EP2010546A1 - Metallorganische gerüstmaterialien aus zirkonium - Google Patents

Metallorganische gerüstmaterialien aus zirkonium

Info

Publication number
EP2010546A1
EP2010546A1 EP07728169A EP07728169A EP2010546A1 EP 2010546 A1 EP2010546 A1 EP 2010546A1 EP 07728169 A EP07728169 A EP 07728169A EP 07728169 A EP07728169 A EP 07728169A EP 2010546 A1 EP2010546 A1 EP 2010546A1
Authority
EP
European Patent Office
Prior art keywords
acid
zirconium
compound
framework
dicarboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07728169A
Other languages
German (de)
English (en)
French (fr)
Inventor
Markus Schubert
Ulrich Müller
Stefan Marx
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP07728169A priority Critical patent/EP2010546A1/de
Publication of EP2010546A1 publication Critical patent/EP2010546A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • C07C51/412Preparation of salts of carboxylic acids by conversion of the acids, their salts, esters or anhydrides with the same carboxylic acid part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/68Preparation of metal alcoholates
    • C07C29/70Preparation of metal alcoholates by converting hydroxy groups to O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/003Compounds containing elements of Groups 4 or 14 of the Periodic Table without C-Metal linkages

Definitions

  • the present invention relates to porous organometallic frameworks, to processes for their preparation and to their use.
  • Porous organometallic frameworks are known in the art and form an interesting class of compounds that may be an alternative to inorganic zeolites for various applications.
  • Organometallic frameworks usually contain an at least bidentate organic compound coordinated to a metal ion.
  • the framework material is in the form of an endless framework.
  • a specific group of these organometallic frameworks has recently been described as so-called “limited” frameworks in which the framework, by special choice of organic compound, does not extend infinitely but to form polyhedra (AC Sudik et al., J. Chem. Soc., 127 (2005), 7110-7118).
  • the last-mentioned special group is ultimately a porous organometallic framework material.
  • organometallic frameworks have been used are, for example, in the field of storage, separation or controlled release of chemicals, such as gases, or in the field of catalysis.
  • chemicals such as gases
  • the choice of the corresponding metal ion plays an important role.
  • organozirconium skeletons wherein a bisnaphthyl diphosphonate is used as bidentate organic compound, wherein the hydroxylate groups may be further bound to Ti, without the titanium being involved in the skeleton structure.
  • the object is achieved by a porous organometallic framework material containing at least one coordinated at least one metal ion, at least bidentate organic compound, wherein the at least one metal ion zirconium, and at least one at least bidentate organic compound of a di-, tri- or tetracarboxylic acid derives.
  • the porous organometallic framework according to the invention contains at least one metal ion.
  • This metal ion is an ion of zirconium.
  • the porous organometallic framework may be located in the pores of the organometallic framework or may be involved in the construction of the framework lattice. In the latter case, the at least one at least bidentate organic compound or a further at least bidentate organic compound would likewise bind to such a metal ion.
  • any metal ion which is suitably suitable for being part of the porous organometallic framework material may be considered here. If more than one metal ion is contained in the porous organometallic framework material, these may be present in a stoichiometric or non-stoichiometric amount. If coordination sites are replaced by another metal ion and this is in a non-stoichiometric ratio to the zirconium metal ion, such a porous organometallic framework can be considered as a doped framework.
  • the preparation of such doped organometallic frameworks in general is described in the German patent application with the application no. 10 2005 053 430.9.
  • porous organometallic framework may be impregnated with another metal in the form of a metal salt.
  • a method for impregnation is described for example in EP-A 1070538.
  • the framework is constructed only of zirconium metal ions and the at least one at least bidentate organic compound.
  • the framework material may be polymeric or polyhedra.
  • zirconium is preferably present in the +4 oxidation state.
  • the porous organometallic framework contains at least one at least bidentate organic compound, which is derived from a di-, tri-or tetracarboxylic acid.
  • At least bidentate organic compounds may be involved in the construction of the framework material. However, it is also possible that, moreover, not at least bidentate organic compounds are contained in the framework material. These can be derived, for example, from a monocarboxylic acid.
  • the term "derive" in the context of the present invention means that the di-, tri- or tetracarboxylic acid can be present in the framework material in partially deprotonated or completely deprotonated form. Furthermore, the di-, tri- or tetracarboxylic acid may contain a substituent or independently of one another several substituents. Examples of such substituents are -OH, -NH 2 , -OCH 3 , -CH 3 , -NH (CH 3 ), -N (CH 3 ) 2 , -CN and halides. Moreover, the term “derive” in the context of the present invention means that the di-, tri- or tetracarboxylic also in - A -
  • the term "inferred” means that one or more carboxylic acid functions can be replaced by a sulfone (-SO 3 H).
  • a sulfonic acid group may also occur in addition to the 2, 3 or 4 carboxylic acid functions.
  • the di-, tri- or tetracarboxylic acid has, in addition to the abovementioned functional groups, an organic main body or an organic compound to which these are bonded.
  • the abovementioned functional groups may in principle be bound to any suitable organic compound, as long as it is ensured that the organic compound having these functional groups is capable of forming the coordinative bond for the preparation of the framework.
  • the organic compounds are derived from a saturated or unsaturated aliphatic compound or an aromatic compound or an aliphatic as well as aromatic compound.
  • the aliphatic compound or the aliphatic portion of the both aliphatic and aromatic compound may be linear and / or branched and / or cyclic, wherein also several cycles per compound are possible. More preferably, the aliphatic compound or the aliphatic portion of the both aliphatic and aromatic compounds contains 1 to 18, more preferably 1 to 14, further preferably 1 to 13, further preferably 1 to 12, further preferably 1 to 1 1 and especially preferably 1 to 10 C atoms such as 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 C atoms. Methane, adamantane, acetylene, ethylene or butadiene are particularly preferred in this case.
  • the aromatic compound or the aromatic part of both aromatic and aliphatic compound may have one or more cores, such as two, three, four or five cores, wherein the cores may be separated from each other and / or at least two nuclei in condensed form.
  • the aromatic compound or the aromatic part of the both aliphatic and aromatic compound one, two or three nuclei, with one or two nuclei being particularly preferred.
  • each nucleus of the compound mentioned may contain at least one heteroatom, such as, for example, N, O, S, B, P, Si, preferably N, O and / or S.
  • the aromatic compound or the aromatic part contains both aromatic and aliphatic compound one or two C 6 cores, the two being either separately or in condensed form.
  • Benzene, naphthalene and / or biphenyl and / or bipyridyl and / or pyridyl may in particular be mentioned as aromatic compounds.
  • the at least bidentate organic compound an aliphatic or aromatic, acyclic or cyclic hydrocarbon having 1 to 18, preferably 1 to 10 and especially 6 carbon atoms, which also has only 2, 3 or 4 carboxyl groups as functional groups.
  • the at least bidentate organic compound is derived from a dicarboxylic acid such as oxalic acid, succinic acid, tartaric acid, 1,4-butanedicarboxylic acid, 1,4-butenedicarboxylic acid, 4-oxo-pyran-2,6-dicarboxylic acid, 1,6 Hexanedicarboxylic acid, decanedicarboxylic acid, 1,8-heptadecanedicarboxylic acid, 1,9-heptadecane dicarboxylic acid, heptadecanedicarboxylic acid, acetylenedicarboxylic acid, 1,2-benzenedicarboxylic acid, 1,3-benzenedicarboxylic acid, 2,3-pyridinedicarboxylic acid, pyridine-2,3-dicarboxylic acid, 1,3 Butadiene-1, 4-dicarboxylic acid, 1, 4-benzenedicarboxylic acid, p-benzenedicarboxylic acid, imi
  • the at least bidentate organic compound is one of the above-exemplified dicarboxylic acid as such.
  • the at least bidentate organic compound may be derived from a tricarboxylic acid, such as
  • the at least bidentate organic compound is one of the above-exemplified tricarboxylic acids as such.
  • an at least bidentate organic compound derived from a tetracarboxylic acid such as 1, 1-Dioxidperylo [1, 12-BCD] thiophene-3,4,9,10-tetracarboxylic acid, perylenetetracarboxylic acids such as perylene-3,4,9,10-tetracarboxylic acid or perylene-1,12-sulfone-3, 4,9,10-tetracarboxylic acid, butanetetracarboxylic acids such as 1, 2,3,4-butanetetracarboxylic acid or meso-1,2,3,4-butanetetracarboxylic acid, decane-2,4,6,8-tetracarboxylic acid, 1, 4, 7, 10,13,16-hexaoxacyclooctadecane-2,3,11,12-tetracarboxylic acid, 1,2,4,5-benzenetetracarboxylic acid, 1,2,11,12-dodecanetetracarboxy
  • the at least bidentate organic compound is one of the above exemplified tetracarboxylic acids as such.
  • each of the cores can contain at least one heteroatom, where two or more nuclei have identical or different heteroatoms may contain.
  • Suitable heteroatoms are, for example, N, O, S, B, P. Preferred heteroatoms here are N, S and / or O.
  • a suitable substituent in this regard is, inter alia, -OH, a nitro group, an amino group or an alkyl or alkoxy group.
  • acetylenedicarboxylic acid ADC
  • campherdicarboxylic acid fumaric acid, succinic acid
  • benzenedicarboxylic acids naphthalenedicarboxylic acids
  • biphenyldicarboxylic acids such as 4,4'-biphenyldicarboxylic acid (BPDC)
  • BPDC 4,4'-biphenyldicarboxylic acid
  • pyrazinedicarboxylic acids such as 2,5-pyrazinedicarboxylic acid
  • bipyridinedicarboxylic acids such as, for example 2,2'-bipyridine dicarboxylic acids, such as, for example, 2,2'-bipyridine-5,5'-dicarboxylic acid
  • benzenetricarboxylic acids such as 1, 2,3-, 1, 2,4-benzenetricarboxylic acid or 1, 3,5- Benzol tricarboxylic acid (BTC), benzene tetracarboxylic acid,
  • phthalic acid isophthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 1,3,3-benzenetricarboxylic acid, 1,2,4-benzenetricarboxylic acid, 1, 3,5-benzenetricarboxylic acid or 1, 2,4,5-benzenetetracarboxylic acid.
  • the organometallic framework material may also comprise one or more monodentate ligands and / or one or more at least bidentate ligands which are not derived from a di-, tri- or tetracarboxylic acid.
  • the at least one at least bidentate organic compound preferably contains no hydroxyl or phosphonic acid groups.
  • one or more carboxylic acid functions can be replaced by a sulfonic acid function.
  • a sulfonic acid group may additionally be present.
  • all carboxylic acid functions are replaced by a sulfonic acid function.
  • Such sulfonic acids or their salts are, for example, 4-amino-5-hydroxynaphthalene-2,7-disulfonic acid, 1-amino-8-naphthol-3,6-disulfonic acid, 2-hydroxynaphthalene 3,6-disulfonic acid, benzene-1,3-disulfonic acid, 1,8-dihydroxynaphthalene-3,6-disulfonic acid, 1,2-dihydroxybenzene-3,5-disulfonic acid, 4,5-dihydroxy-naphthalene-2, 7-disulfonic acid, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthrolinedisulfonic acid, 4,7-diphenyl-1,10-phenanthrolinedisulfonic acid, ethane-1,2-disulfonic acid, naphthalene-1, 5-disulfonic acid, 2- (4-nitrophenylazo)
  • the organometallic frameworks according to the invention contain pores, in particular micro and / or mesopores.
  • Micropores are defined as those having a diameter of 2 nm or smaller and mesopores are defined by a diameter in the range of 2 to 50 nm, each according to the definition as described by Pure Applied Chem. 57 (1985), pages 603-619, in particular on page 606.
  • the presence of micro- and / or mesopores can be checked by means of sorption measurements, these measurements determining the uptake capacity of the organometallic frameworks for nitrogen at 77 Kelvin according to DIN 66131 and / or DIN 66134.
  • the specific surface area - calculated according to the Langmuir model (DIN 66131, 66134) - for a MOF in powder form at more than 5 m 2 / g, more preferably more than 10 m 2 / g, more preferably more than 50 m 2 / g, even more preferably more than 500 m 2 / g, even more preferably more than 1000 m 2 / g.
  • Shaped bodies of organometallic frameworks may have a lower specific surface area; but preferably more than 10 m 2 / g, more preferably more than 50 m 2 / g, even more preferably more than 500 m 2 / g.
  • the pore size of the porous organometallic framework can be controlled by choice of the appropriate ligand and / or the at least bidentate organic compound. Generally, the larger the organic compound, the larger the pore size.
  • the pore size is preferably from 0.2 nm to 30 nm, more preferably the pore size is in the range from 0.3 nm to 3 nm, based on the crystalline material.
  • pores also occur whose size distribution can vary.
  • more than 50% of the total pore volume, in particular more than 75%, of pores having a pore diameter of up to 1000 nm is formed.
  • a majority of the pore volume is formed by pores of two diameter ranges. It is therefore further preferred if more than 25% of the total pore volume, in particular more than 50% of the total pore volume, is formed by pores which are in a diameter range of 100 nm to 800 nm and if more than 15% of the total pore volume, in particular more than 25% of the total pore volume is formed by pores in a diameter range of up to 10 nm.
  • the pore distribution can be determined by means of mercury porosimetry.
  • the organometallic framework material can be present in powder form or as an agglomerate.
  • the framework material may be used as such or it may be converted into a shaped body.
  • a further aspect of the present invention is a shaped body, containing the organometallic framework according to the invention.
  • the framework material may include other materials such as binders, lubricants, or other additives added during manufacture. It is likewise conceivable that the framework material has further constituents, such as, for example, absorbents, such as activated carbon or the like.
  • absorbents such as activated carbon or the like.
  • pellets such as disc-shaped pellets, pills, spheres, granules, extrudates such as strands, honeycomb, mesh or hollow body may be mentioned.
  • suitable method such as extruding; Optional washing and / or drying and / or calcination of the extrudate; Optional assembly.
  • Tabletting together with at least one binder and / or other excipient are provided.
  • the framework material can then be further processed according to the method described above to give a shaped body.
  • Kneading / mulling and shaping can be carried out according to any suitable method, as described, for example, in Ullmanns Enzyklopadie der Technischen Chemie, 4th edition, volume 2, p. 313 et seq. (1972).
  • the kneading / hulling and / or shaping by means of a reciprocating press, roller press in the presence or absence of at least one binder material, compounding, pelleting, tableting, extrusion, co-extruding, foaming, spinning, coating, granulation, preferably spray granulation, spraying, spray drying or a combination of two or more of these methods.
  • Kneading and / or molding may be carried out at elevated temperatures such as, for example, in the range of room temperature to 300 ° C and / or elevated pressure such as in the range of normal pressure up to a few hundred bar and / or in a protective gas atmosphere such as in the presence of at least one Noble gas, nitrogen or a mixture of two or more thereof.
  • binders may be both viscosity-increasing and viscosity-reducing compounds.
  • Preferred binders include, for example, alumina or alumina-containing binders such as those described in WO 94/29408, silica such as described in EP 0 592 050 A1, mixtures of silica and alumina, such as those described in U.S.
  • clay minerals as described, for example, in JP 03-037156 A, for example montmorillonite, kaolin, bentonite, halloysite, dickite, nacrit and anauxite, alkoxysilanes, as described for example in EP 0 102 544 B1, for example tetraalkoxysilanes such as, for example, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane or, for example, trialkoxysilanes such as trimethoxysilane, triethoxysilane, tripropoxysilane, tributoxysilane, alkoxytitanates, for example tetraalkoxytitanates such as tetramethoxytitanate, tetraethoxytitanate, tetrapropoxytitanate, tetrabut
  • an organic compound and / or a hydrophilic polymer such as cellulose or a CeIIU losederivat such as methylcellulose and / or a polyacrylate and / or a polymethacrylate and / or a polyvinyl alcohol and / or a polyvinylpyrrolidone and / or a polyisobutene and / or a polytetrahydrofuran and / or a polyethylene oxide are used.
  • a pasting agent inter alia, preferably water or at least one alcohol such as a monoalcohol having 1 to 4 carbon atoms such as methanol, ethanol, n-propanol, iso-propanol, 1-butanol, 2-butanol, 2-methyl-1 - propanol or 2-methyl-2-propanol or a mixture of water and at least one of said alcohols or a polyhydric alcohol such as a glycol, preferably a water-miscible polyhydric alcohol, alone or in admixture with water and / or at least one of said monohydric alcohols are used.
  • a monoalcohol having 1 to 4 carbon atoms such as methanol, ethanol, n-propanol, iso-propanol, 1-butanol, 2-butanol, 2-methyl-1 - propanol or 2-methyl-2-propanol or a mixture of water and at least one of said alcohols or a polyhydric alcohol such as a glyco
  • the order of the additives is basically not critical.
  • the molding obtained according to kneading and / or molding is subjected to at least one drying, generally at a temperature in the range of 25 to 500 ° C, preferably in the range of 50 to 500 ° C and more preferably in the range of 100 to 350 ° C is performed. It is also possible to dry in vacuo or under a protective gas atmosphere or by spray drying.
  • At least one of the compounds added as additives is at least partially removed from the shaped body.
  • Another object of the present invention is a method for producing a porous organometallic framework according to the invention, comprising the step
  • the zirconium compound is preferably an alcoholate, acetonate, halide, sulfide, the salt of an organic or inorganic oxygen-containing acid, or a mixture thereof.
  • An alcoholate is, for example, a methoxide, ethanolate, n-propoxide, i-propanolate, n-butoxide, i-butoxide, t-butoxide or phenolate.
  • An acetonate is, for example, acetylacetonate.
  • a halide is, for example, chloride, bromide or iodide.
  • An organic, oxygen-containing acid is, for example, formic acid, acetic acid, propionic acid or other alkyl monocarboxylic acids.
  • An inorganic, oxygen-containing acid is, for example, sulfuric acid, sulfurous acid, phosphoric acid or nitric acid.
  • the zirconium preferably occurs as a Zr 4+ or ZrO 2+ cation.
  • zirconium compounds are zirconium tetraisobutoxide, zirconium tetra-n-butoxide, zirconium acetate, zirconium chloride, zirconium oxychloride, zirconium sulfate, zirconium phosphate, zirconium oxynitrate, zirconium hydrogensulfate.
  • the zirconium compound is an inorganic zirconium salt.
  • the reaction in the process according to the invention is preferably carried out in the presence of a nonaqueous solvent.
  • the reaction is preferably carried out at a pressure of at most 2 bar (absolute). However, the pressure is preferably at most 1230 mbar (absolute). Most preferably, the reaction takes place at atmospheric pressure. However, this may result in slight overpressure or underpressure due to the apparatus. Therefore, in the context of the present invention, the term "atmospheric pressure" is to be understood as the pressure range which results from the actual atmospheric pressure of ⁇ 150 mbar.
  • the reaction can be carried out at room temperature. Preferably, however, this takes place at temperatures above room temperature. Preferably the temperature exceeds 100 ° C. Further preferably, the temperature is at most 180 ° C, and more preferably at most 150 ° C.
  • the organometallic frameworks described above are carried out in water as a solvent with the addition of another base.
  • another base This serves in particular to the fact that when using a polybasic carboxylic acid as at least bidentate organic compound, this is readily soluble in water.
  • the preferred use of the nonaqueous organic solvent does not require the use of such a base.
  • the solvent for the process according to the invention can be chosen such that it reacts basicly as such, but this does not necessarily have to be for carrying out the process according to the invention.
  • a base can be used. However, it is preferred that no additional base is used.
  • reaction can take place with stirring, which is also advantageous in a scale-up.
  • the non-aqueous organic solvent is preferably a Ci -6 alkanol, dimethyl sulfoxide (DMSO), N, N-dimethylformamide (DMF), N, N-diethylformamide (DEF), acetonitrile, toluene, dioxane, benzene, Chlorobenzene, methyl ethyl ketone (MEK), pyridine, tetrahydrofuran (THF), ethyl acetate, optionally halogenated Ci_ 2 oo alkane, sulfolane, glycol, N-methylpyrrolidone (NMP), gamma-butyrolactone, alicyclic alcohols such as cyclohexanol, ketones, such as acetone or acetylacetone, cycloketones, such as cyclohexanone, sulfolene or mixtures thereof.
  • DMSO dimethyl sulfoxide
  • a d- 6- alkanol refers to an alcohol having 1 to 6 carbon atoms. Examples of these are methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, t-butanol, pentanol, hexanol and mixtures thereof.
  • Ci -2 oo-alkane is an alkane having 1 to 200 carbon atoms in which one or more can be up to all hydrogen atoms substituted by halogen, preferably chlorine or fluorine, in particular chlorine, or replaced can.
  • halogen preferably chlorine or fluorine, in particular chlorine, or replaced can. Examples of these are chloroform, dichloromethane, carbon tetrachloride, dichloroethane, hexane, heptane, octane and mixtures thereof.
  • non-aqueous preferably refers to a solvent having a maximum water content of 10% by weight, more preferably 5% by weight, even more preferably 1% by weight, further preferably 0.1% by weight. , particularly preferably 0.01 wt .-% based on the total weight of the solvent does not exceed.
  • the maximum water content during the reaction is 10% by weight, more preferably 5% by weight, and still more preferably 1% by weight.
  • solvent refers to pure solvents as well as mixtures of different solvents.
  • the process step of reacting the at least one metal compound with the at least one at least bidentate organic compound is followed by a calcination step.
  • the temperature set here is typically more than 250 ° C, preferably 300 to 400 ° C.
  • the at least bidentate organic compound present in the pores can be removed.
  • the removal of the at least bidentate organic compound (ligand) from the pores of the porous organometallic framework material by the treatment of the resulting framework material with a non-aqueous solvent can be carried out.
  • the ligand is removed in a kind of "extraction process” and optionally replaced in the framework by a solvent molecule. This gentle method is particularly suitable when the ligand is a high-boiling compound.
  • the treatment is preferably at least 30 minutes and may typically be carried out for up to 2 days. This can be done at room temperature or elevated temperature. This is preferably carried out at elevated temperature, for example at at least 40 ° C., preferably 60 ° C. Further preferably, the extraction takes place at the boiling point of the solvent used instead (under reflux).
  • the treatment can be carried out in a simple boiler by slurrying and stirring the framework material. It is also possible to use extraction apparatuses such as Soxhlet apparatuses, in particular technical extraction apparatuses.
  • Suitable solvents are any of the above, so as examples game Ci -6 alkanol, dimethyl sulfoxide (DMSO), N, N-dimethylformamide (DMF), N, N-diethylformamide (DEF), acetonitrile, toluene, dioxane, benzene, chlorobenzene, methyl ethyl ketone (MEK), pyridine, tetrahydrofuran (THF), ethyl acetate, optionally halogenated Ci_ 2 oo-alkane, sulfolane, glycol, N-methylpyrrolidone (NMP), gamma-butyrolactone, alicyclic alcohols such as cyclohexanol, ketones such as acetone or acetylacetone, cycloketones such as cyclohexanone or mixtures thereof.
  • DMSO dimethyl sulfoxide
  • DMF N-dimethylformamide
  • a most preferred extraction solvent is methanol.
  • the solvent used for the extraction may be the same as or different from that for the reaction of the at least one metal compound with the at least one at least bidentate organic compound.
  • Another object of the present invention is the use of a porous organometallic framework according to the invention for receiving at least one substance, for its storage, separation, controlled release or chemical reaction and as a carrier or precursor material for producing a corresponding metal oxide.
  • porous organometallic framework according to the invention is used for storage, this is preferably carried out in a temperature range from -200 ° C to +80 ° C. More preferred is a temperature range of -40 ° C to + 80 ° C.
  • the at least one substance may be a gas or a liquid.
  • the substance is a gas.
  • gas and liquid are used in a simplified manner, but here too gas mixtures and liquid mixtures or liquid solutions are to be understood by the term “gas” or "liquid”.
  • Preferred gases are hydrogen, natural gas, town gas, saturated hydrocarbons, in particular methane, ethane, propane, n-butane and i-butane, unsaturated hydrocarbons, in particular ethene and propene, carbon monoxide, carbon dioxide, nitrogen oxides, oxygen, sulfur oxides, halogens, halide hydrocarbons, NF 3 , SF 6 , ammonia, boranes, phosphines, hydrogen sulfide, amines, formaldehyde, noble gases, in particular helium, neon, argon, krypton and xenon.
  • the at least one substance may also be a liquid.
  • liquids examples include disinfectants, inorganic or organic solvents, fuels - especially gasoline or diesel -, hydraulic, radiator, brake fluid or an oil, especially machine oil.
  • the liquid may be halogenated aliphatic or aromatic, cyclic or acyclic hydrocarbons or mixtures thereof.
  • the at least one substance may be an odorant.
  • the odorant is a volatile organic or inorganic compound containing at least one of nitrogen, phosphorus, oxygen, sulfur, fluorine, chlorine, bromine or iodine or an unsaturated or aromatic hydrocarbon or a saturated or unsaturated aldehyde or a Ketone is. More preferred elements are nitrogen, oxygen, phosphorus, sulfur, chlorine, bromine; especially preferred are nitrogen, oxygen, phosphorus and sulfur.
  • the odorant is ammonia, hydrogen sulfide, sulfur oxides, nitrogen oxides, ozone, cyclic or acyclic amines, thiols, thioethers and aldehydes, ketones, esters, ethers, acids or alcohols.
  • ammonia hydrogen sulphide
  • organic acids preferably acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, caproic acid, heptanoic acid, lauric acid, pelargonic acid
  • cyclic or acyclic hydrocarbons which contain nitrogen or sulfur and saturated or unsaturated Aldehydes, such as hexanal, heptanal, octanal, nonanal, decanal, octenal or notenal, and in particular volatile aldehydes such as butyraldehyde, propionaldehyde, acetaldehyde and formaldehyde, and furthermore fuels such as gasoline, diesel (constituents).
  • organic acids preferably acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, caproic acid, heptanoic acid, lauric acid,
  • the odorous substances may also be fragrances which are used, for example, for the production of perfumes.
  • fragrances or oils which release such fragrances include: essential oils, basil oil, geranium oil, mint oil, cananga oil, cardamom oil, lavender oil, peppermint oil, nutmeg oil, chamomile oil, eucalyptus oil, rosemary oil, lemon oil, lime oil, orange oil, bergamot oil , Muscat sage oil, coriander oil, cypress oil, 1, 1-dimethoxy-2-pherylethane, 2,4-dimethyl-4-phenyltetrahydrofuran, dimethyltetrahydrobenzaldehyde, 2,6-dimethyl-7-octene-2-ol, 1, 2-diethoxy 3,7-dimethyl-2,6-octadiene, phenylacetaldehyde, rose oxide, ethyl 2-methyl-pentanoate, 1- (2,6,6-trimethyl-1,3
  • a volatile odorant preferably has a boiling point or boiling point range of less than 300 ° C. More preferably, the odorant is a volatile compound or mixture. Most preferably, the odorant has a boiling point or boiling range of less than 250 ° C, more preferably less than 230 ° C, most preferably less than 200 ° C.
  • odors which have a high volatility.
  • a volatile odorant preferably has a vapor pressure greater than 0.001 kPa (20 ° C). More preferably, the odorant is a volatile compound or mixture. Most preferably, the odorant has a vapor pressure of greater than 0.01 kPa (20 ° C), more preferably a vapor pressure greater than 0.05 kPa (20 ° C). Most preferably, the odors have a vapor pressure of greater than 0.1 kPa (20 ° C).
  • porous organometallic frameworks of the invention can be used to prepare a corresponding metal oxide.
  • This zirconia and mixed oxides with zirconium and other metals are possible. Examples
  • the material has 26.4% by weight of Zr, 32.8% by weight of C, 37.5% by weight of O, 2.7% by weight of H and traces of Cl and N.
  • This composition indicates the formation of a Zr-organic compound.
  • 1 shows the associated X-ray diffractogram (XRD), where I indicates the intensity (Lin (counts)) and 2 ⁇ describes the 2-theta scale.
  • the pore structure is shown in FIG.
  • the pore volume V (ccm / g) is shown as a function of the pore diameter d (nm).
  • the surface area is determined to be 836 m 2 / g by means of N 2 sorption (Langmuir model).
  • the pore volume is 0.5 ml / g.
  • Both the XRD and the pore structure indicate the actual formation of a porous MOF structure.
  • the material has 26.0% by weight Zr, 34.1% by weight C, 36.7% by weight O, 2.6% by weight H and small amounts of N (traces of solvent) ,
  • the surface area is determined to be 546 m 2 / g by means of N 2 sorption (Langmuir model).
  • Example 4 Hydrogen uptake on the framework of Example 1
  • the measurement is carried out on a commercially available device of the company Quantachrome with the designation Autosorb-1.
  • the measurement temperature was 77.4 K.
  • the samples were each pretreated for 4 h at room temperature before the measurement and then for a further 4 h at 200 ° C in vacuo.
  • the obtained curve is shown in FIG.
  • the H 2 uptake in m 2 / g MOF (V) is shown as a function of the pressure p / po.
  • the zirconium terephthalic acid MOF from Example 1 is calcined at 500 ° C. for 48 h.
  • the product is a zirconia with an N 2 surface area of 61 m 2 / g (Langmuir).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pyridine Compounds (AREA)
EP07728169A 2006-04-18 2007-04-17 Metallorganische gerüstmaterialien aus zirkonium Withdrawn EP2010546A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07728169A EP2010546A1 (de) 2006-04-18 2007-04-17 Metallorganische gerüstmaterialien aus zirkonium

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06112714 2006-04-18
EP07728169A EP2010546A1 (de) 2006-04-18 2007-04-17 Metallorganische gerüstmaterialien aus zirkonium
PCT/EP2007/053704 WO2007118874A1 (de) 2006-04-18 2007-04-17 Metallorganische gerüstmaterialien aus zirkonium

Publications (1)

Publication Number Publication Date
EP2010546A1 true EP2010546A1 (de) 2009-01-07

Family

ID=38235424

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07728169A Withdrawn EP2010546A1 (de) 2006-04-18 2007-04-17 Metallorganische gerüstmaterialien aus zirkonium

Country Status (7)

Country Link
US (1) US20090281341A1 (es)
EP (1) EP2010546A1 (es)
KR (1) KR20090009849A (es)
CN (1) CN101426798A (es)
CA (1) CA2648222A1 (es)
MX (1) MX2008013256A (es)
WO (1) WO2007118874A1 (es)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100133280A1 (en) * 2007-04-05 2010-06-03 Basf Se Gas pressure vessel comprising a mixture comprising a metal organic framework and also a latent heat store
ES2397231T3 (es) * 2007-04-24 2013-03-05 Basf Se Materiales estructurales organometálicos, con una estructura hexagonal y trigonal, basados en aluminio, hierro o cromo, así como un ácido dicarboxílico
US8313559B2 (en) * 2007-05-21 2012-11-20 Basf Se Aluminum aminocarboxylates as porous metal organic frameworks
CA2693761A1 (en) * 2007-07-10 2009-01-15 Markus Schubert Process for the separation of unbranched hydrocarbons from their branched isomers
CN101925392A (zh) * 2008-01-24 2010-12-22 巴斯夫欧洲公司 作为干燥剂的多孔金属有机骨架材料
ES2327596B1 (es) * 2008-04-29 2010-08-10 Consejo Superior De Investigaciones Cientificas (Csic) 33.33% Sistema metalorganico util para el encapsulamento y liberacion de compuestos de interes, procedimiento de obtencion y sus aplicaciones.
GB0807862D0 (en) 2008-04-29 2008-06-04 Uni I Oslo Compounds
US8425662B2 (en) 2010-04-02 2013-04-23 Battelle Memorial Institute Methods for associating or dissociating guest materials with a metal organic framework, systems for associating or dissociating guest materials within a series of metal organic frameworks, and gas separation assemblies
EP2716360B9 (en) 2011-06-01 2019-03-27 Korea Research Institute of Chemical Technology Method for preparing porous organic-inorganic hybrid materials
US9266907B2 (en) 2013-09-05 2016-02-23 King Abdullah University Of Science And Technology Tunable rare-earth fcu-metal-organic frameworks
EP3943188A3 (en) 2014-05-26 2022-04-13 King Abdullah University of Science and Technology Design, synthesis and characterization of metal organic frameworks
CN104892656A (zh) * 2015-06-16 2015-09-09 广东工业大学 一种金属有机骨架材料及其合成方法
KR101676428B1 (ko) * 2015-11-16 2016-11-16 울산과학기술원 단일 결정성 중공 금속-유기 골격체의 제조 방법
CN105777791B (zh) * 2016-03-17 2018-08-17 李亚丰 一种锆基微孔配位聚合物的制备方法
JP6638685B2 (ja) * 2017-03-31 2020-01-29 トヨタ自動車株式会社 金属有機構造体とその製造方法
KR101911173B1 (ko) * 2017-04-13 2018-10-24 국방과학연구소 4b족 원소를 포함하는 금속-유기 복합체의 제조방법
CN107185313A (zh) * 2017-06-14 2017-09-22 昆山瑞程新美新材料有限公司 消除机动车辆内部空气污染物的材料和装置
CN107446136B (zh) * 2017-06-21 2020-04-03 浙江大学 一种高稳定性纳米级锆基金属有机框架材料及其制备方法和应用
CN107400243B (zh) * 2017-08-08 2020-05-08 长春市梅丰科技有限公司 锆基微孔配位聚合物的制备方法
EP4126342A4 (en) 2020-03-31 2024-08-21 Numat Tech Inc MODIFIED ORGANICMETALLIC FRAMEWORK COMPOSITIONS, METHODS OF PREPARATION AND METHODS OF USE THEREOF
JP2023519685A (ja) 2020-03-31 2023-05-12 ヌマット テクノロジーズ,インコーポレイテッド 活性化アミノ含有金属有機構造体(mof)組成物、その製造方法および使用方法
CN114478970B (zh) * 2020-10-26 2023-11-03 中国科学院大连化学物理研究所 一种共价有机骨架材料的前驱体组合物及其应用
CN115671641B (zh) * 2022-10-27 2023-10-20 国网浙江省电力有限公司湖州供电公司 一种应用于电化学储能系统的高汽化热多孔灭火介质及其制备方法
CN116284830A (zh) * 2023-04-06 2023-06-23 福州大学 一种锆基金属有机框架材料及其在催化开环共聚中的应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6491740B1 (en) * 1999-07-22 2002-12-10 The Boc Group, Inc. Metallo-organic polymers for gas separation and purification
KR20090033172A (ko) * 2006-04-18 2009-04-01 바스프 에스이 Ⅳ 아족의 금속을 함유하는 금속-유기 골격 물질의 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007118874A1 *

Also Published As

Publication number Publication date
US20090281341A1 (en) 2009-11-12
WO2007118874A1 (de) 2007-10-25
KR20090009849A (ko) 2009-01-23
CA2648222A1 (en) 2007-10-25
CN101426798A (zh) 2009-05-06
MX2008013256A (es) 2008-10-29

Similar Documents

Publication Publication Date Title
WO2007118874A1 (de) Metallorganische gerüstmaterialien aus zirkonium
EP1922299B1 (de) Verfahren zur herstellung von metallorganischen gerüstmaterialien hauptgruppen metallionen enthaltend
WO2007118888A1 (de) Verfahren zur herstellung metallorganischer gerüstmaterialien mit metallen der iv. nebengruppe
EP2004589B1 (de) Verfahren zur herstellung poröser metallorganischer gerüstmaterialien
EP1785428B1 (de) Dotierte metallorganische Gerüstmaterialien
EP1954395A1 (de) Metallorganische gerüstmaterialien der iii. nebengruppe
EP1984378B1 (de) Verfahren zur herstellung poröser organischer gerüstmaterialien
EP2155390A2 (de) Metallorganische gerüstmaterialien mit hexagonal-trigonaler struktur basierend auf aluminium, eisen oder chrom, sowie einer dicarbonsäure
EP2242557B1 (de) Poröse metallorganische gerüstmaterialien als trockenmittel
EP2142297A1 (de) Mit katalysator-metallkomponenten beladene poröse metallorganische gerüstmaterialien
DE102005022844A1 (de) Abtrennung von Geruchsstoffen aus Gasen
EP2089157B1 (de) Magnesiumbutylisophthalat als poröses metallorganisches gerüstmaterial
DE102005000938A1 (de) Adsorptive Gewinnung von Xenon aus Krypton-Xenon Gasgemischten
DE102005060364A1 (de) Sauer funktionalisierte metallorganische Gerüstmaterialien
EP1702925A1 (de) Flüssigkeitsabsorption durch metallorganische Gerüstmaterialien
WO2008000694A2 (de) Speicherung von acetylenhaltigen gasen mit hilfe von metallorganischen gerüstmaterialien

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20090522