EP1932953B1 - Galvanic process with analysis of the electrolytic bath through solid phase extraction - Google Patents

Galvanic process with analysis of the electrolytic bath through solid phase extraction Download PDF

Info

Publication number
EP1932953B1
EP1932953B1 EP06025569A EP06025569A EP1932953B1 EP 1932953 B1 EP1932953 B1 EP 1932953B1 EP 06025569 A EP06025569 A EP 06025569A EP 06025569 A EP06025569 A EP 06025569A EP 1932953 B1 EP1932953 B1 EP 1932953B1
Authority
EP
European Patent Office
Prior art keywords
column
components
eluent
sample
carried out
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06025569A
Other languages
German (de)
French (fr)
Other versions
EP1932953A1 (en
Inventor
Jürgen Barthelmes
Robert RÜTHER
Florence Lagorce-Broc
Olaf Kurtz
Oleg Sprenger
Marta Sainz-Vila
Thomas Moritz
Josef Gaida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atotech Deutschland GmbH and Co KG
Original Assignee
Atotech Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP06025569A priority Critical patent/EP1932953B1/en
Application filed by Atotech Deutschland GmbH and Co KG filed Critical Atotech Deutschland GmbH and Co KG
Priority to ES06025569T priority patent/ES2394910T3/en
Priority to PCT/EP2007/010753 priority patent/WO2008071371A2/en
Priority to US12/312,940 priority patent/US9057145B2/en
Priority to JP2009539668A priority patent/JP5279720B2/en
Priority to CN200780045675.6A priority patent/CN101553603B/en
Priority to TW96147247A priority patent/TW200839037A/en
Publication of EP1932953A1 publication Critical patent/EP1932953A1/en
Application granted granted Critical
Publication of EP1932953B1 publication Critical patent/EP1932953B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • C25D21/14Controlled addition of electrolyte components

Definitions

  • the present invention relates to a method for the electrodeposition of a metal layer from an electrolyte bath, wherein the concentration of at least two components of the electrolyte bath is monitored by means of a column for solid-phase extraction.
  • the galvanic deposition of metal layers from electrolyte baths is widely used industrially.
  • the electrolyte bath in addition to a compound of the metal to be deposited or of the metals to be deposited, the electrolyte bath generally contains further components which are necessary for carrying out the deposition process and for improving the quality of the deposited metal layer.
  • These substances are organic compounds. Examples of such components are grain refiners, wetting agents, brighteners, complexing agents, inhibitors. These components are generally more or less rapidly consumed, destroyed or removed from the bath by carry-out when performing the deposition process. The concentration of components therefore decreases more or less rapidly over time.
  • the monitoring of the concentration of the component (s) of an electrolyte bath requires the determination of the concentration of the component (s) in the electrolyte bath at regular time intervals. So far, this is often done in such a way that the electrolyte bath individual samples are removed manually and these are optionally subjected to a sample enrichment and purification of a chemical and / or physical analysis. Here, the individual analysis steps of the separation of the additives, purification and concentration determination are carried out separately. In addition to the increased expenditure of time and the resulting additional costs, the result is available only considerably delayed for a valuation. The goal of ensuring increased process safety and enabling rapid intervention if concentrations or concentration ratios change or degradation products of the additives accumulate in the electrolyte is very limited, if any, achievable.
  • Solid Phase Extraction is the most widely used method for sample enrichment and purification, ie, sample preparation method, for modern liquid chromatography. It is used in particular for the analysis of active pharmaceutical ingredients and in environmental technology Enrichment of the substances to be determined used in the water analysis.
  • the components to be extracted are enriched on special adsorbents and then eluted with a solvent.
  • a vacuum can be applied to the cartridges used.
  • Solid phase extraction has the great advantage over liquid-liquid extraction (LLE) of being able to handle much lower volumes of solvent, resulting in higher analyte concentration in less time.
  • the separation is more complete compared to the LLE because the choice of adsorbent and eluent allows for a wide range of polarity and optimal extraction of the desired components of the solution.
  • the above-mentioned sample enrichment and purification is carried out as a separate step before the actual separation and determination of the substances of interest.
  • This separation and determination is often performed by subsequent liquid chromatography (e.g., HPLC, UPLC), i.
  • the sample preparation and the actual determination are carried out in several consecutive steps.
  • the quasi-continuous monitoring of a plating process becomes viable when the process and / or bath conditions change faster than can be measured using traditional manual analysis and automation techniques. This is especially true for processes with a narrow concentration range, small bath volumes and high throughputs (high deposition rate, introduction and removal).
  • the invention has for its object to provide a method for the electrodeposition of a metal layer of an electrolyte bath, wherein the concentration of at least two Components of the electrolyte bath can be monitored in a simple manner.
  • the quasi-continuous monitoring of the concentration of at least two components should be possible.
  • a method of electrodepositing a metal layer from an electrolyte bath wherein the concentrations of at least two components of the electrolyte bath are monitored by performing the following steps: (a) a sample is taken from the electrolyte bath; (b) the sample is fed to a solid phase extraction column containing a solid sorbent; (C) the column is subjected to a washing process with a first eluent, wherein the at least two components remain on the column and unwanted components are eluted from the column; (d) the at least two components are eluted from the column by means of a second eluent; (e) the concentrations of the at least two components in the eluate obtained in step (d) are determined without separating the components.
  • the present invention provides for the first time a method for the automatic, quasi-continuous solid-phase extraction of the components to be determined (in particular organic additives) with subsequent direct concentration determination without the requirement of prior separation of the components.
  • the direct determination of the concentration of the components can be carried out by means of photometry, in particular UV detection, or by means of electrochemical detection methods, in particular polarography, or else by refractometry.
  • the present invention enables the analysis of the additives in particular of tin, tin / lead, zinc, copper, nickel electrolytes and of noble metal electrolytes, in particular palladium and gold electrolytes.
  • FIG. 1 shows a schematic representation of the stages of the sample application, the washing and the elution of the column for solid phase extraction according to an embodiment of the inventive method.
  • FIG. 2 shows a schematic representation of the stages of sample application, washing and elution of the column for solid phase extraction according to another embodiment of the method according to the invention.
  • FIG. 3 shows a schematic representation of the stages of sample application, washing and elution of the column for solid phase extraction according to another embodiment of the method according to the invention.
  • FIG. 4 shows a schematic representation of an analysis system for the method according to the invention with switching valves, wherein the sample or a washing solution in the forward direction are passed over the column for solid phase extraction and an optional collecting and mixing container is provided.
  • FIG. 5 shows a schematic representation of an analysis system for the method according to the invention with switching valves, wherein the eluent is passed in the reverse direction over the column for solid phase extraction and an optional collecting and mixing container is provided.
  • the invention provides a method of electrodepositing a metal layer from an electrolyte bath.
  • the metal to be deposited is not particularly limited.
  • the metal may be tin, tin / lead, zinc, copper, nickel, a noble metal such as palladium or gold, or a combination of these or other metals.
  • the method according to the invention makes it possible to monitor the concentrations of at least two components of the electrolyte bath.
  • the components are preferably organic components of the electrolyte bath.
  • the components whose concentration can be monitored include, in particular, flavones, chalcones, maltols, naphthols and UV-active ionic and nonionic surfactants.
  • a component whose concentration is monitored may also be a grain refiner.
  • the grain refiner may in particular be morin, e.g. used in electrolyte baths for the deposition of tin layers.
  • the component may further be a conventional additive used in electrolyte baths for deposition of tin layers.
  • the concentration of at least two components of the electrolyte bath can be monitored.
  • the stages of sampling, the solid phase extraction, the washing process and the elution for the component to be monitored are preferably carried out simultaneously or in parallel.
  • the determination of the concentration of the components takes place without the components being separated from one another.
  • the determination of the concentration of the individual components is not necessarily simultaneous, but usually one after the other.
  • the determination of the concentration of the individual components can preferably take place in one measuring cycle.
  • sample volumes can be used for each component to be monitored, depending on the concentration of the particular component and the sensitivity of the determination method used.
  • the method according to the invention makes it possible to monitor components which differ greatly from one another with regard to their concentration in the electrolyte bath and / or their absorption coefficient ⁇ and which can therefore not be determined simultaneously using conventional methods.
  • a sample is first taken from the electrolyte bath. This can be done in particular by sucking in a small partial volume of the electrolyte bath via a pump.
  • the sample is then fed to a solid phase extraction column containing a solid sorbent.
  • the sorbent is selected according to the solution character, polarity, hydrophilicity and lipophilicity of the substances to be separated.
  • the macromolecular backbone of the sorbent is preferably a copolymer of divinylbenzene and N-vinylpyrrolidone or a crosslinked polystyrene (formed by copolymerization of styrene with divinylbenzene).
  • the sorbent can also consist of silica (silica gel).
  • the average pore diameter of the poly (divinylbenzene-co-N-vinylpyrrolidone) used, for example, as a sorbent is preferably about 82 , the specific surface is preferably about 831 m 2 / g, the pore volume is preferably about 1.4 cm 3 / g, the average particle diameter is preferably about 31.4 microns and the proportion of fines ( ⁇ 10 microns) is preferably about 0.1%.
  • Poly (divinylbenzene-co-N-vinylpyrrolidones) having these properties are commercially available (eg from Waters Corporation).
  • RP18 lipophilic character
  • RP18 means "reversed phase” with 18 C atoms in the side chain. This term is used for a particular stationary phase of liquid chromatography. In the RP phases, the polarity ratios are reversed compared to the normal phases. Nonpolar side chains are attached to a silica backbone or to a polymer. In general, silica-based column materials having 8 to 18 carbon atoms can be used.
  • the solid phase extraction leads to an accumulation of the components to be monitored.
  • the column is then subjected to a wash with a first eluent, leaving the at least two components to be monitored on the column and eluting undesired components from the column.
  • the first eluents which may be used are in particular: water, dilute acid, methanesulfonic acid, acetates, carbonates, bases, or mixtures thereof, a mixture of alcohol and sulfuric acid or a mixture of alcohol and water.
  • the eluents are, depending on the solution character, the polarity, hydrophilicity and lipophilicity of the substances to be separated.
  • the washing process also serves to wash out or filter out impurities and larger particles that can not pass through the column with the aqueous matrix. Otherwise, such particles would enter the measuring chamber in the subsequent elution step and adversely affect the measurement there.
  • the at least two components to be monitored are then eluted from the column by means of a second eluent.
  • a second eluent water, methanol, a mixture of water and methanol, alkanes, methyl chloride, alcohols, dimethyl sulfoxide, acetonitrile or mixtures thereof.
  • the eluents are selected according to the solution character, the polarity, the hydrophilicity and lipophilicity of the substances to be separated.
  • the first eluent and the second eluent may be supplied to the column in the same direction as the sample of the electrolyte bath first supplied (see FIG. 1 ). This direction is referred to here as "forward".
  • first eluent and / or second eluent may be fed to the column in the opposite direction (see Figures 2 and 3 ). This direction is referred to here as "backwards”.
  • the reversal of the Elutionsoplasty can be realized in a simple manner by means of switching valves, as shown in the FIGS. 4 and 5 is shown.
  • the valve setting allows adjustment of the flow direction.
  • This process variant is preferred.
  • a collecting and mixing container be provided to dilute the eluate before measuring if its concentration is too high.
  • the extended column passage is avoided in the case of maintaining the flow direction during the elution.
  • the exit path of the components to be monitored or of the undesired components is thereby shortened and the analysis time is considerably reduced.
  • the reproducibility of the values is significantly improved.
  • the concentrations of the at least two components to be monitored are determined in the eluate obtained by elution with the second eluent. From the concentration in the eluate, the concentration of the component in the electrolytic bath can be calculated (based on the volume of the eluate and the volume of the initially charged sample).
  • the concentration can be determined photometrically.
  • the eluate obtained by the elution with the second eluent is supplied to a measuring cell, where UV light is preferably radiated in perpendicular to the direction of flow from an external source and detected in a photometer and recorded by means of a computer program.
  • the at least two components do not have to be separated for this purpose. Rather, it is possible to determine the concentrations of different components separately by using light of different wavelengths without separation of the components.
  • the determination of the concentrations of the individual components can be carried out in succession.
  • the determination of the concentrations of the individual components can also be carried out in different devices and using different sample volumes.
  • a physical measuring method is selected in which the physical parameters of the at least two components are different so that a determination can be made without separation of the components.
  • concentration determination include electroanalytical methods such as coulometry and voltammetry.
  • mass spectrometry is suitable for determining the concentration.
  • the column is subjected to conditioning before the supply of the sample of the electrolyte bath.
  • conditioning agents methanol or an acidic solution.
  • acidic conditioning solutions is particularly advantageous in order to avoid the precipitation of poorly soluble substances and thus the clogging of the column.
  • the concentration of at least two components of an electrolyte bath can be monitored quasi-continuously.
  • quasi-continuous means that the determination of the concentrations in a relatively short time interval is repeated regularly.
  • the time interval can be, for example, 10 hours, 5 hours, 2 hours, 1 hour, 30 minutes, 10 minutes, or 1 minute.
  • the monitoring of the concentration of the at least two components of the electrolyte bath can advantageously be carried out automatically.
  • automated means that all steps of the procedure are performed without manual intervention.
  • the monitoring of the at least two components is combined with the control of a dosing system which supplies a fresh amount of the consumed or destroyed component to the electrolyte bath as needed to achieve a nearly constant concentration of the monitored components during operation of the deposition process.
  • a steady state is achieved in which all components that deplete are supplemented by a suitable dosing system and the components that accumulate are removed by appropriate regeneration measures.
  • the method according to the invention is easy to handle and offers a cost-effective alternative to manual sampling with subsequent sample enrichment and final concentration determination and to known methods with separation of the components to be monitored.
  • the quality and the Proof of quality and troubleshooting in current production are demonstrably improved.
  • the present invention makes it possible to monitor at least two components of electrolytic baths in electroplating technology in a highly efficient, cost-effective, easy-to-handle and highly reproducible manner.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Organic Chemistry (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

Gebiet der ErfindungField of the invention

Die vorliegende Erfindung betrifft ein Verfahren zur galvanischen Abscheidung einer Metallschicht aus einem Elektrolytbad, wobei die Konzentration mindestes zweier Komponenten des Elektrolytbads mit Hilfe einer Säule zur Festphasenextraktion überwacht wird.The present invention relates to a method for the electrodeposition of a metal layer from an electrolyte bath, wherein the concentration of at least two components of the electrolyte bath is monitored by means of a column for solid-phase extraction.

Hintergrund der ErfindungBackground of the invention

Die galvanische Abscheidung von Metallschichten aus Elektrolytbädern wird industriell vielfältig angewendet. Dabei enthält das Elektrolytbad neben einer Verbindung des abzuscheidenden Metalls oder der abzuscheidenden Metalle in der Regel weitere Komponenten, die zur Durchführung des Abscheidungsverfahrens und zur Verbesserung der Qualität der abgeschiedenen Metallschicht erforderlich sind. Bei diesen Substanzen handelt es sich um organische Verbindungen. Beispiele für solche Komponenten sind Kornverfeinerer, Netzmittel, Glanzzusätze, Komplexbildner, Inhibitoren. Diese Komponenten werden bei der Durchführung des Abscheidungsverfahrens im Allgemeinen mehr oder weniger schnell verbraucht, zerstört oder durch Ausschleppung dem Bad entzogen. Die Konzentration der Komponenten nimmt deshalb im Laufe der Zeit mehr oder weniger schnell ab. Um eine optimale Durchführung des Abscheidungsverfahrens über einen längeren Zeitraum zu ermöglichen, ist es daher notwendig, die Konzentration einer oder mehrerer Komponenten des Elektrolytbads zu überwachen und die verbrauchte bzw. zerstörte Menge der Komponente je nach Bedarf durch Zufuhr frischer Komponente zu dem Elektrolytbad zu ersetzen.The galvanic deposition of metal layers from electrolyte baths is widely used industrially. In this case, in addition to a compound of the metal to be deposited or of the metals to be deposited, the electrolyte bath generally contains further components which are necessary for carrying out the deposition process and for improving the quality of the deposited metal layer. These substances are organic compounds. Examples of such components are grain refiners, wetting agents, brighteners, complexing agents, inhibitors. These components are generally more or less rapidly consumed, destroyed or removed from the bath by carry-out when performing the deposition process. The concentration of components therefore decreases more or less rapidly over time. Therefore, in order to permit optimum performance of the deposition process over an extended period of time, it is necessary to monitor the concentration of one or more components of the electrolyte bath and replace the consumed or destroyed amount of the component as needed by adding fresh component to the electrolyte bath.

Die Überwachung der Konzentration der Komponente(n) eines Elektrolytbads erfordert die Bestimmung der Konzentration der Komponente(n) in dem Elektrolytbad in regelmäßigen zeitlichen Abständen. Bisher erfolgt dies vielfach in der Weise, dass dem Elektrolytbad einzelne Proben manuell entnommen werden und diese gegebenenfalls nach einer Probenanreicherung und Reinigung einer chemischen und/oder physikalischen Analyse unterworfen werden. Hierbei werden die einzelnen Analysenschritte der Abtrennung der Additive, Reinigung und Konzentrationsbestimmung getrennt voneinander durchgeführt. Neben dem erhöhtem Zeitaufwand und den entstehenden Mehrkosten steht das Ergebnis erst erheblich zeitverzögert für eine Bewertung zur Verfügung. Das Ziel, eine erhöhte Prozesssicherheit zu gewährleisten und ein schnelles Eingreifen zu ermöglichen, falls sich Konzentrationen bzw. Konzentrationsverhältnisse ändern oder sich Abbauprodukte der Zusatzstoffe in dem Elektrolyten anreichern, ist nur sehr begrenzt, wenn überhaupt, erreichbar. Oftmals besteht am Ort der Fertigung und damit dem Ort der Probenentnahme nicht die Möglichkeit, eine entsprechende Badanalyse zeitnah durchzuführen. Der Betreiber der Produktionsanlage ist somit in der Regel hinsichtlich der Durchführung der für die Prozesskontrolle und der Qualität seiner Produkte immens wichtigen Analysen auf die Hilfe und den Zeitplan Dritter angewiesen, sofern er nicht in die entsprechenden Analysenanlagen und qualifiziertes Personal investieren will.The monitoring of the concentration of the component (s) of an electrolyte bath requires the determination of the concentration of the component (s) in the electrolyte bath at regular time intervals. So far, this is often done in such a way that the electrolyte bath individual samples are removed manually and these are optionally subjected to a sample enrichment and purification of a chemical and / or physical analysis. Here, the individual analysis steps of the separation of the additives, purification and concentration determination are carried out separately. In addition to the increased expenditure of time and the resulting additional costs, the result is available only considerably delayed for a valuation. The goal of ensuring increased process safety and enabling rapid intervention if concentrations or concentration ratios change or degradation products of the additives accumulate in the electrolyte is very limited, if any, achievable. Often it is not possible at the place of manufacture and thus the place of sampling to carry out a corresponding bath analysis in a timely manner. As a rule, the operator of the production facility therefore relies on the help and the timetable of third parties in order to carry out the analysis, which is of immense importance for the process control and the quality of his products, unless he wishes to invest in the appropriate analysis facilities and qualified personnel.

Stand der TechnikState of the art

Die Festphasenextraktion (Solid Phase Extraction, SPE) ist die am weitesten verbreitete Methode zur Probenanreicherung und -reinigung, d. h. Probenvorbereitungsmethode, für die moderne Flüssigkeitschromatographie. Sie wird insbesondere für die Analyse pharmazeutischer Wirkstoffe und in der Umwelttechnik zur Anreicherung der zu bestimmenden Substanzen in der Wasseranalytik eingesetzt.Solid Phase Extraction (SPE) is the most widely used method for sample enrichment and purification, ie, sample preparation method, for modern liquid chromatography. It is used in particular for the analysis of active pharmaceutical ingredients and in environmental technology Enrichment of the substances to be determined used in the water analysis.

Hierzu werden die zu extrahierenden Komponenten auf speziellen Adsorbentien angereichert und anschließend mit einem Lösungsmittel eluiert. An die hierbei eingesetzten Kartuschen kann wahlweise ein Vakuum angelegt werden.For this purpose, the components to be extracted are enriched on special adsorbents and then eluted with a solvent. Optionally, a vacuum can be applied to the cartridges used.

Die Festphasenextraktion hat den großen Vorteil gegenüber der Flüssig-Flüssig Extraktion (LLE), dass sie mit weitaus geringeren Lösungsmittelvolumina auskommt und hierdurch eine höhere Aufkonzentrierung des Analyten in kürzerer Zeit erreicht wird. Darüber hinaus ist die Trennung im Vergleich zur LLE vollständiger, da die Auswahl an Adsorbens und Elutionsmittel einen breiten Polaritätsbereich und eine optimale Extraktion der gewünschten Lösungsbestandteile ermöglicht.Solid phase extraction has the great advantage over liquid-liquid extraction (LLE) of being able to handle much lower volumes of solvent, resulting in higher analyte concentration in less time. In addition, the separation is more complete compared to the LLE because the choice of adsorbent and eluent allows for a wide range of polarity and optimal extraction of the desired components of the solution.

Nach dem Stand der Technik wird die oben genannte Probenanreicherung und -reinigung als separater Schritt vor der eigentlichen Trennung und Bestimmung der interessierenden Substanzen durchgeführt. Diese Trennung und Bestimmung wird häufig durch anschließende Flüssigkeitschromatographie (z. B. HPLC, UPLC) durchgeführt, d.h. die Probenvorbereitung und die eigentliche Bestimmung werden in mehreren aufeinander folgenden Schritten durchgeführt.According to the prior art, the above-mentioned sample enrichment and purification is carried out as a separate step before the actual separation and determination of the substances of interest. This separation and determination is often performed by subsequent liquid chromatography (e.g., HPLC, UPLC), i. The sample preparation and the actual determination are carried out in several consecutive steps.

D'Urzo et al. (Journal of the Electrochemical Society, 152, 2005, S. C243 und S. C697 ) beschreiben die Überwachung zweier Klassen organischer Additive in sauren Kupferbädern mittels Festphasenextraktion und HPLC-Analyse umfassend die folgenden Schritte:

  1. (a) Entnahme einer Probe des Bads zur Abscheidung von Kupferschichten
  2. (b) Festphasenextraktion der beiden zu bestimmenden Additive in einem Schritt mit einem Styrol- / Divinylbenzol-Säulenmaterial
  3. (c) Trennung der Additive mittels HPLC
  4. (d) quantitative Bestimmung der Additive mittels UV-Spektrometrie
D'Urzo et al. (Journal of the Electrochemical Society, 152, 2005, p. C243 and p. C697 ) describe the monitoring of two classes of organic additives in acidic copper baths by solid phase extraction and HPLC analysis, comprising the following steps:
  1. (a) Taking a sample of the bath to deposit copper layers
  2. (b) solid phase extraction of the two additives to be determined in one step with a styrene / divinylbenzene column material
  3. (c) Separation of the additives by HPLC
  4. (d) quantitative determination of the additives by means of UV spectrometry

Johnson et al. (Metal Finishing, October 1985, S. 49 ) beschreiben die Bestimmung dreier organischer Komponenten, die als Additive in sauren Zinnbädern verwendet werden, durch

  1. (a) Probenahme
  2. (b) Festphasenextraktion
  3. (c) HPLC-Trennung
  4. (d) UV-Detektion
Johnson et al. (Metal Finishing, October 1985, p. 49 ) describe the determination of three organic components used as additives in acidic tin baths
  1. (a) Sampling
  2. (b) solid phase extraction
  3. (c) HPLC separation
  4. (d) UV detection

Nachteilig bei diesen Methoden ist die Verwendung eines aufwändigen HPLC-Schrittes zur Trennung der organischen Verbindungen vor ihrer quantitativen Bestimmung.A disadvantage of these methods is the use of a complex HPLC step for the separation of the organic compounds before their quantitative determination.

Die quasi-kontinuierliche Überwachung eines galvanotechnischen Prozesses wird dann rentabel, wenn sich die Prozess- und/oder Badbedingungen schneller ändern, als diese mit herkömmlichen manuellen Analyse- und Automatisierungsmethoden erfasst werden können. Dies trifft insbesondere für Prozesse mit engem Konzentrationsbereich, kleinen Badvolumina und hohen Durchsätzen (hohe Abscheidungsrate, Ein- und Ausschleppung) zu.The quasi-continuous monitoring of a plating process becomes viable when the process and / or bath conditions change faster than can be measured using traditional manual analysis and automation techniques. This is especially true for processes with a narrow concentration range, small bath volumes and high throughputs (high deposition rate, introduction and removal).

Beschreibung der ErfindungDescription of the invention

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur galvanischen Abscheidung einer Metallschicht aus einem Elektrolytbad bereitzustellen, bei dem die Konzentration mindestens zweier Komponenten des Elektrolytbads in einfacher Weise überwacht werden kann. Insbesondere soll die Bestimmung der Konzentration der mindestens zwei Komponenten in kurzer Zeit und unter Verwendung geringer Lösungsmittelvolumina möglich sein. Dadurch soll die quasi-kontinuierliche Überwachung der Konzentration der mindestens zwei Komponenten möglich sein. Darüber hinaus soll es möglich sein, die Konzentration mehrerer Komponenten quasi gleichzeitig zu überwachen.The invention has for its object to provide a method for the electrodeposition of a metal layer of an electrolyte bath, wherein the concentration of at least two Components of the electrolyte bath can be monitored in a simple manner. In particular, it should be possible to determine the concentration of the at least two components in a short time and using small volumes of solvent. As a result, the quasi-continuous monitoring of the concentration of at least two components should be possible. In addition, it should be possible to monitor the concentration of several components virtually simultaneously.

Diese Aufgaben werden gelöst durch ein Verfahren zur galvanischen Abscheidung einer Metallschicht aus einem Elektrolytbad, wobei die Konzentrationen mindestens zweier Komponenten des Elektrolytbads überwacht werden, indem folgende Schritte durchgeführt werden: (a) dem Elektrolytbad wird eine Probe entnommen; (b) die Probe wird einer Säule zur Festphasenextraktion zugeführt, die ein festes Sorbens enthält; (c) die Säule wird einem Waschvorgang mit einem ersten Eluens unterworfen, wobei die mindestens zwei Komponenten auf der Säule verbleiben und unerwünschte Komponenten von der Säule eluiert werden; (d) die mindestens zwei Komponenten werden von der Säule mittels eines zweiten Eluens eluiert; (e) die Konzentrationen der mindestens zwei Komponenten in dem in Stufe (d) erhaltenen Eluat werden bestimmt, ohne dass die Komponenten voneinander getrennt werden.These objects are achieved by a method of electrodepositing a metal layer from an electrolyte bath, wherein the concentrations of at least two components of the electrolyte bath are monitored by performing the following steps: (a) a sample is taken from the electrolyte bath; (b) the sample is fed to a solid phase extraction column containing a solid sorbent; (C) the column is subjected to a washing process with a first eluent, wherein the at least two components remain on the column and unwanted components are eluted from the column; (d) the at least two components are eluted from the column by means of a second eluent; (e) the concentrations of the at least two components in the eluate obtained in step (d) are determined without separating the components.

Die vorliegende Erfindung stellt erstmals ein Verfahren zur automatischen, quasi-kontinuierlichen Festphasenextraktion der zu bestimmenden Komponenten (insbesondere organischer Additive) mit anschließender direkter Konzentrationsbestimmung ohne das Erfordernis der vorherigen Trennung der Komponenten zur Verfügung.The present invention provides for the first time a method for the automatic, quasi-continuous solid-phase extraction of the components to be determined (in particular organic additives) with subsequent direct concentration determination without the requirement of prior separation of the components.

Die direkte Konzentrationsbestimmung der Komponenten kann mittels Photometrie, insbesondere UV-Detektion, oder mittels elektrochemischer Detektionsmethoden, insbesondere Polarographie, oder auch durch Refraktometrie erfolgen.The direct determination of the concentration of the components can be carried out by means of photometry, in particular UV detection, or by means of electrochemical detection methods, in particular polarography, or else by refractometry.

Die vorliegende Erfindung ermöglicht die Analyse der Additive insbesondere von Zinn-, Zinn/Blei-, Zink-, Kupfer-, Nickelelektrolyten sowie von Edelmetallelektrolyten, insbesondere Palladium- und Goldelektrolyten.The present invention enables the analysis of the additives in particular of tin, tin / lead, zinc, copper, nickel electrolytes and of noble metal electrolytes, in particular palladium and gold electrolytes.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Figur 1 zeigt eine schematische Darstellung der Stufen der Probenaufgabe, des Waschens und des Eluierens der Säule zur Festphasenextraktion gemäß einer Ausführungsform des erfindungsgemä-ßen Verfahrens. FIG. 1 shows a schematic representation of the stages of the sample application, the washing and the elution of the column for solid phase extraction according to an embodiment of the inventive method.

Figur 2 zeigt eine schematische Darstellung der Stufen der Probenaufgabe, des Waschens und des Eluierens der Säule zur Festphasenextraktion gemäß einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens. FIG. 2 shows a schematic representation of the stages of sample application, washing and elution of the column for solid phase extraction according to another embodiment of the method according to the invention.

Figur 3 zeigt eine schematische Darstellung der Stufen der Probenaufgabe, des Waschens und des Eluierens der Säule zur Festphasenextraktion gemäß einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens. FIG. 3 shows a schematic representation of the stages of sample application, washing and elution of the column for solid phase extraction according to another embodiment of the method according to the invention.

Figur 4 zeigt eine schematische Darstellung eines Analysesystems für das erfindungsgemäße Verfahren mit Schaltventilen, wobei die Probe bzw. eine Waschlösung in der Vorwärts-Richtung über die Säule zur Festphasenextraktion geleitet werden und ein optionaler Sammel- und Mischbehälter vorgesehen ist. FIG. 4 shows a schematic representation of an analysis system for the method according to the invention with switching valves, wherein the sample or a washing solution in the forward direction are passed over the column for solid phase extraction and an optional collecting and mixing container is provided.

Figur 5 zeigt eine schematische Darstellung eines Analysesystems für das erfindungsgemäße Verfahren mit Schaltventilen, wobei das Elutionsmittel in der Rückwärts-Richtung über die Säule zur Festphasenextraktion geleitet wird und ein optionaler Sammel- und Mischbehälter vorgesehen ist. FIG. 5 shows a schematic representation of an analysis system for the method according to the invention with switching valves, wherein the eluent is passed in the reverse direction over the column for solid phase extraction and an optional collecting and mixing container is provided.

Beschreibung der bevorzugten AusführungsformenDescription of the Preferred Embodiments

Die Erfindung stellt ein Verfahren zur galvanischen Abscheidung einer Metallschicht aus einem Elektrolytbad bereit. Das abzuscheidende Metall ist nicht besonders beschränkt. Das Metall kann insbesondere Zinn, Zinn/Blei, Zink, Kupfer, Nickel, ein Edelmetall wie zum Beispiel Palladium oder Gold, oder eine Kombination dieser oder anderer Metalle sein.The invention provides a method of electrodepositing a metal layer from an electrolyte bath. The metal to be deposited is not particularly limited. In particular, the metal may be tin, tin / lead, zinc, copper, nickel, a noble metal such as palladium or gold, or a combination of these or other metals.

Das erfindungsgemäße Verfahren ermöglicht die Überwachung der Konzentrationen mindestens zweier Komponenten des Elektrolytbads. Bei den Komponenten handelt es sich bevorzugt um organische Komponenten des Elektrolytbads. Zu den Komponenten, deren Konzentration überwacht werden kann, gehören insbesondere Flavone, Chalcone, Maltole, Naphthole und UV-aktive ionische und nichtionische Tenside. Eine Komponente, deren Konzentration überwacht wird, kann auch ein Kornverfeinerer sein. Der Kornverfeinerer kann insbesondere Morin sein, das z.B. in Elektrolytbädern zur Abscheidung von Zinnschichten eingesetzt wird. Die Komponente kann des Weiteren ein herkömmliches Additiv sein, das in Elektrolytbädern zur Abscheidung von Zinnschichten eingesetzt wird.The method according to the invention makes it possible to monitor the concentrations of at least two components of the electrolyte bath. The components are preferably organic components of the electrolyte bath. The components whose concentration can be monitored include, in particular, flavones, chalcones, maltols, naphthols and UV-active ionic and nonionic surfactants. A component whose concentration is monitored may also be a grain refiner. The grain refiner may in particular be morin, e.g. used in electrolyte baths for the deposition of tin layers. The component may further be a conventional additive used in electrolyte baths for deposition of tin layers.

Bei dem erfindungsgemäßen Verfahren kann die Konzentration mindestens zweier Komponenten des Elektrolytbads überwacht werden. Dabei erfolgen die Stufen der Probennahme, der Festphasenextraktion, des Waschvorgangs und des Eluierens für die zu überwachenden Komponente bevorzugt gleichzeitig oder parallel. Die Konzentrationsbestimmung der Komponenten erfolgt, ohne dass die Komponenten voneinander getrennt werden. Die Konzentrationsbestimmung der einzelnen Komponenten erfolgt jedoch nicht zwangsläufig gleichzeitig, sondern üblicherweise nacheinander. Allerdings kann die Konzentrationsbestimmung der einzelnen Komponenten bevorzugt in einem Messzyklus erfolgen.In the method according to the invention, the concentration of at least two components of the electrolyte bath can be monitored. The stages of sampling, the solid phase extraction, the washing process and the elution for the component to be monitored are preferably carried out simultaneously or in parallel. The determination of the concentration of the components takes place without the components being separated from one another. However, the determination of the concentration of the individual components is not necessarily simultaneous, but usually one after the other. However, the determination of the concentration of the individual components can preferably take place in one measuring cycle.

Im Falle der Bestimmung der Komponenten in nacheinander folgenden Analyseschritten können je nach Konzentration der jeweiligen Komponente und der Empfindlichkeit des eingesetzten Bestimmungsverfahrens unterschiedliche Probevolumina für jede zu überwachende Komponente eingesetzt werden.In the case of determination of the components in successive analysis steps, different sample volumes can be used for each component to be monitored, depending on the concentration of the particular component and the sensitivity of the determination method used.

Das erfindungsgemäße Verfahren ermöglicht insbesondere die Überwachung von Komponenten, die sich bezüglich ihrer Konzentration in dem Elektrolytbad und/oder ihres Absorptionskoeffizienten ε stark voneinander unterscheiden und die mit herkömmlichen Verfahren deshalb nicht gleichzeitig bestimmt werden können.In particular, the method according to the invention makes it possible to monitor components which differ greatly from one another with regard to their concentration in the electrolyte bath and / or their absorption coefficient ε and which can therefore not be determined simultaneously using conventional methods.

Bei dem erfindungsgemäßen Verfahren wird dem Elektrolytbad zunächst eine Probe entnommen. Dies kann insbesondere dadurch erfolgen, dass ein kleines Teilvolumen des Elektrolytbads über eine Pumpe angesaugt wird.In the method according to the invention, a sample is first taken from the electrolyte bath. This can be done in particular by sucking in a small partial volume of the electrolyte bath via a pump.

Die Probe wird sodann einer Säule zur Festphasenextraktion zugeführt, die ein festes Sorbens enthält. Das Sorbens wird je nach dem Lösungscharakter, der Polarität, der Hydrophilie und Lipophilie, der zu trennenden Substanzen ausgewählt. Das makromolekulare Grundgerüst des Sorbens ist bevorzugt ein Copolymer aus Divinylbenzol und N-Vinylpyrrolidon oder ein vernetztes Polystyrol (entstanden durch Copolymerisation von Styrol mit Divenylbenzol). Das Sorbens kann auch aus Silica (Kieselgel) bestehen.The sample is then fed to a solid phase extraction column containing a solid sorbent. The sorbent is selected according to the solution character, polarity, hydrophilicity and lipophilicity of the substances to be separated. The macromolecular backbone of the sorbent is preferably a copolymer of divinylbenzene and N-vinylpyrrolidone or a crosslinked polystyrene (formed by copolymerization of styrene with divinylbenzene). The sorbent can also consist of silica (silica gel).

Überraschwenderweise wurde insbesondere für das Copolymer aus Divinylbenzol und N-Vinylpyrrolidon (d.h. Poly(divenylbenzol-co-N-vinylpyrrolidon)) eine sehr gute Trennwirkung der zu bestimmenden Komponenten von der wässrigen Matrix des Elektrolytbads nachgewiesen. Darüber hinaus zeichnet es sich ganz besonders sowohl durch eine hydrophile als auch eine lipophile Retentionscharakteristik aus. Diese ermöglicht die Nutzung wässriger, polarer und unpolarer Lösungsmittel zur Extraktion der Analyten und deckt damit ein besonders weites Anwendungsspektrum ab.Surprisingly, in particular for the copolymer of divinylbenzene and N-vinylpyrrolidone (ie poly (divinylbenzene-co-N-vinylpyrrolidone)), a very good separation effect of the components to be determined from the aqueous matrix of the electrolyte bath has been demonstrated. In addition, it is characterized in particular by both a hydrophilic and a lipophilic retention characteristic. This allows the use of aqueous, polar and nonpolar solvents for the extraction of analytes and thus covers a particularly wide range of applications.

Der durchschnittliche Porendurchmesser des Poly(divenylbenzol-co-N-vinylpyrrolidon), das beispielsweise als Sorbens eingesetzt wird, beträgt bevorzugt etwa 82

Figure imgb0001
, die spezifische Oberfläche beträgt bevorzugt etwa 831 m2/g, das Porenvolumen beträgt bevorzugt etwa 1.4 cm3/g, der durchschnittliche Partikeldurchmesser beträgt bevorzugt etwa 31.4 µm und der Anteil an Feinstoffen (< 10 µm) liegt bevorzugt bei etwa 0.1%. Poly(divenylbenzol-co-N-vinylpyrrolidone) mit diesen Eigenschaften sind kommerziell verfügbar (z.B. von Waters Corporation).The average pore diameter of the poly (divinylbenzene-co-N-vinylpyrrolidone) used, for example, as a sorbent is preferably about 82
Figure imgb0001
, the specific surface is preferably about 831 m 2 / g, the pore volume is preferably about 1.4 cm 3 / g, the average particle diameter is preferably about 31.4 microns and the proportion of fines (<10 microns) is preferably about 0.1%. Poly (divinylbenzene-co-N-vinylpyrrolidones) having these properties are commercially available (eg from Waters Corporation).

Bislang fand Poly(divenylbenzol-co-N-vinylpyrrolidon) keinerlei Verwendung in der Galvanotechnik.So far, poly (divinylbenzene-co-N-vinylpyrrolidone) found no use in electroplating.

Als weitere Säulenmaterialien sind noch solche auf Silicabasis geeignet, insbesondere RP18 (lipophiler Charakter). RP18 bedeutet "reversed phase" mit 18 C-Atomen in der Seitenkette. Diese Bezeichnung wird für eine bestimmte stationäre Phase der Flüssigchromatographie verwendet. Bei den RP-Phasen sind die Polaritätsverhältnisse umgekehrt im Vergleich zu den Normalphasen. Unpolare Seitenketten sind an ein Kieselgelgerüst oder an ein Polymer gebunden. Generell können Säulenmaterialien auf Silicabasis mit 8 bis 18 C-Atomen eingesetzt werden.As further column materials, those based on silica are also suitable, in particular RP18 (lipophilic character). RP18 means "reversed phase" with 18 C atoms in the side chain. This term is used for a particular stationary phase of liquid chromatography. In the RP phases, the polarity ratios are reversed compared to the normal phases. Nonpolar side chains are attached to a silica backbone or to a polymer. In general, silica-based column materials having 8 to 18 carbon atoms can be used.

Nahe der Säuleneintrittsöffnung kommt es bei der Festphasenextraktion zu einer Anreicherung der zu überwachenden Komponenten.Near the column inlet opening, the solid phase extraction leads to an accumulation of the components to be monitored.

Die Säule wird sodann einem Waschvorgang mit einem ersten Eluens unterworfen, wobei die mindestens zwei zu überwachenden Komponenten auf der Säule verbleiben und unerwünschte Komponenten von der Säule eluiert werden. Als erstes Eluens können dabei insbesondere eingesetzt werden: Wasser, verdünnte Säure, Methansulfonsäure, Acetate, Carbonate, Basen, oder Gemische hieraus, ein Gemisch aus Alkohol und Schwefelsäure oder ein Gemisch aus Alkohol und Wasser. Die Eluenten werden je nach dem Lösungscharakter, der Polarität, der Hydrophilie und Lipophilie der zu trennenden Substanzen ausgewählt.The column is then subjected to a wash with a first eluent, leaving the at least two components to be monitored on the column and eluting undesired components from the column. The first eluents which may be used are in particular: water, dilute acid, methanesulfonic acid, acetates, carbonates, bases, or mixtures thereof, a mixture of alcohol and sulfuric acid or a mixture of alcohol and water. The eluents are, depending on the solution character, the polarity, hydrophilicity and lipophilicity of the substances to be separated.

Der Waschvorgang dient zusätzlich dazu, Verunreinigungen und größere Partikel, die die Säule nicht mit der wässrigen Matrix passieren können, herauszuwaschen bzw. herauszufiltern. Solche Partikel würden andernfalls im nachfolgenden Elutionsschritt in die Messkammer gelangen und dort die Messung negativ beeinflussen.The washing process also serves to wash out or filter out impurities and larger particles that can not pass through the column with the aqueous matrix. Otherwise, such particles would enter the measuring chamber in the subsequent elution step and adversely affect the measurement there.

Die mindestens zwei zu überwachenden Komponenten werden anschließend mittels eines zweiten Eluens von der Säule eluiert. Als zweites Eluens können dabei insbesondere eingesetzt werden: Wasser, Methanol, ein Gemisch aus Wasser und Methanol, Alkane, Methylchlorid, Alkohole, Dimethylsulfoxid, Acetonitril oder Gemische hieraus. Die Eluenten werden je nach dem Lösungscharakter, der Polarität, der Hydrophilie und Lipophilie der zu trennenden Substanzen ausgewählt.The at least two components to be monitored are then eluted from the column by means of a second eluent. In particular, the following may be used as the second eluent: water, methanol, a mixture of water and methanol, alkanes, methyl chloride, alcohols, dimethyl sulfoxide, acetonitrile or mixtures thereof. The eluents are selected according to the solution character, the polarity, the hydrophilicity and lipophilicity of the substances to be separated.

Das erste Eluens und das zweite Eluens können der Säule in der gleichen Richtung zugeführt werden, wie die zuerst zugeführte Probe des Elektrolytbads (siehe Figur 1). Diese Richtung wird hier als "vorwärts" bezeichnet.The first eluent and the second eluent may be supplied to the column in the same direction as the sample of the electrolyte bath first supplied (see FIG. 1 ). This direction is referred to here as "forward".

Alternativ können das erste Eluens und/oder das zweite Eluens der Säule in der entgegengesetzten Richtung zugeführt werden (siehe Figuren 2 und 3). Diese Richtung wird hier als "rückwärts" bezeichnet.Alternatively, the first eluent and / or second eluent may be fed to the column in the opposite direction (see Figures 2 and 3 ). This direction is referred to here as "backwards".

Die Umkehr der Elutionsrichtung kann in einfacher Weise mit Hilfe von Schaltventilen realisiert werden, wie dies in den Figuren 4 und 5 dargestellt ist. Die Ventileinstellung ermöglicht dabei die Einstellung der Fließrichtung. Diese Verfahrenvariante ist bevorzugt. Dabei kann insbesondere ein Sammel- und Mischbehälter vorgesehen sein, um das Eluat vor dem Messen zu verdünnen, wenn dessen Konzentration zu hoch ist.The reversal of the Elutionsrichtung can be realized in a simple manner by means of switching valves, as shown in the FIGS. 4 and 5 is shown. The valve setting allows adjustment of the flow direction. This process variant is preferred. In particular, a collecting and mixing container be provided to dilute the eluate before measuring if its concentration is too high.

Durch die Umkehr der Elutionsrichtung wird der verlängerte Säulengang im Falle der Beibehaltung der Fliessrichtung während der Elution vermieden. Der Austrittsweg der zu überwachenden Komponenten bzw. der unerwünschten Komponenten wird hierdurch verkürzt und die Analysezeit erheblich reduziert. Außerdem wird die Reproduzierbarkeit der Werte dadurch deutlich verbessert.By reversing the direction of elution, the extended column passage is avoided in the case of maintaining the flow direction during the elution. The exit path of the components to be monitored or of the undesired components is thereby shortened and the analysis time is considerably reduced. In addition, the reproducibility of the values is significantly improved.

Schließlich werden die Konzentrationen der mindestens zwei zu überwachenden Komponenten in dem durch die Elution mit dem zweiten Eluens erhaltenen Eluat bestimmt. Aus der Konzentration in dem Eluat kann (anhand des Volumens des Eluats und des Volumens der anfangs aufgegebenen Probe) die Konzentration der Komponente in dem Elektrolytbad berechnet werden.Finally, the concentrations of the at least two components to be monitored are determined in the eluate obtained by elution with the second eluent. From the concentration in the eluate, the concentration of the component in the electrolytic bath can be calculated (based on the volume of the eluate and the volume of the initially charged sample).

Die Konzentrationsbestimmung kann photometrisch erfolgen. In diesem Fall wird das durch die Elution mit dem zweiten Eluens erhaltenen Eluat einer Messzelle zugeführt, wo senkrecht zur Fliessrichtung aus einer externen Quelle vorzugsweise UV-Licht eingestrahlt und in einem Photometer detektiert sowie über ein Computerprogramm aufgezeichnet wird. Die mindestens zwei Komponenten müssen hierfür nicht getrennt werden. Vielmehr ist es möglich, die Konzentrationen unterschiedlicher Komponenten durch Verwendung von Licht unterschiedlicher Wellenlängen separat ohne Trennung der Komponenten zu bestimmen. Die Bestimmung der Konzentrationen der einzelnen Komponenten kann nacheinander erfolgen. Die Bestimmung der Konzentrationen der einzelnen Komponenten kann auch in unterschiedlichen Vorrichtungen und unter Verwendung unterschiedlicher Probevolumina erfolgen. Eine Trennung der mindestens zwei zu überwachenden Komponenten voneinander vor der Konzentrationsbestimmung, wie sie bei bekannten Verfahren vorzugsweise mittels chromatographischer Methoden durchgeführt wird, ist bei dem erfindungsgemäßen Verfahren jedoch nicht erforderlich.The concentration can be determined photometrically. In this case, the eluate obtained by the elution with the second eluent is supplied to a measuring cell, where UV light is preferably radiated in perpendicular to the direction of flow from an external source and detected in a photometer and recorded by means of a computer program. The at least two components do not have to be separated for this purpose. Rather, it is possible to determine the concentrations of different components separately by using light of different wavelengths without separation of the components. The determination of the concentrations of the individual components can be carried out in succession. The determination of the concentrations of the individual components can also be carried out in different devices and using different sample volumes. A separation of the at least two components to be monitored from each other before the concentration determination, as carried out in known methods, preferably by means of chromatographic methods is, is in the inventive method, however, not required.

Vielmehr wird bei dem erfindungsgemäßen Verfahren eine physikalische Messmethode ausgewählt, bei der die physikalischen Parameter der mindestens zwei Komponenten so verscheiden sind, dass eine Bestimmung ohne Trennung der Komponenten erfolgen kann.Rather, in the method according to the invention, a physical measuring method is selected in which the physical parameters of the at least two components are different so that a determination can be made without separation of the components.

Geeignete physikalische Messmethoden umfassen dabei insbesondere:

  • Photometrie, wobei sich die beiden Komponenten in ihren Extinktionskoeffizienten ε unterscheiden,
  • Polarographie, wobei sich die beiden Komponenten in ihrem Halbstufenpotential unterscheiden, das eine charakteristische Größe für die Art des Depolarisators (Analyten) im gewählten Leitelektrolyt darstellt,
  • Refraktometrie, wobei sich die beiden Komponenten in ihrem Brechungsindex η unterscheiden.
Suitable physical measuring methods include in particular:
  • Photometry, where the two components differ in their extinction coefficients ε,
  • Polarography, where the two components differ in their half-wave potential, which represents a characteristic variable for the type of depolarizer (analyte) in the selected guide electrolyte,
  • Refractometry, wherein the two components differ in their refractive index η.

Weitere geeignete Messmethoden zur Konzentrationsbestimmung umfassen elektroanalytische Methoden wie Coulometrie und Voltametrie. Außerdem ist die zur Konzentrationsbestimmung die Massenspektrometrie geeignet.Other suitable measurement methods for concentration determination include electroanalytical methods such as coulometry and voltammetry. In addition, the mass spectrometry is suitable for determining the concentration.

Bei einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird die Säule vor der Zufuhr der Probe des Elektrolytbads einer Konditionierung unterworfen. Als Mittel zur Konditionierung können dabei insbesondere eingesetzt werden: Methanol oder eine säurehaltige Lösung. Die Verwendung säurehaltiger Konditionierungslösungen ist besonders vorteilhaft, um die Ausfällung schwerlöslicher Substanzen und damit das Verstopfen der Säule zu vermeiden. Nach der Konditionierung oder Aktivierung und vor der Zuführung der Probe des Elektrolytbads wird die Säule mit Wasser equilibriert.In a preferred embodiment of the method according to the invention, the column is subjected to conditioning before the supply of the sample of the electrolyte bath. In particular, the following may be used as conditioning agents: methanol or an acidic solution. The use of acidic conditioning solutions is particularly advantageous in order to avoid the precipitation of poorly soluble substances and thus the clogging of the column. After conditioning or activation and prior to supplying the sample of the electrolyte bath, the column is equilibrated with water.

Bei dem erfindungsgemäßen Verfahren kann die Konzentration mindestens zweier Komponenten eines Elektrolytbads quasi-kontinuierlich überwacht werden. Der Ausdruck "quasi-kontinuierlich" bedeutet dabei, dass die Bestimmung der Konzentrationen in vergleichsweise kurzem Zeitabstand regelmäßig wiederholt wird. - Der Zeitabstand kann zum Beispiel 10 Stunden, 5 Stunden, 2 Stunden, 1 Stunde, 30 Minuten, 10 Minuten, oder 1 Minute betragen. Bei dem erfindungsgemäßen Verfahren kann die Überwachung der Konzentration der mindestens zwei Komponenten des Elektrolytbads vorteilhafterweise automatisch erfolgen. Der Ausdruck "automatisch" bedeutet dabei, dass sämtliche Schritte des Verfahrens ohne manuellen Eingriff durchgeführt werden.In the method according to the invention, the concentration of at least two components of an electrolyte bath can be monitored quasi-continuously. The term "quasi-continuous" means that the determination of the concentrations in a relatively short time interval is repeated regularly. The time interval can be, for example, 10 hours, 5 hours, 2 hours, 1 hour, 30 minutes, 10 minutes, or 1 minute. In the method according to the invention, the monitoring of the concentration of the at least two components of the electrolyte bath can advantageously be carried out automatically. The term "automatic" means that all steps of the procedure are performed without manual intervention.

Bei einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird die Überwachung der mindestens zwei Komponenten mit der Steuerung eines Dosiersystems kombiniert, das je nach Bedarf eine frische Menge der verbrauchten bzw. zerstörten Komponente zu dem Elektrolytbad zuführt, um eine nahezu konstante Konzentration der überwachten Komponenten während der Durchführung des Abscheidungsverfahrens zu gewährleisten. Im Idealfall wird hierbei ein stationärer Zustand erreicht, in dem alle Bestandteile, die sich abreichern, durch ein geeignetes Dosierungssystem ergänzt und die Bestanteile, die sich anreichern, durch entsprechende Regenerationsmaßnahmen entfernt werden.In a preferred embodiment of the method according to the invention, the monitoring of the at least two components is combined with the control of a dosing system which supplies a fresh amount of the consumed or destroyed component to the electrolyte bath as needed to achieve a nearly constant concentration of the monitored components during operation of the deposition process. In the ideal case, a steady state is achieved in which all components that deplete are supplemented by a suitable dosing system and the components that accumulate are removed by appropriate regeneration measures.

Das erfindungsgemäße Verfahren ist leicht zu handhaben und bietet eine kostengünstige Alternative zur manuellen Probenentnahme mit anschließender Probenanreicherung und abschließender Konzentrationsbestimmung und zu bekannten Verfahren mit Trennung der zu überwachenden Komponenten. Durch die erfindungsgemäße Überwachung kann die Wirtschaftlichkeit, die Qualität sowie die Erbringung des Qualitätsnachweises und die Fehlersuche in der laufenden Produktion nachweislich verbessert werden.The method according to the invention is easy to handle and offers a cost-effective alternative to manual sampling with subsequent sample enrichment and final concentration determination and to known methods with separation of the components to be monitored. By monitoring the economy of the invention, the quality and the Proof of quality and troubleshooting in current production are demonstrably improved.

Die vorliegende Erfindung ermöglicht erstmals die hoch effiziente, kostengünstige, leicht zu handhabende und hoch reproduzierbare Überwachung von mindestens zwei Komponenten von Elektrolytbädern in der Galvanotechnik.For the first time, the present invention makes it possible to monitor at least two components of electrolytic baths in electroplating technology in a highly efficient, cost-effective, easy-to-handle and highly reproducible manner.

BeispieleExamples

Nachfolgend wird die Erfindung anhand von nicht beschränkenden Beispielen näher erläutert.The invention will be explained in more detail below with reference to non-limiting examples.

Es wurde die Konzentration der Komponenten:

  1. 1. Kornverfeinerer (Morin)
  2. 2. Additiv (Polymer, Tensid)
eines Elektrolytbads zu Abscheidung von Zinnschichten (StannoPure HSM- der Atotech Deutschland GmbH) überwacht.It became the concentration of the components:
  1. 1. grain refiner (Morin)
  2. 2. Additive (polymer, surfactant)
of an electrolytic bath for deposition of tin layers (StannoPure HSM - Atotech Deutschland GmbH).

Dabei wurde zur Festphasenextraktion eine Oasis HLB-Plus-Säule (Firma Waters Corporation, Abmessungen der Säule: 4,6 x 21 mm, Partikeldurchmesser 25 µm) verwendet.An Oasis HLB-Plus column (Waters Corporation, dimensions of the column: 4.6 × 21 mm, particle diameter 25 μm) was used for solid-phase extraction.

Zur Überwachung der Konzentration des Kornverfeinerers wurden folgende Schritte durchgeführt:

  1. 1. Konditionierung der Säule mit 2,5 ml Methanol
  2. 2. Equilibrierung mit 2,5 ml VE-Wasser (vollentsalztes Wasser) / 3,25 ml/l MSA (Methansulfonsäure, 70%)
  3. 3. Probenaufgabe (Probenvolumen: 1,0 ml)
  4. 4. Waschen mit 5 ml VE-Wasser / 3,25 ml/l MSA (70%)
  5. 5. Eluieren mit 1,0 ml Methanol
  6. 6. Photometrische Bestimmung bei 416 - 550 nm
To monitor the concentration of the grain refiner, the following steps were carried out:
  1. 1. Conditioning the column with 2.5 ml of methanol
  2. 2. Equilibrate with 2.5 ml DI water (deionized water) / 3.25 ml / l MSA (methanesulfonic acid, 70%)
  3. 3. Sample application (sample volume: 1.0 ml)
  4. 4. Wash with 5 ml DI water / 3.25 ml / l MSA (70%)
  5. 5. Elute with 1.0 ml of methanol
  6. 6. Photometric determination at 416-550 nm

Zur Überwachung der Konzentration des Additivs wurden folgende Schritte durchgeführt:

  • 1. Konditionieren der Säule mit 2,5 ml Methanol
  • 2. Equilibrieren mit 2,5 ml VE-Wasser / 3,25 ml/l MSA (70%)
  • 3. Probenaufgabe (Probenvolumen: 0,05 ml)
  • 4. Waschen mit 5 ml VE-Wasser / 3,25 ml/l MSA (70%)
  • 6. Eluieren mit 10 ml Methanol, 9 ml des Eluats verwerfen und 2 ml Methanol hinzugeben
  • 8. Photometrische Bestimmung bei 226 nm
To monitor the concentration of the additive, the following steps were carried out:
  • 1. Condition the column with 2.5 ml of methanol
  • 2. Equilibrate with 2.5 ml DI water / 3.25 ml / l MSA (70%)
  • 3. Sample application (sample volume: 0.05 ml)
  • 4. Wash with 5 ml DI water / 3.25 ml / l MSA (70%)
  • 6. Elute with 10 ml of methanol, discard 9 ml of the eluate and add 2 ml of methanol
  • 8. Photometric determination at 226 nm

Claims (18)

  1. Method for electrodepositing a metal layer from an electrolytic bath, wherein the concentrations of at least two components of the electrolytic bath are monitored, wherein the following steps are carried out:
    (a) a sample is taken from the electrolytic bath;
    (b) the sample is supplied to a column for solid phase extraction, which contains a solid sorbing agent;
    (c) the column is subjected to a washing procedure with a first eluent, wherein the at least two components remain on the column, and undesired components are eluted from the column;
    (d) the at least two components are eluted from the column by a second eluent; and
    (e) the concentrations of the at least two components in the eluate obtained in step (d) are determined without separating the components from each other.
  2. Method according to Claim 1, wherein the metal is tin, zinc, copper, nickel or a noble metal.
  3. Method according to Claim 2, wherein the noble metal is palladium or gold.
  4. Method according to any one of the preceding claims, wherein the component to be monitored is a flavone, chalcone, maltol, naphtol or a UV-active non-ionic surfactant.
  5. Method according to any one of the preceding claims, wherein the component to be monitored is a grain-refining agent or an additive.
  6. Method according to Claim 5, wherein the grain-refining agent is morin.
  7. Method according to any one of the preceding claims, wherein the sorbing agent is a copolymer of divinyl benzene and N-vinyl pyrrolidone.
  8. Method according to any one of the preceding claims, wherein the first eluent is water, a diluted acid, a mixture of alcohol and sulfuric acid or a mixture of alcohol and water.
  9. Method according to any one of the preceding claims, wherein the second eluent is water, methanol, a mixture of water and methanol or acetonitrile.
  10. Method according to any one of the preceding claims, wherein the supply of the first eluent to the column in step (c) is carried out in the same direction as the supply of the sample in step (b).
  11. Method according to any one of Claims 1 to 9, wherein the supply of the first eluent to the column in step (c) is carried out in opposite direction to the supply of the sample in step (b).
  12. Method according to any one of the preceding claims, wherein the supply of the second eluent to the column in step (d) is carried out in the same direction as the supply of the sample in step (b).
  13. Method according to any one of Claims 1 to 11, wherein the supply of the second eluent to the column in step (d) is carried out in opposite direction to the supply of the sample in step (b).
  14. Method according to any one of the preceding claims, wherein the determination of the concentrations in step (e) is carried out by photometry, polarography, refractometry.
  15. Method according to any one of the preceding claims, wherein the sequence of steps (a) to (e) is repeated at regular intervals of one minute to 10 hours.
  16. Method according to any one of the preceding claims, wherein the monitoring of the concentration of the at least two components is carried out in combination with a dosing system, which, depending on the result of the determination of the concentrations, supplies the corresponding fresh amount of the component(s).
  17. Method according to any one of the preceding claims, wherein a conditioning treatment of the column with methanol or an acid-containing solution and a subsequent equilibration of the column with water is carried out prior to step (b).
  18. Use of poly(divinyl benzene-co-N-vinyl pyrrolidone) for the solid phase extraction of components of an electrolytic bath.
EP06025569A 2006-12-11 2006-12-11 Galvanic process with analysis of the electrolytic bath through solid phase extraction Not-in-force EP1932953B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
ES06025569T ES2394910T3 (en) 2006-12-11 2006-12-11 Galvanic procedure with electrolytic bath analysis by solid phase extraction
EP06025569A EP1932953B1 (en) 2006-12-11 2006-12-11 Galvanic process with analysis of the electrolytic bath through solid phase extraction
US12/312,940 US9057145B2 (en) 2006-12-11 2007-12-10 Electrodeposition method with analysis of the electrolytic bath by solid phase extraction
JP2009539668A JP5279720B2 (en) 2006-12-11 2007-12-10 Electrodeposition method with analysis of electrolyte bath by solid phase extraction
PCT/EP2007/010753 WO2008071371A2 (en) 2006-12-11 2007-12-10 Galvanic method with analysis of the electrolyte bath by solid phase extraction
CN200780045675.6A CN101553603B (en) 2006-12-11 2007-12-10 Galvanic method with analysis of the electrolyte bath by solid phase extraction
TW96147247A TW200839037A (en) 2006-12-11 2007-12-11 Electrodeposition method with analysis of the electrolytic bath by solid phase extraction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06025569A EP1932953B1 (en) 2006-12-11 2006-12-11 Galvanic process with analysis of the electrolytic bath through solid phase extraction

Publications (2)

Publication Number Publication Date
EP1932953A1 EP1932953A1 (en) 2008-06-18
EP1932953B1 true EP1932953B1 (en) 2012-11-14

Family

ID=37989636

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06025569A Not-in-force EP1932953B1 (en) 2006-12-11 2006-12-11 Galvanic process with analysis of the electrolytic bath through solid phase extraction

Country Status (7)

Country Link
US (1) US9057145B2 (en)
EP (1) EP1932953B1 (en)
JP (1) JP5279720B2 (en)
CN (1) CN101553603B (en)
ES (1) ES2394910T3 (en)
TW (1) TW200839037A (en)
WO (1) WO2008071371A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102505072A (en) * 2011-10-13 2012-06-20 云南民族大学 Thiorhodanine reagent and application thereof in solid-phase extraction of palladium
CN105457336B (en) * 2014-09-04 2017-05-17 中国科学院大连化学物理研究所 Solid-phase extraction method for copper ions
CN109371436A (en) * 2018-12-30 2019-02-22 丰顺县达森科技有限公司 A kind of aqueous acidic zinc-plating brightener and preparation method thereof
CN111257470B (en) * 2020-03-03 2023-05-23 广州天赐高新材料股份有限公司 Pretreatment method and detection method for detection of electrolyte organic solvent

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3761442D1 (en) * 1986-05-21 1990-02-22 Siemens Ag METHOD FOR THE POLAROGRAPHIC DETERMINATION OF ADDITIVES IN GALVANIC BATHS.
JPH0762667B2 (en) * 1987-12-11 1995-07-05 株式会社日立製作所 Solution quantitative analysis device, quantitative analysis method, and water quality control system for nuclear reactor
JPH01269052A (en) * 1988-04-20 1989-10-26 Sumitomo Metal Ind Ltd Separation of polyoxyalkylene compound
US5296128A (en) * 1993-02-01 1994-03-22 Technic Inc. Gallic acid as a combination antioxidant, grain refiner, selective precipitant, and selective coordination ligand, in plating formulations
US5882521A (en) * 1996-04-18 1999-03-16 Waters Investment Ltd. Water-wettable chromatographic media for solid phase extraction
US6605204B1 (en) * 1999-10-14 2003-08-12 Atofina Chemicals, Inc. Electroplating of copper from alkanesulfonate electrolytes
CA2290731A1 (en) * 1999-11-26 2001-05-26 D. Jed Harrison Apparatus and method for trapping bead based reagents within microfluidic analysis system
US6645364B2 (en) * 2000-10-20 2003-11-11 Shipley Company, L.L.C. Electroplating bath control
JP3821000B2 (en) * 2002-01-29 2006-09-13 住友電気工業株式会社 Method for analyzing organic components in high-concentration salt solutions
US20030217923A1 (en) * 2002-05-24 2003-11-27 Harrison D. Jed Apparatus and method for trapping bead based reagents within microfluidic analysis systems
FR2840406B1 (en) * 2002-06-03 2005-02-25 Aventis Pharma Sa METHOD OF DETERMINING CONCENTRATION PROFILES FROM INFRARED PROFILES AND HPLC DATA
US6808611B2 (en) * 2002-06-27 2004-10-26 Applied Materials, Inc. Methods in electroanalytical techniques to analyze organic components in plating baths
US7270733B2 (en) * 2002-07-19 2007-09-18 Technic, Inc. Method and apparatus for real time monitoring of industrial electrolytes
US20050032231A1 (en) * 2003-08-06 2005-02-10 Paris Smaragdis Identifying component groups with independent component analysis of chromatographicdata

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MUSTAFA TUZEN; MUSTAFA SOYLAK: "Chromium speciation in environmental samples by solid phase extraction on Chromosorb 108", JOURNAL OF HAZARDOUS MATERIALS, 2006, pages 266 - 273 *
SITKI BAYTAK; A. REHBER TÜRKER: "Determination of lead and nickel in environmental samples by flame atomic absorption spectrometry after column solid-phase extraction on Ambersorb-572 with EDTA", JOURNAL OF HAZARDOUS MATERIALS, 2006, pages 130 - 136 *
VALERIE CAMEL: "Solid phase extraction of trace elements", SPECTROCHIMICA ACTA PART B, 2003, pages 1177 - 1233 *

Also Published As

Publication number Publication date
CN101553603B (en) 2010-12-22
EP1932953A1 (en) 2008-06-18
WO2008071371A3 (en) 2009-02-26
ES2394910T3 (en) 2013-02-06
CN101553603A (en) 2009-10-07
WO2008071371A2 (en) 2008-06-19
JP5279720B2 (en) 2013-09-04
TW200839037A (en) 2008-10-01
JP2010512504A (en) 2010-04-22
US9057145B2 (en) 2015-06-16
US20100059384A1 (en) 2010-03-11

Similar Documents

Publication Publication Date Title
DE68924026T3 (en) BIOSENSOR AND ITS MANUFACTURE.
DE69531938T2 (en) ELECTROCHEMICAL CELLS
DE3049982A1 (en) Process and apparatus for producing metals at porous hydrophobic catalytic barriers
EP3143388B1 (en) Electrochemical gas sensor having a graphene electrode deposited on a gas-permeable membrane and method of manufacturing the electrode for said electrochemical gas sensor
EP0069285A1 (en) Method and apparatus for the quantitative determination of cations or anions by ion chromatography
DE29623801U1 (en) Apparatus for the electrochemical modification of chromatographic material
EP1932953B1 (en) Galvanic process with analysis of the electrolytic bath through solid phase extraction
DE3785752T2 (en) METHOD AND DEVICE FOR DETERMINING ELECTROCHEMICALLY ACTIVE COMPONENTS IN A PROCESS FLOW.
EP3044576B1 (en) Electrochemical gas sensor, liquid electrolyte and use of a liquid electrolyte
DE2437600C2 (en) Apparatus and method for the quantitative analysis of ionic species by liquid column chromatography
DE3736076C2 (en)
DE69029446T2 (en) Device and method for minimizing the effects of the oxygen content dissolved in an electrolyte in analyzers for low oxygen concentrations
EP0810303A1 (en) Process for the deposition of etch resistant and pore free tin layers or alloy layers of tin with other metals
DE10158227A1 (en) Electrolysis bath for the electrodeposition of silver-tin alloys
EP0059841B1 (en) Electrochemical gas analyser
AT519146B1 (en) Device for analyzing a solid sample material
DE10042002B4 (en) Device for the galvanic deposition of a material and its use
WO1998003860A1 (en) Ion-selective sensor
DE102018004653B3 (en) Electrochemical sensor with a common electrolyte volume for working and reference electrode
DE2950920C2 (en) Method and device for the continuous electrochemical determination of the concentration of dissolved substances
DE10001923C1 (en) Procedure for the determination of redox-active substances
DE102004035245A1 (en) Method for voltametrically measuring a measuring substance comprises using a measuring cell containing the measuring substance, a working electrode made from an alloy material and a counter electrode
DE3823996A1 (en) Method (metal indicator detection) for the complexometric determination of oxyanions/polyanions at picomole sensitivity, use for the continuous post-column detection in liquid chromatographic separation and for detection after separation on thin layer supports
DE4011683C1 (en) Measuring electrode for monitoring electroless metal deposition baths - has small surface curvature or area and gives clear deposition assessment
DE19957067B4 (en) Method and arrangement for monitoring the electroless metal deposition

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20080630

17Q First examination report despatched

Effective date: 20080730

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

R17C First examination report despatched (corrected)

Effective date: 20080730

R17C First examination report despatched (corrected)

Effective date: 20090703

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SPRENGER, OLEG

Inventor name: MORITZ, THOMAS

Inventor name: BARTHELMES, JUERGEN

Inventor name: LAGORCE-BROC, FLORENCE

Inventor name: GAIDA, JOSEF

Inventor name: KURTZ, OLAF

Inventor name: SAINZ-VILA, MARTA

Inventor name: RUETHER, ROBERT

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ATOTECH DEUTSCHLAND GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 584071

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006012205

Country of ref document: DE

Effective date: 20130103

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2394910

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130206

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20121114

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130314

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130215

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

BERE Be: lapsed

Owner name: ATOTECH DEUTSCHLAND G.M.B.H.

Effective date: 20121231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130214

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

26N No opposition filed

Effective date: 20130815

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121211

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006012205

Country of ref document: DE

Effective date: 20130815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130214

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 584071

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121211

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061211

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181210

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20181220

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20181220

Year of fee payment: 13

Ref country code: ES

Payment date: 20190123

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006012205

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191211

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191212