EP1967726A2 - Magnetventilinjektor - Google Patents

Magnetventilinjektor Download PDF

Info

Publication number
EP1967726A2
EP1967726A2 EP08100880A EP08100880A EP1967726A2 EP 1967726 A2 EP1967726 A2 EP 1967726A2 EP 08100880 A EP08100880 A EP 08100880A EP 08100880 A EP08100880 A EP 08100880A EP 1967726 A2 EP1967726 A2 EP 1967726A2
Authority
EP
European Patent Office
Prior art keywords
anchor bolt
valve
fuel injector
anchor
armature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08100880A
Other languages
English (en)
French (fr)
Other versions
EP1967726A3 (de
EP1967726B1 (de
Inventor
Friedrich Howey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1967726A2 publication Critical patent/EP1967726A2/de
Publication of EP1967726A3 publication Critical patent/EP1967726A3/de
Application granted granted Critical
Publication of EP1967726B1 publication Critical patent/EP1967726B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • F02M63/0071Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059 characterised by guiding or centering means in valves including the absence of any guiding means, e.g. "flying arrangements"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • F02M63/0075Stop members in valves, e.g. plates or disks limiting the movement of armature, valve or spring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • F02M63/0077Valve seat details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2547/00Special features for fuel-injection valves actuated by fluid pressure
    • F02M2547/003Valve inserts containing control chamber and valve piston

Definitions

  • DE 196 50 865 A1 describes a solenoid valve for controlling the fuel pressure in a control chamber of an injection valve, such as a common rail injection system. About the fuel pressure in the control chamber, a stroke movement of a valve piston is controlled with an injection port of the injection valve is opened or closed.
  • the solenoid valve comprises an electromagnet, a movable armature and a valve member which is moved with the armature and acted upon by a valve closing spring in the closing direction and which cooperates with the valve seat of the solenoid valve and thus controls the fuel drain from the control chamber.
  • the two-piece anchor comprises an anchor bolt and an anchor plate slidably received on the anchor bolt against the force of a return spring in the closing direction of the valve member under the action of its inertial mass, which is secured to the anchor bolt by means of a lock washer and a securing sleeve surrounding it.
  • the locking sleeve and the locking washer are enclosed by the magnetic core, resulting in an increased space requirement and resulting in a higher diameter in the magnetic core. Due to the higher diameter in the magnetic core in turn results in a limitation of the magnetic flux.
  • a valve seat in the valve member in the form of a cone, a long guide surface along the anchor bolt, a guide surface in the armature guide, and a guide surface in the armature plate must be manufactured by the machining process, usually grinding.
  • the quality of the guide of the anchor plate by an indirect guidance over the anchor bolt is relatively low.
  • the power transmission from the anchor plate to the anchor bolt is done via a sickle disc with which an overstroke is usually set.
  • the asymmetric power transmission leads to tilting and wear at the contact point.
  • the manufacture of the height-ground sickle plate is still extremely complex and the side-mounted mounting very complicated.
  • valve spring exerting a closing force on the anchor bolt introduces lateral force components into the assembly of anchor plate and anchor bolt. Due to the guiding play between the armature guide and the anchor bolt, this leads to a tilting of the anchor bolt in the armature guide. With strong lateral force, this tilt can also be present in the upper position of the anchor bolt when energized electromagnet, since an anchor bolt stop can rest on one side. This will be a part of the previously set anchor stroke, i. H. the movement of the anchor bolt in operation, not fully utilized. This in turn leads to a lower injection quantity of fuel into the combustion chamber of an internal combustion engine.
  • valve piece and the design of the anchor assembly comprising the anchor bolt and the anchor plate to simplify considerably. It is proposed to design the upper side of the valve piece in such a way that, in addition to the representation of a valve seat, it also functions as the anchor bolt guide takes over.
  • a concentricity of valve seat to anchor bolt guide allows a simplification in terms of production technology, since these assemblies, ie valve seat and anchor bolt guide, can be machined in one operation, in particular by way of grinding. Therefore, the ball guide, which is at the bottom of the anchor bolt according to the solution DE 196 50 865 A1 is provided and has the function to compensate for the misalignment of leadership to seat omitted.
  • a concave surface for receiving a spherical closure member can be provided with omission of the ball guide.
  • the anchor plate can be made as a flat disc which is mounted from below on the anchor bolt and is supported on a shoulder formed on the anchor bolt.
  • the disc can be made by punching or by double-plan grinding.
  • the top and the bottom are identical, so that a position-independent mounting of the anchor plate on the anchor bolt can be realized.
  • the upper stop for the anchor plate can be represented by a flat paramagnetic disc on the magnetic core. The thickness of this preferably paramagnetically formed disc is chosen so that it adjusts the residual air gap within the magnetic circuit.
  • the downward movement of the armature plate is limited after closing the valve for pressure relief of a control chamber usually by the stop of the anchor plate on the top of the armature guide.
  • An in the downward movement of the armature plate after closing to the diverted Freiweg is also referred to as overstroke.
  • This overstroke is advantageously set by a rotationally symmetrical shim, which is placed on the top of the valve piece, in which the pressurized control chamber is formed.
  • the over-stroke disk, d. H. the rotationally symmetrical shim also limits the tilt of the armature plate on the anchor bolt by contact of the armature plate at its outer diameter.
  • the over-stroke disk according to the proposed invention is relatively simple and in particular does not require a safety sleeve which, in previously used embodiments of fuel injectors, prevents the over-stroke disk from migrating out.
  • a separate separate component forming an armature guide of the armature assembly can be dispensed with.
  • FIG. 1 is a section through a first embodiment of the present invention proposed fuel injector refer.
  • a fuel injector 10 can be removed, which is actuated by means of a solenoid valve 12.
  • the solenoid valve 12 is received in the upper region of an injector body 14 of the fuel injector 10.
  • the fuel injector 10 is designed substantially symmetrically to an axis 18.
  • the magnetic valve 12 includes a magnetic sleeve 20.
  • the magnetic sleeve 20 encloses a magnetic core 22, which in turn receives a magnetic coil 24.
  • the magnet sleeve 22 accommodating the magnetic core 22 and the magnet coil 24 is screwed to the injector body 14 by means of a union nut 26 at a screw connection 28.
  • the magnet sleeve 20 is sealed on its outer side by means of a sealing ring 30 against the injector body 14.
  • the solenoid valve 12 includes a valve spring 32.
  • the valve spring 32 is received substantially in a through hole of the magnetic core 22 and supported on the one hand on an armature assembly 34, in particular on the upper side of an anchor bolt 46 and on the other hand against a closing the solenoid valve 12 lid.
  • the solenoid valve 12 also includes the previously mentioned armature assembly 34.
  • the armature assembly 34 includes in addition to the previously mentioned valve spring 32, an anchor plate 40, a Kochhubin 44 and an anchor bolt 46 which is guided within a valve member 50.
  • the upper side of the valve piece 50 also performs the function of guiding the anchor bolt 46 of the armature assembly 34 in the axial direction.
  • a neck 92 is formed, which runs parallel to the longitudinal extent of the anchor bolt 46, forming an annular gap 80, as seen in the axial direction.
  • the neck 92 of the valve member 50 has an annular surface 94 on which in turn the over-stroke disk 44 is placed.
  • the anchor plate 40 of the armature assembly 34 extends, which has at least one opening 42 to allow passage of fuel discharged from a control chamber 54 in the direction of the low-pressure side sequence of the fuel injector 10.
  • the anchor bolt 46 of the armature assembly 34 includes a here formed spherical closure member 66.
  • the optionally at the lower end face of the anchor bolt 46 with the interposition of a closing element guide received, preferably spherical shaped closure member 66 cooperates with the seat 52 which is formed in the valve piece 50.
  • Below the seat 52 which may be formed as a flat seat, conical seat or the like, extends within the valve piece an outlet throttle 58.
  • About the outlet throttle 58 is also formed in the valve piece 50 control chamber 54 drucklastbar.
  • FIG. 1 shows that the control chamber 54 is continuously supplied with fuel at a system pressure level via an inlet throttle 56 from a high-pressure chamber 74, which in turn is subjected to fuel under system pressure.
  • a preferably needle-shaped injection valve member 62 is actuated.
  • the high-pressure chamber 74 within the injector 14 of the fuel injector 10 is sealed against the low pressure via a sealing ring 60, which is preferably made as a PTFE component.
  • valve piece 50 with neck 92 formed thereon, in which the anchor bolt 46 is guided is fastened in the injector body 14 of the fuel injector 10 by means of a valve screw 64.
  • the valve member 50 is pressed on its contact surface in the injector 14 and sealed low pressure side.
  • the downward movement of the armature plate 40 is limited by the Studentshubissue 44 on the end face 94 of the neck 92 of the valve piece 50 after closing of the solenoid valve.
  • the Studentshubissue 44 also limits the tilt of the armature plate 40 on the anchor bolt 46 by contact of the armature plate 40 at its outer diameter.
  • Those in the embodiment in FIG. 1 shown Kochhubissue 44 requires no locking sleeve.
  • the solenoid valve assembly to dispense with a separate component for the realization of the armature guide, since the leadership of the armature, in particular of the anchor bolt 46, takes place through the neck 92 of the valve member 50.
  • the annular gap 80 between the jacket surface of the anchor bolt 46 and the inside of the neck 92 has at least one opening 48, via which the control quantity exiting the control chamber 54 when the ball-shaped closing element 66 opens into the low-pressure region of the fuel injector 10 can flow out.
  • the annular gap 80 and a valve chamber 88 in the interior of the solenoid valve assembly are hydraulically connected to each other. In the in FIG.
  • the ball-shaped closing element 66 is received directly on the lower end face of the anchor bolt 46, so that a ball guide for the here spherically formed closing element 66, which would compensate for an offset of the guide and seat 52, can be dispensed with.
  • a ball guide for the here spherically formed closing element 66 which would compensate for an offset of the guide and seat 52, can be dispensed with.
  • the concentricity of valve seat 52 to anchor bolt guide 92 is excellent because the valve seat 52 and the anchor bolt guide in one operation by a machining process such. As the grinding can be made.
  • the valve piece 50 is screwed by means of the valve screw 64 in the injector 14.
  • the closing element 66 is inserted into the seat 52, which is formed in the valve piece 50.
  • On the upper side of the valve piece 50 is the over-stroke disk 44, which serves as a lower stop for the anchor plate 40.
  • the anchor bolt 46 which has at least one bevel 72 on its lateral surface, via which fuel enters the annular gap 80, is inserted into the valve piece 50 and thereby takes the Matterhubin 44 and the armature plate 40 with at least one opening 42 at its outer diameter.
  • the armature plate 40 On the armature plate 40 in turn is the residual air gap disc 38, which limits the upper stop of the armature plate 40 by this is supported in operation on the lower end side of the magnetic core 22 of the solenoid valve assembly of the fuel injector 10.
  • the anchor bolt 46 is acted upon by the valve spring 32 indicated by reference numeral 32 in the closing direction with a closing force.
  • a small current is applied to the solenoid coil 24 received in the magnetic core 22 of the solenoid valve assembly.
  • the resulting magnetic field is sufficient to apply the anchor plate 40 to the shoulder, ie the stop 76 on the anchor bolt 46, which does not yet lead to an opening of the valve.
  • a starting current is applied to the magnetic coil 24.
  • the magnetic force generated by the attraction current attracts the armature plate 40, which is supported on the stop 76 of the anchor bolt 46 and leads to the opening of the valve.
  • the ball-shaped closing element 66 on the lower end face of the anchor bolt 46 is lifted in the valve piece 50 by the pressure applied from below from its seat 52.
  • the armature plate 40 abuts on the magnetic core 22 via the residual air gap disk 38.
  • At least one flattening 72 or a bevel or the like is located on the lateral surface of the anchor bolt 46 of the armature assembly 34, so that within the armature guide surface, ie through the annular gap 80 between the outer surface of the armature Anchor bolt 46 and the inner peripheral surface of the neck 92 diverted tax amount in the valve chamber 88, that flows to the low pressure side of the solenoid valve assembly.
  • FIG. 2 shows a further embodiment of the present invention proposed valve piece.
  • FIG. 2 shows that according to this embodiment of the valve member 50 on the anchor bolt 46 of the armature assembly 34 no bevel 72 or no flattening is formed. Instead, located at the bottom, the seat 52 facing end face of the anchor bolt 46 is a spherical cap 82.
  • the spherical cap 82 forms a receptacle for in accordance with the embodiment FIG. 2 Spherically shaped closing element 66, with which the seat 52 is closed in the valve piece 50.
  • the outlet throttle 58 via which the in FIG. 2 not shown control chamber 54 is depressurized.
  • control chamber from this outflowing amount flows into a spherical cap 82 within the valve member 50 surrounding space.
  • at least one bore 86 extends to the valve chamber 88 of the solenoid valve assembly.
  • the at least one bore 86 which connects the hydraulic space which surrounds the spherical cap 82, with the valve chamber 88 extends in the valve piece 50 in FIG. 2 indicated obliquely, so that the wall thickness of the neck 92 of the valve member 50 is not affected by the course of the at least one bore 86 in the valve piece 50.
  • the armature plate 46 slidably received anchor plate 40 analogous to the embodiment according to FIG. 1 has at least one opening 42, but is acted upon by an armature spring 84.
  • the armature spring 84 is supported on the one hand on the underside of the anchor plate 40 and on the other hand at the bottom of the valve chamber 88 from.
  • the residual air gap disc 38 is attached to the underside of the magnetic core 22.
  • the thickness of the residual air gap disk 38 is defined analogously to the embodiment according to FIG. 1 the height of the residual air gap between the bottom of the residual air gap disc 38 and the top of the anchor plate 40th
  • valve member 50 includes the neck 92, on the annular surface 94, the over-stroke disc 44 rests.
  • An annular gap 80 extends between the lateral surface of the anchor bolt 46 and the inner peripheral surface of the neck 92.
  • Reference numeral 78 marks the guide length along which the anchor bolt 46 of the armature assembly 34 is guided in the valve piece 50 or neck 92 formed thereon.
  • the guide length 78 extends from the lower end face of the anchor bolt 46, ie above the spherical cap 82, to the beginning of the annular gap 80 between the lateral surface of the anchor bolt 46 and the inner peripheral surface of the neck 52.
  • the opening 48 in the neck 92 may also be omitted.
  • the end face of the valve member 50 is referred to, on the one hand, the armature spring 84 is supported and on the other hand, the at least one bore 86 opens for discharging the control amount.
  • the control amount does not flow along the guide length 78 of the anchor bolt 46, but is passed through the at least one bore 86 in the valve member 50 directly into the valve chamber 88 and can from there via the at least one opening 42 in the armature plate 40 flow in the return.
  • the armature spring 84 is introduced, which presses the armature plate 40 up against the stop 76 of the anchor bolt 46 instead of the low current in preparation for an injection process.
  • the spherical cap 82 which can then be used if the offset between the ball guide on the anchor bolt 46 to the seat 52 in the valve piece 50 is too large and thereby the tightness should be impaired.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Die Erfindung bezieht sich auf einen Kraftstoffinjektor (10) mit einem Magnetventil (12), über welches eine Ankerbaugruppe (34) betätigt wird. Die Ankerbaugruppe (34) umfasst zumindest eine Ankerplatte (40) und einen Ankerbolzen (46). Der Kraftstoffinjektor (10) umfasst ein Ventilstück (50), in dem ein Steuerraum (54) ausgeführt ist. Das Ventilstück (50) enthält einen Hals (92), in dem der Ankerbolzen (46) entlang einer Führungslänge (78) geführt ist.

Description

    Stand der Technik
  • DE 196 50 865 A1 beschreibt ein Magnetventil zur Steuerung des Kraftstoffdruckes in einem Steuerraum eines Einspritzventiles, etwa eines Common-Rail-Einspritzsystems. Über den Kraftstoffdruck im Steuerraum wird eine Hubbewegung eines Ventilkolbens gesteuert, mit dem eine Einspritzöffnung des Einspritzventiles geöffnet oder geschlossen wird. Das Magnetventil umfasst einen Elektromagneten, einen beweglichen Anker und ein mit dem Anker bewegtes und von einer Ventilschließfeder in Schließrichtung beaufschlagtes Ventilglied, das mit dem Ventilsitz des Magnetventiles zusammenwirkt und so den Kraftstoffabfluss aus dem Steuerraum steuert.
  • Bei bekannten Magnetventilen wirkt sich nachteilig das im Betrieb vorkommende Schwingen des Ankers und/oder Prellen des Ventilgliedes aus. Durch ein Nachschwingen der auf den Ventilsitz auftreffenden Ankerplatte nimmt diese eine undefinierte Lage ein. So kommt es bei nachfolgenden Einspritzungen bei gleicher Ansteuerung zu unterschiedlichen Öffnungszeiten des Magnetventiles und somit zu einer Streuung des Einspritzbeginns und der Einspritzmenge. Gemäß DE 196 50 865 A1 und DE 197 08 104 A1 ist der Anker des Magnetventils als zweiteiliger Magnetanker ausgebildet, um so die bewegte Masse der Einheit Anker/Ventilglied und damit die das Prellen verursachende kinetische Energie zu verringern. Der zweiteilige Anker umfasst einen Ankerbolzen und eine auf dem Ankerbolzen gegen die Kraft einer Rückstellfeder in Schließrichtung des Ventilgliedes unter Einwirkung ihrer trägen Masse verschiebbar aufgenommene Ankerplatte, welche mittels einer Sicherungsscheibe und einer diese umgebenden Sicherungshülse am Ankerbolzen gesichert ist. Die Sicherungshülse und die Sicherungsscheibe sind vom Magnetkern umschlossen, wodurch sich ein erhöhter Platzbedarf ergibt und was zu einem höheren Durchmesser im Magnetkern führt. Aufgrund des höheren Durchmessers im Magnetkern wiederum ergibt sich eine Begrenzung des magnetischen Flusses.
  • Die bisher eingesetzten Typen von Kraftstoffinjektoren sind relativ aufwändig. Es müssen ein Ventilsitz im Ventilstück in Kegelform, eine lange Führungsfläche entlang des Ankerbolzens, eine Führungsfläche in der Ankerführung sowie eine Führungsfläche in der Ankerplatte im Wege des spanabhebenden Fertigungsverfahrens, in der Regel des Schleifens, hergestellt werden. Zusätzlich ist die Qualität der Führung der Ankerplatte durch eine indirekte Führung über den Ankerbolzen relativ gering. Die Kraftübertragung von der Ankerplatte auf den Ankerbolzen geschieht über eine Sichelscheibe, mit welcher in der Regel ein Überhub eingestellt wird. Durch die asymmetrische Kraftübertragung kommt es zu Verkippungen und zu Verschleißerscheinungen an der Kontaktstelle. Die Herstellung der auf Höhe geschliffenen Sichelscheibe ist weiterhin äußerst aufwändig und die von der Seite her erfolgende Montage sehr kompliziert.
  • Bei derzeitigen Serienprodukten tritt das Problem auf, dass die eine Schließkraft auf den Ankerbolzen ausübende Ventilfeder Querkraftanteile in die Baugruppe aus Ankerplatte und Ankerbolzen einleitet. Bedingt durch das Führungsspiel zwischen der Ankerführung und dem Ankerbolzen führt dies zu einer Verkippung des Ankerbolzens in der Ankerführung. Bei starker Querkraft kann diese Verkippung auch in der oberen Position des Ankerbolzens bei bestromtem Elektromagneten vorhanden sein, da ein Ankerbolzenanschlag einseitig anliegen kann. Damit wird ein Teil des zuvor eingestellten Ankerhubes, d. h. die Bewegung des Ankerbolzens im Betrieb, nicht vollständig ausgenutzt. Dies wiederum führt zu einer geringeren Einspritzmenge von Kraftstoff in den Brennraum einer Verbrennungskraftmaschine. Hinzu kommt die Reibung des Ankerbolzens in der Ankerführung, die ebenfalls die Bewegung des Ankerbolzens beeinflusst. Diese Reibung nimmt mit größerem Kippwinkel α zu, da der Hebelarm der auslösenden Kraft ebenfalls zunimmt. Der Angriffspunkt der Ventilfeder hat einen relativ großen Abstand zum oberen Ende der Ankerführung. Dadurch entstehen am oberen und am unteren Ende der Ankerführung sehr hohe punktuell wirkende Kräfte auf den Ankerbolzen, welche die Reibung zusätzlich verstärken und somit die Bewegung des Ankerbolzens verlangsamen. Die Geschwindigkeit jedoch, mit der sich der Ankerbolzen bewegt, d. h. das Öffnen und Schließen der Ventilkugel, hat einen sehr großen Einfluss auf die in den Brennraum der Verbrennungskraftmaschine jeweils eingebrachte Kraftstoffmenge.
  • Offenbarung der Erfindung
  • Erfindungsgemäß wird vorgeschlagen, ein geändertes Ventilstück einzusetzen und die Gestaltung der Ankerbaugruppe, den Ankerbolzen und die Ankerplatte umfassend, erheblich zu vereinfachen. Es wird vorgeschlagen, die Oberseite des Ventilstückes derart zu gestalten, dass diese zusätzlich zur Darstellung eines Ventilsitzes auch die Funktion der Ankerbolzenführung übernimmt. Eine Konzentrizität von Ventilsitz zu Ankerbolzenführung erlaubt eine fertigungstechnische Vereinfachung dahingehend, da diese Baugruppen, d. h. Ventilsitz und Ankerbolzenführung, in einem Arbeitsgang spanabhebend, insbesondere im Wege des Schleifens, hergestellt werden können. Daher kann die Kugelführung, die an der Unterseite des Ankerbolzens gemäß der Lösung aus DE 196 50 865 A1 vorgesehen ist und die Funktion hat, den Versatz von Führung zu Sitz auszugleichen, entfallen.
  • An der Unterseite des Ankerbolzens kann unter Entfall der Kugelführung eine konkave Fläche zur Aufnahme eines kugelförmig ausgebildeten Schließgliedes vorgesehen werden.
  • In einer bevorzugten Ausführungsform kann die Ankerplatte als eine flache Scheibe gefertigt werden, die von unten auf den Ankerbolzen montiert wird und sich an einer Schulter, die am Ankerbolzen ausgebildet ist, abstützt. Die Scheibe kann durch Stanzen oder durch Doppelplanschleifen hergestellt werden. Die Ober- und die Unterseite sind identisch, so dass eine lageunabhängige Montage der Ankerplatte am Ankerbolzen realisiert werden kann. Der obere Anschlag für die Ankerplatte kann über eine flache paramagnetische Scheibe am Magnetkern dargestellt werden. Die Dicke dieser bevorzugt paramagnetisch ausgebildeten Scheibe wird so gewählt, dass sie den Restluftspalt innerhalb des Magnetkreises einstellt.
  • Bei Kraftstoffinjektoren, deren bevorzugt nadelförmig ausgebildetes Einspritzventilglied über einen Elektromagneten betätigt wird, ist die Abwärtsbewegung der Ankerplatte nach dem Schließen des Ventiles zur Druckentlastung eines Steuerraumes in der Regel durch den Anschlag der Ankerplatte auf der Oberseite der Ankerführung begrenzt. Ein bei der Abwärtsbewegung der Ankerplatte nach dem Schließen zur durcheilender Freiweg wird auch als Überhub bezeichnet. Dieser Überhub wird in vorteilhafter Weise durch eine rotationssymmetrisch ausgebildete Einstellscheibe eingestellt, die auf die Oberseite des Ventilstückes, in dem der druckbeaufschlagte Steuerraum ausgebildet ist, gelegt wird. Die Überhubscheibe, d. h. die rotationssymmetrisch ausgebildete Einstellscheibe, begrenzt ebenfalls die Verkippung der Ankerplatte auf dem Ankerbolzen durch Kontakt der Ankerplatte an ihrem Außendurchmesser. Im Gegensatz zu bisher eingesetzten Ausführungsformen der Überhubscheibe ist die Überhubscheibe gemäß der vorgeschlagenen Erfindung relativ einfach ausgebildet und benötigt insbesondere keine Sicherungshülse, die bei bisher eingesetzten Ausführungsformen von Kraftstoffinjektoren ein Herauswandern der Überhubscheibe verhindert.
  • Der erfindungsgemäß vorgeschlagenen Lösung folgend kann insbesondere auf ein separates, eine Ankerführung der Ankerbaugruppe bildendes eigenes separates Bauteil verzichtet werden.
  • Kurze Beschreibung der Zeichnungen
  • Anhand der Zeichnung wird die Erfindung nachstehend eingehender beschrieben.
  • Es zeigt
  • Figur 1
    einen Schnitt durch eine erfindungsgemäß vorgeschlagene erste Ausführungsform der Ankerbaugruppe und
    Figur 2
    eine modifizierte Ausführungsform einer Ankerbaugruppe mit geändertem Rücklaufweg für die aus einem Steuerraum abgesteuerte Kraftstoffmenge.
    Ausführungsformen
  • Der Darstellung gemäß Figur 1 ist ein Schnitt durch eine erste Ausführungsform des erfindungsgemäß vorgeschlagenen Kraftstoffinjektors zu entnehmen.
  • Der Darstellung gemäß Figur 1 ist ein Kraftstoffinjektor 10 entnehmbar, der mittels eines Magnetventiles 12 betätigt wird. Das Magnetventil 12 ist im oberen Bereich eines Injektorkörpers 14 des Kraftstoffinjektors 10 aufgenommen. Der Kraftstoffinjektor 10 ist im Wesentlichen symmetrisch zu einer Achse 18 ausgeführt.
  • Das Magnetventil 12 umfasst eine Magnethülse 20. Die Magnethülse 20 umschließt einen Magnetkern 22, der seinerseits eine Magnetspule 24 aufnimmt. Die den Magnetkern 22 und die Magnetspule 24 aufnehmende Magnethülse 20 ist mittels einer Überwurfmutter 26 an einer Verschraubung 28 mit dem Injektorkörper 14 verschraubt. Dabei wird die Magnethülse 20 auf ihrer Außenseite mittels eines Dichtringes 30 gegen den Injektorkörper 14 abgedichtet.
  • Das Magnetventil 12 umfasst eine Ventilfeder 32. Die Ventilfeder 32 ist im Wesentlichen in einer Durchgangsbohrung des Magnetkerns 22 aufgenommen und stützt sich einerseits an einer Ankerbaugruppe 34 insbesondere an der Oberseite eines Ankerbolzens 46 ab und andererseits gegen einen das Magnetventil 12 abschließenden Deckel. Das Magnetventil 12 umfasst darüber hinaus die bereits erwähnte Ankerbaugruppe 34. Die Ankerbaugruppe 34 umfasst neben der bereits erwähnten Ventilfeder 32 eine Ankerplatte 40, eine Überhubscheibe 44 sowie einen Ankerbolzen 46, der innerhalb eines Ventilstückes 50 geführt ist. Die Oberseite des Ventilstückes 50 übernimmt zusätzlich zum Ventilsitz auch die Funktion, den Ankerbolzen 46 der Ankerbaugruppe 34 in axiale Richtung zu führen. Dazu ist am Ventilstück 50 ein Hals 92 ausgebildet, der unter Ausbildung eines Ringspaltes 80 parallel - in axiale Richtung gesehen - zur Längserstreckung des Ankerbolzens 46 verläuft. Der Hals 92 des Ventilstückes 50 weist eine Ringfläche 94 auf, auf der ihrerseits die Überhubscheibe 44 platziert ist.
  • Aus der Darstellung gemäß Figur 1 geht hervor, dass oberhalb der Überhubscheibe 44 die Ankerplatte 40 der Ankerbaugruppe 34 verläuft, welche mindestens eine Öffnung 42 aufweist, um einen Durchtritt von aus einem Steuerraum 54 abgesteuertem Kraftstoff in Richtung des niederdruckseitigen Ablaufes des Kraftstoffinjektors 10 zu ermöglichen.
  • Der Ankerbolzen 46 der Ankerbaugruppe 34 gemäß der Ausführungsform in Figur 1 umfasst ein hier kugelförmig ausgebildetes Schließelement 66. Das an der unteren Stirnseite des Ankerbolzens 46 gegebenenfalls unter Zwischenschaltung einer Schließelementführung aufgenommene, bevorzugt kugelförmig ausgebildete Schließelement 66 wirkt mit dem Sitz 52 zusammen, der im Ventilstück 50 ausgebildet ist. Unterhalb des Sitzes 52, der als Flachsitz, Kegelsitz oder dergleichen ausgebildet sein kann, verläuft innerhalb des Ventilstückes eine Ablaufdrossel 58. Über die Ablaufdrossel 58 ist der ebenfalls im Ventilstück 50 ausgebildete Steuerraum 54 druckenlastbar.
  • Figur 1 zeigt, dass der Steuerraum 54 über eine Zulaufdrossel 56 von einem Hochdruckraum 74, der seinerseits mit unter Systemdruck stehendem Kraftstoff beaufschlagt ist, kontinuierlich mit Kraftstoff unter Systemdruckniveau beaufschlagt wird. Über die Druckbeaufschlagung beziehungsweise Druckentlastung des Steuerraumes 54 innerhalb des Ventilstückes 50 wird ein bevorzugt nadelförmig ausgebildetes Einspritzventilglied 62 betätigt. Der Hochdruckraum 74 innerhalb des Injektorkörpers 14 des Kraftstoffinjektors 10 wird über einen Dichtring 60, der bevorzugt als PTFE-Bauteil gefertigt ist, gegen den Niederdruck abgedichtet.
  • Der Darstellung gemäß Figur 1 ist ferner entnehmbar, dass das Ventilstück 50 mit daran ausgebildetem Hals 92, in welchem der Ankerbolzen 46 geführt ist, mittels einer Ventilschraube 64 im Injektorkörper 14 des Kraftstoffinjektor 10 befestigt ist. Über die Ventilschraube 64 wird das Ventilstück 50 auf seiner Anlagefläche im Injektorkörper 14 gedrückt und niederdruckseitig abgedichtet.
  • Aus der Darstellung gemäß Figur 1 geht des Weiteren hervor, dass sich an der unteren Stirnseite 36 des Magnetkerns 22 eine einfach ausgebildete Restluftspaltscheibe 38 befindet. Dieser gegenüberliegend befindet sich - im unbestromten Zustand der Magnetspule 24 - die Ankerplatte 40 der Ankerbaugruppe 34. Die Ankerplatte 40, in der mindestens eine Öffnung 42 ausgebildet ist, wird von der Unterseite auf dem Ankerbolzen 46 montiert und liegt an einem am Ankerbolzen 46 ausgebildeten, ringförmig konfigurierten Anschlag 76 an. Ober- und Unterseite der Ankerplatte 40 sind identisch, so dass eine lageunabhängige Montage und die Herstellung durch Stanzen und Doppelplanschleifen realisiert werden kann. An der der Ankerplatte 40 der Ankerbaugruppe 34 gegenüberliegenden Stirnseite des Magnetkerns 22 befindet sich die Restluftspaltscheibe 38, die als flache paramagnetische Scheibe ausgebildet ist. Die Dicke der Restluftspaltscheibe 38 beeinflusst in maßgeblicher Weise den Restluftspalt innerhalb des Magnetkreises.
  • Bei der in Figur 1 dargestellten Ausführungsform des Kraftstoffinjektors 10 ist die Abwärtsbewegung der Ankerplatte 40 nach dem Schließen des Magnetventils durch die Überhubscheibe 44 auf der Stirnseite 94 des Halses 92 des Ventilstücks 50 begrenzt. Die Überhubscheibe 44 begrenzt ebenfalls die Verkippung der Ankerplatte 40 auf dem Ankerbolzen 46 durch Kontakt der Ankerplatte 40 an ihrem Außendurchmesser. Die in der Ausführungsform in Figur 1 dargestellte Überhubscheibe 44 benötigt keine Sicherungshülse. Des Weiteren kann in der in Figur 1 dargestellten Ausführungsform der Magnetventilbaugruppe auf ein separates Bauteil zur Realisierung der Ankerführung verzichtet werden, da die Führung des Ankers, insbesondere des Ankerbolzens 46, durch den Hals 92 des Ventilstücks 50 erfolgt. Der Vollständigkeit halber sei erwähnt, dass der Ringspalt 80 zwischen der Mantelfläche des Ankerbolzens 46 und der Innenseite des Halses 92 mindestens eine Öffnung 48 aufweist, über die die beim Öffnen des kugelförmig ausgebildeten Schließelementes 66 aus dem Steuerraum 54 austretende Steuermenge in den Niederdruckbereich des Kraftstoffinjektors 10 abströmen kann. Über die mindestens eine Öffnung 48 im Hals 92 des Ventilstückes 50 stehen der Ringspalt 80 und ein Ventilraum 88 im Inneren der Magnetventilbaugruppe hydraulisch miteinander in Verbindung. In der in Figur 1 dargestellten Ausführungsform ist das hier kugelförmig ausgebildete Schließelement 66 unmittelbar an der unteren Stirnseite des Ankerbolzens 46 aufgenommen, so dass eine Kugelführung für das hier kugelförmig ausgebildete Schließelement 66, die einen Versatz von Führung und Sitz 52 auszugleichen hätte, entfallen kann. Dies rührt daher, dass die Konzentrizität von Ventilsitz 52 zur Ankerbolzenführung 92 hervorragend ist, da der Ventilsitz 52 und die Ankerbolzenführung in einem Arbeitsgang durch einen spanabhebenden Fertigungsvorgang, wie z. B. das Schleifen, hergestellt werden können.
  • Das Ventilstück 50 wird mittels der Ventilschraube 64 in den Injektorkörper 14 eingeschraubt. Das Schließelement 66 wird in den Sitz 52, der im Ventilstück 50 ausgebildet ist, eingelegt. Auf der Oberseite des Ventilstücks 50 liegt die Überhubscheibe 44 auf, welche als unterer Anschlag für die Ankerplatte 40 dient. Der Ankerbolzen 46, der an seiner Mantelfläche mindestens einen Anschliff 72 aufweist, über den Kraftstoff in den Ringspalt 80 eintritt, wird in das Ventilstück 50 eingeführt und nimmt dabei die Überhubscheibe 44 und die Ankerplatte 40 mit mindestens einer Öffnung 42 an seinem Außendurchmesser auf. Auf der Ankerplatte 40 wiederum liegt die Restluftspaltscheibe 38 auf, welche den oberen Anschlag der Ankerplatte 40 begrenzt, indem diese sich im Betrieb an der unteren Stirnseite des Magnetkerns 22 der Magnetventilbaugruppe des Kraftstoffinjektors 10 abstützt. Der Ankerbolzen 46 wird von der durch Bezugszeichen 32 kenntlich gemachten Ventilfeder 32 in Schließrichtung mit einer Schließkraft beaufschlagt.
  • Zur Vorbereitung eines Einspritzvorgangs wird ein geringer Strom an die Magnetspule 24, die im Magnetkern 22 der Magnetventilbaugruppe aufgenommen ist, angelegt. Das entstehende Magnetfeld reicht aus, um die Ankerplatte 40 an die Schulter, d. h. den Anschlag 76 am Ankerbolzen 46, anzulegen, was noch nicht zu einer Öffnung des Ventils führt. Anschließend wird ein Anzugsstrom an die Magnetspule 24 angelegt. Die durch den Anzugsstrom erzeugte magnetische Kraft zieht die Ankerplatte 40 an, welche sich am Anschlag 76 des Ankerbolzens 46 abstützt und zum Öffnen des Ventils führt. Das kugelförmig ausgebildete Schließelement 66 an der unteren Stirnseite des Ankerbolzens 46 wird im Ventilstück 50 durch den von unten anstehenden Druck aus seinem Sitz 52 gehoben. Die Ankerplatte 40 schlägt über die Restluftspaltscheibe 38 am Magnetkern 22 an. Zum Offenhalten des Ventiles, d. h. zum Aufrechterhalten des Abstandes zwischen dem aus dem Sitz 52 bewegten Schließelement 66 und dem Sitz 52 wird auf einen geringeren Haltestrom umgeschaltet, mit dem die Magnetspule 24 nunmehr bestromt wird. Nach dem vollständigen Abschalten des Stromes baut sich das Magnetfeld ab, bis die Ankerplatte 40 sich wieder in Schließrichtung bewegt. Sobald das in der Ausführungsform gemäß Figur 1 kugelförmig ausgebildete Schließelement 66 in seinen Sitz 52 trifft, löst sich die Ankerplatte 40 vom Anschlag 76 am oberen Ende des Ankerbolzens 46 und bewegt sich weiter in Schließrichtung, bis sie mit ihrer Unterseite der auf der Ringfläche 94 des Halses 52 aufliegenden Überhubscheibe 44 aufschlägt.
  • In der in Figur 1 dargestellten Ausführungsform erfolgt die Abführung der aus dem Steuerraum 54 abgesteuerten Steuermenge folgendermaßen: An der Mantelfläche des Ankerbolzens 46 der Ankerbaugruppe 34 befindet sich mindestens eine Abflachung 72 oder ein Anschliff oder dergleichen, so dass innerhalb der Ankerführungsfläche, d. h. durch den Ringspalt 80 zwischen der Mantelfläche des Ankerbolzens 46 und der Innenumfangsfläche des Halses 92 abgesteuerte Steuermenge in den Ventilraum 88, d. h. auf die Niederdruckseite der Magnetventilbaugruppe abströmt. Über diese mindestens eine Öffnung 48 im Hals 92 des Ventilstückes 50 kann die bei Druckentlastung des Steuerraums 54 aus diesem abgesteuerte Steuermenge in den Ankerraum, d. h. den Ventilraum 88, und von dort durch die mindestens eine Öffnung 42 in der Ankerplatte 40 zum Rücklauf abfließen.
  • Figur 2 zeigt eine weitere Ausführungsform des erfindungsgemäß vorgeschlagenen Ventilstücks.
  • Aus der Darstellung gemäß Figur 2 geht hervor, dass gemäß dieser Ausführungsform des Ventilstückes 50 am Ankerbolzen 46 der Ankerbaugruppe 34 kein Anschliff 72 beziehungsweise keine Abflachung ausgebildet ist. Stattdessen befindet sich an der unteren, dem Sitz 52 zuweisenden Stirnfläche des Ankerbolzens 46 eine Kugelkalotte 82. Die Kugelkalotte 82 bildet eine Aufnahme für das auch in der Ausführungsform gemäß Figur 2 kugelförmig ausgebildete Schließelement 66, mit welchem der Sitz 52 im Ventilstück 50 verschlossen ist. Unterhalb des Sitzes 52 mündet im Ventilstück 50 die Ablaufdrossel 58, über welche der in Figur 2 nicht dargestellte Steuerraum 54 druckentlastet wird. Die bei der Druckentlastung des in der Ausführungsform gemäß Figur 2 nicht dargestellten Steuerraumes aus diesem abströmende Menge strömt in einen die Kugelkalotte 82 innerhalb des Ventilstückes 50 umgebenden Raum. Von diesem aus erstreckt sich mindestens eine Bohrung 86 zum Ventilraum 88 der Magnetventilbaugruppe. Die mindestens eine Bohrung 86, welche den hydraulischen Raum, der die Kugelkalotte 82 umschließt, mit dem Ventilraum 88 verbindet, verläuft im Ventilstück 50 in Figur 2 angedeutet schräg, so dass durch den Verlauf der mindestens einen Bohrung 86 im Ventilstück 50 die Wandstärke des Halses 92 des Ventilstückes 50 nicht beeinträchtigt wird. Wie aus der Darstellung gemäß Figur 2 hervorgeht, münden aufgrund der Neigung der mindestens einen Bohrung 86 im Ventilstück 50 diese am Boden des Ventilraumes 88 im Niederdruckbereich der Magnetventilbaugruppe. Aus der Darstellung gemäß Figur 2 geht überdies hervor, dass gemäß dieser Ausführungsvariante die am Ankerbolzen 46 verschiebbar aufgenommene Ankerplatte 40 analog zur Ausführungsform gemäß Figur 1 mindestens eine Öffnung 42 aufweist, jedoch über eine Ankerfeder 84 beaufschlagt ist. Die Ankerfeder 84 stützt sich einerseits an der Unterseite der Ankerplatte 40 und andererseits am Boden des Ventilraums 88 ab.
  • Wie in der Ausführungsform gemäß Figur 1 bereits gezeigt, liegt auch in der Ausführungsform gemäß Figur 2 die Oberseite der Ankerplatte 40 an dem Anschlag 76 des Ankerbolzens 46 an. Die Symmetrieachse des Ankerbolzens 46 der Ankerbaugruppe 34 ist durch Bezugszeichen 18 identifiziert.
  • Aus der Ausführungsform gemäß Figur 2 geht hervor, dass sich oberhalb der Oberseite der Ankerplatte 40 die Restluftspaltscheibe 38 befindet, die an der Unterseite des Magnetkerns 22 befestigt ist. Die Dicke der Restluftspaltscheibe 38 definiert analog zur Ausführungsform gemäß Figur 1 die Höhe des Restluftspaltes zwischen der Unterseite der Restluftspaltscheibe 38 und der Oberseite der Ankerplatte 40.
  • Das in Figur 2 dargestellte Ventilstück 50 umfasst den Hals 92, auf dessen Ringfläche 94 die Überhubscheibe 44 aufliegt. Zwischen der Mantelfläche des Ankerbolzens 46 und der Innenumfangsfläche des Halses 92 verläuft ein Ringspalt 80. Bezugszeichen 78 markiert die Führungslänge, entlang der der Ankerbolzen 46 der Ankerbaugruppe 34 im Ventilstück 50 beziehungsweise im an diesem ausgebildeten Hals 92 geführt ist. Die Führungslänge 78 erstreckt sich von der unteren Stirnseite des Ankerbolzens 46, d. h. oberhalb der Kugelkalotte 82, bis zum Beginn des Ringspaltes 80 zwischen der Mantelfläche des Ankerbolzens 46 und der Innenumfangsfläche des Halses 52. In der Ausführungsform gemäß Figur 2 kann die Öffnung 48 im Hals 92 auch entfallen.
  • Mit Bezugszeichen 90 ist die Stirnseite des Ventilstückes 50 bezeichnet, auf der sich einerseits die Ankerfeder 84 abstützt und andererseits die mindestens eine Bohrung 86 zur Abführung der Steuermenge mündet. Durch die mindestens eine Bohrung 86 im Ventilstück 50 fließt die Steuermenge nicht entlang der Führungslänge 78 des Ankerbolzens 46 vorbei, sondern wird über die mindestens eine Bohrung 86 im Ventilstück 50 direkt in den Ventilraum 88 geleitet und kann von dort über die mindestens eine Öffnung 42 in der Ankerplatte 40 in den Rücklauf strömen. In der Ausführungsform gemäß Figur 2 ist zusätzlich die Ankerfeder 84 eingebracht, die anstelle des geringen Stromes zur Vorbereitung eines Einspritzvorganges die Ankerplatte 40 nach oben an den Anschlag 76 des Ankerbolzens 46 drückt. In der Ausführungsform gemäß Figur 2 befindet sich zudem an der unteren Stirnseite des Ankerbolzens 46 der Ankerbaugruppe 34 die Kugelkalotte 82, die dann zum Einsatz kommen kann, falls der Versatz zwischen der Kugelführung am Ankerbolzen 46 zum Sitz 52 im Ventilstück 50 zu groß ist und dadurch die Dichtheit beeinträchtigt sein sollte.

Claims (10)

  1. Kraftstoffinjektor (10) mit einem Magnetventil (12), über welches eine Ankerbaugruppe (34) betätigt wird, die zumindest eine Ankerplatte (40) und einen Ankerbolzen (46) umfasst, sowie mit einem Ventilstück (50), in welchem ein Steuerraum (54) ausgeführt ist, dadurch gekennzeichnet, dass das Ventilstück (50) einen Hals (92) aufweist, in dem der Ankerbolzen (46) entlang einer Führungslänge (78) geführt ist.
  2. Kraftstoffinjektor gemäß Anspruch 1, dadurch gekennzeichnet, dass auf einer Stirnseite (94) des Halses (92) der Ankerplatte (40) zuweisend eine Überhubscheibe (44) aufliegt, die am Ankerbolzen (46) geführt ist.
  3. Kraftstoffinjektor gemäß Anspruch 2, dadurch gekennzeichnet, dass die Ankerplatte (40) am Ankerbolzen (46) zwischen der Überhubscheibe (44) und einem ringförmigen Anschlag (76) aufgenommen ist.
  4. Kraftstoffinjektor gemäß Anspruch 1, dadurch gekennzeichnet, dass zwischen einem Magnetkern (22) des Magnetventils (12) und der Ankerplatte (40) eine Restluftspaltscheibe (38) aufgenommen ist.
  5. Kraftstoffinjektor gemäß Anspruch 4, dadurch gekennzeichnet, dass die Restluftspaltscheibe (38) aus paramagnetischem Material gefertigt ist.
  6. Kraftstoffinjektor gemäß Anspruch 1, dadurch gekennzeichnet, dass der Hals (92) des Ventilstücks (50) mindestens eine Öffnung (48) aufweist, über die ein Ringspalt (80) zwischen dem Ankerbolzen (46) und dem Hals (92) und ein niederdruckseitiger Ventilraum (88) hydraulisch verbunden sind.
  7. Kraftstoffinjektor gemäß Anspruch 1, dadurch gekennzeichnet, dass der Ankerbolzen (46) an seiner Mantelfläche mindestens eine Abflachung (72) aufweist, deren Axialerstreckung am Ankerbolzen (46) die Führungslänge (78) des Ankerbolzens (46) im Hals (92) übersteigt.
  8. Kraftstoffinjektor gemäß Anspruch 1, dadurch gekennzeichnet, dass das Ventilstück (50) einen Sitz (52) für ein Schließelement (66) aufweist, welches am Ankerbolzen (46) unmittelbar oder in einer Kugelkalotte (82) geführt ist.
  9. Kraftstoffinjektor gemäß Anspruch 1, dadurch gekennzeichnet, dass das Ventilstück (50) mindestens eine Bohrung (86) aufweist, die an einer Stirnseite (90) des Ventilstücks (50) mündet und einen hydraulischen Raum oberhalb des Sitzes (52) mit einem Ventilraum (88) des Magnetventiles (12) hydraulisch verbindet.
  10. Kraftstoffinjektor gemäß Anspruch 1, dadurch gekennzeichnet, dass die Ankerplatte (40) identische Ober- und Unterseiten aufweist sowie mindestens eine Öffnung (42) enthält.
EP20080100880 2007-03-07 2008-01-24 Magnetventilinjektor Expired - Fee Related EP1967726B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200710011047 DE102007011047A1 (de) 2007-03-07 2007-03-07 Magnetventilinjektor

Publications (3)

Publication Number Publication Date
EP1967726A2 true EP1967726A2 (de) 2008-09-10
EP1967726A3 EP1967726A3 (de) 2009-05-20
EP1967726B1 EP1967726B1 (de) 2011-04-06

Family

ID=39391391

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20080100880 Expired - Fee Related EP1967726B1 (de) 2007-03-07 2008-01-24 Magnetventilinjektor

Country Status (2)

Country Link
EP (1) EP1967726B1 (de)
DE (2) DE102007011047A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010000507A1 (de) * 2008-06-30 2010-01-07 Robert Bosch Gmbh Magnetventil, kraftstoff-injektor sowie herstellungsverfahren
WO2010105282A1 (de) * 2009-03-17 2010-09-23 Robert Bosch Gmbh Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
FR2953268A1 (fr) * 2009-12-02 2011-06-03 Bosch Gmbh Robert Soupape electromagnetique de commande d'un injecteur ou de regulation de pression d'un accumulateur de carburant a haute pression
WO2014102028A1 (de) * 2012-12-27 2014-07-03 Robert Bosch Gmbh Druckregelventil für ein kraftstoffeinspritzsystem
WO2016206850A1 (de) * 2015-06-24 2016-12-29 Robert Bosch Gmbh Kraftstoffinjektor mit steuerventil
US20200063703A1 (en) * 2018-08-23 2020-02-27 Progress Rail Services Corporation Electronic Unit Injector Shuttle Valve

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19955663A1 (de) 1999-11-19 2001-05-23 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19650865A1 (de) 1996-12-07 1998-06-10 Bosch Gmbh Robert Magnetventil
JP3844092B2 (ja) * 1997-01-23 2006-11-08 株式会社日本自動車部品総合研究所 蓄圧式燃料噴射装置
DE19708104A1 (de) 1997-02-28 1998-09-03 Bosch Gmbh Robert Magnetventil
DE10122241A1 (de) * 2001-05-08 2002-12-05 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19955663A1 (de) 1999-11-19 2001-05-23 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010000507A1 (de) * 2008-06-30 2010-01-07 Robert Bosch Gmbh Magnetventil, kraftstoff-injektor sowie herstellungsverfahren
CN102388216B (zh) * 2009-03-17 2014-07-09 罗伯特·博世有限公司 将燃料喷射到内燃机燃烧室中的装置
WO2010105282A1 (de) * 2009-03-17 2010-09-23 Robert Bosch Gmbh Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
AT508049B1 (de) * 2009-03-17 2016-01-15 Bosch Gmbh Robert Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
KR101487696B1 (ko) * 2009-03-17 2015-01-29 로베르트 보쉬 게엠베하 내연기관의 연소 챔버 내로 연료를 주입하기 위한 장치
CN102388216A (zh) * 2009-03-17 2012-03-21 罗伯特·博世有限公司 将燃料喷射到内燃机燃烧室中的装置
RU2496024C2 (ru) * 2009-03-17 2013-10-20 Роберт Бош Гмбх Устройство для впрыскивания топлива в камеру сгорания двигателя внутреннего сгорания
US8839765B2 (en) 2009-03-17 2014-09-23 Robert Bosch Gmbh Apparatus for injecting fuel into the combustion chamber of an internal combustion engine
EP2333298A1 (de) * 2009-12-02 2011-06-15 Robert Bosch GmbH Elektromagnetisches Steuerventil eines Injektors oder zur Druckregulierung eines Hochdruckkraftstoffakkumulators
CN102086826A (zh) * 2009-12-02 2011-06-08 罗伯特博世有限公司 用于控制喷射器或用于调节高压燃料蓄集器的压力的电磁阀
FR2953268A1 (fr) * 2009-12-02 2011-06-03 Bosch Gmbh Robert Soupape electromagnetique de commande d'un injecteur ou de regulation de pression d'un accumulateur de carburant a haute pression
US9714634B2 (en) 2009-12-02 2017-07-25 Robert Bosch Gmbh Electromagnetic valve for controlling an injector or for regulating pressure of a high-pressure fuel accumulator
WO2014102028A1 (de) * 2012-12-27 2014-07-03 Robert Bosch Gmbh Druckregelventil für ein kraftstoffeinspritzsystem
JP2016502031A (ja) * 2012-12-27 2016-01-21 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 燃料噴射システム用圧力制御弁
US10041459B2 (en) 2012-12-27 2018-08-07 Robert Bosch Gmbh Pressure control valve for a fuel injection system
WO2016206850A1 (de) * 2015-06-24 2016-12-29 Robert Bosch Gmbh Kraftstoffinjektor mit steuerventil
US20200063703A1 (en) * 2018-08-23 2020-02-27 Progress Rail Services Corporation Electronic Unit Injector Shuttle Valve
US11746734B2 (en) * 2018-08-23 2023-09-05 Progress Rail Services Corporation Electronic unit injector shuttle valve

Also Published As

Publication number Publication date
DE102007011047A1 (de) 2008-09-11
EP1967726A3 (de) 2009-05-20
EP1967726B1 (de) 2011-04-06
DE502008003063D1 (de) 2011-05-19

Similar Documents

Publication Publication Date Title
EP1266135B1 (de) Magnetventil zur steuerung eines einspritzventils einer brennkraftmaschine
EP1948922B1 (de) Optimierte ankergruppenführung für magnetventile
EP1259729B1 (de) Magnetventil zur steuerung eines einspritzventils einer brennkraftmaschine
EP2102486B1 (de) Injektor mit axial-druckausgeglichenem steuerventil
EP2092187B1 (de) Injektor zum einspritzen von kraftstoff
WO2009121646A1 (de) Magnetventil mit mehrteiligem anker ohne ankerführung
EP1967726B1 (de) Magnetventilinjektor
WO2009068414A9 (de) Einspritzdüse für kraftstoff mit kugelventil
EP2100026B1 (de) Kraftstoffinjektor mit magnetventil mit kugelsitz
WO2008145514A1 (de) Ankerhubeinstellung für magnetventil
EP3478957A1 (de) Ventil zum eindüsen von gasförmigem kraftstoff
DE102008001597A1 (de) Kraftstoff-Injektor
EP1805409B1 (de) Magnetventilbetätigter kraftstoffinjektor mit hydraulischem überhubanschlag
WO2007128604A1 (de) Magnetventil mit selbstzentrierendem ankerbolzen
EP1339969B1 (de) Magnetventil zur steuerung eines einspritzventils einer brennkraftmaschine
DE102007053649B3 (de) Druckregelventil
WO2009037095A1 (de) Steuerventil für einen kraftstoffinjektor
EP1960657A1 (de) Verformungsoptimierte ankerführung für magnetventile
WO2010009925A1 (de) Ankerbolzen für magnetventil
WO2010052099A1 (de) Brennstoffeinspritzventil
DE19936943A1 (de) Brennstoffeinspritzventil
EP2185807B1 (de) Steuerventil für einen kraftstoffinjektor
DE10113008A1 (de) Magnetventil zur Steuerung eines Einspritzventils einer Brennkraftmaschine
EP2855919A1 (de) Druckregelventil
DE10154576C1 (de) Kraftstoffinjektor mit düsennaher Magnetventilanordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20091120

AKX Designation fees paid

Designated state(s): DE FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 502008003063

Country of ref document: DE

Date of ref document: 20110519

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008003063

Country of ref document: DE

Effective date: 20110519

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008003063

Country of ref document: DE

Effective date: 20120110

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190121

Year of fee payment: 12

Ref country code: FR

Payment date: 20190122

Year of fee payment: 12

Ref country code: DE

Payment date: 20190326

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008003063

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200124