EP1929055B1 - Method for treating a steel strip - Google Patents

Method for treating a steel strip Download PDF

Info

Publication number
EP1929055B1
EP1929055B1 EP06754580A EP06754580A EP1929055B1 EP 1929055 B1 EP1929055 B1 EP 1929055B1 EP 06754580 A EP06754580 A EP 06754580A EP 06754580 A EP06754580 A EP 06754580A EP 1929055 B1 EP1929055 B1 EP 1929055B1
Authority
EP
European Patent Office
Prior art keywords
heat treatment
annealing
process according
recrystallization
steel strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06754580A
Other languages
German (de)
French (fr)
Other versions
EP1929055A1 (en
Inventor
Uwe Paar
Kurt Dr. Prof. Steinhoff
Klaudia Bergmann
Manuel Maikranz-Valentin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universitaet Kassel
Volkswagen AG
Original Assignee
Universitaet Kassel
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitaet Kassel, Volkswagen AG filed Critical Universitaet Kassel
Publication of EP1929055A1 publication Critical patent/EP1929055A1/en
Application granted granted Critical
Publication of EP1929055B1 publication Critical patent/EP1929055B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment

Definitions

  • the present invention relates to a method of treating steel strip after cold rolling with at least a first heat treatment comprising recrystallization annealing and at least one further subsequent heat treatment comprising hardening.
  • the present invention further provides a sheet metal semifinished product intended for further processing, which was produced by this process, and motor vehicle components, in particular bodywork components of motor vehicles, which were produced from such a semifinished sheet metal product.
  • a heat treatment is usually required after reducing cold rolling. Due to the reducing cold rolling, the steel sheet undergoes considerable strain hardening, which necessitates thermally induced structure formation, since otherwise further processing by means of conventional cold forming technology would not be sufficiently possible. After the cold rolling, therefore, a final heat treatment called recrystallization annealing is required.
  • This recrystallization annealing can be done in a hood or in a continuous furnace.
  • a complete recrystallization is sought and achieved.
  • the steel strip is usually present as a coil during recrystallization annealing. This step of the heat treatment is generally carried out at the steel manufacturer prior to delivery of the semi-finished sheet metal to the processor. As antioxidant protection, the steel strip is usually coated, wherein the coating can take place in combination with the annealing process or as a decoupled process step. The user himself then takes the desired board cut.
  • the DE 34 06 792 A1 describes a process for recrystallization annealing of cold rolled steel strip in a hood furnace under inert gas.
  • the DE 698 15 943 T2 describes a continuous process for continuous annealing of steel sheet under reduced pressure whereby a cold plasma is generated in a gas atmosphere and annealed at about 700 ° C.
  • the JP 62 093 341 A discloses a method of producing a steel strip after cold rolling in which only partial recrystallization occurs in the subsequent heat treatment.
  • high-strength heat-treated steels are used, which are characterized in particular by a very high strength.
  • the user is again subjected to a heat treatment with heating of the blanks to the austenitizing temperature.
  • accelerated cooling (equivalent to quenching) follows to set a hardened microstructure state.
  • This measure can be done for example as a combined forming and quenching in a press tool, which corresponds to the so-called form hardening.
  • the final component geometry and the material strength or toughness of the metallic structure are set by the form hardening.
  • the accelerated heat dissipation within the forming tool leads by the initiation of a phase transformation to the hardening of the component and thus to an increase in the strength.
  • the object of the invention is to provide a method for the treatment of steel strip after the cold rolling of the aforementioned type available, which under principle retention of the previous Sawroute semi-finished sheet supplies, which allows the production of components with improved properties.
  • Core of the present invention is a modified heat treatment after the reducing cold rolling, are controlled by the thermally induced microstructural changes so that the occurred in the previously desired complete recrystallization complete degradation of the very fine grain in the longitudinal direction elongated microstructure is deliberately avoided.
  • a recrystallization annealing is carried out in such a way that a recrystallized fraction in the microstructure of from about 15% to about 45%, preferably from about 20% to about 40%, is achieved.
  • the remnants of the finely grained deformation structure still present due to the partial recrystallization according to the invention also have a positive effect on the subsequent processing step of hardening by the user. For example, it comes through the preheating of the boards for the mold hardening to another structural change that is to ensure a sufficient hot forming capacity in the balance between the interaction of temperature and structure dependence of the yield stress.
  • the preheating during mold hardening can additionally be optimized by reducing the previously very high temperatures (above A C3 in the pure austenite range).
  • the goal is in the foreground, remains of the remaining fine-grained elongated deformation structure of the to obtain reducing cold rolling.
  • These structural components may lead to increased strength due to the fine grain for the form-hardened component, but also due to the remaining deformation structure shares also increased ductility with an immediate positive effect z. B. on the crash behavior when manufactured from the semi-finished sheet metal body according to the invention body parts.
  • the further subsequent heat treatment used in the process of the invention may be a final heat treatment, i. final heat treatment of the component to the user.
  • This final heat treatment may include forming to provide a desired component geometry, e.g. B. a form hardening as mentioned above.
  • the further heat treatment does not necessarily have to be accompanied by a forming.
  • the further, usually final heat treatment comprises shaping in a mold-forming tool.
  • this also includes the case in which the component has already received the final shape and the mold-forming tool serves to ensure that the component retains this shape during the heat treatment (avoidance of distortion, etc.) Cooling provided via a cooling medium or via a mold-forming tool.
  • the method according to the invention is preferably used for the heat treatment of steel strip made of heat-treatable steel, in particular steel strip made of ultra-high-strength steels is heat-treated.
  • steel strip made of ultra-high-strength steels is heat-treated.
  • tempering steels which contain manganese and / or boron as alloying element.
  • the steel grade 22MnB5 is called.
  • the alloying elements manganese and boron promote a rapid structural change, which is advantageous in particular for mold hardening.
  • a further advantage of the method according to the invention lies in the fact that the flow behavior of the material can be controlled during a subsequent transformation by way of direction-dependent structural components which have been retained during the first heat treatment.
  • the recrystallization annealing at a temperature below the recrystallization temperature preferably about 1% to about 10%, more preferably about 2% to about 6% below the Recrystallization takes place.
  • recrystallization is clearly the fastest.
  • a shortening of the annealing time is also possible.
  • the forming process can be more flexibly controlled. Since the annealing cycles can thus be shortened in both annealing treatments, this leads to a significant shortening of the overall process chain.
  • the austenitizing conditions can be changed also in comparison with the conventional methods, in particular, the austenitizing time can be shortened. With such a modified further heat treatment, a better strength / elongation ratio is still obtained than after the conventional process route.
  • the technological progress is clear, which brings the inventive method with it.
  • Table 1 Table 1: ⁇ / b> Melt Analysis of a 22MnB5 (1.5528) C Si Mn P S al Cr tl B 0.19 to 0.25 from 0.15 to 0.40 1.10-1.30 max.0,025 max.0,015 from 0.020 to 0.060 0.15-0.35 0.020 to 0.050 0.0008 to 0.0050
  • the industrial cold rolled on a tandem rolling mill and supplied in the form of panels test material was cut into 600 mm long and 20 mm wide strips.
  • the second strip after the recrystallization samples, was first austenitized.
  • a heating to 900 ° C took place with a holding time of 300 s.
  • the strip was transported via a chain transport to the form hardening tool. Until manual insertion of the strip in the tool passed about 5 s.
  • the tool was closed by lowering a top plate and held in that position for 20 seconds.
  • the sample material cooled down to approx. 70 ° C could be removed. Between each experiment, the tool repeatedly cooled, so that it had a maximum temperature of 40 ° C.
  • the thermoset samples were also split into three tensile specimens and one metallographic specimen.
  • the variation of the austenitizing conditions was limited to an annealing time shortening to 200 s at 900 ° C (conventionally the annealing time is 300 s) and two temperature reductions to 850 ° C and 800 ° C at 300 s annealing time (the conventional annealing temperature is 900 ° C).
  • these three altered austenitizing conditions were performed with subsequent quenching in the tool. Tensile tests and metallographic investigations were also carried out on these conditions.
  • the recrystallized fraction RX in% is plotted against the annealing time in minutes.
  • the greater the difference between annealing temperature and recrystallization temperature (see curve at T 700 ° C), the larger the parameter window, that is, the desired recrystallized portion RX of the structure can be best influenced by varying the annealing time.
  • the graph shows that at this temperature after an annealing time of 20 minutes the recrystallized fraction RX is about 25%, while after an annealing time of about 30 minutes RX is already at about 80%.
  • Fig. 2 The tensile strength (left) and the elongation at break (right) after recrystallization annealing are plotted as important mechanical properties as a function of the recrystallized fraction RX.
  • the values result from experimentally determined data which were obtained after the first heat treatment according to the invention, that is to say after the recrystallization annealing. It can be seen that the tensile strength decreases as the recrystallized fraction RX increases, but at RX between about 20% and about 40%, sufficiently low values in the range of about 620 N / mm 2 and 740 N / mm 2 are still achieved.
  • the elongation at break increases with increasing recrystallized portion RX, where it can be seen that even with RX 20% to 40% good values are achieved and then increase only slightly with further increasing RX.
  • the elongation at break A 50 in% is shown.
  • Fig. 3 shows the mechanical properties after the form hardening as a function of the recrystallized fraction RX before austenitizing.
  • the tensile strength in N / mm 2 is again indicated on the y-axis, and the elongation at break A 50 in% on the right-hand y-axis.
  • the recrystallized fraction RX in% given from left to right increasingly. It can be seen that for an optimum combination of high strengths and high elongation values, an optimum range for RX is about 20% to about 40%.
  • an improvement in the elongation of at least 20% can be achieved.
  • Fig. 4a and 4b illustrate the influence of austenitizing time, ie the duration of the second heat treatment on the mechanical properties after the form hardening.
  • Fig. 4a is the tensile strength in N / mm 2 plotted against the recrystallized fraction RX in%, where two curves for each different annealing times are shown.
  • the annealing time was 200 s or 300 s with the same annealing temperature of 900 ° C. It can be seen that the tensile strength values for the annealing time of 200 s are higher over the entire curve than for the longer annealing time of 300 s.
  • the difference in the tensile strength values increases only slightly with increasing recrystallized fraction RX.
  • Fig. 4a is the tensile strength in N / mm 2 plotted against the recrystallized fraction RX in%, where two curves for each different annealing times are shown.
  • the annealing time was 200 s or 300 s
  • a shortening of the annealing time is also possible in recrystallization annealing itself in that the annealing process can be terminated earlier, namely when the desired degree of recrystallization of, for example, about 20% or about 40% is reached.

Abstract

The present invention relates to a method for treating a steel strip, particularly a steel strip made of highly resistant heat-treated steel, by cold rolling. The inventive method comprises at least a first step of heat treatment consisting of recrystallization annealing and at least another subsequent step of heat treatment consisting of hardening. Said method is characterized in that the time-temperature curve during the first step of heat treatment is chosen in such a way that only a partial recrystallization takes place and that the elongated structure produced by the previous strain-hardening is partially conserved. The inventive method enables reducing significantly the annealing time and annealing temperature during recrystallization annealing while at the same time reducing the annealing time during shape hardening. The processing chain can be reduced by more rapid annealing cycles, the reduction of the annealing temperature leading to significant energy savings. Said method allows producing e.g. semifinished sheet metal products for vehicle body components having an optimized strength/elongation ratio.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Behandlung von Stahlband nach dem Kaltwalzen mit mindestens einer ersten Wärmebehandlung umfassend ein Rekristallisationsglühen sowie mit mindestens einer weiteren nachfolgenden Wärmebehandlung umfassend ein Härten. Gegenstand der vorliegenden Erfindung ist weiterhin ein für eine weitere Verarbeitung vorgesehenes Blechhalbzeug, welches nach diesem Verfahren hergestellt wurde, sowie Kraftfahrzeugbauteile, insbesondere Karosseriebauteile von Kraftfahrzeugen, die aus einem solchen Blechhalbzeug hergestellt wurden.The present invention relates to a method of treating steel strip after cold rolling with at least a first heat treatment comprising recrystallization annealing and at least one further subsequent heat treatment comprising hardening. The present invention further provides a sheet metal semifinished product intended for further processing, which was produced by this process, and motor vehicle components, in particular bodywork components of motor vehicles, which were produced from such a semifinished sheet metal product.

In der Prozesskette der Stahlherstellung ist nach dem reduzierenden Kaltwalzen in der Regel eine Wärmebehandlung erforderlich. Durch das reduzierende Kaltwalzen erfährt das Stahlblech eine erhebliche Kaltverfestigung, die eine thermisch induzierte Gefügeneubildung notwendig macht, da anderenfalls eine Weiterverarbeitung mittels konventioneller Kaltumformtechnik nicht hinreichend möglich wäre. Nach dem Kaltwalzen ist daher eine abschließende Wärmebehandlung erforderlich, die als Rekristallisationsglühen bezeichnet wird. Dieses Rekristallisationsglühen kann in einem Hauben- oder in einem Durchlaufofen erfolgen. Bei den herkömmlichen Verfahren wird dabei eine vollständige Rekristallisation angestrebt und erreicht. Das Stahlband liegt beim Rekristallisationsglühen meist als Coil vor. Dieser Schritt der Wärmebehandlung erfolgt im allgemeinen beim Stahlhersteller vor der Auslieferung des Blechhalbzeugs an den Verarbeiter. Als Antioxidationsschutz wird das Stahlband in aller Regel beschichtet, wobei das Beschichten in Kombination mit dem Glühprozess oder als entkoppelter Prozessschritt erfolgen kann. Der Anwender selbst nimmt dann den gewünschten Platinenzuschnitt vor.In the process chain of steel production, a heat treatment is usually required after reducing cold rolling. Due to the reducing cold rolling, the steel sheet undergoes considerable strain hardening, which necessitates thermally induced structure formation, since otherwise further processing by means of conventional cold forming technology would not be sufficiently possible. After the cold rolling, therefore, a final heat treatment called recrystallization annealing is required. This recrystallization annealing can be done in a hood or in a continuous furnace. In the conventional method, a complete recrystallization is sought and achieved. The steel strip is usually present as a coil during recrystallization annealing. This step of the heat treatment is generally carried out at the steel manufacturer prior to delivery of the semi-finished sheet metal to the processor. As antioxidant protection, the steel strip is usually coated, wherein the coating can take place in combination with the annealing process or as a decoupled process step. The user himself then takes the desired board cut.

Verfahren zum Rekristallisationsglühen von kaltgewalztem Stahlblech sind aus dem Stand der Technik hinlänglich bekannt. Beispielsweise beschreibt die DE-PS 1 168 462 ein solches Verfahren, bei dem kaltgewalztes Blech aus unlegiertem Stahl in einem Ofen bei Temperaturen von 600° C - 700° C für eine Zeitdauer von 40 Stunden geglüht wird, wobei vor dem Rekristallisationsglühen noch ein mehrstündiges Erholungsglühen vorgesehen ist.Processes for recrystallization annealing of cold rolled steel sheet are well known in the art. For example, this describes DE-PS 1 168 462 such a method in which cold-rolled sheet of mild steel is annealed in an oven at temperatures of 600 ° C - 700 ° C for a period of 40 hours, wherein before the recrystallization annealing still a several hours of annealing is provided.

Die DE 34 06 792 A1 beschreibt ein Verfahren zum Rekristallisationsglühen von kaltgewalztem Stahlband in einem Haubenofen unter Schutzgas.The DE 34 06 792 A1 describes a process for recrystallization annealing of cold rolled steel strip in a hood furnace under inert gas.

Die DE 698 15 943 T2 beschreibt ein kontinuierliches Verfahren zum Durchlaufglühen von Stahlblech bei reduziertem Druck wobei ein kaltes Plasma in einer Gasatmosphäre erzeugt und bei etwa 700° C geglüht wird.The DE 698 15 943 T2 describes a continuous process for continuous annealing of steel sheet under reduced pressure whereby a cold plasma is generated in a gas atmosphere and annealed at about 700 ° C.

Allen vorstehend genannten, aus dem Stand der Technik bekannten Verfahren ist gemeinsam, dass durch die Wärmebehandlung eine vollständige Rekristallisation angestrebt wird und mit dieser der vollständige Abbau der feinkörnigen in Walzrichtung längsgestreckten Gefügestruktur einhergeht.All of the abovementioned processes known from the prior art have in common that the heat treatment is intended to achieve complete recrystallization and is accompanied by complete degradation of the fine-grained, longitudinally-elongated microstructure in the rolling direction.

Die JP 62 093 341 A offenbart ein Verfahren zur Herstellung eines Stahlbands nach dem Kaltwalzen, bei dem bei der nachfolgenden Wärmebehandlung nur eine teilweise Rekristallisation erfolgt.The JP 62 093 341 A discloses a method of producing a steel strip after cold rolling in which only partial recrystallization occurs in the subsequent heat treatment.

In der Automobilindustrie werden beispielsweise für anspruchsvolle Anwendungen im Karosseriebereich Vergütungsstähle, vorzugsweise höchstfeste Vergütungsstähle eingesetzt, die sich insbesondere durch eine sehr hohe Festigkeit auszeichnen. Nach dem Platinenzuschnitt erfolgt beim Anwender erneut eine Wärmebehandlung mit Erwärmung der Platinen auf die Austenitisierungstemperatur. Hiernach schließt sich eine beschleunigte Abkühlung (entspricht einer Abschreckung) an, um einen gehärteten Gefügezustand einzustellen. Diese Maßnahme kann beispielsweise als kombiniertes Umformen und Abschrecken in einem Pressenwerkzeug erfolgen, was dem sogenannten Formhärten entspricht. Nach dem Stand der Technik wird durch das Formhärten die endgültige Bauteilgeometrie und die Werkstofffestigkeit bzw.- zähigkeit des metallischen Gefüges eingestellt. Die beschleunigte Wärmeabfuhr innerhalb des Umformwerkzeugs führt durch die Initiierung einer Phasenumwandlung zur Aufhärtung des Bauteils und somit zu einer Steigerung der Festigkeit.In the automotive industry, for example, for demanding applications in the field of bodywork tempered steels, preferably high-strength heat-treated steels are used, which are characterized in particular by a very high strength. After the blank has been cut, the user is again subjected to a heat treatment with heating of the blanks to the austenitizing temperature. Thereafter, accelerated cooling (equivalent to quenching) follows to set a hardened microstructure state. This measure can be done for example as a combined forming and quenching in a press tool, which corresponds to the so-called form hardening. According to the state of the art, the final component geometry and the material strength or toughness of the metallic structure are set by the form hardening. The accelerated heat dissipation within the forming tool leads by the initiation of a phase transformation to the hardening of the component and thus to an increase in the strength.

Da gemäß zuvor geschilderter Prozesskette im Zusammenhang mit dem warm umformenden Prozess des Formhärtens beim Anwender eine Wärmebehandlung erfolgt, ist aus dessen Sicht die Wärmebehandlung in der Blechhalbzeugherstellung (Rekristallisationsglühen) technologisch nicht erforderlich, gegebenenfalls im Hinblick auf die einzustellenden mechanischen Endeigenschaften des Bauteils sogar ungünstig.Since according to previously described process chain in the context of the hot forming process of mold hardening at the user heat treatment takes place, from his point of view, the heat treatment in the sheet semifinished production (recrystallization) technologically not required, possibly even unfavorable in view of the adjusted mechanical end properties of the component.

Hier setzt die vorliegende Erfindung ein. Aufgabe der Erfindung ist es ein Verfahren zur Behandlung von Stahlband nach dem Kaltwalzen der eingangs genannten Gattung zur Verfügung zu stellen, welches unter prinzipieller Beibehaltung der bisherigen Prozessroute Blechhalbzeug liefert, das eine Herstellung von Bauteilen mit verbesserten Eigenschaften ermöglicht.This is where the present invention starts. The object of the invention is to provide a method for the treatment of steel strip after the cold rolling of the aforementioned type available, which under principle retention of the previous Prozessroute semi-finished sheet supplies, which allows the production of components with improved properties.

Die Lösung dieser Aufgabe liefert ein Verfahren zur Behandlung von Stahlband der eingangs genannten Gattung mit den kennzeichnenden Merkmalen des Hauptanspruchs.The solution to this problem provides a method for the treatment of steel strip of the aforementioned type with the characterizing features of the main claim.

Kern der vorliegenden Erfindung ist eine modifizierte Wärmebehandlung nach dem reduzierenden Kaltwalzen, durch die thermisch induzierte Gefügeänderungen so kontrolliert werden, dass der bei der bisher angestrebten vollständigen Rekristallisation eingetretene vollständige Abbau der sehr feinkörnigen in Walzrichtung längsgestreckten Gefügestruktur bewusst vermieden wird. Dazu wird über die Wahl des Zeit-TemperaturVerlaufs nur solch ein Anteil an rekristallisiertem Gefüge und demzufolge gerade so viel an weiterer Kaltumformbarkeit eingestellt, dass eine Handhabung der Coils, das heißt eine Unterdrückung des so genannten Uhrfedereffekts sichergestellt ist und ein Richten über zum Beispiel walzenbasierte Streckrichtanlagen zur Einstellung ebener Platinenzuschnitte für die insbesondere umformtechnische Weiterverarbeitung gewährleistet ist. Erfindungsgemäß erfolgt bei der ersten Wärmebehandlung ein Rekristallisationsglühen derart, dass ein rekristallisierter Anteil im Gefüge von etwa 15% bis etwa 45%, vorzugsweise von etwa 20% bis etwa 40% erzielt wird.Core of the present invention is a modified heat treatment after the reducing cold rolling, are controlled by the thermally induced microstructural changes so that the occurred in the previously desired complete recrystallization complete degradation of the very fine grain in the longitudinal direction elongated microstructure is deliberately avoided. For this purpose, only such a proportion of recrystallized microstructure and therefore just as much further cold workability is set by the choice of the time-temperature run that a handling of the coils, that is, a suppression of the so-called clock spring effect is ensured and a straightening over, for example, roller-based stretch levelers is ensured for setting flat board blanks for the particular forming technology further processing. According to the invention, in the first heat treatment, a recrystallization annealing is carried out in such a way that a recrystallized fraction in the microstructure of from about 15% to about 45%, preferably from about 20% to about 40%, is achieved.

Die Reste der bedingt durch die erfindungsgemäße nur teilweise Rekristallisation noch vorhandenen feinkörnigen Deformationsstruktur wirken sich auch positiv auf den nachfolgenden Bearbeitungsschritt des Härtens beim Anwender aus. Beispielsweise kommt es durch die Vorerwärmung der Platinen für das Formhärten zu einer weiteren Gefügeänderung, die im Abgleich zwischen der Wechselwirkung von Temperatur- und Strukturabhängigkeit der Fließspannung ein hinreichendes Warmumformvermögen gewährleisten soll. Durch eine Anpassung der Zeit-Temperatur-Führung auf die veränderte Gefügeausbildung infolge der modifizierten ersten Wärmebehandlung kann zusätzlich auch die Vorerwärmung beim Formhärten durch ein Herabsetzen der bisher sehr hohen Temperaturen (oberhalb von AC3 im reinen Austenitbereich) optimiert werden. Erfindungsgemäß steht insbesondere das Ziel im Vordergrund, Reste der noch vorhandenen feinkörnigen längsgestreckten Deformationsstruktur aus dem reduzierenden Kaltwalzen zu erhalten. Diese Strukturanteile können aufgrund der Feinkörnigkeit für das formgehärtete Bauteil zu einer erhöhten Festigkeit führen, jedoch vor allem aufgrund der verbleibenden Deformationsstrukturanteile auch zu einer erhöhten Duktilität mit ummittelbar positiver Auswirkung z. B. auf das Crashverhalten bei aus den erfindungsgemäßen Blechhalbzeugen hergestellten Karosseriebauteilen.The remnants of the finely grained deformation structure still present due to the partial recrystallization according to the invention also have a positive effect on the subsequent processing step of hardening by the user. For example, it comes through the preheating of the boards for the mold hardening to another structural change that is to ensure a sufficient hot forming capacity in the balance between the interaction of temperature and structure dependence of the yield stress. By adapting the time-temperature guidance to the changed structure formation as a result of the modified first heat treatment, the preheating during mold hardening can additionally be optimized by reducing the previously very high temperatures (above A C3 in the pure austenite range). According to the invention in particular the goal is in the foreground, remains of the remaining fine-grained elongated deformation structure of the to obtain reducing cold rolling. These structural components may lead to increased strength due to the fine grain for the form-hardened component, but also due to the remaining deformation structure shares also increased ductility with an immediate positive effect z. B. on the crash behavior when manufactured from the semi-finished sheet metal body according to the invention body parts.

Die in dem erfindungsgemäßen Verfahren angewandte weitere nachfolgende Wärmebehandlung kann eine Endwärmebehandlung, d.h. abschließende Wärmebehandlung des Bauteils beim Anwender sein. Diese abschließende Wärmebehandlung kann eine Umformung zur Schaffung einer gewünschten Bauteilgeometrie umfassen, z. B. ein Formhärten wie es zuvor erwähnt wurde. Die weitere Wärmebehandlung muss jedoch nicht unbedingt mit einer Umformung einhergehen. Vorzugsweise umfasst die weitere, in der Regel abschließende Wärmebehandlung allerdings eine Formgebung in einem formabbildenden Werkzeug. Dies schließt dabei aber auch den Fall ein, das das Bauteil die Endform bereits vorher erhalten hat und das formabbildende Werkzeug dazu dient, dass das Bauteil bei der Wärmebehandlung diese Form beibehält ( Vermeidung von Verzug etc.) Bei der weiteren nachfolgenden Wärmebehandlung ist weiterhin vorzugsweise ein Abkühlen über ein abkühlendes Medium oder über ein formabbildendes Werkzeug vorgesehen.The further subsequent heat treatment used in the process of the invention may be a final heat treatment, i. final heat treatment of the component to the user. This final heat treatment may include forming to provide a desired component geometry, e.g. B. a form hardening as mentioned above. However, the further heat treatment does not necessarily have to be accompanied by a forming. Preferably, however, the further, usually final heat treatment comprises shaping in a mold-forming tool. However, this also includes the case in which the component has already received the final shape and the mold-forming tool serves to ensure that the component retains this shape during the heat treatment (avoidance of distortion, etc.) Cooling provided via a cooling medium or via a mold-forming tool.

Das erfindungsgemäße Verfahren dient vorzugsweise zur Wärmebehandlung von Stahlband aus vergütbarem Stahl, insbesondere wird Stahlband aus höchstfesten Stählen wärmebehandelt. Besonders bevorzugt sind dabei Vergütungsstähle, die Mangan und/oder Bor als Legierungselement enthalten. Beispielhaft sei die Stahlsorte 22MnB5 genannt. Die Legierungselemente Mangan und Bor begünstigen eine schnelle Gefügeänderung, was insbesondere für das Formhärten vorteilhaft ist.The method according to the invention is preferably used for the heat treatment of steel strip made of heat-treatable steel, in particular steel strip made of ultra-high-strength steels is heat-treated. In this case, particular preference is given to tempering steels which contain manganese and / or boron as alloying element. As an example, the steel grade 22MnB5 is called. The alloying elements manganese and boron promote a rapid structural change, which is advantageous in particular for mold hardening.

Ein weiterer Vorteil des erfindungsgemäßen Verfahrens liegt darin, dass das Fließverhalten des Werkstoffs bei einer nachfolgenden Umformung über bei der ersten Wärmebehandlung erhalten gebliebene richtungsabhängige Strukturanteile gesteuert werden kann.A further advantage of the method according to the invention lies in the fact that the flow behavior of the material can be controlled during a subsequent transformation by way of direction-dependent structural components which have been retained during the first heat treatment.

Die Versuche haben weiter ergeben, dass vorzugsweise das Rekristallisationsglühen bei einer Temperatur unterhalb der Rekristallisationstemperatur, vorzugsweise etwa 1% bis etwa 10%, besonders bevorzugt etwa 2% bis etwa 6% unterhalb der Rekristallisationstemperatur erfolgt. Um die Rekristallisationstemperatur erfolgt die Rekristallisation deutlich am schnellsten. Wenn die Differenz zwischen der Glühtemperatur und der Rekristallisationstemperatur steigt, wird das Parameterfenster größer. Die erfindungsgemäße Lösung ermöglicht es somit bei der ersten Wärmebehandlung die Glühtemperatur deutlich abzusenken. Da nur eine teilweise Rekristallisation angestrebt wird, kann je nach Prozessroute auch die Glühzeit bei der ersten Wärmebehandlung gegenüber herkömmlichen Verfahren deutlich verkürzt werden. Dies ermöglicht ganz erhebliche Energieeinsparungen.The experiments have further shown that preferably the recrystallization annealing at a temperature below the recrystallization temperature, preferably about 1% to about 10%, more preferably about 2% to about 6% below the Recrystallization takes place. At the recrystallization temperature recrystallization is clearly the fastest. As the difference between the annealing temperature and the recrystallization temperature increases, the parameter window becomes larger. The solution according to the invention thus makes it possible to significantly lower the annealing temperature during the first heat treatment. Since only a partial recrystallization is sought, depending on the process route, the annealing time in the first heat treatment compared to conventional methods can be significantly shortened. This allows quite significant energy savings.

Bei der weiteren nachfolgenden Wärmebehandlung, das heißt beispielsweise dem Formhärten, ist ebenfalls eine Verkürzung der Glühzeit möglich. Unter Ausnutzung der beibehaltenen Richtungsabhängigkeit des Materials kann der Umformprozess flexibler gesteuert werden. Da somit bei beiden Glühbehandlungen die Glühzyklen verkürzt werden können, führt dies zu einer deutlichen Verkürzung der Prozesskette insgesamt.In the subsequent heat treatment, that is, for example, the molding, a shortening of the annealing time is also possible. Utilizing the retained directionality of the material, the forming process can be more flexibly controlled. Since the annealing cycles can thus be shortened in both annealing treatments, this leads to a significant shortening of the overall process chain.

Bei Anwendung des erfindungsgemäßen Verfahrens und Beibehaltung der bisher üblichen Austenitisierungsbedingungen lassen sich insbesondere bei Behandlung höchstfester Vergütungsstähle gleich gute oder sogar geringfügig verbesserte Zugfestigkeiten erzielen. Die Werte für die Bruchdehnung können dabei deutlich erhöht werden. Somit ergeben sich optimierte Festigkeits-/Dehnungs-Verhältnisse. Dies ist darauf zurückzuführen, dass nach der ersten Wärmebehandlung die Orientierung teilweise erhalten bleibt und nach der weiteren Wärmebehandlung (insbesondere dem Formhärten) sogar gegebenenfalls ein feineres Korngefüge erhalten wird. Es lassen sich somit deutlich bessere Werkstoffeigenschaften unter Beibehaltung der konventionellen Glühzeiten erzielen.When using the method according to the invention and maintaining the austenitizing conditions customary hitherto, it is possible to achieve equally good or even slightly improved tensile strengths, in particular when treating very high-strength tempered steels. The values for the elongation at break can be increased significantly. This results in optimized strength / elongation ratios. This is due to the fact that after the first heat treatment, the orientation is partly retained and, after the further heat treatment (in particular, the mold hardening), even a finer grain structure is optionally obtained. Thus, significantly better material properties can be achieved while maintaining the conventional annealing times.

Erfindungsgemäß lassen sich jedoch auch im Vergleich zu den herkömmlichen Verfahren die Austenitisierungsbedingungen verändern, insbesondere lässt sich die Austenitisierungszeit verkürzen. Bei einer so modifizierten weiteren Wärmebehandlung wird immer noch ein besseres Festigkeits-/Dehnungs-Verhältnis erhalten als nach der konventionellen Prozessroute. Hier wird der technologische Fortschritt deutlich, den das erfindungsgemäße Verfahren mit sich bringt.However, according to the present invention, the austenitizing conditions can be changed also in comparison with the conventional methods, in particular, the austenitizing time can be shortened. With such a modified further heat treatment, a better strength / elongation ratio is still obtained than after the conventional process route. Here, the technological progress is clear, which brings the inventive method with it.

Die in den Unteransprüchen genannten Merkmale betreffen bevorzugte Weiterbildungen der erfindungsgemäßen Aufgabenlösung. Weitere Vorteile der Erfindung ergeben sich aus der nachfolgenden Detailbeschreibung.The features mentioned in the dependent claims relate to preferred developments of the task solution according to the invention. Further advantages of the invention will become apparent from the following detailed description.

Nachfolgend wird die vorliegende Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die beiliegenden Zeichnungen näher erläutert.
Dabei zeigen:

  • Fig. 1 ein Diagramm zur Erläuterung der Rekristallisationskinetik bei der erfindungsgemäßen ersten Wärmebehandlung (Rekristallisationsglühen), wobei der rekristallisierte Anteil RX in % in Abhängigkeit von der Glühzeit in Minuten aufgetragen ist;
  • Fig. 2 eine Graphik zur Erläuterung der mechanischen Eigenschaften von Stahlband nach dem Rekristallisationsglühen, abhängig vom rekristallisierten Anteil RX, wobei Zugfestigkeit und Bruchdehnung gegen den rekristallisierten Anteil RX in % aufgetragen wurden;
  • Fig.3 aus experimentellen Daten ermittelte Kurvenverläufe für Zugfestigkeit und Bruchdehnung nach der weiteren Wärmebehandlung (dem Formhärten), wobei auf der Ordinate links die Werte für die Zugfestigkeit und rechts diejenigen für die Bruchdehnung wiedergegeben sind, aufgetragen jeweils gegen den rekristallisierten Anteil RX in % (von links nach rechts zunehmend);
  • Fig. 4a eine Graphik, die den Einfluss der Austenitisierungszeit beim Formhärten verdeutlicht, wobei bei zwei verschiedenen Glühzeiten jeweils der Verlauf der Zugfestigkeit in Abhängigkeit von dem rekristallisierten Anteil RX in % wiedergegeben ist;
  • Fig. 4b eine Graphik, die den Einfluss der Austenitisierungszeit beim Formhärten verdeutlicht, wobei bei zwei verschiedenen Glühzeiten jeweils der Verlauf der Bruchdehnung in Abhängigkeit von dem rekristallisierten Anteil RX in % wiedergegeben ist;
Hereinafter, the present invention will be explained in more detail by means of embodiments with reference to the accompanying drawings.
Showing:
  • Fig. 1 a diagram for explaining the recrystallization kinetics in the first heat treatment according to the invention (recrystallization annealing), wherein the recrystallized fraction RX in%, as a function of the annealing time in minutes is plotted;
  • Fig. 2 a graph illustrating the mechanical properties of steel strip after recrystallization annealing, depending on the recrystallized fraction RX, wherein tensile strength and elongation at break against the recrystallized fraction RX in% were plotted;
  • Figure 3 from experimental data, curves for tensile strength and elongation at break after further heat treatment (form hardening), the ordinate on the left representing the values for the tensile strength and the right those for the elongation at break, plotted against the recrystallized fraction RX in% (from left to increasing right);
  • Fig. 4a a graph illustrating the influence of Austenitisierungszeit in the molding, wherein in two different annealing times in each case the curve of the tensile strength as a function of the recrystallized fraction RX in% is reproduced;
  • Fig. 4b a graph illustrating the influence of Austenitisierungszeit in the molding, wherein in two different annealing times in each case the course of the elongation at break in dependence on the recrystallized fraction RX in% is reproduced;

VersuchsdurchführungExperimental Procedure

Als Ausgangsmaterial diente unbeschichtetes Kaltband aus höchstfestem Vergütungsstahl 22MnB5 (Zusammensetzung gemäß nachfolgender Tabelle 1 ) mit einer Dicke von jeweils d= 1,75 mm. Tabelle 1: Schmelzrichtanalyse eines 22MnB5 (1.5528) C Si Mn P S Al Cr Tl B 0,19-0,25 0,15-0,40 1,10-1,30 max.0,025 max.0,015 0,020-0,060 0,15-0,35 0,020-0,050 0,0008-0,0050 The starting material used was uncoated cold strip made of the highest strength tempered 22MnB5 (composition according to Table 1 below) with a thickness of d = 1.75 mm in each case. <b> Table 1: </ b> Melt Analysis of a 22MnB5 (1.5528) C Si Mn P S al Cr tl B 0.19 to 0.25 from 0.15 to 0.40 1.10-1.30 max.0,025 max.0,015 from 0.020 to 0.060 0.15-0.35 0.020 to 0.050 0.0008 to 0.0050

Das industriell auf einer Tandemwalzstrasse kaltgewalzte und in Form von Tafeln angelieferte Versuchsmaterial wurde in 600 mm lange und 20 mm breite Streifen geschnitten.The industrial cold rolled on a tandem rolling mill and supplied in the form of panels test material was cut into 600 mm long and 20 mm wide strips.

a) Versuche zur ersten erfindungsgemäßen Wärmebehandlung ( Rekristallisationsglühen) a) Experiments for the first heat treatment according to the invention (recrystallization annealing)

Die verschiedenen Temperatur-Zeit-Zyklen zur Variation der Rekristallisationsbedingungen wurden mit einem Versuchs-Durchlaufofen nachgefahren. Dazu fuhren pro Versuch jeweils zwei Streifen nebeneinander auf einem Transportband liegend in den Ofen ein. Nach Ablauf der entsprechenden Glühzeit wurde das Material aus dem Ofen heraus transportiert und an ruhender Luft bis auf Raumtemperatur abgekühlt. Einer der beiden geglühten Streifen stand für die nachfolgenden Formhärteversuche (weitere erfindungsgemäße Wärmebehandlung) zur Verfügung. Aus dem zweiten wurden drei Proben für Zugversuche nach DIN EN 10002 (Anfangsmesslänge L0 = 50 mm ; Ermittlung der Kennwerte Rp0,2, Rm und A50) sowie eine Gefügeprobe für metallographische Untersuchungen (Bestimmung des rekristallisierten Anteils und der Korngröße) entnommen.The various temperature-time cycles for varying the recrystallization conditions were run with a continuous test furnace. For this purpose, two strips per side are placed side by side on a conveyor belt in the oven. After the appropriate annealing time, the material was transported out of the oven and cooled in still air to room temperature. One of the two annealed strips was available for the subsequent mold hardness tests (further heat treatment according to the invention). From the second three samples for tensile tests according to DIN EN 10002 (initial measurement length L 0 = 50 mm, determination of the characteristic values R p0,2 , R m and A 50 ) as well as a structural sample for metallographic examinations (determination of the recrystallized portion and the grain size) were taken ,

b) Formhärten der Rekristallisationsproben b) Form hardening the recrystallization samples

Der nach den Rekristallisationsproben zurückgelegte zweite Streifen wurde zunächst austenitisiert. Dazu fand, ebenfalls wieder im Versuchs-Durchlaufofen, eine Erwärmung auf 900° C bei einer Haltezeit von 300 s statt. Nach diesen fünf Minuten wurde der Streifen über einen Kettentransport zum Formhärtwerkzeug transportiert. Bis zum manuellen Einlegen des Streifens in das Werkzeug vergingen ca. 5 s. Das Werkzeug wurde durch ein Absenken einer oberen Platte geschlossen und 20 s in dieser Position gehalten. Nach Auffahren des Werkzeugs konnte das auf ca. 70° C abgekühlte Probenmaterial entnommen werden. Zwischen den einzelnen Versuchen kühlte das Werkzeug immer wieder aus, so dass es eine maximale Temperatur von 40° C aufwies. Die formgehärteten Proben wurden ebenfalls wieder in je drei Zugproben und eine Probe für metallographische Untersuchungen zertrennt.The second strip, after the recrystallization samples, was first austenitized. In addition, again in the experimental continuous furnace, a heating to 900 ° C took place with a holding time of 300 s. After these five minutes, the strip was transported via a chain transport to the form hardening tool. Until manual insertion of the strip in the tool passed about 5 s. The tool was closed by lowering a top plate and held in that position for 20 seconds. After driving up the tool, the sample material cooled down to approx. 70 ° C could be removed. Between each experiment, the tool repeatedly cooled, so that it had a maximum temperature of 40 ° C. The thermoset samples were also split into three tensile specimens and one metallographic specimen.

c) Variation der Austenitisierungsbedingungen c) Variation of austenitizing conditions

Nach Auswertung der mechanischen Werkstoffprüfung und der metallographischen Untersuchungen an den Proben aus den Versuchen a) und b) konnte anhand der Ergebnisse über verschiedene Temperatur-Zeit-Zyklen bei der Wärmebehandlung ein genau definierter Rekristallisationsgrad eingestellt werden. Für jeden der fein abgestuften Rekristallisationsgrade wurden jeweils drei Streifen geglüht.After evaluation of the mechanical material testing and the metallographic investigations on the samples from the experiments a) and b), a precisely defined degree of recrystallization could be set on the basis of the results of various temperature-time cycles during the heat treatment. For each of the finely graded degrees of recrystallization, three strips each were annealed.

Die Variation der Austenitisierungsbedingungen beschränkte sich auf eine Glühzeitverkürzung auf 200 s bei 900° C (konventionell beträgt die Glühzeit 300 s) und zwei Temperaturverringerungen auf 850° C bzw. 800° C bei 300 s Glühzeit ( die konventionelle Glühtemperatur beträgt 900° C). Für alle eingestellten Rekristallisationsgrade wurden diese drei veränderten Austenitisierungsbedingungen mit anschließendem Abschrecken im Werkzeug durchgeführt. Zugversuche und metallographische Untersuchungen erfolgten auch an diesen Zuständen.The variation of the austenitizing conditions was limited to an annealing time shortening to 200 s at 900 ° C (conventionally the annealing time is 300 s) and two temperature reductions to 850 ° C and 800 ° C at 300 s annealing time (the conventional annealing temperature is 900 ° C). For all recrystallization levels set, these three altered austenitizing conditions were performed with subsequent quenching in the tool. Tensile tests and metallographic investigations were also carried out on these conditions.

Auswertungevaluation

Anhand von experimentellen Daten wurde der Verlauf des statisch rekristallisierten Anteils in Abhängigkeit von der Glühzeit ermittelt. Das Rekristallisationsglühen folgt der Kinetik des AVRAMI-Ansatzes gemäß der Formel : RX % = 1 - exp - a * t / t 0 , 5 b * 100

Figure imgb0001

In der

RX
der statisch rekristallisierte Gefügeanteil
a, b
Konstanten (werkstoff- und temperaturabhängig)
t0,5
die Zeit, bei der 50% des Gefüges rekristallisiert sind, und
t
die Glühzeit ist.
On the basis of experimental data, the course of the statically recrystallized fraction was determined as a function of the annealing time. Recrystallization annealing follows the kinetics of the AVRAMI approach according to the formula: RX % = 1 - exp - a * t / t 0 . 5 b * 100
Figure imgb0001

In the
RX
the statically recrystallized part of the structure
a, b
Constants (depending on material and temperature)
t 0.5
the time at which 50% of the structure is recrystallized, and
t
the glow time is.

In der Graphik gemäß Fig. 1 ist der rekristallisierte Anteil RX in % gegen die Glühzeit in Minuten aufgetragen. Dabei sind die Kurven für vier verschiedene Glühtemperaturen wiedergegeben, und zwar T= 735° C (Rekristallisationstemperatur), T= 750 °C (TR + 15 °C), T= 715° C (TR - 20° C) und T= 700°C (TR - 35° C). Aus der Darstellung ergibt sich, dass die Rekristallisation um die Rekristallisationstemperatur deutlich am schnellsten erfolgt. Die Rekristallisationskinetik kurz unterhalb und kurz oberhalb der Rekristallisationstemperatur weist annähernd den gleichen Verlauf auf. Je größer die Differenz zwischen Glühtemperatur und Rekristallisationstemperatur ist ( siehe Kurvenverlauf bei T= 700° C), um so größer ist das Parameterfenster, das heißt der angestrebte rekristallisierte Anteil RX des Gefüges lässt sich dann am besten durch Variieren der Glühzeit beeinflussen. Der Graphik lässt sich entnehmen, dass bei dieser Temperatur nach einer Glühzeit von 20 min der rekristallisierte Anteil RX etwa bei 25 % liegt, während nach einer Glühzeit von etwa 30 min RX bereits bei etwa 80 % liegt.In the graphic according to Fig. 1 the recrystallized fraction RX in% is plotted against the annealing time in minutes. The curves are reported for four different annealing temperatures, namely T = 735 ° C (recrystallization temperature), T = 750 ° C (TR + 15 ° C), T = 715 ° C (TR - 20 ° C) and T = 700 ° C (TR - 35 ° C). From the illustration, it is clear that the recrystallization around the recrystallization temperature is the fastest. The recrystallization kinetics just below and just above the Recrystallization temperature has approximately the same course. The greater the difference between annealing temperature and recrystallization temperature (see curve at T = 700 ° C), the larger the parameter window, that is, the desired recrystallized portion RX of the structure can be best influenced by varying the annealing time. The graph shows that at this temperature after an annealing time of 20 minutes the recrystallized fraction RX is about 25%, while after an annealing time of about 30 minutes RX is already at about 80%.

In Fig. 2 sind als wichtige mechanische Eigenschaften die Zugfestigkeit (links) und die Bruchdehnung (rechts) nach dem Rekristallisationsglühen in Abhängigkeit von dem rekristallisierten Anteil RX aufgetragen. Die Werte ergeben sich aus experimentell ermittelten Daten, die nach der ersten erfindungsgemäßen Wärmebehandlung, das heißt nach dem Rekristallisationsglühen aufgenommern wurden. Man sieht, dass die Zugfestigkeit mit zunehmendem rekristallisiertem Anteil RX sinkt, wobei jedoch bei RX zwischen etwa 20% und etwa 40 % noch ausreichend niedrige Werte im Bereich von etwa 620 N/mm2 und 740 N/mm2 erzielt werden. Die Bruchdehnung steigt hingegen mit zunehmendem rekristallisierten Anteil RX, wobei man erkennt, dass bereits bei RX 20% bis 40% gute Werte erreicht werden und diese dann bei weiter zunehmendem RX nur noch wenig weiter ansteigen. Es ist die Bruchdehnung A50 in % wiedergegeben.In Fig. 2 The tensile strength (left) and the elongation at break (right) after recrystallization annealing are plotted as important mechanical properties as a function of the recrystallized fraction RX. The values result from experimentally determined data which were obtained after the first heat treatment according to the invention, that is to say after the recrystallization annealing. It can be seen that the tensile strength decreases as the recrystallized fraction RX increases, but at RX between about 20% and about 40%, sufficiently low values in the range of about 620 N / mm 2 and 740 N / mm 2 are still achieved. The elongation at break, however, increases with increasing recrystallized portion RX, where it can be seen that even with RX 20% to 40% good values are achieved and then increase only slightly with further increasing RX. The elongation at break A 50 in% is shown.

Anhand von Schliffbildern lässt sich sehr gut erkennen, dass nach der ersten Wärmebehandlung Anteile der feinkörnigen längsgestreckten Deformationsstruktur aus dem reduzierenden Kaltwalzen teilweise erhalten bleiben. Nach der weiteren erfindungsgemäßen Wärmebehandlung (Formhärten) erhält man bei gleichen Austenitisierungsbedingungen mit einer Korngröße von ca. 5µm sogar ein feineres Gefüge als bei herkömmlicher Prozessroute mit 100 %iger Rekristallisation (Korngröße ca. 8...10µm) in der ersten Wärmebehandlung.On the basis of micrographs, it can be seen very clearly that parts of the fine-grained elongated deformation structure from the reducing cold rolling are partially retained after the first heat treatment. After the further heat treatment according to the invention (mold hardening), the same austenitizing conditions with a particle size of about 5 .mu.m even result in a finer microstructure than in the conventional process route with 100% recrystallization (particle size about 8... 10 .mu.m) in the first heat treatment.

Fig. 3 zeigt die mechanischen Eigenschaften nach dem Formhärten in Abhängigkeit vom rekristallisierten Anteil RX vor dem Austenitisieren. Links ist auf der y-Achse wieder die Zugfestigkeit in N/mm2 angegeben und auf der rechten y-Achse die Bruchdehnung A50 in %. Auf der x-Achse ist der rekristallisierte Anteil RX in % angegeben von links nach rechts zunehmend. Man erkennt, dass im Hinblick auf eine optimale Kombination aus hohen Festigkeiten und hohen Dehnwerten ein optimaler Bereich für RX bei etwa 20% bis etwa 40% liegt. Durch die erfindungsgemäße modifizierte Wärmebehandlung kann eine Verbesserung der Dehnung um mindestens 20% erzielt werden. Fig. 3 shows the mechanical properties after the form hardening as a function of the recrystallized fraction RX before austenitizing. On the left, the tensile strength in N / mm 2 is again indicated on the y-axis, and the elongation at break A 50 in% on the right-hand y-axis. On the x-axis, the recrystallized fraction RX in% given from left to right increasingly. It can be seen that for an optimum combination of high strengths and high elongation values, an optimum range for RX is about 20% to about 40%. By means of the modified heat treatment according to the invention, an improvement in the elongation of at least 20% can be achieved.

Die Fig. 4a und 4b verdeutlichen den Einfluss der Austenitisierungszeit, d. h. der Zeitdauer der zweiten Wärmebehandlung auf die mechanischen Eigenschaften nach dem Formhärten. In Fig. 4a ist die Zugfestigkeit in N/mm2 aufgetragen gegen den rekristallisierten Anteil RX in %, wobei zwei Kurven für jeweils unterschiedliche Glühzeiten dargestellt sind. Die Glühzeit betrug 200 s bzw. 300 s bei gleicher Glühtemperatur von jeweils 900° C. Man erkennt, dass die Zugfestigkeitswerte bei der Glühzeit von 200 s über den gesamten Kurvenverlauf höher liegen als bei der längeren Glühzeit von 300 s. Die Differenz in den Zugfestigkeitswerten nimmt mit zunehmendem rekristallisierten Anteil RX nur noch leicht zu. Die in Fig. 4b wiederum für die beiden angegebenen Glühzeiten bei gleicher Glühtemperatur von 900° C ermittelten Kurvenverläufe für die Bruchdehnung in % zeigen, dass die Werte mit zunehmendem rekristallisierten Anteil RX zunächst wiederum ein Maximum im Bereich zwischen 20 und 40% erreichen und danach wieder abnehmen. Erstaunlich ist die Tatsache, dass die Bruchfestigkeitswerte trotz der kürzeren Glühzeit von 200 s (untere Kurve) bei einem rekristallisierten Anteil RX von etwa 40% noch immer besser sind, als die Werte bei längerer Glühzeit, wenn zuvor eine 100 %ige Rekristallisierung vorgenommen wurde. Dies bedeutet, dass die Glühzeit beim Formhärten verkürzt werden kann, wobei höhere Zugfestigkeitswerte erreicht werden als bei vorheriger 100 %iger Rekristallisation nach der konventionellen Prozessroute. Zudem wird auch beim Rekristallisationsglühen selbst eine Verkürzung der Glühzeit dadurch möglich, dass der Glühprozess früher beendet werden kann, nämlich dann, wenn der gewünschte Rekristallisationsgrad von beispielsweise etwa 20% oder etwa 40% erreicht ist.The Fig. 4a and 4b illustrate the influence of austenitizing time, ie the duration of the second heat treatment on the mechanical properties after the form hardening. In Fig. 4a is the tensile strength in N / mm 2 plotted against the recrystallized fraction RX in%, where two curves for each different annealing times are shown. The annealing time was 200 s or 300 s with the same annealing temperature of 900 ° C. It can be seen that the tensile strength values for the annealing time of 200 s are higher over the entire curve than for the longer annealing time of 300 s. The difference in the tensile strength values increases only slightly with increasing recrystallized fraction RX. In the Fig. 4b again for the two given annealing times at the same annealing temperature of 900 ° C determined curves for the elongation at break in% show that the values with increasing recrystallized fraction RX first again reach a maximum in the range between 20 and 40% and then decrease again. It is astonishing that despite the shorter annealing time of 200 s (lower curve) with a recrystallized fraction RX of about 40%, the fracture strength values are still better than the values with longer annealing times if a 100% recrystallization had previously been carried out. This means that the annealing time in the case hardening can be shortened, whereby higher tensile strength values are achieved than with previous 100% recrystallization according to the conventional process route. In addition, a shortening of the annealing time is also possible in recrystallization annealing itself in that the annealing process can be terminated earlier, namely when the desired degree of recrystallization of, for example, about 20% or about 40% is reached.

Claims (15)

  1. Process for the treatment of steel strip after cold rolling, including at least a first heat treatment comprising recrystallization annealing and also including at least a further, subsequent heat treatment comprising hardening, characterized in that the time-temperature curve during the first heat treatment is selected such that recrystallization annealing is effected during the first heat treatment in such a manner that a recrystallized fraction of about 15% to about 45% is obtained in the microstructure, and the elongated microstructure produced by the preceding cold work-hardening is partially retained.
  2. Process according to claim 1, characterized in that the further, subsequent heat treatment is a final heat treatment comprising press hardening.
  3. Process according to claim 2, characterized in that the further, subsequent heat treatment comprises deformation.
  4. Process according to claim 1 or 2, characterized in that the further, subsequent heat treatment comprises shaping using a shaping tool.
  5. Process according to one of claims 1 to 4, characterized in that the further, subsequent heat treatment is followed by cooling using a cooling medium or using a shaping tool.
  6. Process according to one of claims 1 to 5, characterized in that the further, subsequent heat treatment includes heating to austenitization temperature.
  7. Process according to one of claims 1 to 6, characterized in that a steel strip made of a steel which can be quenched and tempered is heat treated.
  8. Process according to one of claims 1 to 7, characterized in that a steel strip made of a super-high-strength steel is heat treated.
  9. Process according to one of claims 1 to 8, characterized in that a steel strip made of a steel containing manganese and/or boron as alloying element is treated.
  10. Process according to claim 9, characterized in that a steel strip made of 22MnB5 is heat treated.
  11. Process according to one of the preceding claims, characterized in that the flow properties of the material during subsequent deformation are controlled by way of directional-dependent structural fractions obtained during the first heat treatment.
  12. Process according to one of the preceding claims, characterized in that recrystallization annealing is effected during the first heat treatment in such a manner that a recrystallized fraction of about 20% to about 40% is obtained in the microstructure.
  13. Process according to one of the preceding claims, characterized in that the recrystallization annealing is effected at a temperature below the recrystallization temperature, preferably about 1% to about 10%, particularly preferably about 2% to about 6%, below the recrystallization temperature.
  14. Process according to one of the preceding claims, characterized in that the annealing time for the recrystallization annealing is shortened compared to conventional processes, and only partial recrystallization is thereby achieved.
  15. Process according to one of the preceding claims, characterized in that the annealing time for the further, subsequent heat treatment is shortened compared to comparable, conventional processes.
EP06754580A 2005-09-22 2006-06-27 Method for treating a steel strip Not-in-force EP1929055B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005045466.6A DE102005045466B4 (en) 2005-09-22 2005-09-22 Process for the treatment of steel strip
PCT/EP2006/006184 WO2007033711A1 (en) 2005-09-22 2006-06-27 Method for treating a steel strip

Publications (2)

Publication Number Publication Date
EP1929055A1 EP1929055A1 (en) 2008-06-11
EP1929055B1 true EP1929055B1 (en) 2010-09-01

Family

ID=37037079

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06754580A Not-in-force EP1929055B1 (en) 2005-09-22 2006-06-27 Method for treating a steel strip

Country Status (4)

Country Link
EP (1) EP1929055B1 (en)
AT (1) ATE479781T1 (en)
DE (2) DE102005045466B4 (en)
WO (1) WO2007033711A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021203239A1 (en) 2021-03-30 2022-10-06 Volkswagen Aktiengesellschaft Process for the production of a sheet metal blank suitable for press hardening with different sheet metal thicknesses and process for the production of a press-hardened shaped sheet metal part

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006032617B4 (en) * 2006-07-12 2008-04-03 Universität Kassel Process for the production of a sheet-metal semi-finished product suitable for molding
DE102006049146B4 (en) * 2006-10-17 2012-12-27 Braun CarTec GmbH Method for producing an assembly consisting of at least two interconnected sheet-metal parts
DE102009016027A1 (en) * 2009-04-02 2010-10-07 Volkswagen Ag Method for producing a component, in particular a body part, and production line for carrying out the method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1168462B (en) * 1957-06-12 1964-04-23 Cornigliano Societa Per Azioni Process for recrystallization annealing of cold worked steel
DE3406792A1 (en) * 1984-02-24 1985-08-29 Linde Ag, 6200 Wiesbaden METHOD AND DEVICE FOR GLOWING METAL PARTS
JPS6293341A (en) * 1985-10-21 1987-04-28 Kawasaki Steel Corp Cold-rolled steel sheet for working and its production
BE1010913A3 (en) * 1997-02-11 1999-03-02 Cockerill Rech & Dev Annealing process substrate metal in parade.
US6572716B2 (en) * 1997-09-22 2003-06-03 National Research Institute For Metals Fine ferrite-based structure steel production method
US20030015263A1 (en) * 2000-05-26 2003-01-23 Chikara Kami Cold rolled steel sheet and galvanized steel sheet having strain aging hardening property and method for producing the same
DE10149220C1 (en) * 2001-10-05 2002-08-08 Benteler Automobiltechnik Gmbh Process for producing a hardened sheet metal profile
DE10149221C1 (en) * 2001-10-05 2002-08-08 Benteler Automobiltechnik Gmbh Process for producing a hardened sheet metal profile
JP4220871B2 (en) * 2003-03-19 2009-02-04 株式会社神戸製鋼所 High-tensile steel plate and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021203239A1 (en) 2021-03-30 2022-10-06 Volkswagen Aktiengesellschaft Process for the production of a sheet metal blank suitable for press hardening with different sheet metal thicknesses and process for the production of a press-hardened shaped sheet metal part

Also Published As

Publication number Publication date
DE502006007789D1 (en) 2010-10-14
DE102005045466B4 (en) 2015-10-29
WO2007033711A1 (en) 2007-03-29
DE102005045466A1 (en) 2007-03-29
EP1929055A1 (en) 2008-06-11
ATE479781T1 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
DE102013010946B3 (en) Method and plant for producing a press-hardened sheet steel component
EP2366035B1 (en) Manganese steel strip having an increased phosphorus content and process for producing the same
EP2446064B1 (en) Method for producing a hot press hardened component and use of a steel product for producing a hot press hardened component
DE1508416C3 (en) Process for the production of steel parts such as bolts, screws, pins and the like.
EP3642371B1 (en) Method for producing a steel component provided with a metallic coating protecting against corrosion
DE102006019567B3 (en) Method for producing formed steel components
DE2606632C2 (en) Use of carbon steel as a superplastic agent and process for its heat treatment
DE102016113599A1 (en) Heat treatment to reduce distortion
DE102013003516A1 (en) Process for the production of an ultra-high-strength material with high elongation
DE102008040689B4 (en) Ball studs and sleeves made of high manganese steel
EP1929055B1 (en) Method for treating a steel strip
EP1786935B1 (en) Method for the heat treatment of bearing parts made of steel
WO2020165116A1 (en) Method for producing a sheet steel component
DE102006060994A1 (en) Stainless steel ball studs and sleeves
DE102017131247A1 (en) Method for producing metallic components with adapted component properties
DE10055338C1 (en) Production of cold strip comprises hot rolling pre-material produced from steel, cold rolling hot strip to form cold strip, annealing at temperature which is lower than recrystallization temperature, cold deforming, and further annealing
DE102019219235B3 (en) Process for the production of a hot-formed and press-hardened sheet steel component
WO2020244974A1 (en) Process for producing a hot-formed and press-hardened sheet steel component
DE2225517B2 (en) METHOD FOR MANUFACTURING A BEARING ELEMENT
DE102017125513A1 (en) Heat aging deformed metal sheet for strength uniformity
EP3978634A1 (en) An at least partially press-hardened steel sheet component and method of producing an at least partially press-hardened steel sheet component
DE112019005194T5 (en) HOT FORMING PROCESS AND HOT FORMING PRODUCT
DE112019004805T5 (en) HOT FORMING PROCESS AND HOT FORMING PRODUCT
DE102017131253A1 (en) Method for producing metallic components with adapted component properties
DE102017211753A1 (en) Method for producing a press-hardened component

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080422

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20081008

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502006007789

Country of ref document: DE

Date of ref document: 20101014

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110103

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101212

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006007789

Country of ref document: DE

Effective date: 20110606

BERE Be: lapsed

Owner name: UNIVERSITAT KASSEL

Effective date: 20110630

Owner name: VOLKSWAGEN AG

Effective date: 20110630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110627

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110627

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 479781

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006007789

Country of ref document: DE

Representative=s name: FRITZ PATENT- UND RECHTSANWAELTE PARTNERSCHAFT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006007789

Country of ref document: DE

Owner name: VOLKSWAGEN AG, DE

Free format text: FORMER OWNERS: VOLKSWAGEN AG, 38440 WOLFSBURG, DE; UNIVERSITAET KASSEL, 34125 KASSEL, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006007789

Country of ref document: DE

Owner name: STEINHOFF, KURT, DE

Free format text: FORMER OWNERS: VOLKSWAGEN AG, 38440 WOLFSBURG, DE; UNIVERSITAET KASSEL, 34125 KASSEL, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220630

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006007789

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006007789

Country of ref document: DE