EP2022731A1 - Method for controlled disposal of refuse - Google Patents

Method for controlled disposal of refuse Download PDF

Info

Publication number
EP2022731A1
EP2022731A1 EP07114088A EP07114088A EP2022731A1 EP 2022731 A1 EP2022731 A1 EP 2022731A1 EP 07114088 A EP07114088 A EP 07114088A EP 07114088 A EP07114088 A EP 07114088A EP 2022731 A1 EP2022731 A1 EP 2022731A1
Authority
EP
European Patent Office
Prior art keywords
refuse
refuse chute
chute
analyzed
chutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07114088A
Other languages
German (de)
French (fr)
Other versions
EP2022731B1 (en
Inventor
David Culleré Vidal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ros Roca SA
Original Assignee
Ros Roca SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38754767&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2022731(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ros Roca SA filed Critical Ros Roca SA
Priority to EP07114088A priority Critical patent/EP2022731B1/en
Priority to DE602007004598T priority patent/DE602007004598D1/en
Priority to AT07114088T priority patent/ATE456526T1/en
Priority to ES07114088T priority patent/ES2340209T3/en
Priority to PT07114088T priority patent/PT2022731E/en
Priority to CN2008801026340A priority patent/CN101778783B/en
Priority to MYPI20100529 priority patent/MY150950A/en
Priority to ARP080103465A priority patent/AR067883A1/en
Priority to PCT/EP2008/060370 priority patent/WO2009019297A1/en
Priority to CL2008002327A priority patent/CL2008002327A1/en
Publication of EP2022731A1 publication Critical patent/EP2022731A1/en
Publication of EP2022731B1 publication Critical patent/EP2022731B1/en
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65FGATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
    • B65F5/00Gathering or removal of refuse otherwise than by receptacles or vehicles
    • B65F5/005Gathering or removal of refuse otherwise than by receptacles or vehicles by pneumatic means, e.g. by suction

Definitions

  • the present invention relates to air refuse collection and more particularly to a method for controlled disposal of refuse from refuse chutes through waste pipes to at least one collection station and a system for collecting such refuse.
  • Waste products such as for example, inorganic refuse (paper, plastics, metals, rubber, leather, textiles), and organic refuse (food scraps, wood, and household refuse containing organic matter) and the like by means of air waste disposal systems is a well known prior art technique in which refuse are conveniently driven through a pipe system into a collection station.
  • Air waste disposal systems are usually used in inner city, private communities, building areas, hospitals, hotels, industrial facilities, airports, etc. and places in general where refuse are produced in large amounts, this being a rapid, clean and efficient technique for centrally disposing of waste products.
  • a network of fixed refuse chutes where refuse is to be selectively placed is distributed on a determined area.
  • Each of the refuse chutes is connected to waste pipes leading to a common air transport pipe system through corresponding discharge valves. Waste products are driven by the air transport pipe system by an air stream (typically at vacuum conditions) drawing them to at least one collection station for treating, recycling or disposal.
  • the refuse chutes are emptied when a volume of refuse considered to be sufficient to be discharged into the collection station is detected. This is carried out by level sensors associated to the refuse chutes which output a level-indication signal to control means for opening the corresponding discharge valve.
  • level controlled emptying has been developed in recent years in which level sensors associated to refuse chutes are provided for detecting the level of refuse.
  • a level indication signal is sent to a control system such that higher priority is given to refuse chutes with higher level for them to be emptied.
  • WO0105683 discloses a system for refuse collection by grouping of the refuse chutes such that a control system operates discharge valves associated with refuse chutes on a group basis. One group is selected at a time by the control system for opening a series of discharge valves within the selected group. The group of refuse chutes having the highest priority value among the groups with valid emptying conditions is selected for emptying and collection of refuse.
  • W02004094270 discloses a refuse collection system with a multi-branch transport pipe system in which a number of refuse chutes connected thereto are provided such that refused is emptied by branches. For each number of possible next-hop candidates, future refuse chute load levels are predicted in a plurality of branches. A system consequence value is determined based on these predicted load levels and a hop to a next branch is selected among those candidates that have the most favorable system consequence values. Load levels may be weighed by priority coefficients for taking the relative importance of emptying different refuse chutes into account.
  • the present invention provides a method for controlled disposal of refuse from a number of refuse chutes through an air system, such as for example, a system working at vacuum conditions for controlled disposal of refuse.
  • Refuse chutes means a container for receiving refuse therein.
  • This container is usually arranged fixed outdoors (in the street) or indoors (hotel halls, etc) providing easy access so that the refuse may be selectively disposed therein.
  • Refuse chutes are connected to waste pipes leading to at least one transport pipe that is usually built underground. At least one portion of the waste pipes is also built underground. However surface installations may be alternatively built, such as for example with some portions underground and some portions on the ground.
  • the refuse from the refuse chutes is driven by the transport pipes to at least one collection station where refuse is processed.
  • Variable speed fan assemblies are provided for generating an air stream such that refuse is suitably driven from the refuse chutes to the respective collection stations. Air leaving the installation is then conditioned, i.e. washed, deodorized, etc, through bio-filter means, before being discharged out to the atmosphere. Bio-filter means are not described herein as they are not part of the present invention.
  • the method of the present invention is directed to the controlled disposal of the refuse from refuse chutes containing the same type of refuse selectively disposed therein by the user.
  • Refuse chutes are connected to waste pipes leading to transport pipes.
  • the transport pipes are arranged in branches and at least one refuse chute is connected to each branch through the corresponding waste pipe. Refuse is thus driven to at least one collection station.
  • the method of the invention consists in emptying a first refuse chute and establishing the refuse chute being emptied as a reference refuse chute. Then, a new refuse chute to be analyzed is selected and a control system determines whether at least a first condition is met. This first condition, which will be described in detail hereinbelow, depends on the reference refuse chute and the refuse chute to be analyzed.
  • control means causes the selected refuse chute to be emptied and said selected refuse chute is now considered as a new reference refuse chute. Then, a new refuse chute to be analyzed is selected.
  • the step of emptying the analyzed refuse chute comprises acting on a corresponding discharge valve associated with said refuse chute.
  • Acting on a discharge valve involves opening the discharge valve during a first period of time and closing the discharge valve during a second period of time. Said first and second periods of time may be the same and at least one of said first and second periods of time may be of about 3 seconds.
  • the above mentioned first condition in the method of the invention is met if the current filling level of the refuse chute being analyzed is equal to or greater than a theoretical parameter that is directly proportional to the maximum capacity of the refuse chute being analyzed and that of the reference refuse chute and inversely proportional to a distance associated with the refuse chute being analyzed, the reference refuse chute and the collection station.
  • the theoretical parameter may also depend on an additional parameter, for example a parameter corresponding to the time slot during which the waste collection is being carried out.
  • the distance to be taken into account will be the distance associated with a refuse chute being analyzed, a reference refuse chute in said branch and the distance of said refuse chutes to the collection station.
  • the distance will be the distance associated with a refuse chute being emptied (reference refuse chute) and a point of intersection in the branch of the refuse chute being analyzed taking into account the distance of said refuse chutes the to the collection station.
  • the step of emptying a refuse chute is only carried out if a second condition is met. Said second condition is preferably met if the filling level in said refuse chute is equal to or greater than a preset minimum filling level.
  • "Filling level” as used herein corresponds to the volume occupied by the refuse associated with a refuse chute.
  • the preset minimum filling level ranges from about 0.20 to about 0.50, and more preferably the preset minimum filling level is 0.25.
  • the above mentioned step of selecting a new refuse chute to be analyzed can be performed according to a preset order of refuse chutes.
  • the refuse chutes of the network are intended to contain the same type of refuse.
  • a fully loaded refuse chute is first emptied and during emptying operation a second refuse chute of the network is sequentially analyzed.
  • the above mentioned theoretical parameter associated with both refuse chutes is then determined and compared with the actual filling level of said second refuse chute. If the actual filling level corresponding to the second refuse chute is equal to or greater than the determined theoretical parameter, this second refuse chute will be considered to be emptied (distance values become less relevant for example in nighttime, when electricity tariff is lower).
  • a new theoretical parameter associated with the last emptied refuse chute and a third refuse chute is determined and subsequently compared with the actual filling level of said third refuse chute such that if its actual filling level is equal to or greater than said new theoretical parameter this third refuse chute will be considered to be emptied, and so on.
  • a next theoretical parameter associated with the last emptied refuse chute i.e., the first emptied refuse chute in this example
  • the third refuse chute is then determined and subsequently compared with the actual filling level of said third refuse chute such that if its actual filling level is equal to or greater than said theoretical parameter it will be considered to be emptied.
  • the step of emptying the refuse chute is only carried out when a minimum filling level is reached in the corresponding refuse chute.
  • Said minimum value of filling level of said refuse chute may be, for example, 0.25. This means that usually only those refuse chutes having a minimum filling level of 25% would be considered for being emptied. In other words, for a refuse chute to be considered for being emptied, two conditions have to be met: the refuse chute has to be at least 25% full and its actual filling level has to be equal to or greater than said theoretical parameter.
  • the invention further relates to a system for controlled disposal of refuse from refuse chutes, which comprises waste pipes connecting each of the refuse chutes to at least one transport pipe leading to at least one collection station.
  • a system for controlled disposal of refuse from refuse chutes which comprises waste pipes connecting each of the refuse chutes to at least one transport pipe leading to at least one collection station.
  • the system includes means for emptying refuse chutes and control means.
  • control means may in turn comprise means for establishing a refuse chute being emptied as a reference refuse chute, means for selecting new refuse chutes to be analyzed, means for determining whether a condition is met for either emptying said refuse chute or determining another new refuse chute to be analyzed.
  • the system further includes means for determining the filling level corresponding to one refuse chute.
  • Said means for determining the filling level comprise level sensors.
  • control means provided in the system of the invention operates through an associated application software that compares the transport energy associated to refuse chutes with the filling level associated therewith so a single refuse chute is then emptied.
  • Said control means are capable of monitoring the filling level of all the refuse chutes in the system so that filling level is known at every time. Therefore, fully (or almost fully) loaded refuse chutes which can not be emptied because other refuse chutes are being emptied in that moment, are reduced or even eliminated. Consequently the time elapsed since a full filing level (i.e. 100%) is detected in one refuse chute until it can be emptied is advantageously reduced.
  • the efficiency of the system is improved and energy saving is therefore greater.
  • the yield of the system is thus highly improved since a 24h-enhanced service is available for user by the system of the present invention.
  • Figure 1 shows a system according to one possible embodiment of the invention.
  • the system allows a method to be carried out for controlled disposal of refuse from refuse chutes RC.
  • Refuse chutes RC generally comprise receptacles or housings which are arranged fixed on a determined area, such as, for example, private communities, public buildings and other building areas, hospitals, hotels, industrial facilities, airports, etc. and places in general where refuse (mainly solid products) are produced in large amounts.
  • a determined area such as, for example, private communities, public buildings and other building areas, hospitals, hotels, industrial facilities, airports, etc. and places in general where refuse (mainly solid products) are produced in large amounts.
  • refuse chutes RC are arranged in the street, inside a building and a garage.
  • the system comprises a network of n refuse chutes RC where refuse is to be placed (with n being the total number of refuse chutes RC to be considered in the network).
  • a general refuse chute will be denoted as “RC” throughout the description, whereas a particular refuse chute will be denoted as “RC x ", for example RC 1 , RC 2 , RC 3 ,... RC n.
  • RC R denotes a reference refuse chute, that is, the one that is being emptied at a given time.
  • Each refuse chute RC of the network of n refuse chutes RC 2 , RC 3 , RC 4 ,... RC R , RC x ... RC n is connected by means of waste pipes 100 leading to one common transport pipe 110 in a transport pipe system.
  • the transport pipes 110 comprise several branches b, b1, b2 and the refuse chutes are connected to each branch b, b1, b2 such that refuse is driven through said transport pipe 110 in branches b to at least one collection station 200 where refuse is treated, compacted, etc. for further transporting for recycling or disposal.
  • Waste pipes 100 are connected to the transport pipe system through corresponding discharge valves 120 which configuration will not be disclosed herein as not being part of the present invention.
  • Variable speed fan assemblies 130 are further provided in the system for controlled disposal of refuse.
  • Fan assemblies 130 serve the purpose of generating an air depression for conveniently drawing the refuse.
  • Refuse is usually packaged in plastic bags which are piled up on the corresponding discharge valve 120 of each refuse chute RC x . Refuse is thus driven from the refuse chutes RC to a catch means 150, e.g. a cyclone, in the respective collection station 200 for separating refuse from air. Air leaving the installation is then conditioned, i.e. washed, deodorized, etc, through bio-filter means 140, before being discharged out to the atmosphere.
  • a catch means 150 e.g. a cyclone
  • the system further includes remote control means -not shown- which are operated through a suitable software application.
  • the control means are adapted for receiving incoming signals from filling level means (which determine the filling level corresponding to one refuse chute, such as for example level sensors 160 associated with the refuse chutes RC) and outputting signals to the corresponding discharge valves 120 in the refuse chutes RC when a volume of refuse considered to be sufficient has been detected.
  • Said control means comprise means for establishing a refuse chute being emptied as a reference refuse chute RC R , means for selecting new refuse chutes RC X to be analyzed, means for determining whether a condition is met for either emptying said refuse chute RC X or determining another new refuse chute RC x to be analyzed.
  • Said means for determining the filling level comprise level sensors.
  • the system operates according the method described below. It is to be noted that all the refuse chutes involved in the method described herein are intended to contain the same type of refuse.
  • the method consists in the following steps:
  • the step of emptying the analyzed refuse chute RC x involves acting on a corresponding discharge valve 120 associated with the refuse chute RC that is considered to be emptied.
  • This emptying operation comprises opening the discharge valve 120 during a first period of time TA and closing the discharge valve 120 during a second period of time TB.
  • the first and second periods of time TA, TB are the same, and at least one of them is about 3 seconds.
  • V xR is a theoretical parameter that is directly proportional to the maximum capacity A, B of the refuse chute being analyzed RC x and that of said reference refuse RC R chute and inversely proportional to a distance d xR , D NR associated with said refuse chute being analyzed RC x , said reference refuse chute RC R and the collection station 200.
  • the calculation of parameter V xR will be explained below in detail.
  • the above mentioned distance d xR , D NR associated with refuse chute RC X and reference refuse chute RC R is calculated depending on the branches b, b1, b2 where the refuse chute being analyzed RC x and the reference refuse chute RC R are located. For example, if refuse chutes RC x , RC R are in the same branch b, the distance d xR will be the distance between the refuse chute being analyzed RC x and the reference refuse chute RC R along said branch b.
  • said distance D NR is the distance between the reference refuse chute RC R and a point of intersection N in the branch b1 of the refuse chute RC x being analyzed.
  • a second condition is taken into account such that the step of emptying a refuse chute RC x is only carried out if said first and second conditions are met.
  • the second condition is met if the filling level p x in said refuse chute RC x is equal to or greater than a preset minimum filling level p m .
  • This preset minimum filling level p m will range from about 0.20 to about 0.50, with 0.25 being preferred.
  • V xR could also depend on additional parameters such as the time slot t x during which the waste collection is being carried out.
  • a first refuse chute RC 1 is emptied based on a first parameter p 1 .
  • Parameter p 1 corresponds in this example to filling level (that is, the refuse volume present in a refuse chute RC x ).
  • said first refuse chute RC 1 is emptied based on said first parameter p 1 , it may of course be first discharged or emptied according to another different condition (e g. by simple decision of the operator, depending on time slot and the like).
  • sensors 160 associated with the refuse chutes RC x allow the filling level of said refuse chutes RC x in the system to be monitored at every time.
  • a following refuse chute RC 2 of the network is sequentially analyzed according to a preset order and a theoretical parameter V 12 associated therewith is then determined.
  • This theoretical parameter V 12 is directly proportional to the maximum capacity A, B of the refuse chutes RC 1 , RC 2 being analyzed and inversely proportional to a distance d xR , D NR that represents a distance associated with these refuse chutes RC 1 , RC 2 and the collection station 200.
  • the value of the obtained theoretical parameter V 12 is then compared by the control means with the actual filling level p 2 of said refuse chute RC 2 such that if said actual filling level p 2 corresponding to said refuse chute RC 2 is equal to or greater than said theoretical parameter V 12 , the refuse chute RC 2 will be considered by the control means as the one to be emptied.
  • a next theoretical parameter V 23 associated with the last emptied refuse chute RC 2 is calculated and a next refuse chute RC 3 is then selected and subsequently compared with the actual filling level p 3 of said next refuse chute RC 3 such that if its actual filling level p 3 is equal to or greater than said theoretical parameter V 23 said refuse chute RC 2 will be considered to be emptied.
  • a next theoretical parameter V 13 associated with the last emptied refuse chute RC 1 (in this case, the first emptied refuse chute) is calculated and the next refuse chute RC 3 is then selected and subsequently compared with the actual filling level p 3 of said next refuse chute RC 3 such that if its actual filling level p 3 is equal to or greater than said theoretical parameter V 13 it will be considered to be emptied, and so on.
  • V 12 E 12 ⁇ A E 1 + E 2 - B
  • V 12 k 1 ⁇ d 2 + k 2 ⁇ d 2 - d 1 v + T + k 1 ⁇ d 1 + k 2 ⁇ d 1 v + T 2 ⁇ k 1 ⁇ d 1 + k 2 ⁇ d 1 v + T + k 1 ⁇ d 2 + k 2 ⁇ d 2 - d 1 v + T ⁇ A - B
  • V 12 is assumed to be a minimum value, for example 0.25.
  • V xR V 12 in this example
  • V 12 would of course include a series of correcting factors which may depend e.g. on the time slot during which the analysis is being carried out (either taking into account when the electricity costs are lower or when a maximum demand period occurs), the number of emptyings of the refuse chute to be compared, safety factors, the total volume of the system, etc.
  • V 12 E 12 ⁇ A E 1 + E 2 - B
  • V 12 k 1 ⁇ D 2 + k 2 ⁇ D 2 - Dn v + T + k 1 ⁇ D 2 + k 2 ⁇ D 2 v + T 2 ⁇ k 1 ⁇ D 1 + k 2 ⁇ D 1 v + T + k 1 ⁇ D 2 + k 2 ⁇ D 2 - D 1 v + T ⁇ A - B
  • the control means of the system compares it with the current filling level p 1 , p 2 associated with the refuse chutes RC 1 , RC 2 respectively.
  • the control means will only act on the discharge valve 120 corresponding to that refuse chute RC x that meets these two conditions: p x ⁇ V xR p x ⁇ p m with p m being a preset minimum filling level of a refuse chute RC x. .
  • the discharge valve 120 of said refuse chute RC x meeting the above established conditions is thus selected to be operated by the control means such that a single refuse chute RC x is emptied during a period of time.
  • the selected discharge valve 120 is then opened during a first period of time TA and closed during a second period of time TB.
  • the first and second periods of time TA, TB may be the same and at least one of them equal to 3 seconds.

Abstract

Refuse is collected from n refuse chutes (RC) through waste pipes (100) leading to transport pipes (110). The transport pipes (110) comprise several branches (b) and at least one refuse chute (RC) is connected to each branch (b) through a corresponding waste pipe (100) for driving refuse to at least one collection station (200). The method consists in emptying a first refuse chute (RC1); establishing the refuse chute being emptied as a reference refuse chute (RCR); selecting a new refuse chute to be analyzed (RCx); determining whether at least a first condition is met, said condition depending on said reference refuse chute (RCR) and said refuse chute to be analyzed (RCx); if said condition is met, emptying the selected refuse chute (RCx), establishing said refuse chute (RCx) as a new reference refuse chute, and selecting again a new refuse chute to be analyzed (RCx); and if said condition is not met, selecting another new refuse chute to be analyzed (RCx) and then determining again whether said first condition is met.

Description

    FIELD OF THE INVENTION
  • The present invention relates to air refuse collection and more particularly to a method for controlled disposal of refuse from refuse chutes through waste pipes to at least one collection station and a system for collecting such refuse.
  • BACKGROUND OF THE INVENTION
  • Disposal of waste products, such as for example, inorganic refuse (paper, plastics, metals, rubber, leather, textiles), and organic refuse (food scraps, wood, and household refuse containing organic matter) and the like by means of air waste disposal systems is a well known prior art technique in which refuse are conveniently driven through a pipe system into a collection station. Air waste disposal systems are usually used in inner city, private communities, building areas, hospitals, hotels, industrial facilities, airports, etc. and places in general where refuse are produced in large amounts, this being a rapid, clean and efficient technique for centrally disposing of waste products.
  • In such disposal system, a network of fixed refuse chutes where refuse is to be selectively placed is distributed on a determined area. Each of the refuse chutes is connected to waste pipes leading to a common air transport pipe system through corresponding discharge valves. Waste products are driven by the air transport pipe system by an air stream (typically at vacuum conditions) drawing them to at least one collection station for treating, recycling or disposal.
  • The refuse chutes are emptied when a volume of refuse considered to be sufficient to be discharged into the collection station is detected. This is carried out by level sensors associated to the refuse chutes which output a level-indication signal to control means for opening the corresponding discharge valve.
  • Since a plurality of refuse chutes exists in the network of refuse chutes, a control system has to be provided in order to improve performance, especially in large networks. Thus, emptying can be performed on a first to come first to serve basis or by forming groups of refuse chutes according to a priority value that represents the relative importance of collecting refuse from the group.
  • To this effect, level controlled emptying has been developed in recent years in which level sensors associated to refuse chutes are provided for detecting the level of refuse. When a predetermined level is reached, a level indication signal is sent to a control system such that higher priority is given to refuse chutes with higher level for them to be emptied.
  • WO0105683 discloses a system for refuse collection by grouping of the refuse chutes such that a control system operates discharge valves associated with refuse chutes on a group basis. One group is selected at a time by the control system for opening a series of discharge valves within the selected group. The group of refuse chutes having the highest priority value among the groups with valid emptying conditions is selected for emptying and collection of refuse.
  • W02004094270 discloses a refuse collection system with a multi-branch transport pipe system in which a number of refuse chutes connected thereto are provided such that refused is emptied by branches. For each number of possible next-hop candidates, future refuse chute load levels are predicted in a plurality of branches. A system consequence value is determined based on these predicted load levels and a hop to a next branch is selected among those candidates that have the most favorable system consequence values. Load levels may be weighed by priority coefficients for taking the relative importance of emptying different refuse chutes into account.
  • Since the above prior art systems and methods have been proved to be efficient, they however suffer from an undesirable high-energy consumption.
  • SUMMARY OF THE INVENTION
  • The present invention provides a method for controlled disposal of refuse from a number of refuse chutes through an air system, such as for example, a system working at vacuum conditions for controlled disposal of refuse.
  • Refuse chutes, as used herein, means a container for receiving refuse therein. This container is usually arranged fixed outdoors (in the street) or indoors (hotel halls, etc) providing easy access so that the refuse may be selectively disposed therein.
  • Refuse chutes are connected to waste pipes leading to at least one transport pipe that is usually built underground. At least one portion of the waste pipes is also built underground. However surface installations may be alternatively built, such as for example with some portions underground and some portions on the ground. The refuse from the refuse chutes is driven by the transport pipes to at least one collection station where refuse is processed.
  • Variable speed fan assemblies are provided for generating an air stream such that refuse is suitably driven from the refuse chutes to the respective collection stations. Air leaving the installation is then conditioned, i.e. washed, deodorized, etc, through bio-filter means, before being discharged out to the atmosphere. Bio-filter means are not described herein as they are not part of the present invention.
  • The method of the present invention is directed to the controlled disposal of the refuse from refuse chutes containing the same type of refuse selectively disposed therein by the user. Refuse chutes are connected to waste pipes leading to transport pipes. The transport pipes are arranged in branches and at least one refuse chute is connected to each branch through the corresponding waste pipe. Refuse is thus driven to at least one collection station.
  • The method of the invention consists in emptying a first refuse chute and establishing the refuse chute being emptied as a reference refuse chute. Then, a new refuse chute to be analyzed is selected and a control system determines whether at least a first condition is met. This first condition, which will be described in detail hereinbelow, depends on the reference refuse chute and the refuse chute to be analyzed.
  • If said condition is met, the control means causes the selected refuse chute to be emptied and said selected refuse chute is now considered as a new reference refuse chute. Then, a new refuse chute to be analyzed is selected.
  • If the above mentioned first condition is not met, another new refuse chute to be analyzed is selected and it is determined again whether said condition is met.
  • In some embodiments of the method of the invention it is provided that the step of emptying the analyzed refuse chute comprises acting on a corresponding discharge valve associated with said refuse chute. Acting on a discharge valve involves opening the discharge valve during a first period of time and closing the discharge valve during a second period of time. Said first and second periods of time may be the same and at least one of said first and second periods of time may be of about 3 seconds.
  • The above mentioned first condition in the method of the invention is met if the current filling level of the refuse chute being analyzed is equal to or greater than a theoretical parameter that is directly proportional to the maximum capacity of the refuse chute being analyzed and that of the reference refuse chute and inversely proportional to a distance associated with the refuse chute being analyzed, the reference refuse chute and the collection station.
  • In some embodiments of the invention, the theoretical parameter may also depend on an additional parameter, for example a parameter corresponding to the time slot during which the waste collection is being carried out.
  • In the event that the refuse chute being analyzed and the reference refuse chute are both in the same branch of the network, the distance to be taken into account will be the distance associated with a refuse chute being analyzed, a reference refuse chute in said branch and the distance of said refuse chutes to the collection station.
  • In the event that the refuse chute being analyzed and the reference refuse chute are instead in different branches, the distance will be the distance associated with a refuse chute being emptied (reference refuse chute) and a point of intersection in the branch of the refuse chute being analyzed taking into account the distance of said refuse chutes the to the collection station.
  • DNR that represents a distance associated with these refuse chutes RC1, RC2 and the collection station 200.
  • According to the invention, it is preferred that the step of emptying a refuse chute is only carried out if a second condition is met. Said second condition is preferably met if the filling level in said refuse chute is equal to or greater than a preset minimum filling level. "Filling level" as used herein corresponds to the volume occupied by the refuse associated with a refuse chute. In some embodiments, the preset minimum filling level ranges from about 0.20 to about 0.50, and more preferably the preset minimum filling level is 0.25.
  • The above mentioned step of selecting a new refuse chute to be analyzed can be performed according to a preset order of refuse chutes.
  • It is also preferred that the refuse chutes of the network are intended to contain the same type of refuse.
  • In one example of the method of the invention, a fully loaded refuse chute is first emptied and during emptying operation a second refuse chute of the network is sequentially analyzed. The above mentioned theoretical parameter associated with both refuse chutes is then determined and compared with the actual filling level of said second refuse chute. If the actual filling level corresponding to the second refuse chute is equal to or greater than the determined theoretical parameter, this second refuse chute will be considered to be emptied (distance values become less relevant for example in nighttime, when electricity tariff is lower).
  • Then a new theoretical parameter associated with the last emptied refuse chute and a third refuse chute is determined and subsequently compared with the actual filling level of said third refuse chute such that if its actual filling level is equal to or greater than said new theoretical parameter this third refuse chute will be considered to be emptied, and so on.
  • If, in the above comparison according to the theoretical parameter, the second refuse chute was considered not to be emptied, then a next theoretical parameter associated with the last emptied refuse chute (i.e., the first emptied refuse chute in this example) and the third refuse chute is then determined and subsequently compared with the actual filling level of said third refuse chute such that if its actual filling level is equal to or greater than said theoretical parameter it will be considered to be emptied.
  • It is further provided that the step of emptying the refuse chute is only carried out when a minimum filling level is reached in the corresponding refuse chute. Said minimum value of filling level of said refuse chute may be, for example, 0.25. This means that usually only those refuse chutes having a minimum filling level of 25% would be considered for being emptied. In other words, for a refuse chute to be considered for being emptied, two conditions have to be met: the refuse chute has to be at least 25% full and its actual filling level has to be equal to or greater than said theoretical parameter.
  • The invention further relates to a system for controlled disposal of refuse from refuse chutes, which comprises waste pipes connecting each of the refuse chutes to at least one transport pipe leading to at least one collection station. Such a system may be suitable for performing the above mentioned steps of the method of the invention.
  • The system includes means for emptying refuse chutes and control means. Such control means may in turn comprise means for establishing a refuse chute being emptied as a reference refuse chute, means for selecting new refuse chutes to be analyzed, means for determining whether a condition is met for either emptying said refuse chute or determining another new refuse chute to be analyzed.
  • The system further includes means for determining the filling level corresponding to one refuse chute. Said means for determining the filling level comprise level sensors.
  • The above mentioned control means provided in the system of the invention operates through an associated application software that compares the transport energy associated to refuse chutes with the filling level associated therewith so a single refuse chute is then emptied.
  • Said control means are capable of monitoring the filling level of all the refuse chutes in the system so that filling level is known at every time. Therefore, fully (or almost fully) loaded refuse chutes which can not be emptied because other refuse chutes are being emptied in that moment, are reduced or even eliminated. Consequently the time elapsed since a full filing level (i.e. 100%) is detected in one refuse chute until it can be emptied is advantageously reduced.
  • Carrying out the described method according to the invention, the efficiency of the system is improved and energy saving is therefore greater. The yield of the system is thus highly improved since a 24h-enhanced service is available for user by the system of the present invention.
  • In addition, operating time of the fan assemblies is reduced and the working life of the system can be longer since the refuse chutes are sequentially emptied. Furthermore, the starts of the fan assemblies are also reduced at the end of the day and therefore durability is highly improved. That fact should be stressed that the fan assemblies are operated through frequency inverters which allows the speed of the fans to be varied according to the quantity of refuse being transported for each refuse chute, and the distance to the collection station. This is made possible since the filling level as well as the capacity and distances for refuse chutes are known. Advantageously, this also allows the refuse disposed by each user to be monitored.
  • This above all in consideration, and the fact that fan operating times and system starts are reduced, the fully (or almost fully) loaded refuse chutes which can not be emptied are reduced or even eliminated, capacity of the system becomes greater than other systems performing different refuse disposal systems. This will be of particular significance in high demand systems. For example, when capacity of a whole system is 100%, for example, in a 25000-40000 population system, there may be of the order of 400 refuse chutes with the corresponding discharge valves, which involves an improved performance for a population that is twice as great as compared to prior art systems.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A particular embodiment of the present invention will be described in the following, only by way of a non-limiting example, with reference to the appended drawings, in which:
    • Fig.1 is a view in which the main parts of one embodiment of a system according to the invention is shown;
    • Fig. 2 is a diagrammatical plan view of a network of branches of refuse chutes according to the invention; and
    • Fig. 3a is a diagrammatical plan view of a portion of the network of refuse chutes in fig. 2 showing how the distance associated with refuse chutes in the same branch is defined.
    • Fig. 3b is a diagrammatical plan view of a portion of the network of refuse chutes in fig. 2 showing how the distance associated with refuse chutes --in different branches is defined.
    DETAILED DESCRIPTION OF PARTICULAR EMBODIMENTS
  • Figure 1 shows a system according to one possible embodiment of the invention. The system allows a method to be carried out for controlled disposal of refuse from refuse chutes RC.
  • Refuse chutes RC generally comprise receptacles or housings which are arranged fixed on a determined area, such as, for example, private communities, public buildings and other building areas, hospitals, hotels, industrial facilities, airports, etc. and places in general where refuse (mainly solid products) are produced in large amounts. In the particular example shown in figure 1, refuse chutes RC are arranged in the street, inside a building and a garage.
  • As shown in said figure 1 of the drawings herein enclosed, the system comprises a network of n refuse chutes RC where refuse is to be placed (with n being the total number of refuse chutes RC to be considered in the network). A general refuse chute will be denoted as "RC" throughout the description, whereas a particular refuse chute will be denoted as "RCx", for example RC1, RC2, RC3,... RCn. "RCR" denotes a reference refuse chute, that is, the one that is being emptied at a given time.
  • Each refuse chute RC of the network of n refuse chutes RC2, RC3, RC4,... RCR, RCx... RCn is connected by means of waste pipes 100 leading to one common transport pipe 110 in a transport pipe system. The transport pipes 110 comprise several branches b, b1, b2 and the refuse chutes are connected to each branch b, b1, b2 such that refuse is driven through said transport pipe 110 in branches b to at least one collection station 200 where refuse is treated, compacted, etc. for further transporting for recycling or disposal. Waste pipes 100 are connected to the transport pipe system through corresponding discharge valves 120 which configuration will not be disclosed herein as not being part of the present invention.
  • Variable speed fan assemblies 130 are further provided in the system for controlled disposal of refuse. Fan assemblies 130 serve the purpose of generating an air depression for conveniently drawing the refuse. Refuse is usually packaged in plastic bags which are piled up on the corresponding discharge valve 120 of each refuse chute RCx. Refuse is thus driven from the refuse chutes RC to a catch means 150, e.g. a cyclone, in the respective collection station 200 for separating refuse from air. Air leaving the installation is then conditioned, i.e. washed, deodorized, etc, through bio-filter means 140, before being discharged out to the atmosphere.
  • The system further includes remote control means -not shown- which are operated through a suitable software application. The control means are adapted for receiving incoming signals from filling level means (which determine the filling level corresponding to one refuse chute, such as for example level sensors 160 associated with the refuse chutes RC) and outputting signals to the corresponding discharge valves 120 in the refuse chutes RC when a volume of refuse considered to be sufficient has been detected.
  • Said control means comprise means for establishing a refuse chute being emptied as a reference refuse chute RCR, means for selecting new refuse chutes RCX to be analyzed, means for determining whether a condition is met for either emptying said refuse chute RCX or determining another new refuse chute RCx to be analyzed.
  • There is also provided means for determining the filling level px corresponding to one refuse chute RCx. Said means for determining the filling level comprise level sensors.
  • The system operates according the method described below. It is to be noted that all the refuse chutes involved in the method described herein are intended to contain the same type of refuse.
  • The method consists in the following steps:
    1. A- emptying a first refuse chute RC1;
    2. B- establishing the refuse chute being emptied as a reference refuse chute RCR;
    3. C- selecting a new refuse chute to be analyzed RCx;
    4. D- determining whether at least a first condition is met, said condition depending on said reference refuse chute RCR and said refuse chute to be analyzed RCx;
    5. E- if said condition is met, emptying the selected refuse chute RCx, establishing said refuse chute RCx as a new reference refuse chute, and returning to step C; and
    6. F- if said condition is not met, selecting another new refuse chute to be analyzed RCx and returning to step D.
  • The step of emptying the analyzed refuse chute RCx involves acting on a corresponding discharge valve 120 associated with the refuse chute RC that is considered to be emptied. This emptying operation comprises opening the discharge valve 120 during a first period of time TA and closing the discharge valve 120 during a second period of time TB. In one embodiment, the first and second periods of time TA, TB are the same, and at least one of them is about 3 seconds.
  • It is to be noted that the selection of new refuse chutes to be analyzed RCx is performed according to a preset order of refuse chutes RC.
  • The above mentioned first condition can be therefore expressed as follows: p x V xR
    Figure imgb0001
    wherein px is the current filling level of a refuse chute RCx (that is, the volume occupied by the refuse associated with said refuse chute) and VxR is a theoretical parameter that is directly proportional to the maximum capacity A, B of the refuse chute being analyzed RCx and that of said reference refuse RCR chute and inversely proportional to a distance dxR, DNR associated with said refuse chute being analyzed RCx, said reference refuse chute RCR and the collection station 200. The calculation of parameter VxR will be explained below in detail.
  • The above mentioned distance dxR, DNR associated with refuse chute RCX and reference refuse chute RCR is calculated depending on the branches b, b1, b2 where the refuse chute being analyzed RCx and the reference refuse chute RCR are located. For example, if refuse chutes RCx, RCR are in the same branch b, the distance dxR will be the distance between the refuse chute being analyzed RCx and the reference refuse chute RCR along said branch b. In contrast, if said refuse chutes RCx, RCR are in different branches b1, b2, said distance DNR is the distance between the reference refuse chute RCR and a point of intersection N in the branch b1 of the refuse chute RCx being analyzed.
  • In the embodiment herein described by way of an example, a second condition is taken into account such that the step of emptying a refuse chute RCx is only carried out if said first and second conditions are met. In this particular case, the second condition is met if the filling level px in said refuse chute RCx is equal to or greater than a preset minimum filling level pm. This preset minimum filling level pm will range from about 0.20 to about 0.50, with 0.25 being preferred.
  • Therefore, only a refuse chute RCx will be considered by the control means for being emptied only if the first and the second conditions are met: p x V xR
    Figure imgb0002
    p x p m
    Figure imgb0003
  • It is to be noted that the parameter VxR could also depend on additional parameters such as the time slot tx during which the waste collection is being carried out.
  • One particular example of the method for controlled disposal of refuse of the invention according to the drawings, particularly figure 2, is disclosed below.
  • A first refuse chute RC1 is emptied based on a first parameter p1. Parameter p1 corresponds in this example to filling level (that is, the refuse volume present in a refuse chute RCx). Although said first refuse chute RC1 is emptied based on said first parameter p1, it may of course be first discharged or emptied according to another different condition (e g. by simple decision of the operator, depending on time slot and the like).
  • It is apparent that the value for the filling level px can be translated into a weight value where necessary. In any case, sensors 160 associated with the refuse chutes RCx allow the filling level of said refuse chutes RCx in the system to be monitored at every time.
  • When emptying said first refuse chute RC1 then a following refuse chute RC2 of the network is sequentially analyzed according to a preset order and a theoretical parameter V12 associated therewith is then determined. This theoretical parameter V12, as stated above, is directly proportional to the maximum capacity A, B of the refuse chutes RC1, RC2 being analyzed and inversely proportional to a distance dxR, DNR that represents a distance associated with these refuse chutes RC1, RC2 and the collection station 200.
  • The value of the obtained theoretical parameter V12 is then compared by the control means with the actual filling level p2 of said refuse chute RC2 such that if said actual filling level p2 corresponding to said refuse chute RC2 is equal to or greater than said theoretical parameter V12, the refuse chute RC2 will be considered by the control means as the one to be emptied.
  • A next theoretical parameter V23 associated with the last emptied refuse chute RC2 is calculated and a next refuse chute RC3 is then selected and subsequently compared with the actual filling level p3 of said next refuse chute RC3 such that if its actual filling level p3 is equal to or greater than said theoretical parameter V23 said refuse chute RC2 will be considered to be emptied.
  • If, in the above comparison according to the theoretical parameter V12 the refuse chute RC2 was considered not to be emptied, then a next theoretical parameter V13 associated with the last emptied refuse chute RC1 (in this case, the first emptied refuse chute) is calculated and the next refuse chute RC3 is then selected and subsequently compared with the actual filling level p3 of said next refuse chute RC3 such that if its actual filling level p3 is equal to or greater than said theoretical parameter V13 it will be considered to be emptied, and so on.
  • In the event that both the analyzed refuse chute RCx and the reference refuse chute RCR are in the same branch b, the above mentioned theoretical parameter VxR (that is used by the control means for comparison with the current filling level px of each analyzed refuse chute RCx) is obtained as explained below.
  • Energy consumption in refuse transportation associated with a refuse chute RC1 through a distance d1 (which will be explained below according to fig. 3a) is obtained, in one example, as follows: E 1 = P 1 d 1 v + T
    Figure imgb0004
  • The next refuse chute RC2 to be analyzed in the same branch b of the network would have a distance d2 (which will be explained below) associated therewith such that d 2 > d 1. Therefore, the associated energy for this refuse chute RC2 will be obtained as follows: E 2 = P 2 d 12 v + T + E 1
    Figure imgb0005
  • In accordance with the above, the energy for sequentially transporting refuse associated with RC1 to RC2 will be, in the same branch b, as follows: E 12 = P 2 d 12 v + T + E 1
    Figure imgb0006
    wherein:
    • P= kd+k2 is the power (in kW). However, power can be obtained from other different ways depending on the inlet air point in the system.
    • d12= distance between the refuse chute being analyzed RCx and the reference refuse chute RCR along the same branch b.
    • d1, d2= distance from refuse chutes RC1, RC2 to a collection station 200, respectively, such that d12= d2 - d1 (see fig. 3a).
    • ν = refuse average speed
    • T = safety time
  • Therefore V 12 = E 12 A E 1 + E 2 - B
    Figure imgb0007
  • Wherein A and B take constant values depending on the filling capacity of the refuse chutes RC. In some cases, A= 200 and B= 100.
  • The above equation for the theoretical parameter VxR (V12 in this example) associated with energy E12 can be given as a distance basis as follows: V 12 = k 1 d 2 + k 2 d 2 - d 1 v + T + k 1 d 1 + k 2 d 1 v + T 2 k 1 d 1 + k 2 d 1 v + T + k 1 d 2 + k 2 d 2 - d 1 v + T A - B
    Figure imgb0008
  • The above is for the event that d2 > d1. In the event that d2 < d1 then V12 is assumed to be a minimum value, for example 0.25.
  • VxR (V12 in this example) would of course include a series of correcting factors which may depend e.g. on the time slot during which the analysis is being carried out (either taking into account when the electricity costs are lower or when a maximum demand period occurs), the number of emptyings of the refuse chute to be compared, safety factors, the total volume of the system, etc.
  • Where refuse chutes RCx and RCR are in different branches b1, b2, the above mentioned theoretical parameter Vx is obtained as follows.
  • As above, the energy consumption in refuse transportation associated with a refuse chute RC1 is obtained, in one example, as follows: E 1 = P 1 D 1 v + T
    Figure imgb0009
    E 2 = P 2 D 2 v + T
    Figure imgb0010
  • So the energy for sequentially transporting refuse associated with RC1 to RC2 will be, when in different branches b1, b2, as follows: E 12 = P 2 d n 1 v + T + E 1
    Figure imgb0011
    wherein:
    • P= kDn1+k2 is the power (in kW). However, power can be obtained from other different ways depending on the inlet air point in the system.
    • ν and T being as stated above
  • In this case, for calculating the distance DNR in this case in which the analyzed refuse chute RCx and the reference refuse chute RCR are in different branches b1, b2, the node or point of intersection N of the two different branches b1, b2 associated to the refuse chutes RCx, RCR has to be taken into account.
  • In this example, and according to fig. 3b in the drawings:
    • Dn1= distance between the refuse chute being emptied RCR (reference refuse chute), that is, RC1 in this example, and a point of intersection N in the branch b1 of the refuse chute being analyzed (RC2 in this example), such that:
      • Dn1= D1-Dn, in which:
        • D1 = distance from one refuse chute RC1 to a collection station 200
        • D2 = total distance from another refuse chute RC2 to the collection station
        • Dn = distance from node or the point of intersection N of both branches b1, b2 to the collection station
  • Therefore V 12 = E 12 A E 1 + E 2 - B
    Figure imgb0012
  • Wherein A and B take constant values, as above, depending on the filling capacity of the refuse chutes RC. In some cases, A= 200 and B= 100.
  • The above equation given as a distance basis is as follows: V 12 = k 1 D 2 + k 2 D 2 - Dn v + T + k 1 D 2 + k 2 D 2 v + T 2 k 1 D 1 + k 2 D 1 v + T + k 1 D 2 + k 2 D 2 - D 1 v + T A - B
    Figure imgb0013
  • With said theoretical value V12 obtained as explained above for the refuse chutes RC1, RC2 analyzed, the control means of the system compares it with the current filling level p1, p2 associated with the refuse chutes RC1, RC2 respectively.
  • The control means will only act on the discharge valve 120 corresponding to that refuse chute RCx that meets these two conditions: p x V xR
    Figure imgb0014
    p x p m
    Figure imgb0015
    with pm being a preset minimum filling level of a refuse chute RCx.. The value of the preset minimum filling level pm may take values ranging from about 0.20 to about 0.50 and it is preferred that pm= 0.25.
  • This means that a refuse chute RCx that is at least 25% full (according to the above preferred minimum value for the filling level) would be individually emptied by the system if it is determined that its current filling level px is equal to o greater than the value taken by its associated theoretical parameter VxR.
  • The discharge valve 120 of said refuse chute RCx meeting the above established conditions is thus selected to be operated by the control means such that a single refuse chute RCx is emptied during a period of time. The selected discharge valve 120 is then opened during a first period of time TA and closed during a second period of time TB. The first and second periods of time TA, TB may be the same and at least one of them equal to 3 seconds.

Claims (18)

  1. A method for controlled disposal of refuse from n refuse chutes (RC), through waste pipes (100) leading to transport pipes (110), the transport pipes (110) comprising several branches (b), with at least one refuse chute (RC) being connected to each branch (b) through a corresponding waste pipe (100) for driving refuse to at least one collection station (200), characterized in that it comprises the steps of:
    A- emptying a first refuse chute (RC1);
    B- establishing the refuse chute being emptied as a reference refuse chute (RCR);
    C- selecting a new refuse chute to be analyzed (RCx);
    D- determining whether at least a first condition is met, said condition depending on said reference refuse chute (RCR) and said refuse chute to be analyzed (RCx);
    E- if said condition is met, emptying the selected refuse chute (RCx), establishing said refuse chute (RCx) as a new reference refuse chute, and returning to step C; and
    F- if said condition is not met, selecting another new refuse chute to be analyzed (RCx) and returning to step D.
  2. A method as claimed in claim 1, wherein said step of emptying the analyzed refuse chute (RCx) comprises acting on a corresponding discharge valve (120) associated with said refuse chute (RC).
  3. A method as claimed in claim 2, wherein said step of acting on a discharge valve (120) comprises opening the discharge valve (120) during a first period of time (TA) and closing the discharge valve (120) during a second period of time (TB).
  4. A method as claimed in claim 3, wherein said first and second periods of time (TA, TB) are the same.
  5. A method as claimed in claim 3 or 4 wherein at least one of said first and second periods of time (TA, TB) is about 3 seconds.
  6. A method as claimed in claim 1, wherein said first condition is met if the current filling level (px) of a refuse chute (RCx) is equal to or greater than a parameter (VxR) that is directly proportional to the maximum capacity (A, B) of the refuse chute being analyzed (RCx) and that of the reference refuse chute (RCR) and inversely proportional to a distance (dxR, DNR) associated with the refuse chute being analyzed (RCx), the reference refuse chute (RCR) and the collection station (200).
  7. A method as claimed in claim 6, wherein if the refuse chute being analyzed (RCx) and the reference refuse chute (RCR) are in the same branch (b), said distance (dxR) is the distance between the refuse chute being analyzed (RCx) and the reference refuse chute (RCR) along said branch (b).
  8. A method as claimed in claim 6, wherein if the refuse chute being analyzed (RCx) and the reference refuse chute (RCR) are in different branches (b1, b2), said distance (DN1) is the distance between the refuse chute being emptied (RCR) and a point of intersection (N) in the branch (b1) of the refuse chute being analyzed (RCx).
  9. A method as claimed in any of the preceding claims, wherein the step of emptying a refuse chute (RCx) is only carried out if a second condition is met.
  10. A method as claimed in claim 9, wherein said second condition is met if the filling level (px) in said refuse chute (RCx), corresponding to the volume occupied by the refuse associated with said refuse chute (RCx), is equal to or greater than a preset minimum filling level (pm).
  11. A method as claimed in claim 10, wherein the preset minimum filling level (pm) ranges from about 0.20 to about 0.50.
  12. A method as claimed in claim 6, wherein the parameter (VxR) also depends on an additional parameter (tx).
  13. A method as claimed in claim 12, wherein said additional parameter (tx) is the time slot during which the waste collection is being carried out.
  14. A method as claimed in claim 1, wherein said step of selecting a new refuse chute to be analyzed (RCx) is performed according to a preset order of refuse chutes (RC).
  15. A method as claimed in any of the preceding claims, wherein the refuse chutes (RC) are intended to contain the same type of refuse.
  16. A system for controlled disposal of refuse from n refuse chutes (RC), which comprises waste pipes (100) connecting each of the refuse chutes (RC) to at least one transport pipe (110) leading to at least one collection station (200), characterized in that it further comprises means for emptying refuse chutes (RCx), means for establishing a refuse chute being emptied as a reference refuse chute (RCR), means for selecting new refuse chutes to be analyzed (RCx), means for determining whether a condition is met for either emptying said refuse chute (RCx) or determining another new refuse chute to be analyzed (RCx).
  17. A system as claimed in claim 16, wherein it includes means for determining the filling level (px) corresponding to one refuse chute (RCx).
  18. A system as claimed in claim 17, wherein said means for determining the filling level (px) comprise level sensors (160).
EP07114088A 2007-08-09 2007-08-09 Method for controlled disposal of refuse Active EP2022731B1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP07114088A EP2022731B1 (en) 2007-08-09 2007-08-09 Method for controlled disposal of refuse
DE602007004598T DE602007004598D1 (en) 2007-08-09 2007-08-09 Method of controlled waste disposal
AT07114088T ATE456526T1 (en) 2007-08-09 2007-08-09 METHOD FOR CONTROLLED WASTE DISPOSAL
ES07114088T ES2340209T3 (en) 2007-08-09 2007-08-09 EMPTY WASTE EMPTY.
PT07114088T PT2022731E (en) 2007-08-09 2007-08-09 Method for controlled disposal of refuse
MYPI20100529 MY150950A (en) 2007-08-09 2008-08-07 Method for controlled disposal of refuse
CN2008801026340A CN101778783B (en) 2007-08-09 2008-08-07 Method for controlled disposal of refuse
ARP080103465A AR067883A1 (en) 2007-08-09 2008-08-07 PROCEDURE FOR CONTROLLED WASTE EMPTYING
PCT/EP2008/060370 WO2009019297A1 (en) 2007-08-09 2008-08-07 Method for controlled disposal of refuse
CL2008002327A CL2008002327A1 (en) 2007-08-09 2008-08-07 Procedure for the controlled emptying of waste from n collection points, which includes emptying a first collection point, establishing the point as a reference, selecting a new collection point, determining if the first condition is met, emptying the selected point and establishing the new one; waste emptying system.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07114088A EP2022731B1 (en) 2007-08-09 2007-08-09 Method for controlled disposal of refuse

Publications (2)

Publication Number Publication Date
EP2022731A1 true EP2022731A1 (en) 2009-02-11
EP2022731B1 EP2022731B1 (en) 2010-01-27

Family

ID=38754767

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07114088A Active EP2022731B1 (en) 2007-08-09 2007-08-09 Method for controlled disposal of refuse

Country Status (10)

Country Link
EP (1) EP2022731B1 (en)
CN (1) CN101778783B (en)
AR (1) AR067883A1 (en)
AT (1) ATE456526T1 (en)
CL (1) CL2008002327A1 (en)
DE (1) DE602007004598D1 (en)
ES (1) ES2340209T3 (en)
MY (1) MY150950A (en)
PT (1) PT2022731E (en)
WO (1) WO2009019297A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108971A1 (en) * 2010-03-04 2011-09-09 Envac Ab Waste emptying control
WO2011162653A1 (en) * 2010-06-23 2011-12-29 Envac Ab Energy-efficient and reliable operation of a vacuum waste collection system
EP2666737A1 (en) 2012-05-21 2013-11-27 Ros Roca Envirotec, S.L. Method for the removal of waste from a network of waste inlets
EP2695833A1 (en) 2012-08-09 2014-02-12 Ros Roca Envirotec, S.L. Method of pneumatic transport of refuse
US11565892B2 (en) 2020-07-08 2023-01-31 Trans-Vac Systems LLC Methods and systems for operation of a vacuum transport system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103449184B (en) * 2012-05-30 2015-08-05 周登荣 A kind of Garbage disposal transportation system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB332968A (en) * 1929-05-07 1930-08-07 Henri Eugene Gandillon Apparatus for collecting and transporting, in a dry condition, urban or industrial waste
WO2001005683A1 (en) 1999-07-16 2001-01-25 Centralsug Aktiebolag A system and method for refuse collection
WO2001005684A1 (en) * 1999-07-16 2001-01-25 Centralsug Aktiebolag Adaptive prediction-based control of a vacuum refuse collection system
WO2004094270A1 (en) 2003-04-24 2004-11-04 Envac Centralsug Ab Automated next-hop algorithm for a multi-branch refuse collection system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB332968A (en) * 1929-05-07 1930-08-07 Henri Eugene Gandillon Apparatus for collecting and transporting, in a dry condition, urban or industrial waste
WO2001005683A1 (en) 1999-07-16 2001-01-25 Centralsug Aktiebolag A system and method for refuse collection
WO2001005684A1 (en) * 1999-07-16 2001-01-25 Centralsug Aktiebolag Adaptive prediction-based control of a vacuum refuse collection system
WO2004094270A1 (en) 2003-04-24 2004-11-04 Envac Centralsug Ab Automated next-hop algorithm for a multi-branch refuse collection system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108971A1 (en) * 2010-03-04 2011-09-09 Envac Ab Waste emptying control
CN102892691A (en) * 2010-03-04 2013-01-23 恩华特公司 Waste emptying control
CN102892691B (en) * 2010-03-04 2015-05-13 恩华特公司 Waste emptying control
WO2011162653A1 (en) * 2010-06-23 2011-12-29 Envac Ab Energy-efficient and reliable operation of a vacuum waste collection system
US9073706B2 (en) 2010-06-23 2015-07-07 Envac Ab Energy-efficient and reliable operation of a vacuum waste collection system
EP2666737A1 (en) 2012-05-21 2013-11-27 Ros Roca Envirotec, S.L. Method for the removal of waste from a network of waste inlets
WO2013174795A1 (en) 2012-05-21 2013-11-28 Ros Roca Envirotec, S.L. Method for the removal of waste from a network of waste inlets
EP2695833A1 (en) 2012-08-09 2014-02-12 Ros Roca Envirotec, S.L. Method of pneumatic transport of refuse
US11565892B2 (en) 2020-07-08 2023-01-31 Trans-Vac Systems LLC Methods and systems for operation of a vacuum transport system

Also Published As

Publication number Publication date
MY150950A (en) 2014-03-14
DE602007004598D1 (en) 2010-03-18
ES2340209T3 (en) 2010-05-31
AR067883A1 (en) 2009-10-28
PT2022731E (en) 2010-04-29
ATE456526T1 (en) 2010-02-15
CN101778783A (en) 2010-07-14
CN101778783B (en) 2012-03-21
CL2008002327A1 (en) 2009-10-23
EP2022731B1 (en) 2010-01-27
WO2009019297A1 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
EP2022731B1 (en) Method for controlled disposal of refuse
US9073706B2 (en) Energy-efficient and reliable operation of a vacuum waste collection system
CN104271471B (en) Control the method for air-transport system operation
EP2367993B2 (en) Method and system for pushing and moving solid waste
Usón et al. Environmental-benefit analysis of two urban waste collection systems
CN104971932A (en) Environment-friendly and energy-saving table and kitchen waste recycling equipment device system
US7422144B1 (en) Method and apparatus for recycling in a multi-floor building
Huang et al. Long-term planning of an integrated solid waste management system under uncertainty—I. Model development
KR100884812B1 (en) Refuse collecting system in automatic refuse collection equipment
DK1620331T3 (en) AUTOMATED NEXT-HOP ALGORITHM TO multi-branch WASTE COLLECTION SYSTEM
CN111335580A (en) City intelligent waste classification recovery unit
KR20190113015A (en) Database based artificial intelligent automatic waste collection system
Ahokas et al. Municipal Solid Waste Audit for Mandalay, Myanmar
US20170137217A1 (en) Remote Control Transporter
Bulatov Modelling of a Tubular Conveyor for Waste Collection and Sorting in Multi-Storey Residential Buildings
CN112938261A (en) Automatic recycling system for classified garbage
van Duin No time to waste, it is time to waste A feasibility study on underground waste collection
Pawase Avinash et al. Automated Waste Segregator for Efficient Recycling Using IoT
JP3154228B2 (en) Container full judgment device
CN110773551A (en) Multifunctional treatment method for kitchen and fruit and vegetable garbage
van Duin System for future towns? Underground waste collection
JPH06239402A (en) Refuse sorting/collecting apparatus
Lewis et al. Technical and Cost Implications of Glass Container Recycling from the Perspective of a Local Community Processing Facility

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080829

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602007004598

Country of ref document: DE

Date of ref document: 20100318

Kind code of ref document: P

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20100422

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20100400952

Country of ref document: GR

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2340209

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100127

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100527

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

26 Opposition filed

Opponent name: ENVAC AB

Effective date: 20100910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007004598

Country of ref document: DE

Effective date: 20110301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100809

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110301

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20150209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150209

REG Reference to a national code

Ref country code: PT

Ref legal event code: NF4A

Free format text: RESTITUTIO IN INTEGRUM

Effective date: 20150623

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: PT

Effective date: 20150623

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 602007004598

Country of ref document: DE

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20160102

REG Reference to a national code

Ref country code: PT

Ref legal event code: PC4A

Owner name: , ES

Effective date: 20160616

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: URBAN REFUSE DEVELOPMENT S.L.U

Effective date: 20160727

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: URBAN REFUSE DEVELOPMENT, SLU, ES

Effective date: 20160829

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20190828

Year of fee payment: 13

Ref country code: IT

Payment date: 20190808

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20190828

Year of fee payment: 13

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200810

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20220802

Year of fee payment: 16

Ref country code: ES

Payment date: 20220927

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220819

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200809