees
EP3544807B1 (fr) Élément adaptateur, procédé de fabrication d'un élément adaptateur, et système d'assemblage muni d'un élément adaptateur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100925