EP1999759B1 - Method and apparatus for final storage and safe operation of nuclear power stations - Google Patents

Method and apparatus for final storage and safe operation of nuclear power stations Download PDF

Info

Publication number
EP1999759B1
EP1999759B1 EP07723561A EP07723561A EP1999759B1 EP 1999759 B1 EP1999759 B1 EP 1999759B1 EP 07723561 A EP07723561 A EP 07723561A EP 07723561 A EP07723561 A EP 07723561A EP 1999759 B1 EP1999759 B1 EP 1999759B1
Authority
EP
European Patent Office
Prior art keywords
borehole
shaft
final
repository
rock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07723561A
Other languages
German (de)
French (fr)
Other versions
EP1999759A2 (en
Inventor
Werner Foppe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1999759A2 publication Critical patent/EP1999759A2/en
Application granted granted Critical
Publication of EP1999759B1 publication Critical patent/EP1999759B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/20Disposal of liquid waste
    • G21F9/24Disposal of liquid waste by storage in the ground; by storage under water, e.g. in ocean
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/34Disposal of solid waste

Definitions

  • the invention relates to a method for creating a secure repository in a well bore created by melt drilling, which has a solidified by melted metallic Borlochverschalung.
  • the invention further relates to a device for creating secure repository comprising at least one wellbore with a metal casing of a cast.
  • the invention is intended in particular for the disposal of highly radioactive and / or highly toxic material, but is also suitable for the storage of any other materials.
  • the invention also relates to devices as a safe and cost-effective repository for low and medium-active materials a bomb-proof connection and transport system between reactor or intermediate storage and repository shaft.
  • the invention also relates to devices for the controlled control of a reactor Gaus with meltdown and automated direct disposal of the leaked meltdown.
  • the sinking of well shafts in particular so-called super deep well wells with consistently large borehole diameters to the drilling target and in particular at depths up to 20 km or even more, for example, from the publication EP 1 157 187 B1 the same applicant.
  • the method described here can preferably be used to create a wellbore by melt drilling and thereby to provide the wellbore with a seamless Borlochverschalung, in particular made of metal.
  • a metal or a metal mixture is supplied as a drilling medium through conduit elements to be removed by melting borehole bottom, the spoil melt pressed into the particular torn by temperature and pressure environmental rocks and created during drilling by solidifying molten metal a Metalllochlochverschalung ,
  • the particular pure molten metal emerging from the lowermost conduit element of the metal melting drill rig above the borehole bottom can be guided between the outside of the molten metal boring plant, in particular its lowest conduit element and the borehole inner wall, and solidify there.
  • more conduit elements can be attached to the previous element to continuously drill the hole.
  • line elements especially in the hot area, such graphite can be used. It can be provided that line elements, in particular in the upper cooled area can work as a magnetic slider, in particular controlled on the metal Borlochverschalung, slide along and preferably both holding forces horizontal and shear forces can exert downward and upward.
  • the introduction of melted holes is preferably carried out by this known method, but other methods can be used, provided that they are suitable for creating a borehole casing, in particular from a single casting.
  • Irresponsible procedural proposals such as sinking in deep-sea trenches or shooting to the moon or into space are already prohibited for security reasons and are not up for discussion.
  • German repository concept is tailored to salt as a host rock, at least until the beginning of the current moratorium for the Gorleben salt dome, which will run until 2010 at the latest and should be used to search for a 'best possible repository' in different host rocks.
  • the objective is to have a ready-to-use repository by 2030, whereby it is assumed that all nuclear waste generated by 2080 will be housed in a repository after the decision to phase out the nuclear power plant.
  • the invention has for its object to overcome these disadvantages and to meet the demand for a 'best possible repository'.
  • the invention is further based on the object to provide a method and a device that provide a safe and cost-effective disposal directly on site and are equally usable in all countries and in particular also still offer the possibility in the case of blowing through a reactor, the reactor structure so to control, without a burden on the environment occurs.
  • the object is further achieved in that in a repository at least one lower wellbore section of a interconnected wellbore after filling of repository material, especially in the subcritical state, separated from the rest of the wellbin / disconnected to by self-heat generation and / or rock pressure and / or own weight Gravity effect and / or molten rock formation to sink towards the center of the earth, the well casing of the used as a repository lower well shaft section outside at least substantially forms a conical shape, in which the wall thickness of the casing decreases from bottom to top.
  • molten metal drilling method offers the molten metal drilling method according to EP 1 157 187 B1 a technically feasible drilling method that can be used to rapidly and cost-effectively produce production-ready super deep wells with large, well-defined wellbore diameters down to a depth of 20 km or more in a continuous meltboring process.
  • a seamless die-cast well casing is simultaneously created from acting as a drilling medium molten metal, which serves the magnetic slider as 'reaction rail' and driving tube.
  • These die-casting interconnect wellbores they are produced by this or another method, are used according to the invention as a repository.
  • the hole is created to a depth in which the rock is present in ductile form and in particular already form partial melts whose formation is further enhanced by the self-heat generation of the stored, heat-producing highly radioactive material or in particular under the predetermined temperature and pressure conditions in the hot deep rock, the rock crystals move against a free, solid and especially heavy metal body, on which the gravity of the earth acts stronger than on the surrounding, lighter surrounding rock.
  • this can advantageously an accelerated emigration of a separated lower wellbore section, which serves as a repository segment effect.
  • the emigration speed of the entire separated lower borehole shaft section / final repository segment is favored according to the invention in that its outer contour is shaped conically widened downwards, whereby the enormous lateral pressure forces become the vertical thrust force.
  • This erfindunstraunbe emigration of the repository segment in the form of a heavy metal body can additionally experience an acceleration by friction reduction due to the increased internal temperature by means of radioactive residual heat generation and / or by a fluid accumulation in the boundary region metal shell / plutonic rock, especially since these fluids under the prevailing temperature and pressure conditions can be supercritical and therefore their friction value drastically reduced.
  • the highly radioactive material deposited in the shaft deepest can be filled with a medium, for example with liquid lead as moderator and / or heat and / or pressure compensation medium, or the material to be end loaded can be filled.
  • a bottommost well section filled in this way can be used as a repository segment according to the invention above the filling of the remaining well shaft by melting down the well casing, in particular the metal casing, e.g. be separated in a range of a few meters and migrates as a whole from the hot plutonic rock in the direction of the center of the earth, especially under self-heat generation and high weight.
  • At least one well for example a 20 km deep wellbore (10) is drilled according to the described molten metal drilling method.
  • An upper major portion e.g. more than three-quarters of the well bore thus created, in particular having a constant diameter throughout, e.g. of preferably more than 0.5 meters, is provided with a well casing, in particular cast-metal thick-walled metal casing, preferably good magnetic permeability, and can be used as a disposal well according to the invention for placing material to be stored in a lower, smaller section, e.g. less than a quarter of the well shaft.
  • a well casing in particular cast-metal thick-walled metal casing, preferably good magnetic permeability
  • the lower wellbore portion particularly the lower quarter or less than a final disposal segment (1) e.g. for highly radioactive and / or heat-generating materials or other material.
  • This wellbore section may preferably be arranged in a ductile rock region or in the region of supercritical fluid conditions.
  • an overlying portion of the wellbore as a repository for other material, e.g. for low and medium radioactive material, e.g. incurred during the dismantling of a nuclear power plant or other nuclear installation.
  • the lower section used as a repository segment (1) in the production of the wellbore (10) in the region of the cast metal casing is designed such that the wall thickness in the lower region is greater than in the upper region, for example 0.25 m starts and above with 0 , 05 m ends.
  • the repository segment (1) can be separated according to the invention as a whole after filling with endzulagernden material and / or segmentally from the rest of the wellbore, the separation of the respective segment of the remaining well can advantageously be done by melting a shaft wall region (4), in particular by radiation energy, which can advantageously come from a laser or a graphite emitter, which can be driven up and down via a magnetic glide device (14) in the wellbore.
  • the separation according to the invention by melting down a well shaft section directly above the end bearing, e.g. filled with highly radioactive material and preferably molded with, for example, liquid lead Endlagersegments (1) can be preferably carried out so that at the same time for secure closure of the separated Endlagersegments (1) by the resulting molten metal leads, which settles above the Endlagersegmentes and form a metal lid closure (5) can and / or floats directly on the liquid lead and forms a solid metal closure with the remainder of the final storage segment formwork.
  • the remaining shuttering-free Abschmelz Scheme (4) in the well can if necessary. Up to a residual area for a new shaft segment tip (3) with a material (eg Borax) are filled, which promotes the self-burial by emigration from the hot storage rock.
  • a material eg Borax
  • the residual well which is open after separation can be closed with a cast metal filling which serves as a new well segment tip (3) and which is preferred, e.g. reinforced by alloying elements, ensures the self-subsidence process.
  • the disposal device preferably comprises a system (12) safely closed to the biosphere, e.g. a transport tunnel, which connects the final storage shaft (10) to the reactor and / or intermediate storage by a, in particular automated transport device, such as a magnetic slider system.
  • a system (12) safely closed to the biosphere e.g. a transport tunnel, which connects the final storage shaft (10) to the reactor and / or intermediate storage by a, in particular automated transport device, such as a magnetic slider system.
  • the invention preferably bombproof, hermetically sealed to the outside transport tunnel (12) between the reactor and repository shaft preferably also allows the construction of a collecting and disposal facility in the case of a reactor melt (13), which greatly reduces the residual risk in the operation of nuclear power plants and significantly longer periods of Nuclear power plants allowed, thereby conveniently the 'golden end' of the production time is extended.
  • the collecting and disposal device (13) according to the invention for the case of a reactor melt can be immediately included in the construction of new nuclear reactors and thus be optimally designed.
  • a withdrawal tunnel can be built below the reactor foundation preferably, which is preferably occupied with graphite crucible and an emerging reactor melt unerringly into a deeper collecting device (15) passes, which preferably also with graphite crucible may be lined and, if necessary, additionally designed with a special crucible made of graphite so that the inflowing reactor melt can be distributed in the available graphite crucibles and can be promoted to the repository after a cooldown on the automated transport system.
  • the collecting and disposal device according to the invention for the case of a reactor melt (13) can be filled with a medium which is as inert as possible against radioactive radiation, heavier than air and lighter than the reactor melt.
  • the radiation of the collecting and disposal device (13) is preferably limited, wherein the medium can be pumped out after final storage of the reactor melt and also be stored.

Abstract

The creation of a final geological repository in the base region of super-deep bore shaft (10) by magnetically glided, directional melt drilling with cast metal encapsulation (2) for disposing highly radioactive waste material, includes subcritically disposing highly-radioactive material into the borehole shaft. The borehole shaft separates itself from the rest of the shaft after filling by producing the residual heat of the material and/or geo-pressure and/or the self-weight under gravity and/or the molten rock formation from the hot deep-seated rock migrates towards the geocentre. The creation of a final geological repository in the base region of super-deep bore shaft (10) by magnetically glided, directional melt drilling with cast metal encapsulation (2) for disposing highly radioactive waste material, includes subcritically disposing highly-radioactive material into the borehole shaft. The borehole shaft separates itself from the rest of the shaft after filling by producing the residual heat of the material and/or geo-pressure and/or the self-weight under gravity and/or the molten rock formation from the hot deep-seated rock migrates towards the geocentre. The metal encapsulation is a lower cone-shaped shaft segment, which is intended to final repository and whose wall thickness increases downwards from the top. The lateral pressure forces of the deep-seated rock cumulate themselves on the metal encapsulation of the separated cone-shaped final repository segment to downwardly directed pressure forces on the tip of the segment. The super-deep drilling shafts are bored for final disposal of wastes through self-propelled sinking directly at the nuclear power plants, intermediate storage sites and other nuclear-technology based plants. Ingot molds and nuclear fuel rods are stacked one above the other with heat-conducting intermediate spacers to be safely disposed in pressure-resistant carrier units in the borehole shaft by a magnetically-driven gliding system. Liquid lead is filled into the free spaces between the stored materials for reducing the frictional load of the carriers and serves as a heat transfer fluid and moderator for fast neutrons for increasing the heat production. A filled up drill hole section is intended to be closed with a pressure-tight lid (5). The produced residual heat from the subterraneously stored, highly radioactive material leads to an evenly distributed heating in the metal encapsulation of the shaft segment on account of the convection of heat transfer medium (9). The cast metal encapsulation of the borehole shaft above the pressure-tight closed, lower borehole segment is melted over a suitable length to form molten metal by a directional melt drilling method using a magnetically driven gliding vehicle and is separated from the rest of the shaft. The molten metal serves as additional pressure sealing of repository segment (6). On the account of the residual heat production, the own heat of the deep-seated rocks, lateral pressure of the rocks and effect of gravity on the separated final repository segment with a 2 to 3-fold higher mass density than the surrounding rock, a partial melt formation results between the surrounding geological strata and the metal encapsulation of the final repository segment. The formed partial melts act as a guided gliding system between the hot deep-seated rocks and the metal encapsulation and exhibit an accelerated migration towards the geo-center as a consequence of lateral geological pressure effect of gravity on the separated final repository segment. The formation of partial melts is intensified under the supercritical conditions of the fluid in hot deep-seated rocks by the injection of the liquid lead or weak-radioactive into the region of the final repository segment. The liquid lead dissolved in the partial melt follows or overtakes the hot final repository segment during its migration into hotter regions of the center of the earth. The melted-up drill shaft region is filled up with a suitable material. The rest portion of the drill shaft is provided with a suitable metal melt shaft segment tip. The filling of further final repository segments is restarted for a self-propelled sinking prevails. Not only the final disposal of the highly radioactive stock of a nuclear power plant but also its dismantling with direct disposal of the resulting material has to be accomplished at the same site of the super-deep drilling shaft borehole shaft, in such a manner that a bomb-proof connection has to be built from the reactor building and/or reactor, and/or intermediate storage sites to the final repository shaft acting as the disposal site, hermetically separated from the biosphere. The free spaces between the disposed medium and weak-radioactive material is filled with a material, by means of which a corrosion of the final repository segment from the inside is hindered. The top region of the super-deep borehole shaft is filled up in an air and watertight manner. A tunnel that is lined with carbon panels runs from the reactor to a deep-lying basin, which is occupied by high active waste carbon ingot molds with overflow devices and which lies in the decay region of the reactor or the intermediate storage site, so that in the event of a reactor melt, the highly-radioactive melt runs into the ingot molds and has to be disposed by the automated transport system of the final repository device, directly into the medium-filled final repository segment. An independent claim is included for a device for creating a final geological repository in the base region of super-deep bore shafts by magnetically glided, directional melt drilling.

Description

Die Erfindung betrifft ein Verfahren zur Schaffung eines sicheren Endlagers in einem durch Schmelzbohren erstellten Bohrlochschacht, der eine durch erstarrte Schmelze entstandene metallische Bohrlochverschalung aufweist. Die Erfindung betrifft weiterhin eine Vorrichtung zur Schaffung sicherer Endlager umfassend wenigstens einen Bohrschacht mit einer Metallverschalung aus einem Guss. Die Erfindung soll insbesondere zur Endlagerung von hochradioaktivem und/oder hochtoxischem Material eingesetzt werden, ist jedoch auch zur Lagerung jeglicher anderer Materialien geeignet.The invention relates to a method for creating a secure repository in a well bore created by melt drilling, which has a solidified by melted metallic Borlochverschalung. The invention further relates to a device for creating secure repository comprising at least one wellbore with a metal casing of a cast. The invention is intended in particular for the disposal of highly radioactive and / or highly toxic material, but is also suitable for the storage of any other materials.

Die Erfindung betrifft ferner auch Vorrichtungen als sichere und kostengünstige Endlager für schwach- und mittelradioaktive Materialien ein bombensicheres Verbindungs- und Transportsystem zwischen Reaktor- bzw. Zwischenlager und Endlagerschacht. Die Erfindung betrifft zudem Vorrichtungen zur kontrollierten Beherrschung eines Reaktor-Gaus mit Kernschmelze und automatisierter direkter Endlagerung der ausgetretenen Kernschmelze.The invention also relates to devices as a safe and cost-effective repository for low and medium-active materials a bomb-proof connection and transport system between reactor or intermediate storage and repository shaft. The invention also relates to devices for the controlled control of a reactor Gaus with meltdown and automated direct disposal of the leaked meltdown.

Die Niederbringung von Bohrlochschächten, insbesondere sogenannte Super-Tief-Bohrlochschächte mit gleichbleibend großen Bohrlochdurchmessern bis zum Bohrziel und insbesondere in Tiefen bis zu 20 km oder sogar mehr ist z.B. aus der Veröffentlichung EP 1 157 187 B1 derselben Anmelder bekannt. Das hier beschriebene Verfahren kann bevorzugt eingesetzt werden, um einen Bohrlochschacht durch Schmelzbohren zu erstellen und dabei den Bohrlochschacht mit einer nahtlosen Bohrlochverschalung, insbesondere aus Metall zu versehen.The sinking of well shafts, in particular so-called super deep well wells with consistently large borehole diameters to the drilling target and in particular at depths up to 20 km or even more, for example, from the publication EP 1 157 187 B1 the same applicant. The method described here can preferably be used to create a wellbore by melt drilling and thereby to provide the wellbore with a seamless Borlochverschalung, in particular made of metal.

Dafür wird eine insbesondere reine Metallschmelze, eines Metalls oder auch einer Metallmischung als Bohrmedium durch Leitungselemente dem durch Aufschmelzung abzutragenden Bohrlochgrund zugeführt, wobei die Abraumschmelze in das insbesondere durch Temperatur- und Druckeinwirkung aufgerissene Umgebungsgestein verpresst und während des Bohrens durch erstarrende Metallschmelze eine metallische Bohrlochverschalung erstellt wird.For a particular pure molten metal, a metal or a metal mixture is supplied as a drilling medium through conduit elements to be removed by melting borehole bottom, the spoil melt pressed into the particular torn by temperature and pressure environmental rocks and created during drilling by solidifying molten metal a Metalllochlochverschalung ,

Hierfür kann die aus dem untersten Leitungselement der Metallschmelzbohranlage über dem Bohrlochgrund austretende insbesondere reine Metallschmelze zwischen die Außenseite der Metallschmelzbohranlage, insbesondere deren untersten Leitungselement und die Bohrlochinnenwand geführt werden und dort erstarren. Mit Bohrfortschritt können weitere Leitungselemente am jeweils vorherigen Element befestigt werden, um so kontinuierlich die Bohrung in die Tiefe zu bringen. Als Leitungselemente, insbesondere im heißen Bereich können solche aus Graphit zu Einsatz kommen. Dabei kann es vorgesehen sein, dass Leitungselemente, insbesondere im oberen abgekühlten Bereich als Magnetgleiter arbeiten können, die an der metallischen Bohrlochverschalung, insbesondere gesteuert, entlang gleiten und bevorzugt sowohl Haltekräfte horizontal als auch Schubkräfte nach unten und oben ausüben können.For this purpose, the particular pure molten metal emerging from the lowermost conduit element of the metal melting drill rig above the borehole bottom can be guided between the outside of the molten metal boring plant, in particular its lowest conduit element and the borehole inner wall, and solidify there. As drilling progresses, more conduit elements can be attached to the previous element to continuously drill the hole. As line elements, especially in the hot area, such graphite can be used. It can be provided that line elements, in particular in the upper cooled area can work as a magnetic slider, in particular controlled on the metal Borlochverschalung, slide along and preferably both holding forces horizontal and shear forces can exert downward and upward.

Die Einbringung von Schmelzbohrungen erfolgt nur bevorzugt durch dieses bekannte Verfahren, es können aber auch andere Verfahren genutzt werden, sofern diese geeignet sind eine Bohrlochverschalung, insbesondere aus einem Guss, zu erstellen.The introduction of melted holes is preferably carried out by this known method, but other methods can be used, provided that they are suitable for creating a borehole casing, in particular from a single casting.

Die sichere Endlagerung hochradioaktiver Stoffe ist ein gesellschaftlich ernstes und weltweit immer noch ungelöstes Problem. Bisher gibt es in keinem Land ein sicheres Endlagerkonzept, obwohl für die Suche und Erprobung geeigneter EndlagerStandorte weltweit Hunderte Milliarden EURO ausgegeben wurden.The safe disposal of highly radioactive substances is a socially serious problem that is still unsolved worldwide. So far, there is no safe disposal concept in any country, even though hundreds of billions of euros have been spent on searching and testing suitable repositories worldwide.

Nach 50 Jahren hat die Kernenergie-Community mit ihrem wissenschaftlichen und wirtschaftspolitischen Potential es in keinem Land bisher geschafft, ein sicheres Endlager zur Verfügung zu stellen, obwohl das ungelöste Endlagerproblem neben dem unabweislichen Reaktorrestrisiko den Rückgang des Kernenergiemarktanteils an der Weltenergieproduktion am stärksten beeinflusst.After 50 years, the nuclear energy community with its scientific and economic potential has never been successful in any country, a sure one Although the unresolved repository problem, in addition to the irrefutable risk of reactor corrosion, has the greatest impact on the decline in the nuclear energy market share of world energy production.

Nach gegenwärtigen Endlagerkonzepten und Methoden zur Demontage von Kernkraftwerken und kerntechnischen Anlagen ist deren Demontage und die Endlagerung des sich daraus ergebenen kontaminierten Materials teuerer als der Bau der Anlagen selbst, so dass die Suche nach dem ,bestmöglichen Endlager' ein hohes Einsparpotential bei gleichzeitiger Erhöhung der Sicherheit bringen sollte.According to current disposal concepts and methods for dismantling nuclear power plants and nuclear facilities their disassembly and disposal of the resulting contaminated material is more expensive than the construction of the plants themselves, so that the search for the 'best possible repository' a high potential savings while increasing security should bring.

Unverantwortbare Verfahrensvorschläge wie Versenken in Tiefseegräben oder Schießen zum Mond oder in den Weltraum verbieten sich bereits aus Sicherheitsgründen und stehen nicht zur Diskussion.Irresponsible procedural proposals such as sinking in deep-sea trenches or shooting to the moon or into space are already prohibited for security reasons and are not up for discussion.

Fast jedes Land mit Nukleartechnik ist dabei, eigene Endlagerkonzepte und Vorrichtungen zu entwickeln oder zu bauen. Die USA arbeiten an einem Endlager im Tuff des Jucca-Gebirges nicht unweit von Las Vegas. Kanada, Schweden, Schweiz und Andere erkunden Hartgestein(Kristallin) als Endlager.Almost every country with nuclear technology is in the process of developing or building its own repository concepts and devices. The US is working on a repository in the tuff of the Jucca Mountains not far from Las Vegas. Canada, Sweden, Switzerland and others explore hard rock (crystalline) as a repository.

Die deutsche Endlagerkonzeption ist auf Salz als Wirtsgestein zugeschnitten, zumindest bis zum Beginn des gegenwärtig laufenden Moratorium für den Salzstock Gorleben, das spätestens bis zum Jahre 2010 läuft und zur Suche nach einem 'bestmöglichen Endlager' in unterschiedlichen Wirtsgesteinen genutzt werden soll.The German repository concept is tailored to salt as a host rock, at least until the beginning of the current moratorium for the Gorleben salt dome, which will run until 2010 at the latest and should be used to search for a 'best possible repository' in different host rocks.

Zielsetzung ist, bis 2030 ein einsatzfähiges Endlager zur Verfügung zu haben, wobei man davon ausgeht, das nach dem beschlossenen Kernkraftwerksausstieg alle bis 2080 anfallenden hochradioaktiven Stoffe in einem Endlager untergebracht werden.The objective is to have a ready-to-use repository by 2030, whereby it is assumed that all nuclear waste generated by 2080 will be housed in a repository after the decision to phase out the nuclear power plant.

Allen Konzepten gemeinsam in den verschiedenen Ländern ist das Auffahren eines bergwerkähnlichen Tunnelsystems als Zentrallager mit großem Fassungsvermögen in Tiefen maximal um 1000 m Tiefe, welches damit im Bereich der Biosphäre verbleibt. Die Gefahr besteht, dass über längere Zeiträume nach tektonischen Veränderungen Grundwässer, Oberflächenwässer und Tiefenwässer eindringen können und die Biosphäre verseuchen.Common to all concepts in the various countries is the approach of a mine-like tunnel system as a central warehouse with large capacity at depths of up to 1000 m depth, which thus remains in the area of the biosphere. There is a danger that groundwater, surface waters and deep waters can penetrate over long periods after tectonic changes and pollute the biosphere.

In Deutschland herrscht weitgehende Übereinstimmung unter den Verantwortlichen, dass sowohl der Salzstock , Gerieben' wie auch das Erzbergwerk ,Schacht Konrad' bei Salzgitter höchsten als Endlager für schwach- und mittelradioaktives Material in Frage kommt, das mit geschätzten 280.000 m3 auch 90% des endzulagernden radioaktiven Material bis 2080 ausmacht, wenn es beim vereinbarten Ausstieg bleibt.In Germany, there is a large degree of agreement among those responsible that both the salt dome 'grated' and the ore mine 'Schacht Konrad' At Salzgitter highest is considered as a repository for low and medium radioactive material in question, which accounts for an estimated 280,000 m 3 and 90% of the final radioactive material to 2080, if it remains at the agreed exit.

Die Suche nach dem 'bestmöglichen Endlager' in Deutschland, insbesondere für hochradioaktive Stoffe, steht damit weiter vordringlich auf der Tagesordnung und kann zudem ein Multi-Milliarden Megamarkt für die Deutsche Wirtschaft werden.The search for the 'best possible repository' in Germany, especially for high-level radioactive substances, thus remains a top priority on the agenda and can also become a multi-billion megamarket for the German economy.

Ausschlaggebend für die Option auf ein zentrales Endlager sind die hohen Explorations- und Baukosten für den Schachtbau und die unterirdischen Tunnel und Kavernen, da die Erschließungskosten damit nur einmal zu tätigen wären. Gleichzeitig sind nach den gegenwärtigen Endlagerkonzepten geeignete Standorte von der Geologie her dünn gesät.The decisive factor for the option of a central repository is the high exploration and construction costs for the shaft construction and the underground tunnels and caverns, since the development costs would therefore have to be made only once. At the same time, according to the current disposal concepts, suitable sites are few and far between.

Gegen ein zentrales Endlager sprechen die Risiken beim Transport und beim Umladen aus den Transportbehältern im Endlager sowie die hohen Transportkosten und der Widerstand der Bevölkerung gegen die Transporte und gegen den Zentralstandort, denn keiner will den langlebigen und gegebenenfalls tödlichen Müll von anderen in seiner Gegend haben.The risks of transporting and reloading from the transport containers in the repository as well as the high transport costs and the resistance of the population to the transports and to the central location speak against a central repository, because nobody wants to have the long-lived and potentially lethal waste from others in their area.

In dem Internationalen Abkommen zur Endlagerung mit der Unterzeichnung der Nuklearen Entsorgungskonvention vom 1. Oktober 1997 sind sich alle 42 Signatarstaaten einig, dass die Endlagerung hochradioaktiver, langlebiger Produkte der Kernenergie außerhalb der Biosphäre sicher in tief liegenden geologischen Formationen bei möglichst kurzen Transportwegen durchzuführen ist.In the International Agreement on Final Disposal, signed on 1 October 1997, all 42 signatory states agree that the disposal of high-activity, long-lived nuclear energy products outside the biosphere must be safely carried out in deep geological formations along the shortest possible transport routes.

Bekannte Verfahren zur Endlagerung hochradioaktiven Materials in druckfesten Vorrichtungen durch Absenkung ins Erdinnere bedienen sich der Subduktionszone, wo das eingelagerte Material mit der subduzierenden Platte im Laufe von Jahrmillionen im Erdmantel verschwindet. Eine mit gegebener Technik zu realisierende Möglichkeit der Endlagerung in Subduktionszonen war nur dort gegeben, wie z.B. in der US 5,022,788 ausgeführt, wo die Subduktionszone dicht an der Oberfläche ansteht und von der Kontinentalkruste durch Schachtbohrungen oder Tunnel zu erreichen ist, um auch nennenswerte Mengen einlagern zu können.Known methods for the disposal of highly radioactive material in pressure-resistant devices by lowering into the Earth's interior make use of the subduction zone, where the deposited material with the subducting plate disappears in the earth's mantle over millions of years. A possibility of final disposal in subduction zones to be realized with given technology was only given there, as in the US 5,022,788 carried out where the subduction zone is close to the surface and can be reached from the continental crust through well bores or tunnels to store significant quantities can.

Die Endlagerung von radioaktiven, in druckfesten und hitzebeständigen Behältern eingeschlossenes Material ist mit herkömmlicher Bohrtechnologie (KTB) und Schachtbauweise bis in eine Tiefe mit zähflüssigem Tiefengestein, wie in DE 195 28 496 C1 postuliert, technisch nicht möglich. Die benannte Kontinentale Tiefbohrung (KTB) in der Oberpfalz erreichte bei 300°C Gesteinstemperatur in 9000 m Tiefe ihr technisch und mineralgeologisch bedingtes Ende. Ab 300°C und insbesondere in Gegenwart von Wasser nimmt die Standfestigkeit des Gesteins so stark ab, dass unter dem Druck des Seitengesteins der freiliegende, unverschalte Bohrloch- bzw. Schachtbereich von der Seite einbricht. ( GEOWISSENSCHAFTEN Jahrg. 13, April 1995, Seite 151-153 )The disposal of radioactive material enclosed in pressure-resistant and heat-resistant containers is using conventional drilling technology (KTB) and Shaft construction down to a depth with viscous plutonic rock, as in DE 195 28 496 C1 postulated, technically not possible. The named Continental Deep Well (KTB) in the Upper Palatinate reached its technical and mineral-geological end at 300 ° C rock temperature at 9000 m depth. From 300 ° C and especially in the presence of water, the stability of the rock decreases so much that under the pressure of the side rock breaks the exposed, unverschalte borehole or shaft area from the side. ( GEOSCIENCES Year 13, April 1995, pages 151-153 )

Der Erfindung liegt die Aufgabe zugrunde, diese Nachteile zu beheben und der Forderung nach einem 'bestmöglichen Endlager' zu entsprechen. Der Erfindung liegt weiterhin die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung bereitzustellen, die eine sichere und kostengünstige Endlagerung direkt vor Ort bieten und in allen Ländern gleichermaßen zu nutzen sind und insbesondere darüber hinaus noch die Möglichkeit bieten, im Falle des Durchbrennens eines Reaktors den Reaktorgau so zu kontrollieren, ohne dass eine Belastung der Umwelt eintritt.The invention has for its object to overcome these disadvantages and to meet the demand for a 'best possible repository'. The invention is further based on the object to provide a method and a device that provide a safe and cost-effective disposal directly on site and are equally usable in all countries and in particular also still offer the possibility in the case of blowing through a reactor, the reactor structure so to control, without a burden on the environment occurs.

Diese Aufgabe wird erfindungsgemäß durch ein Verfahren gelöst, bei dem endzulagerndes, insbesondere unterkritisches hochradioaktives Material, in einem unteren Bereich des verschalten Bohrlochschachtes deponiert wird, dieser untere Bereich nach Abfüllung vom Restschacht separiert wird und dieser untere Bereich selbsttätig in Richtung Erdmittelpunkt auswandert, wobei die Wandstärke der metallischen Bohrlochverschalung mindestens eines als Endlager bestimmten unteren Bohrlochschachtabschnitts derart ausgeführt wird, dass sie von oben nach unten zunimmt, so dass sich ein von unten nach oben im Wesentlichen konusförmig verjüngender unterer Bohrlochschachtabschnitt ergibt.This object is achieved by a method in which endzulagerndes, especially subcritical hochradioaktivives material is deposited in a lower portion of the interconnected wellbore, this lower area is separated after filling from the rest of shaft and this lower area automatically emigrates towards the center of the earth, the wall thickness the metallic well casing of at least one designated as a repository lower wellbill section is performed such that it increases from top to bottom, so that there is a bottom-up substantially conically tapered lower wellbore section.

Die Aufgabe wird weiterhin dadurch gelöst, dass in einer Endlagervorrichtung mindestens ein unterer Bohrlochschachtabschnitt eines verschalten Bohrlochschachtes nach Abfüllen von Endlagermaterial, insbesondere in unterkritischem Zustand, vom Rest des Bohrlochschachts abtrennbar/abgetrennt ist, um sich durch Eigenwärmeerzeugung und/oder Gebirgsdruck und/oder Eigengewicht unter Schwerkraftwirkung und/oder Gesteinsschmelzebildung in Richtung Erdmittelpunkt zu versenken, wobei die Bohrlochverschalung des als Endlager genutzten unteren Bohrlochschachtabschnitts außen zumindest im Wesentlichen eine Kegelform bildet, bei der die Wandstärke der Verschalung von unten nach oben abnimmt.The object is further achieved in that in a repository at least one lower wellbore section of a interconnected wellbore after filling of repository material, especially in the subcritical state, separated from the rest of the wellbin / disconnected to by self-heat generation and / or rock pressure and / or own weight Gravity effect and / or molten rock formation to sink towards the center of the earth, the well casing of the used as a repository lower well shaft section outside at least substantially forms a conical shape, in which the wall thickness of the casing decreases from bottom to top.

Wie eingangs erwähnt bietet das Metallschmelze-Bohrverfahren gemäß EP 1 157 187 B1 ein technisch umsetzbares Bohrverfahren, mit dem in einem kontinuierlichen Schmelzbohrprozess, schnell und kostengünstig produktionsfertige Super-Tiefbohrungen mit großem, maßhaltigen Bohrlochdurchmesser bis in Tiefen von 20 km oder mehr erstellbar sind. Beim kontinuierlichen Vortrieb der Schmelzbohranlage, insbesondere durch Magnetgleiter, wird gleichzeitig aus der als Bohrmedium fungierenden Metallschmelze eine nahtlose Druckguss-Bohrlochverschalung erstellt, die dem Magnetgleiter als ,Reaktionsschiene' und Fahrröhre dient. Diese Druckguss verschalten Bohrlochschächte, seien sie durch dieses oder ein anderen Verfahren hergestellt, werden erfindungsgemäß als Endlager genutzt.As mentioned above, offers the molten metal drilling method according to EP 1 157 187 B1 a technically feasible drilling method that can be used to rapidly and cost-effectively produce production-ready super deep wells with large, well-defined wellbore diameters down to a depth of 20 km or more in a continuous meltboring process. In the continuous propulsion of the melt drilling rig, in particular by magnetic glides, a seamless die-cast well casing is simultaneously created from acting as a drilling medium molten metal, which serves the magnetic slider as 'reaction rail' and driving tube. These die-casting interconnect wellbores, they are produced by this or another method, are used according to the invention as a repository.

Beim kontinuierlich ablaufenden genannten Metallschmelze-Bohrverfahren liegt zu keiner Zeit ein freiliegender, unverschalter Bohrlochbereich vor, da aus der Metallschmelze, die auch als 'Bohrkopf' dient, direkt eine starkwandige Metallverschalung aufgebaut wird. Die Standfestigkeit eines derart verschalten Bohrlochs bzw. Bohrschachts hängt von der Dicke der Metallwandung, der vorherrschenden Druckdifferenz zwischen Innen- und Außenwand und insbesondere der vorherrschenden Temperatur ab. Ein derart metallverschaltes Bohrloch kann bis im Gesteinstemperaturbereich von mindestens 600°C - 700°C standfest bleiben, so dass in der Kontinentalkruste Tiefen um 20 km zu erwarten sind. Aber auch unter diesen Temperatur- und Druckbedingungen liegt das Tiefengestein nicht in zähflüssiger sondern in fester wenn auch duktiler Form vor.In the case of the continuous molten metal drilling method, there is at no time an exposed, non-counterborder borehole area, since a thick-walled metal casing is built up directly from the molten metal, which also serves as a 'boring head'. The stability of such a interconnected borehole or well depends on the thickness of the metal wall, the prevailing pressure difference between the inner and outer walls and in particular the prevailing temperature. Such a metal-mixed borehole can remain stable up to a minimum of 600 ° C - 700 ° C in the rock temperature range, so that depths of 20 km can be expected in the continental crust. But even under these temperature and pressure conditions, the plutonic rock is not in viscous form but in solid, if ductile form.

Bevorzugt wird die Bohrung bis in eine Tiefe erstellt in der das Gestein in duktiler Form vorliegt und insbesondere sich bereits Teilschmelzen bilden, deren Bildung durch die Eigenwärmeerzeugung des eingelagerten, wärmeproduzierenden hochradioaktiven Materials noch verstärkt wird oder bei der sich insbesondere unter den vorgegebenen Temperatur- und Druckbedingungen im heißen Tiefengestein, die Gesteinskristalle verschieben gegenüber einem freien, festen und insbesondere schweren Metallkörper, auf den die Schwerkraft der Erde stärker wirkt, als auf das umgebene, leichtere Umgebungsgestein. So kann dies vorteilhafterweise ein beschleunigtes Auswandern eines separierten unteren Bohrlochschachtabschnitts, der als Endlagersegment dient, bewirken.Preferably, the hole is created to a depth in which the rock is present in ductile form and in particular already form partial melts whose formation is further enhanced by the self-heat generation of the stored, heat-producing highly radioactive material or in particular under the predetermined temperature and pressure conditions in the hot deep rock, the rock crystals move against a free, solid and especially heavy metal body, on which the gravity of the earth acts stronger than on the surrounding, lighter surrounding rock. Thus, this can advantageously an accelerated emigration of a separated lower wellbore section, which serves as a repository segment effect.

Begünstigt wird die Auswanderungsgeschwindigkeit des gesamten separierten unteren Bohrlochschachtabschnitts / Endlagersegments erfindungsgemäß dadurch, dass dessen Außenkontur nach unten hin konusartig erweitert gestaltet wird, wodurch die enormen seitlichen Druckkräfte zur vertikalen Schubkraft werden.The emigration speed of the entire separated lower borehole shaft section / final repository segment is favored according to the invention in that its outer contour is shaped conically widened downwards, whereby the enormous lateral pressure forces become the vertical thrust force.

Diese erfindungemäße Auswanderung des Endlagersegments in Form eines schweren Metallkörpers kann durch die erhöhte Innentemperatur mittels der radioaktiven Restwärmebildung und/oder durch eine Fluid-Ansammlung im Grenzbereich Metallmantel/ Tiefengestein zusätzlich eine Beschleunigung durch Reibungsreduzierung erfahren, insbesondere da diese Fluide unter den vorherrschenden Temperatur- und Druckbedingungen superkritisch sein können und sich daher ihr Reibungswert drastisch reduziert.This erfindungemäße emigration of the repository segment in the form of a heavy metal body can additionally experience an acceleration by friction reduction due to the increased internal temperature by means of radioactive residual heat generation and / or by a fluid accumulation in the boundary region metal shell / plutonic rock, especially since these fluids under the prevailing temperature and pressure conditions can be supercritical and therefore their friction value drastically reduced.

Vorteilhafterweise kann ein Endlagersegment unter seiner Schwerkraft, umgeben vom Fluide bzw. benetzt von einem Fluidefilm beschleunigt dem Erdmittelpunkt zu gleiten, insbesondere im Vergleich so, wie ein Gletscher auf seinem Wasserfilm zu Tal gleitet.Advantageously, a repository segment under its gravity, surrounded by the fluid or wetted by a fluid film accelerated to the earth's center to slide, especially in comparison as a glacier slides on his film of water to the valley.

Erfindungsgemäß kann im unteren Bohrlochschachtabschnitt, bzw. das im Schachttiefsten endgelagerte insbesondere hochradioaktive Material mit einem Medium, beispielsweise mit Flüssigblei als Moderator und/oder Wärme- und/oder Druckausgleichsmedium aufgefüllt werden, bzw. das endzulagerndes Material eingefüllt werden.According to the invention, in the lower borehole shaft section, or in particular the highly radioactive material deposited in the shaft deepest, can be filled with a medium, for example with liquid lead as moderator and / or heat and / or pressure compensation medium, or the material to be end loaded can be filled.

Ein so abgefüllter unterer Bohrlochschachtabschnitt kann als Endlagersegment erfindungsgemäß oberhalb der Einfüllung vom übrigen Bohrlochschacht durch Abschmelzen der Bohrlochverschalung, insbesondere der Metallverschalung, z.B. in einem Bereich von einigen Metern separiert werden und wandert als Ganzes aus dem heißen Tiefengestein in Richtung Erdmittelpunkt aus, insbesondere unter Eigenwärmeerzeugung und hohem Eigengewicht.A bottommost well section filled in this way can be used as a repository segment according to the invention above the filling of the remaining well shaft by melting down the well casing, in particular the metal casing, e.g. be separated in a range of a few meters and migrates as a whole from the hot plutonic rock in the direction of the center of the earth, especially under self-heat generation and high weight.

Unter Bezugnahme auf die einzige Zeichnung wird das Verfahren und die Vorrichtung näher erläutert.The method and the device will be explained in more detail with reference to the single drawing.

Erfindungsgemäß kann es vorgesehen sein, dass in unmittelbarer Nähe von Kernkraftwerken oder Zwischenlagern wenigstens ein Bohrschacht, beispielsweise ein 20 km tiefer Bohrlochschacht (10) nach dem beschriebenen Metallschmelze-Bohrverfahren niedergebracht wird.According to the invention it can be provided that in the immediate vicinity of nuclear power plants or intermediate storage at least one well, for example a 20 km deep wellbore (10) is drilled according to the described molten metal drilling method.

Ein oberer größerer Abschnitt, z.B. mehr als drei Viertel des so erstellten Bohrlochschachts mit insbesondere durchgehend gleichbleibendem Durchmesser, z.B. von vorzugsweise mehr als 0,5 Metern, ist mit einer Bohrlochverschalung, insbesondere starkwandigen Metallverschalung aus einem Guss und vorzugsweise guter magnetischer Permeabilität versehen, und kann erfindungsgemäß als Endlagerschacht genutzt werden, um zu lagerndes Material in einen unteren kleineren Abschnitt, z.B. weniger als ein Viertel des Bohrlochschachtes zu bringen.An upper major portion, e.g. more than three-quarters of the well bore thus created, in particular having a constant diameter throughout, e.g. of preferably more than 0.5 meters, is provided with a well casing, in particular cast-metal thick-walled metal casing, preferably good magnetic permeability, and can be used as a disposal well according to the invention for placing material to be stored in a lower, smaller section, e.g. less than a quarter of the well shaft.

Hierbei kann der untere Bohrlochschachtabschnitt, insbesondere das untere Viertel oder weniger als ein Endlagersegment (1) z.B. für hochradioaktive und/oder wärmeentwickelnde Materialien oder auch anderes Material genutzt werden. Dieser Bohrlochschachtabschnitt kann bevorzugt in einem duktilen Gesteinbereich oder im Bereich superkritischer Fluidebedingungen angeordnet sein.Here, the lower wellbore portion, particularly the lower quarter or less than a final disposal segment (1) e.g. for highly radioactive and / or heat-generating materials or other material. This wellbore section may preferably be arranged in a ductile rock region or in the region of supercritical fluid conditions.

Es kann weiterhin ein darüber liegender Abschnitt des Bohrlochschachtes als Endlager für anderes Material, z.B. für schwach- und mittelradioaktives Material genutzt werden, z.B. das bei der Demontage eines Kernkraftwerks oder einer sonstigen kerntechnischen Anlage anfällt.There may also be an overlying portion of the wellbore as a repository for other material, e.g. for low and medium radioactive material, e.g. incurred during the dismantling of a nuclear power plant or other nuclear installation.

Erfindungsgemäß wird der als Endlagersegment (1) genutzte untere Abschnitt bei der Produktion des Bohrschachts (10) im Bereich der Metallgussverschalung derart ausgebildet, dass die Wandstärke im unteren Bereich großer ist als im oberen Bereich, beispielsweise mit 0,25 m startet und oben mit 0,05 m endet.According to the invention, the lower section used as a repository segment (1) in the production of the wellbore (10) in the region of the cast metal casing is designed such that the wall thickness in the lower region is greater than in the upper region, for example 0.25 m starts and above with 0 , 05 m ends.

Das Endlagersegment (1) kann erfindungsgemäß als Ganzes nach Abfüllung mit endzulagernden Material und/oder nach Bedarf segmentweise, vom übrigen Bohrlochschacht separiert werden, wobei die Separierung des jeweiligen Segments vom Restschacht vorteilhafterweise durch Abschmelzen eines Schachtwandungsbereichs (4), insbesondere durch Strahlungsenergie erfolgen kann, die vorteilhafterweise von einem Laser oder einem Graphitstrahler kommen kann, der über eine Magnetgleiter-Vorrichtung(14) im Bohrlochschacht rauf und runter gefahren werden kann.The repository segment (1) can be separated according to the invention as a whole after filling with endzulagernden material and / or segmentally from the rest of the wellbore, the separation of the respective segment of the remaining well can advantageously be done by melting a shaft wall region (4), in particular by radiation energy, which can advantageously come from a laser or a graphite emitter, which can be driven up and down via a magnetic glide device (14) in the wellbore.

Das erfindungsgemäße Separieren durch Abschmelzen eines Bohrlochschachtabschnitts direkt oberhalb des endzulagernden, z.B. mit hochradioaktiven Material aufgefüllten und bevorzugt mit beispielsweise Flüssigblei vergossenen Endlagersegments (1) kann bevorzugterweise so ausgeführt werden das dies gleichzeitig zur sicheren Verschließung des separierten Endlagersegments (1) durch die anfallende Metallschmelze führt, die sich oberhalb des Endlagersegmentes absetzt und einen Metalldeckelverschluss (5) bilden kann und/oder direkt auf dem Flüssigblei aufschwimmt und mit dem verbliebenen Rest der Endlagersegmentverschalung einen festen Metallverschluss bildet.The separation according to the invention by melting down a well shaft section directly above the end bearing, e.g. filled with highly radioactive material and preferably molded with, for example, liquid lead Endlagersegments (1) can be preferably carried out so that at the same time for secure closure of the separated Endlagersegments (1) by the resulting molten metal leads, which settles above the Endlagersegmentes and form a metal lid closure (5) can and / or floats directly on the liquid lead and forms a solid metal closure with the remainder of the final storage segment formwork.

Der verbleibende verschalungsfreie Abschmelzbereich (4) im Bohrschacht kann ggfs. bis auf einen Restbereich für eine neue Schachtsegmentspitze (3) mit einem Material(beispielsweise Borax) aufgefüllt werden, welches die Selbstversenkung durch Auswanderung aus dem heißen Lagergestein fördert.The remaining shuttering-free Abschmelzbereich (4) in the well can if necessary. Up to a residual area for a new shaft segment tip (3) with a material (eg Borax) are filled, which promotes the self-burial by emigration from the hot storage rock.

Der nach der Separierung nach unten offene Restschacht kann erfindungsgemäß mit einer Metallgussfüllung verschlossen werden, die als neue Schachtsegmentspitze(3) dient und bevorzugt, z.B. durch Legierungselemente verstärkt, den Selbstversenkungsprozess sichert.According to the invention, the residual well which is open after separation can be closed with a cast metal filling which serves as a new well segment tip (3) and which is preferred, e.g. reinforced by alloying elements, ensures the self-subsidence process.

Die erfindungsgemäße Endlagerungsvorrichtung umfasst bevorzugt ein zur Biosphäre sicher abgeschlossenes System (12), z.B. einen Transporttunnel, das den Endlagerschacht (10) mit dem Reaktor und/oder Zwischenlager durch eine, insbesondere automatisierte Transportvorrichtung verbindet, wie beispielsweise ein Magnetgleitersystem.The disposal device according to the invention preferably comprises a system (12) safely closed to the biosphere, e.g. a transport tunnel, which connects the final storage shaft (10) to the reactor and / or intermediate storage by a, in particular automated transport device, such as a magnetic slider system.

Der erfindungsgemäße bevorzugt bombensichere, hermetisch zur Außenwelt abgeschottete Transporttunnel (12) zwischen Reaktor und Endlagerschacht ermöglicht bevorzugt auch den Bau einer Auffang- und Endlagervorrichtung für den Fall einer Reaktorschmelze (13), die das Restrisiko beim Betrieb von Kernkraftwerken stark reduziert und erheblich längere Laufzeiten der Kernkraftwerksanlagen erlaubt, wodurch günstigerweise das ,goldene Ende' der Produktionszeit verlängert wird.The invention preferably bombproof, hermetically sealed to the outside transport tunnel (12) between the reactor and repository shaft preferably also allows the construction of a collecting and disposal facility in the case of a reactor melt (13), which greatly reduces the residual risk in the operation of nuclear power plants and significantly longer periods of Nuclear power plants allowed, thereby conveniently the 'golden end' of the production time is extended.

Die erfindungsgemäße Auffang- und Endlagervorrichtung (13) für den Fall einer Reaktorschmelze kann bei Reaktorneubauten sofort mit eingeplant werden und damit optimal gestaltet werden. Bei vorhandenen Kernkraftwerksanlagen, die nicht mit einem Bodenschutz aus Graphitziegeln versehen sind, kann bevorzugt ein Abzugstunnel unterhalb des Reaktorfundaments gebaut werden, der bevorzugt mit Graphitziegel belegt ist und eine auftretende Reaktorschmelze zielsicher in eine tiefer liegende Auffangvorrichtung (15) leitet, die bevorzugt ebenfalls mit Graphitziegel ausgekleidet sein kann und ggfs. zusätzlich mit Spezialtiegel aus Graphit so ausgelegt ist, dass die einfließende Reaktorschmelze sich in den bereitstehenden Graphittiegeln verteilt und nach einer Abklingzeit über das automatisierte Transportsystem ins Endlager gefördert werden kann.The collecting and disposal device (13) according to the invention for the case of a reactor melt can be immediately included in the construction of new nuclear reactors and thus be optimally designed. In existing nuclear power plants, which are not provided with a bottom protection from graphite cast iron, a withdrawal tunnel can be built below the reactor foundation preferably, which is preferably occupied with graphite crucible and an emerging reactor melt unerringly into a deeper collecting device (15) passes, which preferably also with graphite crucible may be lined and, if necessary, additionally designed with a special crucible made of graphite so that the inflowing reactor melt can be distributed in the available graphite crucibles and can be promoted to the repository after a cooldown on the automated transport system.

Die erfindungsgemäße Auffang- und Endlagervorrichtung für den Fall einer Reaktorschmelze (13) kann mit einem Medium aufgefüllt werden, das möglichst inert gegen radioaktive Strahlung, schwerer als Luft und leichter als die Reaktorschmelze ist. Damit wird bevorzugt die Verstrahlung der Auffang- und Endlagervorrichtung (13) begrenzt, wobei das Medium nach Endlagerung der Reaktorschmelze abgepumpt und ebenfalls endgelagert werden kann.The collecting and disposal device according to the invention for the case of a reactor melt (13) can be filled with a medium which is as inert as possible against radioactive radiation, heavier than air and lighter than the reactor melt. Thus, the radiation of the collecting and disposal device (13) is preferably limited, wherein the medium can be pumped out after final storage of the reactor melt and also be stored.

Die Vorteile des erfindungsgemäßen Endlagerverfahrens mit einer direkten Endlagervorrichtung vor Ort auf dem Gelände von Nuklearanlagen mittels Bohrschächte nach dem Metallschmelze-Bohrverfahren, gegenüber bekannten Verfahren und gegenüber einem zentralen Endlager, sind die folgenden:

  1. 1. Die Niederbringung und Nutzung kostengünstiger Endlagerschächte für insbesondere hochradioaktive Stoffe direkt am Ort der Endstehung und/oder Lagerung erspart hohe Explorationskosten bei der Suche und Erprobung geeigneter Standorte und spart kostbare Zeit, da jeder vorhanden Standort mit Nuklearanlagen für das o. g. erfindungsgemäßen Endlagerverfahren per se geeignet ist und das endzulagernde Material in sichere Tiefen ausserhalb jeglichen Einflusses zur Biosphäre gelangt.
  2. 2. Der nukleare Mülltourismus mit hochradioaktivem Material gegen den Widerstand der Bürger hat ein Ende, bzw. kann auf Randbereiche beschränkt werden, reduziert für die Bevölkerung die Strahlenbelastung, das Unfallrisiko und die Entsorgungskosten erheblich.
  3. 3. Sichere Endlagerung von hochradioaktiven Brennelementen bis zum hochradioaktiven Inventar der Kernkraftwerke vor Ort durch Selbstversenkung über Bohrschächte von z.B. 15 - 20 km Tiefe in historisch überschaubaren Zeiträumen, unter hermetischem Abschluss zur Biosphäre und mit hoher Kostenreduzierung durch vollautomatisierbare Abläufe bei kürzeren Abklingzeiten, überzeugt Betreiber und betroffene Bevölkerung.
  4. 4. Mit der Schaffung von Endlagern an den Hauptkernkraftwerks-Standorten liegen deren Kosten insgesamt erheblich niedriger als bei einer Zentral-Endlager-Lösung. Gleichzeitig wird durch 'burden-sharing' die Verteilung des Problems auf mehrere Standorte, der Widerstand der betroffenen Bevölkerung reduziert, zumal nur die Bevölkerung an den Nuklearanlagenstandorten betroffen ist, die sich ohnehin schon mit der Kernkraft arrangiert hat und deren Risiko und Belastung durch die nicht mehr stattfindenden Nuklearmüll-Transporte erheblich reduziert wird.
  5. 5. Die Kombination von direkter Endlagerung Vorort mit einer integrierten Vorrichtung zur Beherrschung eines Reaktorgaus ermöglicht eine erhebliche Verlängerung der Reaktorlaufzeiten und erhöht die Akzeptanz der erfindungsgemäßen Endlagerkonzeption bei Kraftwerksbetreiber, Politiker und betroffener Standortbevölkerung.
  6. 6. Die Endlagerung vor Ort bringt für die Standortsbevölkerung betreffender Nuklearanlagen nicht nur die Risiko- und Transportentlastung, sondern schafft mit dem Bau des Endlagers in der Region Arbeitsplätze, die auch langfristig bis zur vollständigen Demontage der Nuklearanlage gesichert sind. Gleichzeitig erhöhen sich die Steuereinnahmen und werden langfristig gesichert.
  7. 7. Die Akzeptanz der Bevölkerung mit Nuklearanlagen für Endlagerstandorte Vorort wird insbesondere durch die Selbstversenkung des hochradioaktiven Materials auf nimmer Wiederkehr ins Erdinnere erzielt, da weder der Region noch der nachfolgenden Generation ein unkalkulierbares ,böses Erbe' hinterlassen wird, sondern im Gegenteil auch von der Generation die Lasten der Entsorgung übernommen werden, die auch die Vorteile der Kernenergie genießt.
  8. 8. Die Gesamtgesellschaftlichen Vorteile der Endlagerung durch Selbstversenkung an den Nuklearstandorten Vorort über SuperTief-Bohrungen und der damit als Voraussetzung verbundenen Entwicklung des Metallschmelze-Bohrverfahrens zur Einsatzreife werden noch erheblich übertroffen durch die Schaffung eines völlig neuen Multi-Billionen-Marktes aus der neuen Basistechnologie ,Metallschmelze-Bohrverfahren, von der die sichere Endlagerung nur eine der Anwendungen ist.
  9. 9. Neben größtmöglicher Sicherheit sind der Zeit- und Kostenfaktor wichtige Argumente für die Endlagerung Vorort: Die Kosten für einen z.B. 20 km tiefen Bohrschacht mit einem Fassungsvermögen von einem m3/m werden auf etwa €200 Mio. geschätzt. Die reine Bohrzeit mit dem kontinuierlich arbeitenden Metallschmelze-Bohrverfahren beträgt dafür etwa ein halbes Jahr, so dass der Rest des Jahres für An- und Abtransport verbleibt und damit pro Jahr mit einer Bohranlage ein 20 km Bohrschacht produktionsfertig erstellt werden kann. Pro Tiefbohrschacht können beispielsweise 5 x 1000 m Endlagersegmente mit einem Endlagervolumen von etwa 5000 m3 genutzt werden. Bei 24000 m3 hochradioaktiver, wärmeentwickelnder Abfälle für die gegenwärtig vorhandenen Kernkraftwerke in Deutschland, wären 5 erfindungsgemäße Endlager notwendig mit einer Gesamtinvestition von € 1 Milliarde. Dieser Betrag ist bereits in den Bau der sich als Endlager ungeeignet erwiesenen Standorte Gorleben und Schacht Konrad investiert worden und muß in dieser Höhe noch einmal investiert werden, bevor sie als Endlager für schwach- und mittelradioaktive Materialien einsatzfähig sind.
  10. 10. Die Kosten für die Suche, Erprobung und Bau eines neuen Zentralendlagers zur Lösung für Deutschlands Endlagerproblem wird nach gegenwärtigen Erfahrungswerten mindestens doppelt so teuer wie die erfindungsgemäße Endlagerlösung vor Ort, wobei die Kosten für den Transport und die Kostenersparnis beim Rückbau der Kernkraftanlage nicht eingerechnet sind. Für das Bauzeitszenario zeichnet sich ein ähnliches Bild ab. Für die erfindungsgemäßen Endlager ist unter Einbeziehung der technischen Entwicklung der Magnetgleiter Metallschmelze - Bohranlagen zur technischen Einsatzreife, eine Fertigstellung von 5 Endlagerschächten bis 2020 zu erwarten. Die Fertigstellung eines Zentral-Endlagers nach konventioneller Bergwerksbauweise wohl nicht vor 2030.
The advantages of the repository method according to the invention with a direct repository device on site at the site of nuclear installations by means of well shafts after the molten metal drilling method, compared with known methods and with respect to a central repository, are the following:
  1. 1. The deposition and use of low-cost repository shafts for especially highly radioactive materials directly at the place of Endstehung and / or storage saves high exploration costs in the search and testing of suitable locations and saves valuable time, since any existing site with nuclear facilities for the abovementioned repository process per se suitable and the end-bearing material reaches safe depths outside any influence on the biosphere.
  2. 2. The nuclear waste tourism with highly radioactive material against the resistance of the citizens has an end or can be limited to marginal areas, reduces the radiation exposure, the accident risk and disposal costs for the population considerably.
  3. 3. Safe disposal of highly radioactive fuel elements to the highly radioactive inventory of nuclear power plants on site by self-sinking over wells of eg 15 - 20 km depth in historically manageable periods, under hermetic conclusion to the biosphere and with high cost reduction through fully automated processes with shorter cooldowns, convinced operator and affected population.
  4. 4. With the creation of repositories at the main nuclear power plant sites, their overall costs are significantly lower than for a central repository solution. At the same time, 'burden-sharing' reduces the distribution of the problem to several locations, reducing the resistance of the affected population, especially since it only affects the population at the nuclear plant sites, which has already come to terms with nuclear power and its risk and burden more nuclear waste shipments are significantly reduced.
  5. 5. The combination of direct disposal on-site with an integrated device for controlling a reactor house allows a considerable extension of the reactor life and increases the acceptance of the final disposal concept according to the invention in power plant operators, politicians and affected local population.
  6. 6. On-the-ground disposal does not only reduce the risk and transport burden on nuclear facilities in the area, but also creates jobs in the long-term up to the complete dismantling of the nuclear facility with the construction of the repository in the region. At the same time, tax revenues increase and are secured in the long term.
  7. 7. The acceptance of the population with nuclear facilities for repositories Suburb is achieved in particular by the Selbstversenkung of highly radioactive material to never return to the Earth's interior, since neither the region nor the next generation will leave an incalculable, evil legacy ', but on the contrary also of the generation the burden of disposal, which also enjoys the benefits of nuclear energy.
  8. 8. The overall societal benefits of self-disposal at the nuclear sites on-site via SuperTief drilling and the associated development of the molten metal drilling process to operational readiness are significantly exceeded by the creation of a completely new multi-trillion market from the new base technology. Metal melt drilling, of which safe disposal is only one of the applications.
  9. 9. In addition to the greatest possible safety, the time and cost factor are important arguments for final disposal on the ground: The costs for a 20 km deep well with a capacity of one m 3 / m are estimated at about € 200 million. The pure drilling time with the continuous molten metal drilling process amounts to about half a year, so that the rest of the year remains for transport to and from the plant, so that a 20 km well can be produced ready for production per year with a drilling rig. For example, 5 x 1000 m repository segments with a repository volume of about 5000 m 3 can be used per deep well. With 24,000 m 3 of highly radioactive, heat-generating waste for the currently existing nuclear power plants in Germany, 5 repositories according to the invention would be necessary with a total investment of € 1 billion. This amount has already been invested in the construction of the Gorleben and Schacht Konrad sites, which are unsuitable as repositories, and must be reinvested at this level before they can be used as repositories for low and intermediate level radioactive materials.
  10. 10. The costs for the search, testing and construction of a new central warehouse to solve Germany's repository problem is based on current experience at least twice as expensive as the disposal solution according to the invention locally, the cost of transport and cost savings are not included in the dismantling of the nuclear power plant , For the construction time scenario, a similar picture emerges. For the repository according to the invention, including the technical development of the magnetic glider, metal melt - drilling rigs for technical operational readiness, a completion of 5 repository shafts until 2020 expect. The completion of a central repository after conventional mining construction probably not before 2030.

Claims (18)

  1. A method of creating a final repository in a borehole produced by a metal fusion drilling method and having a metal borehole lining from a casting continuously formed from the metal melt medium, characterised in that a material for final storage (8) is deposited in a lower area of the borehole shaft (1), this lower area (7) is separated from the rest of the shaft (10) after filling and this lower area (7) migrates automatically toward the centre of the earth, wherein the wall thickness of the metallic borehole lining (2) of at least one lower borehole region (1/7) intended as a final repository is formed so that it increases from the top downward, so that a lower borehole region tapering essentially conically from the bottom upward results.
  2. Method according to claim 1, characterised in that the migration is supported by residual heat generation of the highly radioactive material.
  3. Method according to one of the preceding claims, characterised in that the borehole is sunk to such a depth that the rock pressure and/or the dead weight under the force of gravity and/or a rock melt formation from the hot plutonic rock supports the migration.
  4. Method according to one of the preceding claims, characterised in that the lateral compressive forces of the plutonic rock on the metal jacket of a separated lower borehole region (1/7) accumulate to form downwardly directed compressive forces on the tip (3) of the separated borehole region.
  5. Method according to one of the preceding claims, characterised in that at least one borehole for final storage is produced by self-driving directly in situ at nuclear power plants (18) and/or intermediate storage facilities (19) and/or other nuclear facilities.
  6. Method according to one of the preceding claims, characterised in that material for final storage (8) is deposited directly into the respectively deepest part of the borehole without contact with the biosphere via a magnetic slide system.
  7. Method according to one of the preceding claims, characterised in that a medium is filled in the free spaces (9) between the stored material to relieve the carrier units by uplift and/or as heat transfer media and/or as moderator for fast neutrons to increase the heat production.
  8. Method according to one of the preceding claims, characterised in that a filled lower borehole region is closed by a pressure-resistant cover (5).
  9. Method according to one of the preceding claims, characterised in that above the closed lower borehole region, the cast metal lining of the borehole (4) is melted over a suitable length by means of a heat source on a magnetic slide melting apparatus and the lower borehole region is thus separated from the rest of the shaft, wherein the metal melt accruing during melting of the borehole lining forms a pressure-resistant plug of the lower borehole region (6).
  10. Method according to one of the preceding claims, characterised in that a partial melt formation occurring between the surrounding rock and the jacket of the lower borehole region (2) through residual heat production, autogenously generated heat of the plutonic rock, lateral pressure of the rock and the effect of the force of gravity on the separated lower borehole region (7/1) acts as a slide path between the hot plutonic rock and the jacket of the final repository region (1/7) and under lateral pressure of the rock and/or the effect of gravity on the separated lower borehole region accelerates a migration toward the earth's interior.
  11. Method according to one of the preceding claims, characterised in that the fluids dissolved in the partial melt follow and/or precede the hot lower borehole region in the migration into hotter regions of the earth's interior, whereby the safe disposal of the pressed-in fluids is ensured and the migration is additionally accelerated.
  12. Method according to one of the preceding claims, characterised in that the rest of the shaft is provided with a shaft plug (3) of metal melt and the method of filling further lower borehole regions is repeated.
  13. Method according to one of the preceding claims, characterised in that not only the final storage of the highly radioactive inventory of a nuclear power plant (18), but also the dismantling thereof with direct final storage of the accruing material is carried out in situ in one and the same borehole, such that a connection (12) from the reactor building and/or reactor and/or intermediate storage facility to the borehole, hermetically sealed from the biosphere, is produced.
  14. Method according to one of the preceding claims, characterised in that when changing spent nuclear fuel elements and after a short or no intermediate cooling, the spent fuel elements are deposited with a magnetic slide device directly in the cooling medium (9) of the lower borehole region, in order to thus utilise the higher residual heat of the spent fuel elements for quicker self-driving of a lower borehole region.
  15. Method according to one of the preceding claims, characterised in that a tunnel (21) runs from the reactor (17) to a low-lying basin (15) lined with graphite ingot moulds with overflow apparatuses (16) and lying in the decay area of the reactor or intermediate storage facility, so that in the event of a reactor meltdown, the highly radioactive melt runs into the basin, the reactor melt being directly deposited via an automated transport system into a lower borehole region as final repository.
  16. An apparatus for creating safe final depositories, comprising at least one borehole with a metal borehole lining of a casting, characterised in that at least one lower borehole region (1/7), after filling with final repository material can be separated/is separated from the rest of the borehole, in order to sink toward the centre of the earth by generation of autogenously generated heat and/or rock pressure and/or dead weight under the force of gravity and/or rock melt formation, wherein the borehole lining (2) of the lower borehole region (10) used as final repository outside forms at least essentially a conical shape in which the wall thickness of the lining decreases from the bottom to the top.
  17. The apparatus according to one of claims [sic] 16, characterised in that at least one lower borehole region loaded with radioactive material can be filled in the free spaces with a medium, wherein the medium filled in the free spaces between the stored highly radioactive material is used to relieve the weight thereof by uplift and/or as moderator and heat exchanger.
  18. The apparatus according to one of claims 16 to 17, characterised in that the transport tunnel (12) hermetically sealed from the outside world can also be used by a nuclear facility as a final repository borehole after the end of the run time of the nuclear facility for direct final storage of the entire contaminated dismantled material.
EP07723561A 2006-03-24 2007-03-23 Method and apparatus for final storage and safe operation of nuclear power stations Not-in-force EP1999759B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006013836A DE102006013836A1 (en) 2006-03-24 2006-03-24 Creating final geological repository in base region of super-deep bore shaft by magnetically glided, directional melt drilling for disposing highly radioactive waste materials, comprises subcritically disposing the materials into the shaft
PCT/EP2007/002613 WO2007110211A2 (en) 2006-03-24 2007-03-23 Method and apparatus for final storage and safe operation of nuclear power stations

Publications (2)

Publication Number Publication Date
EP1999759A2 EP1999759A2 (en) 2008-12-10
EP1999759B1 true EP1999759B1 (en) 2010-08-25

Family

ID=38438415

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07723561A Not-in-force EP1999759B1 (en) 2006-03-24 2007-03-23 Method and apparatus for final storage and safe operation of nuclear power stations

Country Status (5)

Country Link
US (1) US8693609B2 (en)
EP (1) EP1999759B1 (en)
AT (1) ATE479190T1 (en)
DE (2) DE102006013836A1 (en)
WO (1) WO2007110211A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE532961C2 (en) * 2008-02-21 2010-05-25 Oyster Internat Nv Procedure for storing hazardous materials
DE102008049943A1 (en) * 2008-10-02 2010-04-08 Werner Foppe Method and device for melt drilling
RU2550092C2 (en) * 2013-07-31 2015-05-10 Открытое Акционерное Общество "Акмэ-Инжиниринг" Method for prolonged storage of spent nuclear fuel
US10115489B2 (en) 2016-09-12 2018-10-30 Grand Abyss, Llc Emergency method and system for in-situ disposal and containment of nuclear material at nuclear power facility
US10115490B1 (en) 2017-04-06 2018-10-30 Mwd-Ip Holdings, Llc Method for nuclear waste storage and monitoring
CZ308559B6 (en) * 2019-05-31 2020-11-25 Ăšstav struktury a mechaniky hornin AV ÄŚR, v.v.i. Container for deep storage of spent nuclear fuel and method of deep storage of spent nuclear fuel with this container
US20220367080A1 (en) * 2019-10-07 2022-11-17 Deep Isolation, Inc. Storing hazardous waste material
CN114278218B (en) * 2021-12-15 2022-08-09 吉林大学 Polar region grain snow layer vertical drilling hot melting drill bit based on liquid metal

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3357505A (en) 1965-06-30 1967-12-12 Dale E Armstrong High temperature rock drill
DE3001348A1 (en) * 1980-01-16 1981-07-23 Max 2120 Lüneburg Jahns Atomic waste stored below earth crust - in layer remote from influence zone of earthquakes
CA2005376C (en) * 1989-12-13 1996-11-19 James Russell Baird Subductive waste disposal method
DE3914617A1 (en) 1989-05-03 1990-11-08 Werner Foppe DEVICES AND METHODS FOR THE WARRANTY OF CONTINUOUSLY PROCESSING MELT DRILLING PROCESSES FOR DEEP HOLES
DE19500024A1 (en) * 1995-01-02 1996-07-04 Foppe Werner Microwave-superheated, steam plasma jet melt-boring of rock, consuming only electrical energy and water
DE19528496C1 (en) * 1995-05-03 1996-10-24 Thomas Samland Final disposal of radioactive material in deep borehole in tectonic valley
DE19721188A1 (en) * 1997-05-21 1999-05-12 Martin Hauck Final nuclear waste storage
DE19909836A1 (en) * 1999-03-05 2000-09-07 Werner Foppe Molten metal drilling process
JP2005091059A (en) * 2003-09-16 2005-04-07 Hiroshi Kawai Method of disposal just under original place of power plant installation

Also Published As

Publication number Publication date
US8693609B2 (en) 2014-04-08
WO2007110211A2 (en) 2007-10-04
ATE479190T1 (en) 2010-09-15
DE502007004859D1 (en) 2010-10-07
WO2007110211A3 (en) 2009-02-19
US20090145659A1 (en) 2009-06-11
EP1999759A2 (en) 2008-12-10
DE102006013836A1 (en) 2007-09-27

Similar Documents

Publication Publication Date Title
EP1999759B1 (en) Method and apparatus for final storage and safe operation of nuclear power stations
DE602004011775T2 (en) METHOD FOR PRODUCING A NATURAL HEAT ENGINE
DE1112592B (en) Process for underground disposal of radioactive waste fluids by pumping them into deep pits
US9700922B2 (en) Abyssal sequestration of nuclear waste and other types of hazardous waste
DE2755554A1 (en) FACILITY FOR STORING RADIOACTIVE MATERIALS IN ROCKY SUBSOIL
EP1412615B1 (en) In-situ evaporation
DE2459339B2 (en) COOLING AND COLLECTION DEVICE FOR THE MELTING OR MOLTEN CORE OF A NUCLEAR REACTOR
DE2754269A1 (en) FINAL DISPOSAL FOR RADIOACTIVE WASTE
DE3707985A1 (en) METHOD FOR CONSTRUCTING A SUBMERSE BORED HOLE OF LARGE DIAMETER AND DEVICE FOR CARRYING OUT THIS METHOD
CN102425388A (en) Slag salvaging cylindrical drill for drilled pile
DE1224231B (en) Process for the extraction of potassium chloride from natural deposits containing KCl and NaCl
DE3017122A1 (en) DRILLING PROCESS
CN202187735U (en) Bored pile tubular drill for fishing residue
DE102009047048B3 (en) Steel tubbing next to a crosscut with a design for a direction-free through hole for the implementation of drill pipes
DE329896C (en) Method and device for sinking shafts, in particular through water-bearing layers
Schachinger et al. Results from the Untersammelsdorf test field for the planning of tunnelling work
Glinsky et al. Impact of Nuclear Enterprises on the Subsoil
CN106950354A (en) A kind of rock salt moves the experimental rig and computational methods of water-soluble erosion transfer law
DE10159311B4 (en) In-situ evaporation
DE1433201C (en) Device and method for the treatment of bitumina with thermal and radiation energy by means of an atomic reactor arranged in a bore, as well as method for radiation protection and thermal insulation of the device
DE1533791C (en) Method of building an underground storage cell with frozen walls for liquefied gas
DE102012020439A1 (en) Optimized method for creating super deep melting bore holes, involves supplying pressure water through cooling water line of melting rig and high pressure pump, as driving force is generated through power line of sliding element
DD148899A3 (en) METHOD FOR CONSTRUCTION OF CEMENT BRACKETS
DE2652043A1 (en) Simultaneous formation of two drill shafts - and part recovery of molten rock for heat content utilisation
DE102008056753B4 (en) Method for producing an underground probe field

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080925

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

R17D Deferred search report published (corrected)

Effective date: 20090219

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502007004859

Country of ref document: DE

Date of ref document: 20101007

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100825

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & PARTNER AG PATENT- UND MARKENANWAELTE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101125

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101225

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101227

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101126

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101206

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110526

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007004859

Country of ref document: DE

Effective date: 20110526

BERE Be: lapsed

Owner name: RADERMACHER, FRANZ JOSEF

Effective date: 20110331

Owner name: FOPPE, WERNER

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 479190

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20140312

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140311

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140319

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140417

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007004859

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150323

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150323

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151001

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331