EP2157284A1 - Gasturbinenanordnung mit nichtzylindrischer Innengehäusenabe und Verfahren zur Turbinenanströmung - Google Patents

Gasturbinenanordnung mit nichtzylindrischer Innengehäusenabe und Verfahren zur Turbinenanströmung Download PDF

Info

Publication number
EP2157284A1
EP2157284A1 EP08014872A EP08014872A EP2157284A1 EP 2157284 A1 EP2157284 A1 EP 2157284A1 EP 08014872 A EP08014872 A EP 08014872A EP 08014872 A EP08014872 A EP 08014872A EP 2157284 A1 EP2157284 A1 EP 2157284A1
Authority
EP
European Patent Office
Prior art keywords
inner housing
turbine
hub
combustion
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08014872A
Other languages
English (en)
French (fr)
Inventor
Andre Botzen
Karl Dr. Klein
Marco Link
Oliver Dr. Lüsebrink
Nicolas Savilius
Oliver Dr. Schneider
Marc Tertilt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP08014872A priority Critical patent/EP2157284A1/de
Priority to EP09807919.7A priority patent/EP2318664B1/de
Priority to PCT/EP2009/059126 priority patent/WO2010020487A1/de
Publication of EP2157284A1 publication Critical patent/EP2157284A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/023Transition ducts between combustor cans and first stage of the turbine in gas-turbine engines; their cooling or sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/40Flow geometry or direction
    • F05D2210/43Radial inlet and axial outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/80Repairing, retrofitting or upgrading methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/31Arrangement of components according to the direction of their main axis or their axis of rotation
    • F05D2250/313Arrangement of components according to the direction of their main axis or their axis of rotation the axes being perpendicular to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/33Arrangement of components symmetrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape

Definitions

  • the present invention relates to a gas turbine arrangement comprising at least one burner and a combustion chamber for combusting fuel, a mixing housing and an adjoining inner housing and a turbine arranged substantially in relation to the at least one burner, wherein the combustion exhaust gas resulting from the combustion of the fuel flows through the mixing housing in the inner housing, wherein the inner housing is configured such that the combustion exhaust gas is deflected in the inner housing in the direction of the turbine. Furthermore, the invention relates to a gas turbine and a method for Turbinenanströmung.
  • a gas turbine plant 1 essentially comprises one or more combustion chambers 3 with burners 13 (cf. FIG. 2 ), in which a fuel is burned, a turbine 5, which are supplied to the hot and pressurized combustion exhaust gases from the combustion chambers 3 and in which the exhaust work under cooling and relaxation work and so put the turbine 5 in rotation, and a compressor 7, which is coupled to the turbine 5 via a shaft 12 which is surrounded by a hub 17, and via which the air necessary for the combustion is sucked in and compressed to a higher pressure.
  • FIG. 1 shows such a gas turbine plant in a schematic view, wherein FIG1 shows a horizontal section through the plant.
  • the combustion gases 2 flow in a direction which is substantially perpendicular to a rotation axis A of the turbine 5.
  • a mixing housing 8 is arranged, which is adjoined on the turbine side by an inner housing 9 arranged in the interior of the gas turbine housing 2.
  • the inner housing 9 has the task to protect the surrounding components from heat and to redirect the exiting the mixing housing 8 hot exhaust gases in the direction of the turbine 5.
  • the gas in the inner housing 9 is deflected substantially by 90 ° degrees and then fed via a common annular space of the turbine. Due to the shape of the housing, there is no clear guidance of the two gas streams from the two silo separation chambers 3 to the turbine 5, that is to say the streams impinge on the hub 17 and are then distributed over the surrounding space to the turbine inlet. This results in an inhomogeneous flow of the turbine 5. This is to be expected with performance losses.
  • the first object is achieved by a gas turbine arrangement according to claim 1.
  • the object related to the gas turbine is solved by specifying a gas turbine according to claim 9.
  • the object related to the method is solved by claim 10.
  • the dependent claims contain advantageous embodiments of the invention.
  • a gas turbine arrangement comprises at least one burner and a combustion chamber for combusting fuel, a mixing housing and an adjoining inner housing with inner housing hub and a turbine arranged substantially perpendicular with respect to the at least one burner.
  • the combustion exhaust gas produced by the combustion of the fuel flows through the mixing housing into the inner housing, wherein the inner housing is designed such that the combustion exhaust gas is deflected in the inner housing by means of the inner housing hub in the direction of the turbine. This is essentially a 90 degree deflection. Since, due to the shape of the housing, no clear guidance of the gas flow to the turbine, there is an inhomogeneous flow.
  • the invention intervenes, and solves this long-standing problem by the réellegekorusenabe is non-cylindrical, whereby the turbine is better flowed.
  • the combustion exhaust gases are better deflected and substantially no longer bounce perpendicular to the inner housing hub. This makes it possible to feed the individual turbine blades according to their design.
  • the inner housing hub has at least one projection. Depending on the design of the combustion chamber and mixing housing, this projection is variable in terms of its length in the A-axis direction.
  • the hump is preferably symmetrical with respect to a B-axis. Impacted exhaust gas is now better diverted by the aerodynamic shape of the inner housing hub.
  • the at least one projection is attached by being attached to the inner housing hub. This can also weld partially to be at the hub. Already manufactured hubs can be retrofitted with it. Furthermore, it is also possible to manufacture the at least one projection firmly on the inner housing hub.
  • the at least one projection is designed as a hollow body or as a solid body.
  • At least two humps are present. This is particularly advantageous when the combustion chambers are so-called silo combustion chambers.
  • the at least two bosses are arranged opposite one another on the inner housing hub.
  • the exhaust gases are deflected symmetrically.
  • the at least two projections with the inner housing hub approximately the shape of a lemon. This results in a homogenization of the hot gas flows of the exhaust gas or the exhaust gas flow, whereby an improved turbine flow is achieved.
  • a gas turbine which comprises at least two essentially oppositely located burners and combustion chambers for combustion of fuel.
  • This can be especially known Silobrennschn.
  • the inner housing hub has at least two opposing humps. Due to this improved aerodynamic shape of the inner housing hub, the combustion exhaust gas is thus better diverted. Indeed, once the humps are located on the inner shell hub, the exhaust stream coming from the mixing shell is substantially diverted or split and deflected in its entirety. As a result, both a better deflection of the exhaust gas and an improved flow of the turbine is achieved.
  • a method for turbine flow which comprises a burner and a combustion chamber, in which fuel is combusted to combustion exhaust gases, and a mixing housing and an adjoining Inner housing for guiding the combustion exhaust gases to a turbine, which is arranged substantially perpendicular to the flow direction of the combustion gases in the combustion chamber, wherein in the inner housing by means of a mecanicgephaseusenabe the combustion exhaust gases are deflected towards the turbine, wherein by means of the application of at least one projection on the inner housing hub, the flow diversion of the Combustion exhaust gas flow is improved in the inner housing, so that a better Turbinenanströmung is achieved. Due to the aerodynamic shape of the hub and thus improved flow diversion in the inner housing Strömungsstauains be avoided in the inner housing and on the inner housing hub. This avoids the wear of these components due to oxidation and erosion.
  • the individual turbine blades are flown according to their design. This improves the performance of the turbine.
  • gas turbine plant 1 An example of gas turbine plant 1 is in the FIG. 1 shown in a highly schematic representation.
  • the gas turbine plant 1 comprises two silo combustion chambers 3, a turbine 5, a compressor 7, two mixing housings 8 and an inner housing 9.
  • the silo combustion chambers 3 serve to burn a fuel, the hot exhaust gases 2 under high pressure being supplied via the mixing housings 8 and the inner housing 9 of the turbine 5 are supplied to drive these.
  • the turbine 5 comprises stationary guide vanes 10 and rotor blades 11 fixedly connected to a shaft 12 rotatably mounted about an axis A.
  • the hot exhaust gas 2 expanding in the turbine 5 transmits impulse to the shaft 12 via the rotor blades 11, causing them to rotate becomes.
  • the shaft 12 can be roughly divided into three sections, namely a section carrying the rotor blades 11 of the turbine 5, a rotor blade of the compressor 7 (not shown) and a shaft section 16 arranged between these two sections, in which no rotor blades are arranged.
  • the shaft 12 and the attached blades 11 form the so-called. Turbine rotor.
  • the shaft 12 extends through the entire gas turbine plant (not fully shown) and drives the compressor 7 and a generator, not shown.
  • the compressor 7 serves to compress air, which is then fed to the silo combustion chambers 3 for combustion.
  • FIG. 2 shows a vertical section through the silo combustion chamber 3 with burners 13 a subsequent mixing housing 8 and an inner housing 9.
  • the combustion chamber 3 as the burner 13 are vertical and are located at the upper end of the figure shown.
  • the conical and curved mixing housing connects, that the combustion exhaust gases leads to the inner housing 9.
  • the shaft 12 is of a wave protection jacket 15 (see. FIG. 3 ), which itself is surrounded by an inner housing hub 17 of the inner housing 9.
  • FIG. 3 shows the inner housing with inner housing hub 17 (vertical section through the inner housing), in which the inner housing hub 17 of the inner housing 9 and a part of the wave protection jacket 15 can be seen.
  • a guide vane 10 of the turbine 5 can be seen, which is opposite to the turbine-side opening 19 of the inner housing 9.
  • the inner housing hub 17 and the shaft protection jacket 15 have substantially the shape of a hollow cylinder.
  • the inner housing 9 serves to deflect the hot exhaust flowing from the mixing housings 8 into the inner housing 9 on the one hand and to distribute it as evenly as possible around the entire circumference of the turbine runner on the other hand. Here, the deflection is done by about 90 ° degrees.
  • the gases are then fed to the turbine via a common annulus. Due to the shape of the mixing housing 8, there is no clear guidance of the two exhaust gas flows to the turbine, that is to say the flows impinge on the hub 17 at the level of a parting line (not shown) and then distribute themselves to the circulating space for turbine entry. This results in an inhomogeneous flow to the turbine, which is expected to result in performance losses.
  • FIG. 4 and FIG. 5 schematically show an inner housing 9 and the inner housing hub 170 according to the invention and the turbine inlet 20 of a gas turbine with Silobrennschn 3.
  • the exhaust gas flow from both mixing housings 8a, 8b a defined guide from the inlet to the inner housing 9 to the turbine entrance 20 experienced.
  • the inner housing hub 170 is provided with two bosses 23a, 23b in these embodiments.
  • the inner housing hub 170 thus essentially has the shape of a lemon.
  • the humps 23a, 23b are symmetrical to an axis of symmetry B.
  • Incoming exhaust gas streams 22a, 22b are now aerodynamically improved by these humps 23a, 23b deflected, so no longer bounce as in the inner housing hub 17 according to the prior art substantially perpendicular to the hub , This results in a homogenization of the hot gas flow in the inner housing, whereby the turbine is better flowed.
  • the turbine blades 10,11 can be flown according to their design. This results in improved performance values of the turbine 5.
  • flow accumulation points in the inner housing 9 and on the hub 170 are avoided. As a result, the wear of the individual components is avoided by erosion and oxidation.
  • the bosses 23a, 23b can be arranged directly opposite the inner housing inlet 25, which represents the transition from the mixed housing 8a, 8b and inner housing 9.
  • the incoming exhaust gas stream 22a, 22b is divided into two and the resulting streams are then distributed around the inner housing hub 170.
  • the humps are arranged offset to the inner housing inlet 25.
  • the incoming exhaust gas stream 22a (and 22b) is deflected substantially all around the inner housing hub 170.
  • these are gas turbines with two silo separation chambers 3.
  • the number of projections 23a, 23b and the size of the projections 23a, 23b can therefore vary depending on the type of gas turbine and design of the individual gas turbine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Es wird eine Gasturbinenanordnung offenbart, umfassend zumindest einem Brenner (13) und einer Brennkammer (3) zum Verbrennen von Brennstoff, einem Mischgehäuse (8a,b) sowie einem sich daran anschließenden Innengehäuse (9) mit Innengehäusenabe (170) und eine im wesentlichen in Bezug auf den zumindest einen Brenner (13) senkrecht angeordneten Turbine (5), wobei das durch das verbrennen des Brennstoffs entstehende Verbrennungsabgas durch das Mischgehäuse (8a,b) in das Innengehäuse (9) strömt, wobei das Innengehäuse (9) derart ausgestaltet ist, dass das Verbrennungsabgas im Innengehäuse (9) mittels der Innengehäusenabe (170) in Richtung Turbine (5) umgelenkt wird, wobei das die Innengehäusenabe (170) nichtzylindrisch ausgebildet ist. Weiterhin wird erfindungsgemäß eine Gasturbine und ein Verfahren zur verbesserten Turbinenanströmung offenbart.

Description

  • Die vorliegende Erfindung betrifft eine Gasturbinenanordnung umfassend zumindest einem Brenner und einer Brennkammer zum Verbrennen von Brennstoff, einem Mischgehäuse sowie einem sich daran anschließenden Innengehäuse und einer im Wesentlichen in Bezug auf den zumindest einen Brenner senkrecht angeordneten Turbine, wobei das durch das verbrennen des Brennstoffs entstehende Verbrennungsabgas durch das Mischgehäuse in das Innengehäuse strömt, wobei das Innengehäuse derart ausgestaltet ist, dass das Verbrennungsabgas im Innengehäuse in Richtung Turbine umgelenkt wird. Weiterhin betrifft die Erfindung eine Gasturbine und ein Verfahren zur Turbinenanströmung.
  • Eine Gasturbinenanlage 1 (vgl. FIG 1) umfasst im Wesentlichen eine oder mehrere Brennkammern 3 mit Brennern 13 (vgl. FIG 2), in denen ein Brennstoff verbrannt wird, eine Turbine 5, der die heißen und unter Druck stehenden Verbrennungsabgase aus den Brennkammern 3 zugeführt werden und in der die Abgase unter Abkühlung und Entspannung Arbeit leisten und so die Turbine 5 in Rotation versetzen, sowie einen Verdichter 7, der mit der Turbine 5 über eine Welle 12, welche von einer Nabe 17 umgeben ist, gekoppelt ist und über den die für die Verbrennung notwendige Luft eingesaugt und auf einen höheren Druck verdichtet wird.
  • Zum Führen der heißen Verbrennungsabgase kommen in Gasturbinenanlagen heißgasführenden Bauteile wie Mischgehäuse und Innengehäuse zum Einsatz. Dies trifft insbesondere für solche Gasturbinenanlagen zu, in denen so genannte Silobrennkammern 3 Verwendung finden, die in der Regel zu beiden Seiten der Turbine 5 angeordnet sind.
  • FIG 1 zeigt eine derartige Gasturbinenanlage in einer schematischen Ansicht, wobei FIG1 einen horizontalen Schnitt durch die Anlage zeigt.
  • Aus diesen Silobrennkammern 3 strömen die Verbrennungsabgase 2 in einer Richtung aus, die im Wesentlichen senkrecht zu einer Drehachse A der Turbine 5 verläuft. Zwischen dem Ausgang 18 der Silobrennkammern 3 und der Turbine 5 ist ein Mischgehäuse 8 angeordnet, dem sich turbinenseitig ein im Inneren des Gasturbinengehäuses 2 angeordnetes Innengehäuse 9 anschließt. Das Innengehäuse 9 hat die Aufgabe, die umgebenden Bauteile vor Hitze zu schützen und die aus dem Mischgehäuse 8 austretenden heißen Abgase in Richtung auf die Turbine 5 umzulenken. Beim Austritt aus dem Innengehäuse 9, das heißt beim Eintritt in die Turbine 5 der Gasturbinenanlage 1 strömen die Verbrennungsabgase dann im Wesentlichen parallel zur Rotationsachse A der Turbinenwelle 12.
  • Beim Zuführen des Gases zur Turbine 5 wird das Gas im Innengehäuse 9 im Wesentlichen um 90 ° Grad umgelenkt und anschließend über einen gemeinsamen Ringraum der Turbine zugeführt. Bedingt durch die Form des Gehäuses erfolgt keine eindeutige Führung der beiden Gasströme aus den beiden Silobrennkammern 3 auf die Turbine 5, das heißt die Ströme treffen auf die Nabe 17 und verteilen sich dann auf den umlaufenden Raum zum Turbineneintritt. Dadurch ergibt sich eine inhomogene Anströmung der Turbine 5. Daraus ist mit Performanceverlusten zu rechnen.
  • Gegenüber diesem Stand der Technik ist es eine Aufgabe der vorliegenden Erfindung, eine verbesserte Gasturbinenanordnung zur Verfügung zu stellen, welche eine verbesserte Turbinenanströmung gewährleistet. Eine weitere Aufgabe ist die Angabe einer solchen Gasturbine. Eine weitere Aufgabe ist die Angabe eines Verfahrens, welchem eine verbesserte Turbinenanströmung zugrunde liegt.
  • Die erste Aufgabe wird durch eine Gasturbinenanordnung nach Anspruch 1 gelöst. Die auf die Gasturbine bezogene Aufgabe wird durch die Angabe einer Gasturbine nach Anspruch 9 gelöst. Die auf das Verfahren bezogene Aufgabe wird durch Anspruch 10 gelöst. Die abhängigen Ansprüche enthalten vorteilhafte Ausgestaltungen der Erfindung.
  • Eine erfindungsgemäße Gasturbinenanordnung umfasst zumindest einen Brenner und eine Brennkammer zum Verbrennen von Brennstoff, ein Mischgehäuse sowie ein sich daran anschließendes Innengehäuse mit Innengehäusenabe und eine im wesentlichen in Bezug auf den zumindest einen Brenner senkrecht angeordneten Turbine. Dabei strömt das durch das verbrennen des Brennstoffs entstehende Verbrennungsabgas durch das Mischgehäuse in das Innengehäuse, wobei das Innengehäuse derart ausgestaltet ist, dass das Verbrennungsabgas im Innengehäuse mittels der Innengehäusenabe in Richtung Turbine umgelenkt wird. Dies ist im Wesentlichen eine Ablenkung um 90 °Grad. Da, bedingt durch die Form des Gehäuses, keine eindeutige Führung des Gasstroms auf die Turbine erfolgt, ergibt sich eine inhomogene Anströmung. Hier greift nun die Erfindung ein, und löst dieses lang bestehende Problem, indem die Innengehäusenabe nichtzylindrisch ausgebildet ist, wodurch die Turbine besser angeströmt wird. Dadurch werden die Verbrennungsabgase besser umgelenkt und prallen im Wesentlichen nicht länger senkrecht auf die Innengehäusenabe auf. Dies ermöglicht es, die einzelnen Turbinenschaufeln gemäß ihrer Auslegung anzuströmen.
  • In bevorzugter Ausgestaltung weist die Innengehäusenabe zumindest einen Buckel auf. Dieser Buckel ist je nach Brennkammer- und Mischgehäuseauslegung bzgl. seiner Länge in der A - Achsen Richtung variable auslegbar. Der Buckel ist vorzugsweise symmetrisch bezüglich einer B-Achse. Aufprallendes Abgas wird nun durch die aerodynamische Form der Innengehäusenabe besser umgeleitet.
  • Dabei ist der zumindest eine Buckel durch Aufstecken an der Innengehäusenabe befestigt. Dies kann auch teilweises anschweißen an die Nabe sein. Bereits gefertigte Naben können damit auch nachgerüstet werden. Weiterhin ist es auch möglich, den zumindest einen Buckel fest an der Innengehäusenabe mit zu fertigen. Bevorzugt ist der zumindest eine Buckel als ein Hohlkörper oder als ein Massivkörper ausgeführt.
  • In bevorzugte Ausgestaltung sind mindestens zwei Buckel vorhanden. Dies ist besonders dann vorteilhaft, wenn es sich bei den Brennkammern um sogenannte Silobrennkammern handelt. Bevorzugt sind die mindestens zwei Buckel sich gegenüberliegend an der Innengehäusenabe angeordnet. Dadurch werden die Abgase symmetrisch abgelenkt. In bevorzugte Ausgestaltung weisen die mindestens zwei Buckel mit der Innengehäusenabe näherungeweise die Form einer Zitrone auf. Daraus resultiert eine Vergleichmäßigung der Heißgasströme des Abgases bzw. der Abgasströmung, wodurch eine verbesserte Turbinenanströmung erzielt wird.
  • Erfindungsgemäß wird weiterhin eine Gasturbine offenbart, welche zumindest zwei sich im Wesentlichen gegenüberliegende Brenner und Brennkammern zur Verbrennung von Brennstoff, umfasst. Dies können vor allem bekannte Silobrennkammern sein. An diese schließen sich jeweils die Mischgehäuse a und b sowie ein Innengehäuse mit einer um eine Welle angeordneten Innengehäusenabe an. Die Innengehäusenabe weist mindestens zwei sich gegenüberliegende Buckel auf. Durch diese verbesserte aerodynamische Form der Innengehäusenabe wird das Verbrennungsabgas somit besser umgeleitet. Ja nach Anordnung der Buckel auf der Innengehäusenabe wird der vom Mischgehäuse kommende Abgasstrom im Wesentlichen in seiner Gesamtheit in eine Richtung umgelenkt oder geteilt und umgelenkt. Dadurch wird sowohl eine bessere Umlenkung des Abgases als auch eine verbesserte Anströmung der Turbine erzielt.
  • Erfindungsgemäß wird weiterhin ein Verfahren zur Turbinenanströmung offenbart, welches einen Brenner und eine Brennkammer, in welcher Brennstoff zu Verbrennungsabgasen verbrannt wird, umfasst, und ein Mischgehäuse sowie ein sich daran anschließendes Innengehäuse zum Führen der Verbrennungsabgase zu einer Turbine, die im wesentlichen senkrecht zur Strömungsrichtung der Verbrennungsabgase in der Brennkammer angeordnet ist, wobei im Innengehäuse mittels einer Innengehäusenabe die Verbrennungsabgase in Richtung Turbine abgelenkt werden, wobei mittels des Aufbringens mindestens eines Buckels an der Innengehäusenabe die Strömungsumleitung des Verbrennungsabgasstroms im Innengehäuse verbessert wird, so dass eine bessere Turbinenanströmung erzielt wird. Durch die aerodynamische Form der Nabe und der damit verbesserten Strömungsumleitung im Innengehäuse werden Strömungsstaupunkte im Innengehäuse und an der Innengehäusenabe vermieden. Dadurch wird der Verschleiß dieser Bauteile durch Oxidation und Erosion vermieden.
  • Bevorzugt werden die einzelnen Turbinenschaufeln gemäß ihrer Auslegung angeströmt. Dadurch verbessern sich die Performancewerte der Turbine.
  • Weitere Merkmale, Eigenschaften und Vorteile der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen unter Bezugnahme auf die beiliegenden Figuren.
  • FIG 1
    zeigt einen horizontalen Schnitt durch eine Gastur- binenanlage mit zwei Silobrennkammern in einer stark schematisierten Darstellung nach dem Stand der Tech- nik,
    FIG 2
    zeigt einen vertikalen Schnitt einer Silobrennkam- mer, dem Mischgehäuse und dem Innengehäuse nach dem Stand der Technik,
    FIG 3
    zeigt einen Ausschnitt eines Innengehäuses und zuge- höriger Innengehäusenabe nach dem Stand der Technik,
    FIG 4
    zeigt schematisch die erfindungsgemäße Innengehäuse- nabe mit zwei Buckeln,
    FIG 5
    zeigt schematisch ein weiteres Ausführungsbeispiel der erfindungsgemäßen Innengehäusenabe mit zwei Bu- ckeln.
  • Ein Beispiel für Gasturbinenanlage 1 ist in der Figur 1 in einer stark schematisierten Darstellung gezeigt. Die Gasturbinenanlage 1 umfasst zwei Silobrennkammern 3, eine Turbine 5, einen Verdichter 7, zwei Mischgehäuse 8 sowie ein Innengehäuse 9. Die Silobrennkammern 3 dienen zum Verbrennen eines Brennstoffes, wobei die heißen und unter hohem Druck stehenden Abgase 2 über die Mischgehäuse 8 und das Innengehäuse 9 der Turbine 5 zugeführt werden, um diese anzutreiben.
  • Die Turbine 5 umfasst stationäre Leitschaufeln 10 sowie mit einer um eine Achse A drehbar gelagerten Welle 12 fest verbundene Laufschaufeln 11. Durch das in der Turbine 5 expandierende heiße Abgas 2 wird Impuls über die Laufschaufeln 11 auf die Welle 12 übertragen, wodurch diese in Rotation versetzt wird.
  • Die Welle 12 kann grob in drei Abschnitte unterteilt werden, nämlich einen die Laufschaufeln 11 der Turbine 5 tragenden Abschnitt, einen Laufschaufeln des Verdichters 7 (nicht dargestellt) tragenden Abschnitt sowie einen zwischen diesen beiden Abschnitten angeordneten Wellenabschnitt 16, in dem keine Laufschaufeln angeordnet sind. Die Welle 12 und die daran angebrachten Laufschaufeln 11 bilden den sog. Turbinenläufer.
  • Die Welle 12 erstreckt sich durch die gesamte Gasturbinenanlage (nicht vollständig dargestellt) und treibt den Verdichter 7 sowie einen nicht dargestellten Generator an. Der Verdichter 7 dient dabei dazu, Luft zu verdichten, die anschließend den Silobrennkammern 3 für die Verbrennung zugeführt wird.
  • FIG 2 zeigt einen vertikalen Schnitt durch die Silobrennkammer 3 mit Brennern 13 einem sich anschließendem Mischgehäuse 8 und einem Innengehäuses 9. Die Brennkammer 3 wie die Brenner 13 verlaufen vertikal und befinden sich am oberen Ende der gezeigten Figur. An das untere Ende der Brennkammer 3 schließt sich das konische und gekrümmte Mischgehäuse an, dass die Verbrennungsabgase zu dem Innengehäuse 9 führt.
  • Die Welle 12 ist von einem Wellenschutzmantel 15 (vgl. FIG 3) umgeben, welche selbst von einer Innengehäusenabe 17 des Innengehäuses 9 umgeben ist.
  • FIG 3 zeigt das Innengehäuse mit Innengehäusenabe 17 (vertikaler Schnitt durch das Innengehäuse), in dem die Innengehäusenabe 17 des Innengehäuses 9 sowie ein Teil des Wellenschutzmantels 15 zu erkennen sind. Ausschnittsweise ist auch eine Leitschaufel 10 der Turbine 5 zu erkennen, die der turbinenseitigen Öffnung 19 des Innengehäuses 9 gegenüberliegt.
  • Die Innengehäusenabe 17 sowie der Wellenschutzmantel 15 haben im Wesentlichen die Form eines Hohlzylinders. Das Innengehäuse 9 dient dazu, das aus den Mischgehäusen 8 in das Innengehäuse 9 einströmende heiße Abgas einerseits abzulenken und andererseits möglichst gleichmäßig um den gesamten Umfang des Turbinenläufers zu verteilen. Hierbei erfolgt die Ablenkung um ca. 90 °Grad. Über einen gemeinsamen Ringraum werden die Gase dann der Turbine zugeführt. Bedingt durch die Form des Mischgehäuses 8 erfolgt keine eindeutige Führung der beiden Abgasströme auf die Turbine, das heißt die Ströme treffen in Höhe einer Teilfuge (nicht gezeigt) auf die Nabe 17 und verteilen sich dann auf den umlaufenden Raum zum Turbineneintritt. Dadurch ergibt sich eine inhomogene Anströmung auf die Turbine, wodurch mit Performanceverlusten zu rechnen ist.
  • FIG 4 und FIG 5 zeigen schematisch ein Innengehäuse 9 sowie die erfindungsgemäße Innengehäusenabe 170 und den Turbineneintritt 20 einer Gasturbine mit Silobrennkammern 3. Um eine gut optimierte Anströmung auf die Turbine 5 zu erreichen, muss der Abgasstrom aus beiden Mischgehäusen 8a,8b eine definierte Führung vom Eintritt am Innengehäuse 9 bis zum Turbineneintritt 20 erfahren. Die Innengehäusenabe 170 ist in diesen Ausführungsbeispielen mit zwei Buckeln 23a,23b versehen. Die Innengehäusenabe 170 weist somit im wesentlich die Form einer Zitrone auf. Die Buckel 23a,23b sind symmetrisch zu einer Symmetrieachse B. Ankommende Abgasströme 22a,22b werden durch diese Buckel 23a,23b nun aerodynamisch verbessert umgeleitet, prallen also nicht mehr wie in der Innengehäusenabe 17 nach dem Stand der Technik im wesentlichen senkrecht auf die Nabe auf. Daraus resultiert eine Vergleichmäßigung der Heißgasströmung im Innengehäuse, wodurch die Turbine besser angeströmt wird. Die Turbineschaufeln 10,11 können so gemäß ihrer Auslegung angeströmt werden. Dadurch ergeben sich verbesserte Performancewerte der Turbine 5. Weiterhin werden Strömungsstaupunkten im Innengehäuse 9 und an der Nabe 170 vermieden. Dadurch wird der Verschleiß der einzelnen Komponenten durch Erosion und Oxidation vermieden. Die Buckel 23a,23b können direkt gegenüber der Innengehäuseeintritt 25 angeordnet sein, welcher den Übergang von Mischgehäuse 8a,8b und Innengehäuse 9 darstellt. In diesem Fall wird der ankommende Abgasstrom 22a,22b zweigeteilt und die daraus entstehenden Ströme verteilen sich anschließend um die Innengehäusenabe 170. Im Ausführungsbeispiel FIG 5 sind die Buckel versetzt zum Innengehäuseeintritt 25 angeordnet. In diesem Fall wird der ankommende Abgasstrom 22a (und 22b) im Wesentlichen in seiner Gesamtheit um die Innengehäusenabe 170 herum abgelenkt. In beiden Beispielen handelt es sich um Gasturbinen mit zwei Silobrennkammern 3. Die Anzahl der Buckel 23a,23b sowie die Größe der Buckel 23a,23b können daher je nach Gasturbinentyp und Ausgestaltung der einzelnen Gasturbine variieren.

Claims (11)

  1. Gasturbinenanordnung umfassend zumindest einem Brenner (13) und einer Brennkammer (3) zum Verbrennen von Brennstoff, einem Mischgehäuse (8a,b) sowie einem sich daran anschließenden Innengehäuse (9) mit Innengehäusenabe (170) und eine im wesentlichen in Bezug auf den zumindest einen Brenner (13) senkrecht angeordneten Turbine (5), wobei das durch das verbrennen des Brennstoffs entstehende Verbrennungsabgas durch das Mischgehäuse (8a,b) in das Innengehäuse (9) strömt, wobei das Innengehäuse (9) derart ausgestaltet ist, dass das Verbrennungsabgas im Innengehäuse (9) mittels der Innengehäusenabe (170) in Richtung Turbine (5) umgelenkt wird,
    dadurch gekennzeichnet, dass das die Innengehäusenabe (170) nichtzylindrisch ausgebildet ist.
  2. Gasturbinenanordnung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass die Innengehäusenabe (170) zumindest einen Buckel (23a,23b) aufweist.
  3. Gasturbinenanordnung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass der zumindest eine Buckel (23a,23b) durch Aufstecken an der Innengehäusenabe (170) befestigt ist.
  4. Gasturbinenanordnung nach einem der Ansprüche 1-2,
    dadurch gekennzeichnet, dass der zumindest eine Buckel (23a,23b) fest an der Innengehäusenabe (170) gefertigt ist.
  5. Gasturbinenanordnung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass der zumindest eine Buckel (23a, 23b) als ein Hohlkörper oder als ein Massivkörper ausgeführt ist.
  6. Gasturbinenanordnung nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass mindestens zwei Buckel (23a), (23b) vorhanden sind.
  7. Gasturbinenanordnung nach Anspruch 6,
    dadurch gekennzeichnet, dass die mindestens zwei Buckel (23a),(23b) sich gegenüberliegend an der Innengehäusenabe (170) angeordnet sind.
  8. Gasturbinenanordnung nach einem der Ansprüche 6-7,
    dadurch gekennzeichnet, dass die mindestens zwei Buckel (23a),(23b) mit der Innengehäusenabe (170) näherungsweise die Form einer Zitrone aufweisen.
  9. Gasturbine (5) umfassend zumindest zwei sich im Wesentlichen gegenüberliegende Brenner (13) und Brennkammern (3) zur Verbrennung von Brennstoff sowie einem sich jeweils daran anschließendem Mischgehäuse (8a),(8b) und sich daran anschließend einem Innengehäuse (9) sowie einer um eine Welle (12) angeordneten Innengehäusenabe (170), dadurch gekennzeichnet, dass die Innengehäusenabe (170) mindestens zwei sich gegenüberliegende Buckel (23a)(23b) aufweist.
  10. Verfahren zur Turbinenanströmung, umfassend zumindest einem Brenner (13) und einer Brennkammer (3), in welcher Brennstoff zu Verbrennungsabgasen verbrannt wird, und einem Mischgehäuse (8a,b) sowie ein sich daran anschließendes Innengehäuse (9) zum Führen der Verbrennungsabgase zu einer Turbine (5), die im wesentlichen senkrecht zur Strömungsrichtung der Verbrennungsabgase in der Brennkammer (3) angeordnet, wobei im Innengehäuse (9) mittels einer Innengehäusenabe (170) die Verbrennungsabgase in Richtung Turbine (5) abgelenkt werden,
    dadurch gekennzeichnet, dass mittels des Aufbringens mindestens eines Buckels (23a,23b) an der Innengehäusenabe (170) die Strömungsumleitung des Verbrennungsabgasstroms (22a,22b) im Innengehäuse (9) verbessert wird, so dass eine bessere Turbinenanströmung erzielt wird.
  11. Verfahren zur Turbinenanströmung, dadurch gekennzeichnet, dass die einzelnen Turbinenschaufeln (10,11) gemäß ihrer Auslegung angeströmt werden.
EP08014872A 2008-08-21 2008-08-21 Gasturbinenanordnung mit nichtzylindrischer Innengehäusenabe und Verfahren zur Turbinenanströmung Withdrawn EP2157284A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08014872A EP2157284A1 (de) 2008-08-21 2008-08-21 Gasturbinenanordnung mit nichtzylindrischer Innengehäusenabe und Verfahren zur Turbinenanströmung
EP09807919.7A EP2318664B1 (de) 2008-08-21 2009-07-16 Gasturbinenanordnung mit nichtzylindrischer innengehäusenabe
PCT/EP2009/059126 WO2010020487A1 (de) 2008-08-21 2009-07-16 Gasturbinenanordnung mit nichtzylindrischer innengehäusenabe und verfahren zur turbinenanströmung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08014872A EP2157284A1 (de) 2008-08-21 2008-08-21 Gasturbinenanordnung mit nichtzylindrischer Innengehäusenabe und Verfahren zur Turbinenanströmung

Publications (1)

Publication Number Publication Date
EP2157284A1 true EP2157284A1 (de) 2010-02-24

Family

ID=40849151

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08014872A Withdrawn EP2157284A1 (de) 2008-08-21 2008-08-21 Gasturbinenanordnung mit nichtzylindrischer Innengehäusenabe und Verfahren zur Turbinenanströmung
EP09807919.7A Not-in-force EP2318664B1 (de) 2008-08-21 2009-07-16 Gasturbinenanordnung mit nichtzylindrischer innengehäusenabe

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP09807919.7A Not-in-force EP2318664B1 (de) 2008-08-21 2009-07-16 Gasturbinenanordnung mit nichtzylindrischer innengehäusenabe

Country Status (2)

Country Link
EP (2) EP2157284A1 (de)
WO (1) WO2010020487A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016173920A1 (de) * 2015-04-28 2016-11-03 Siemens Aktiengesellschaft Heissgasführendes gehäuse

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3117515A1 (de) * 1980-05-07 1982-04-08 Brown, Boveri & Cie Ag, 6800 Mannheim "ueberstroemgehaeuse fuer eine gasturbinenanlage"
GB2293232A (en) * 1994-09-15 1996-03-20 Rolls Royce Plc A combustion chamber assembly
GB2361302A (en) * 2000-04-13 2001-10-17 Rolls Royce Plc Discharge nozzle for a gas turbine engine combustion chamber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3117515A1 (de) * 1980-05-07 1982-04-08 Brown, Boveri & Cie Ag, 6800 Mannheim "ueberstroemgehaeuse fuer eine gasturbinenanlage"
GB2293232A (en) * 1994-09-15 1996-03-20 Rolls Royce Plc A combustion chamber assembly
GB2361302A (en) * 2000-04-13 2001-10-17 Rolls Royce Plc Discharge nozzle for a gas turbine engine combustion chamber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016173920A1 (de) * 2015-04-28 2016-11-03 Siemens Aktiengesellschaft Heissgasführendes gehäuse

Also Published As

Publication number Publication date
WO2010020487A1 (de) 2010-02-25
EP2318664B1 (de) 2016-05-04
EP2318664A1 (de) 2011-05-11

Similar Documents

Publication Publication Date Title
DE4242494C1 (en) Adjustable flow-guide for engine exhaust turbocharger - has axially-adjustable annular insert in sectors forming different kinds of guide grilles supplied simultaneously by spiral passages
EP2179143B1 (de) Spaltkühlung zwischen brennkammerwand und turbinenwand einer gasturbinenanlage
EP1706597A1 (de) Strömungsmaschine mit einem axial verschiebbaren rotor
EP2379846B1 (de) Leitschaufelträger einer strömungsmaschine
DE102007029004A1 (de) Abgasturbolader für eine Brennkraftmaschine
WO2006048401A1 (de) Optimierte turbinenstufe einer turbinenanlage sowie auslegungsverfahren
DE102011053405A1 (de) Turbinenabgasraum
DE2454054A1 (de) Innentriebwerk bzw. gasgenerator fuer gasturbinentriebwerke
EP3064706A1 (de) Leitschaufelreihe für eine axial durchströmte Strömungsmaschine
EP2723990B1 (de) Innenkühlbares bauteil für eine gasturbine mit zumindest einem kühlkanal
DE102016124806A1 (de) Turbinen-Laufschaufelanordnung für eine Gasturbine und Verfahren zum Bereitstellen von Dichtluft in einer Turbinen-Laufschaufelanordnung
DE102007028742A1 (de) Luftversorger, insbesondere für ein Luftversorgungssystem von Brennstoffzellen
EP0928364A1 (de) Kompensation des druckverlustes einer kühlluftführung in einer gasturbinenanlage
DE102019125654A1 (de) Turbinenschaufel
EP0532907B1 (de) Axialdurchströmte Turbine
EP2318664B1 (de) Gasturbinenanordnung mit nichtzylindrischer innengehäusenabe
DE102010027808A1 (de) Drallerzeuger für einen Brenner
EP1632650B1 (de) Dampfturbine
EP1522696A2 (de) Gasturbinenaxialkompressor mit Wassereinspritzung
EP3298285A1 (de) Leitschaufel für einen diffusor eines radialverdichters
DE1526813A1 (de) Gasmischanlage fuer Turbotriebwerke
EP2157285A1 (de) Gasturbineanordnung und Verfahren zur Turbinenanströmung
WO2003021149A1 (de) Brennkammeranordnung
EP3147458B1 (de) Niederdrucksystem für eine dampfturbine und dampfturbine
EP2157286A1 (de) Gasturbine mit angewinkeltem Mischgehäuse und Verfahren zur Turbinenanströmung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

AKY No designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100825

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

Effective date: 20110315

Ref country code: DE

Ref legal event code: 8566