EP1920160A1 - Vacuum pump - Google Patents

Vacuum pump

Info

Publication number
EP1920160A1
EP1920160A1 EP06792816A EP06792816A EP1920160A1 EP 1920160 A1 EP1920160 A1 EP 1920160A1 EP 06792816 A EP06792816 A EP 06792816A EP 06792816 A EP06792816 A EP 06792816A EP 1920160 A1 EP1920160 A1 EP 1920160A1
Authority
EP
European Patent Office
Prior art keywords
pump
rotor
transducer
stator
vacuum pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06792816A
Other languages
German (de)
French (fr)
Other versions
EP1920160B1 (en
Inventor
Alois Greven
Thomas Longerich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leybold GmbH
Original Assignee
Oerlikon Leybold Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Leybold Vacuum GmbH filed Critical Oerlikon Leybold Vacuum GmbH
Publication of EP1920160A1 publication Critical patent/EP1920160A1/en
Application granted granted Critical
Publication of EP1920160B1 publication Critical patent/EP1920160B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring

Definitions

  • the invention relates to a vacuum pump with a pump rotor and a pump stator
  • the pump rotor In vacuum pumps, and particularly in high speed turbomolecular pumps, the pump rotor can be heated to a great extent by heat of compression, frictional heat and possibly other influences. Excessively high rotor temperatures increase the risk of crashes, accelerate material fatigue and change other characteristics of the pump rotor. For this Reason, it is necessary to monitor the rotor temperature and record if necessary.
  • the rotor temperature is determined either by a relatively expensive pyrometric measurement.
  • the rotor temperature can be determined indirectly by measuring the stator temperature and from this conclusions about the rotor temperature are drawn.
  • the indirect measurement is not very accurate and is not suitable for monitoring rapid temperature changes of the pump rotor.
  • the object of the invention is in contrast to provide a vacuum pump, can be detected inexpensively and accurately in the physical parameters of the pump rotor.
  • the pump rotor has an electrical transducer and a transmitter antenna connected to the transducer.
  • a receiving antenna is provided on the pump stator, which receives measurements from the transmitter from the transmitter antenna that transmits measured values of the transducer. This creates a wireless radio link for transmitting measured values between the pump rotor and the pump stator. An expensive pyrometric measurement or inaccurate indirect measurements of physically variable parameters of the pump rotor can therefore be dispensed with. Since the transducer is located directly on the pump stator, the relevant parameter can be determined very accurately.
  • the measured value is transmitted via the transmitting antenna to the receiving antenna analog or digital, whereby a safe, fast, accurate and error-free transmission can be ensured.
  • the transducer is preferably a temperature sensor, but may also be an acceleration or vibration sensor or a strain sensor, or a combination of a plurality of said sensors.
  • an energy transfer coil is provided on the pump stator and on the pump rotor, wherein the pumpenrotorse ⁇ tige coil is connected via aistswandier with the transducer, so that wireless electrical energy from the pump stator to the pump rotor for electrical power supply of the Meßwandiers be transmitted can.
  • the two energy transfer coils form the primary circuit and the secondary circuit of a transformer. By feeding a corresponding alternating voltage into the pump stator-side energy transmission coil, this is transmitted to the pump rotor-side energy transfer coil, so that in the pump rotor electrical energy is available to supply the Meßwandiers and possibly other aggregates available.
  • the two energy transfer coils may also be parts of the drive motor, i. be through a portion of a motor stator-side stator coil and a motor rotor-side rotor coil.
  • the transmitting antenna and the receiving antenna can serve as a power transmission coil.
  • the transmitting antenna and the receiving antenna may be arranged axially or radially to each other.
  • the transmitting and receiving antenna can be arranged in the region of the axial of the pump rotor.
  • the transmitting and receiving antenna can also be arranged outside and away from the axial of the pump rotor.
  • one of the two antennas is annular. This is necessary when the two antennas are arranged around a rotor shaft.
  • the two antennas overlap over a large part or the entire circumference. As a result, a relatively long or optionally continuous transmission of measured values between the transmitting antenna and the receiving antenna is possible. If both antennas are annular, but interrupted, they can each be used simultaneously as a primary and secondary coil for energy transmission.
  • a transponder is arranged on the pump rotor, which sends a transducer measured value only on request via the transmitting antenna to the receiving antenna.
  • the measured value transfer interval I J can be adapted to the respective situation.
  • the number of measured value transfers is kept as low as possible, which in turn keeps the rotor-side demand for electrical energy as small as possible.
  • the units concerned with the rotor power supply can be designed as small as possible.
  • the figure shows a vacuum pump in a schematic representation.
  • the vacuum pump 10 has a pump part, which is essentially formed by a pump stator 12 and a pump rotor 14. Furthermore, the vacuum pump 10 has a drive and storage part in which two shaft bearings 16, 18 and a drive motor 20 are arranged.
  • a receiving antenna 30 is provided, which is designed to be open and arranged in an annular ring around the rotor shaft 22.
  • the stator-side receiving antenna 30 is electrically connected to a control module 32 which the control of the transmitting and receiving operation and the evaluation of received by Empfangsanten ⁇ e 30 signals is used.
  • Rotor side and the receiving antenna 30 axially exactly opposite a corresponding annular transmitting antenna 40 is provided. Furthermore, the pump rotor 14 has a temperature sensor which is connected to a transponder 42, which in turn is connected to the transmitting antenna 40.
  • the transducer 44 is a temperature sensor that measures the rotor temperature and sends that value to the transponder 42 continuously or upon request.
  • strain sensors, acceleration or vibration sensors or other sensors can be used.
  • the receiving antenna 30 is formed as an open circular ring and is used in addition to their antenna characteristics as a secondary coil of a transformer to which the receiving antenna 30 forms the primary coil.
  • a corresponding alternating voltage is fed to the receiving antenna 30, which is induced in the transmitting antenna 40.
  • the axial distance between the receiving antenna 30 and the transmitting antenna 40 is a few millimeters and possibly even less than 1 mm.
  • the transponder 42 in the pump rotor 14 has a transceiver unit, which receives, amplifies and interprets request signals of the control module 32 and forwards measured values of the transducer 44 correspondingly amplified to the transmission antenna 40 upon request.
  • a voltage converter 46 is provided which rectifies the AC voltage received, regulates to a constant supply voltage and supplied via supply lines the transducer 44 and the transponder 42 with electrical energy.
  • the pump rotor With wireless wireless transmission of measured values provided by pump rotor-side transducers, the pump rotor can be comprehensively, precisely and promptly monitored. This can intervene quickly in case of imminent risk of accident by overheating rotor by a motor control and damage or destruction of the vacuum pump can be avoided.
  • the aging of the pump rotor can be tracked and extrapolated in particular by monitoring and recording of the pump rotor temperature or the life of the vacuum pump can be increased considerably by avoiding high pump rotor temperatures.

Abstract

A vacuum pump (10) according to the invention has a pump rotor (14) and a pump stator (12). The pump rotor (14) has an electrical measuring transducer (44), for example a temperature sensor. A transmitting antenna (40), which is provided with the measuring transducer (44), is provided on the pump rotor (14). A receiving antenna (30), which receives measurement values of the measuring transducer (44) from the transmitting antenna (40), is provided on the pump stator (12) so as to be situated opposite the transmitting antenna (40). In this way, accurate measurement values can be transmitted from the pump rotor (14) to the pump stator (12).

Description

Vakuumpumpe vacuum pump
Die Erfindung bezieht sich auf eine Vakuumpumpe mit einem Pumpenrotor und einem Pumpenstator,The invention relates to a vacuum pump with a pump rotor and a pump stator,
Bei Vakuumpumpen, und insbesondere bei schnelldrehenden Turbomolekularpumpen, kann der Pumpenrotor durch Kompressionswärme, Reibungswärme und gegebenenfalls andere Einflüsse stark erwärmt werden. Durch zu hohe Rotortemperaturen erhöht sich die Crashgefahr, beschleunigt sich die Materialermüdung und ändern sich andere Eigenschaften des Pumpenrotors. Aus diesem Grund ist es erforderlich, die Rotortemperatur zu überwachen und gegebenenfalls aufzuzeichnen.In vacuum pumps, and particularly in high speed turbomolecular pumps, the pump rotor can be heated to a great extent by heat of compression, frictional heat and possibly other influences. Excessively high rotor temperatures increase the risk of crashes, accelerate material fatigue and change other characteristics of the pump rotor. For this Reason, it is necessary to monitor the rotor temperature and record if necessary.
Die Rotortemperatur wird entweder durch eine relativ teure pyrometrische Messung ermittelt. Alternativ kann die Rotortemperatur indirekt ermittelt werden, indem die Statortemperatur gemessen und hieraus Rückschlüsse auf die Rotortemperatur gezogen werden. Die indirekte Messung ist nicht sehr genau und eignet sich nicht für die Überwachung schneller Temperaturänderungen des Pumpenrotors.The rotor temperature is determined either by a relatively expensive pyrometric measurement. Alternatively, the rotor temperature can be determined indirectly by measuring the stator temperature and from this conclusions about the rotor temperature are drawn. The indirect measurement is not very accurate and is not suitable for monitoring rapid temperature changes of the pump rotor.
Aufgabe der Erfindung ist es demgegenüber, eine Vakuumpumpe zu schaffen, bei der physikalische Messgrößen des Pumpenrotors preiswert und genau erfasst werden können.The object of the invention is in contrast to provide a vacuum pump, can be detected inexpensively and accurately in the physical parameters of the pump rotor.
Diese Aufgabe wird erfindungsgemäß mit den Merkmalen des Patentanspruches 1 gelöst.This object is achieved by the features of claim 1.
Gemäß der Erfindung weist der Pumpenrotor einen elektrischen Messwandier und eine Sendeantenne auf, die mit dem Messwandler verbunden ist. An dem Pumpenstator ist eine Empfangsantenne vorgesehen, die Messwerte des Messwandlers von der Sendeantenne empfängt, die Messwerte des Messwandlers aussendet Es wird auf diese Weise eine drahtlose Funkverbindung zur Übertragung von Messwerten zwischen dem Pumpenrotor und dem Pumpenstator geschaffen. Auf eine teure pyrometrische Messung oder ungenaue indirekte Messungen von physikalischen veränderlichen Parametern des Pumpenrotors kann daher verzichtet werden. Da der Messwandler unmittelbar an dem Pumpenstator angeordnet ist, kann der betreffende Parameter sehr genau ermittelt werden. Der Messwert wird über die Sendeantenne an die Empfangsantenπe analog oder digital gesendet, wodurch eine sichere, schnelle, genaue und fehlerfreie Übertragung sichergestellt werden kann. Der Messwandler ist vorzugsweise ein Temperatursensor, kann jedoch auch ein Beschleunigungs- bzw. Vibrations-Sensor oder ein Dehnungssensor, oder eine Kombination mehrerer der genannten Sensoren sein.According to the invention, the pump rotor has an electrical transducer and a transmitter antenna connected to the transducer. A receiving antenna is provided on the pump stator, which receives measurements from the transmitter from the transmitter antenna that transmits measured values of the transducer. This creates a wireless radio link for transmitting measured values between the pump rotor and the pump stator. An expensive pyrometric measurement or inaccurate indirect measurements of physically variable parameters of the pump rotor can therefore be dispensed with. Since the transducer is located directly on the pump stator, the relevant parameter can be determined very accurately. The measured value is transmitted via the transmitting antenna to the receiving antenna analog or digital, whereby a safe, fast, accurate and error-free transmission can be ensured. The transducer is preferably a temperature sensor, but may also be an acceleration or vibration sensor or a strain sensor, or a combination of a plurality of said sensors.
Gemäß einer bevorzugten Ausgestaltung ist an dem Pumpenstator und an dem Pumpenrotor jeweils eine Energieübertragungs-Spule vorgesehen, wobei die pumpenrotorseϊtige Spule über einem Spannungswandier mit dem Messwandler verbunden ist, so dass drahtlos elektrische Energie von dem Pumpenstator zu dem Pumpenrotor zur elektrischen Energieversorgung des Messwandiers übertragen werden kann. Die beiden Energieύbertragungs-Spulen bilden den Primärkreis und den Sekundärkreis eines Transformators. Durch Einspeisung einer entsprechenden Wechselspannung in die pumpenstatorseitige Energieübertragungs- Spule wird diese auf die pumpenrotorseitige Energieübertragungs-Spule übertragen, so dass in dem Pumpenrotor elektrische Energie zur Versorgung des Messwandiers und gegebenenfalls anderer Aggregate zur Verfügung steht.According to a preferred embodiment, an energy transfer coil is provided on the pump stator and on the pump rotor, wherein the pumpenrotorseϊtige coil is connected via a Spannungswandier with the transducer, so that wireless electrical energy from the pump stator to the pump rotor for electrical power supply of the Meßwandiers be transmitted can. The two energy transfer coils form the primary circuit and the secondary circuit of a transformer. By feeding a corresponding alternating voltage into the pump stator-side energy transmission coil, this is transmitted to the pump rotor-side energy transfer coil, so that in the pump rotor electrical energy is available to supply the Meßwandiers and possibly other aggregates available.
Die beiden Energieubertragungs-Spulen können auch Teile des Antriebsmotors sein, d.h. durch einen Abschnitt einer motorstatorseitigen Statorspule und einer motorrotorseitigen Rotorspule sein. Auch die Sendeantenne und die Empfangsantenne können als Energieübertragungs-Spule dienen.The two energy transfer coils may also be parts of the drive motor, i. be through a portion of a motor stator-side stator coil and a motor rotor-side rotor coil. Also, the transmitting antenna and the receiving antenna can serve as a power transmission coil.
Die Sendeantenne und die Empfangsantenne können axial oder radial zueinander angeordnet sein. Die Sende- und Empfangsantenne können im Bereich der Axialen des Pumpenrotors angeordnet sein. Die Sende- und Empfangsantenne können jedoch auch außerhalb und entfernt der Axialen des Pumpenrotors angeordnet sein. Vorzugsweise ist eine der beiden Antennen kreisringförmig ausgebildet. Dies ist dann erforderlich, wenn die beiden Antennen um eine Rotorwelle herum angeordnet sind. Um insbesondere bei hohen Drehzahlen von über 10.000 Umdrehungen pro Minute, wie sie beispielsweise bei Turbomolekularpumpen auftreten können, ausreichend lange Übertragungszeiten sicherzustellen, überdecken sich die beiden Antennen über einen Großteil oder den gesamten Kreisumfang. Hierdurch ist eine relativ lange oder gegebenenfalls kontinuierliche Übertragung von Messwerten zwischen der Sendeantenne und der Empfangsantenne möglich. Wenn beide Antennen kreisringförmig, jedoch unterbrochen, ausgebildet sind, können sie jeweils gleichzeitig auch ais Primär- und Sekundärspule zur Energieübertragung benutzt werden.The transmitting antenna and the receiving antenna may be arranged axially or radially to each other. The transmitting and receiving antenna can be arranged in the region of the axial of the pump rotor. However, the transmitting and receiving antenna can also be arranged outside and away from the axial of the pump rotor. Preferably, one of the two antennas is annular. This is necessary when the two antennas are arranged around a rotor shaft. In order to ensure sufficiently long transmission times, in particular at high speeds of more than 10,000 revolutions per minute, as can occur, for example, in turbomolecular pumps, the two antennas overlap over a large part or the entire circumference. As a result, a relatively long or optionally continuous transmission of measured values between the transmitting antenna and the receiving antenna is possible. If both antennas are annular, but interrupted, they can each be used simultaneously as a primary and secondary coil for energy transmission.
Gemäß einer bevorzugten Ausgestaltung ist an dem Pumpenrotor ein Transpon- der angeordnet, der einen Messwandler-Messwert nur auf Anforderung über die Sendeantenne an die Empfangsantenne sendet. Auf diese Weise kann durch eine entsprechende statorseitige Steuerung das Messwertu bertrag ungsinterva I J an die jeweilige Situation angepasst werden. Hierdurch wird die Anzahl der Messwert- Übertragungen möglichst gering gehalten, wodurch wiederum der rotorseitige Bedarf an elektrischer Energie möglichst klein gehalten wird. Hierdurch wiederum können die mit der Rotor-Energieversorgung befassten Aggregate kleinstmöglich ausgelegt werden.According to a preferred embodiment, a transponder is arranged on the pump rotor, which sends a transducer measured value only on request via the transmitting antenna to the receiving antenna. In this way, by a corresponding stator-side control, the measured value transfer interval I J can be adapted to the respective situation. As a result, the number of measured value transfers is kept as low as possible, which in turn keeps the rotor-side demand for electrical energy as small as possible. As a result, in turn, the units concerned with the rotor power supply can be designed as small as possible.
Im Folgenden ist ein Ausfuhrungsbeispiel der Erfindung anhand der Zeichnung näher erläutert.In the following, an exemplary embodiment of the invention is explained in more detail with reference to the drawing.
Die Figur zeigt eine Vakuumpumpe in schematischer Darstellung.The figure shows a vacuum pump in a schematic representation.
In der Figur ist eine als Turbomolekularpumpe ausgebildete Vakuumpumpe 10 dargestellt. Die Vakuumpumpe 10 weist einen Pumpenteil auf, der im wesentlichen von einem Pumpenstator 12 und einem Pumpenrotor 14 gebildet ist. Ferner weist die Vakuumpumpe 10 einen Antriebs- und Lagerungsteäl auf, in dem zwei Wellenlager 16, 18 und ein Antriebsmotor 20 angeordnet sind.In the figure, a designed as a turbomolecular pump vacuum pump 10 is shown. The vacuum pump 10 has a pump part, which is essentially formed by a pump stator 12 and a pump rotor 14. Furthermore, the vacuum pump 10 has a drive and storage part in which two shaft bearings 16, 18 and a drive motor 20 are arranged.
Statorseitig ist eine Empfangsantenne 30 vorgesehen, die offen ausgebildet und kreisringförmig um die Rotorwelle 22 herum angeordnet ist. Die statorseitige Empfangsantenne 30 ist elektrisch mit einem Steuermodui 32 verbunden, das der Steuerung des Sende- und Empfangsbetriebes und der Auswertung der von Empfangsantenπe 30 empfangenen Signale dient.On the stator side, a receiving antenna 30 is provided, which is designed to be open and arranged in an annular ring around the rotor shaft 22. The stator-side receiving antenna 30 is electrically connected to a control module 32 which the control of the transmitting and receiving operation and the evaluation of received by Empfangsantenπe 30 signals is used.
Rotorseitig und der Empfangsantenne 30 axial genau gegenüberliegend ist eine entsprechende kreisringförmige Sendeantenne 40 vorgesehen. Ferner weist der Pumpenrotor 14 einen Ternperatursensor auf, der mit einem Transponder 42 verbunden ist, der seinerseits mit der Sendeantenne 40 verbunden ist.Rotor side and the receiving antenna 30 axially exactly opposite a corresponding annular transmitting antenna 40 is provided. Furthermore, the pump rotor 14 has a temperature sensor which is connected to a transponder 42, which in turn is connected to the transmitting antenna 40.
Der Messwandler 44 ist ein Temperatursensor, der die Rotortemperatur misst und diesen Wert kontinuierlich oder auf Anforderung an den Transponder 42 sendet. Als Messwandler können alternativ oder ergänzend auch Dehnungssensoren, Beschleunigungs- oder Vibrations-Sensoren oder andere Sensoren verwendet werden.The transducer 44 is a temperature sensor that measures the rotor temperature and sends that value to the transponder 42 continuously or upon request. As a transducer, alternatively or additionally, strain sensors, acceleration or vibration sensors or other sensors can be used.
Auch die Empfangsantenne 30 ist als offener Kreisring ausgebildet und dient neben ihrer Antenneneigenschaft auch als Sekundärspule eines Transformators, zu dem die Empfangsantenne 30 die Primärspule bildet. Durch die Steuervorrichtung 32 wird eine entsprechende Wechselspannung in die Empfangsantenne 30 eingespeist, die in die Sendeantenne 40 induziert wird. Der axiale Abstand zwischen der Empfangsantenne 30 und der Sendeantenne 40 beträgt wenigen Millimeter und gegebenenfalls sogar weniger als 1 mm.The receiving antenna 30 is formed as an open circular ring and is used in addition to their antenna characteristics as a secondary coil of a transformer to which the receiving antenna 30 forms the primary coil. By the control device 32, a corresponding alternating voltage is fed to the receiving antenna 30, which is induced in the transmitting antenna 40. The axial distance between the receiving antenna 30 and the transmitting antenna 40 is a few millimeters and possibly even less than 1 mm.
Der Transponder 42 in dem Pumpenrotor 14 weist eine Sende-Empfangseinheit auf, die Anforderungssignale des Steuermodules 32 empfängt, verstärkt und interpretiert, sowie Messwerte des Messwandlers 44 auf Anforderung entsprechend verstärkt an die Sendeantenne 40 weiterleitet.The transponder 42 in the pump rotor 14 has a transceiver unit, which receives, amplifies and interprets request signals of the control module 32 and forwards measured values of the transducer 44 correspondingly amplified to the transmission antenna 40 upon request.
In dem Pumpenrotor 14 ist ein Spannungswandler 46 vorgesehen, der die empfangene Wechselspannung gleichrichtet, auf eine konstante Versorgungsspannung regelt und über Versorgungsleitungen den Messwandler 44 und den Transponder 42 mit elektrischer Energie versorgt. Mit der drahtlosen Funkübertragung von durch pumpenrotorseitige Messwandler zur Verfügung gestellten Messwerte kann der Pumpenrotor umfassend, genau und zeitnah überwacht werden. Hierdurch kann bei drohender Unfallgefahr durch Rotorüberhitzung durch eine Motorsteuerung schnell eingegriffen und eine Beschädigung oder Zerstörung der Vakuumpumpe vermieden werden. Ferner kann insbesondere durch Überwachung und Aufzeichnung der Pumpenrotor- Temperatur die Alterung des Pumpenrotors verfolgt und extrapoliert werden bzw. durch Vermeidung von hohen Pumpenrotor-Temperaturen die Lebensdauer der Vakuumpumpe erheblich erhöht werden. In the pump rotor 14, a voltage converter 46 is provided which rectifies the AC voltage received, regulates to a constant supply voltage and supplied via supply lines the transducer 44 and the transponder 42 with electrical energy. With wireless wireless transmission of measured values provided by pump rotor-side transducers, the pump rotor can be comprehensively, precisely and promptly monitored. This can intervene quickly in case of imminent risk of accident by overheating rotor by a motor control and damage or destruction of the vacuum pump can be avoided. Furthermore, the aging of the pump rotor can be tracked and extrapolated in particular by monitoring and recording of the pump rotor temperature or the life of the vacuum pump can be increased considerably by avoiding high pump rotor temperatures.

Claims

Patentansprüche claims
1. Vakuumpumpe (10) mit einem Pumpenrotor (14) und einem Pumpenstator (12),A vacuum pump (10) having a pump rotor (14) and a pump stator (12),
d a d u r c h g e k e n n z e i c h n e t ,characterized ,
dass der Pumpenrotor (14) einen elektrischen Messwandier (44) aufweist,the pump rotor (14) has an electrical measuring transducer (44),
dass an dem Pumpeπrotor (14) eine Sendeantenne (40) vorgesehen ist, die mit dem Messwandler (44) verbunden ist, undin that a transmitting antenna (40) is provided on the pump rotor (14) which is connected to the measuring transducer (44), and
dass an dem Pumpenstator (12) eine Empfangsantenne (30) vorgesehen ist, die Messwerte des Messwandlers (44) von der Sendeantenne (40) empfängt.in that a receiving antenna (30) is provided on the pump stator (12) which receives measured values from the measuring transducer (44) from the transmitting antenna (40).
2. Vakuumpumpe (10) nach Anspruch 1, dadurch gekennzeichnet, dass an dem Pumpenstator (12) und dem Pumpenrotor (14) jeweils eine Energie- übertraguπgs-SpuSe vorgesehen ist, wobei die pumpenrotorseitige Spule elektrische Energie für den Messwandler (44) zur Verfügung stellt, so dass drahtlos elektrische Energie von dem Pumpenstator (12) zu dem Pumpenrotor (14) zur elektrischen Versorgung des Messwandlers (44) übertragen werden kann.2. Vacuum pump (10) according to claim 1, characterized in that on the pump stator (12) and the pump rotor (14) each have a Energie- verertraguπgs SpuSe is provided, wherein the pump rotor-side coil electrical energy for the transducer (44) so that electric power can be wirelessly transmitted from the pump stator (12) to the pump rotor (14) for electrical supply to the transducer (44).
3. Vakuumpumpe (10) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass mindestens eine der beiden Antennen (30,40) kreisringförmig ausgebildet ist.3. Vacuum pump (10) according to claim 1 or 2, characterized in that at least one of the two antennas (30,40) is annular.
4. Vakuumpumpe (10) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass an dem Pumpenrotor (14) ein Transponder (42) vorgesehen ist, der mit dem Messwandler (44) und der Sendeantenne (40) verbunden ist und auf Anforderung das Senden eines Messwandler-Messwertes durch die Sendeantenne (40) veranlasst4. Vacuum pump (10) according to one of claims 1 to 3, characterized in that on the pump rotor (14), a transponder (42) is provided is connected to the transducer (44) and the transmitting antenna (40) and on request causes the transmission of a transducer measured value by the transmitting antenna (40)
5. Vakuumpumpe (10) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Messwandler (44) ein Temperatursensor ist,5. Vacuum pump (10) according to one of claims 1 to 4, characterized in that the transducer (44) is a temperature sensor,
6. Vakuumpumpe (10) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Vakuumpumpe (10) eine Turbomolekularpumpe ist, 6. Vacuum pump (10) according to one of claims 1 to 5, characterized in that the vacuum pump (10) is a turbomolecular pump,
EP06792816A 2005-09-01 2006-08-15 Vacuum pump Active EP1920160B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005041500A DE102005041500A1 (en) 2005-09-01 2005-09-01 vacuum pump
PCT/EP2006/065315 WO2007025854A1 (en) 2005-09-01 2006-08-15 Vacuum pump

Publications (2)

Publication Number Publication Date
EP1920160A1 true EP1920160A1 (en) 2008-05-14
EP1920160B1 EP1920160B1 (en) 2009-01-07

Family

ID=37115720

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06792816A Active EP1920160B1 (en) 2005-09-01 2006-08-15 Vacuum pump

Country Status (6)

Country Link
US (1) US20100303640A1 (en)
EP (1) EP1920160B1 (en)
JP (1) JP2009507166A (en)
CN (1) CN100585188C (en)
DE (2) DE102005041500A1 (en)
WO (1) WO2007025854A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007053980A1 (en) * 2007-11-13 2009-05-14 Pfeiffer Vacuum Gmbh vacuum pump
DE102008019451A1 (en) * 2008-04-17 2009-10-22 Oerlikon Leybold Vacuum Gmbh vacuum pump
DE102008019472A1 (en) 2008-04-17 2009-10-22 Oerlikon Leybold Vacuum Gmbh vacuum pump
EP2567451A2 (en) * 2010-05-04 2013-03-13 Remy Technologies, LLC Electric machine component temperature monitoring
FR2964164B1 (en) * 2010-09-01 2014-05-09 Snecma TURBOMACHINE COMPRISING A ROTATING ELEMENT SUBJECT TO EXTREME CONDITIONS
US20120075070A1 (en) * 2010-09-27 2012-03-29 General Electric Company Real time measurement of rotor surface
DE102010049138A1 (en) * 2010-10-22 2012-04-26 Ksb Aktiengesellschaft Device for pump monitoring
DE102011112748B3 (en) * 2011-09-07 2012-12-27 Maschinenfabrik Reinhausen Gmbh Motor drive for actuating a tap changer
US9046431B2 (en) * 2012-06-28 2015-06-02 Honeywell International Inc. Single ear stator antenna for wireless torque measurement system
CN104005968B (en) * 2014-06-05 2016-01-20 核工业理化工程研究院 The towed molecular pump of rotor surface temperature can be surveyed
CN104612984B (en) * 2015-01-26 2017-02-22 核工业理化工程研究院 Rotor end surface temperature measuring device for traction type molecular pumps
JP2018035684A (en) * 2016-08-29 2018-03-08 株式会社島津製作所 Vacuum pump
EP3443993A1 (en) * 2017-08-17 2019-02-20 Berlin Heart GmbH Pump with a rotor sensor for recording physiologic parameters, flow and motion parameters

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3824857A (en) * 1972-08-07 1974-07-23 Electric Machinery Mfg Co Temperature measuring system for rotating machines
US4723445A (en) * 1986-05-19 1988-02-09 Neotech Industries, Inc. Vehicle wheel and tire pressure monitor
US5252962A (en) * 1990-08-03 1993-10-12 Bio Medic Data Systems System monitoring programmable implantable transponder
US5160925C1 (en) * 1991-04-17 2001-03-06 Halliburton Co Short hop communication link for downhole mwd system
DE4309018A1 (en) * 1993-03-20 1994-09-22 Balzers Pfeiffer Gmbh Temperature measuring arrangement
US5844130A (en) * 1996-04-03 1998-12-01 Ssi Technologies Apparatus for maintaining a constant radial distance between a transmitting circuit and an antenna coil
JP2000064986A (en) * 1998-08-12 2000-03-03 Seiko Seiki Co Ltd Turbo-molecular pump
US6558444B1 (en) * 1998-12-03 2003-05-06 Psi Global Ltd. Fluid filters having a concealed machine-readable identification
DE19857453B4 (en) * 1998-12-12 2008-03-20 Pfeiffer Vacuum Gmbh Temperature monitoring on rotors of vacuum pumps
US6369712B2 (en) * 1999-05-17 2002-04-09 The Goodyear Tire & Rubber Company Response adjustable temperature sensor for transponder
DE10018513A1 (en) * 2000-04-14 2001-10-18 Knorr Bremse Systeme Brake disc monitoring device and monitoring method for monitoring the temperature of brake discs
JP3632561B2 (en) * 2000-05-12 2005-03-23 株式会社デンソー Air pressure detection device and tire condition monitoring system
JP2002039088A (en) * 2000-07-26 2002-02-06 Seiko Instruments Inc Device for body of revolution
DE10114969A1 (en) * 2001-03-27 2002-10-10 Leybold Vakuum Gmbh Turbo molecular pump
JP2003269367A (en) * 2002-03-13 2003-09-25 Boc Edwards Technologies Ltd Vacuum pump
DE20206267U1 (en) * 2002-04-20 2003-08-28 Leybold Vakuum Gmbh vacuum pump
US6739840B2 (en) * 2002-05-22 2004-05-25 Applied Materials Inc Speed control of variable speed pump
JP4082345B2 (en) * 2003-12-12 2008-04-30 トヨタ自動車株式会社 Wheel state detection device, wheel and vehicle body
US20060078435A1 (en) * 2004-08-19 2006-04-13 Metropolitan Industries Pump monitoring system
US7336153B2 (en) * 2005-06-30 2008-02-26 Hewlett-Packard Development Company, L.P. Wireless temperature monitoring for an electronics system
WO2007044593A2 (en) * 2005-10-07 2007-04-19 Chemimage Corporation System and method for a chemical imaging threat assessor with a probe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007025854A1 *

Also Published As

Publication number Publication date
CN100585188C (en) 2010-01-27
DE502006002609D1 (en) 2009-02-26
WO2007025854A1 (en) 2007-03-08
DE102005041500A1 (en) 2007-03-08
EP1920160B1 (en) 2009-01-07
CN101253332A (en) 2008-08-27
JP2009507166A (en) 2009-02-19
US20100303640A1 (en) 2010-12-02

Similar Documents

Publication Publication Date Title
EP1920160B1 (en) Vacuum pump
EP1148266B1 (en) Apparatus and process to monitor the temperature of brake discs
EP2246680B1 (en) Electric tool with a contactless torque measurement device and method for measuring the torque of an electric tool
EP2415143B1 (en) Electric machine
DE102013013081A1 (en) Remote rotor parameter sensor for electric drives
DE202016008121U1 (en) belt drive
EP3507515A1 (en) Rolling element for use in a rolling-element bearing
EP2046620A1 (en) Device for monitoring at least one operating variable of a wheel set bearing
DE102011105306A1 (en) Portable tool with wireless data transmission
EP2751823B1 (en) Tap changer comprising a worm gear
EP2113758B1 (en) Torque sensor with telemetry system
EP3494076B1 (en) Drum motor with frequency converter and optional belt tension sensor
EP2456594B1 (en) Electromechanical joining module having a force transducer
DE202015009412U1 (en) Tool with a device for detecting indicators for preventive maintenance
EP2622116B1 (en) Godet
DE102015216576A1 (en) Wheel bearing arrangement for a vehicle axle
DE102011085711A1 (en) Roller bearing for use as e.g. grooved ball bearing, has force measuring unit provided with force sensor held in bearing cage in place of roller bodies, where force sensor wirelessly transmits sensor signals to evaluation device
EP3158773B1 (en) Measurement device and method for telemetric transmission of measurement data from a measurement unit on a mobile system to a base station
DE19923143A1 (en) Device for online monitoring of failure-tolerant high-performance rotors of composite material comprises a unit forming a transponder on a miniature electric circuit, an antenna circuit and a sensor for fractures.
DE102012015357A1 (en) Non-shiftable clutch with torque monitoring
WO2007087783A1 (en) Apparatus for monitoring machine elements
EP3707807A1 (en) Method for monitoring rolling bearings
EP2754163B1 (en) Motor drive for actuating a step switch
AT524189B1 (en) bearing element
EP3597962B1 (en) Belt and system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB IT LI

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

REF Corresponds to:

Ref document number: 502006002609

Country of ref document: DE

Date of ref document: 20090226

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091008

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090831

Year of fee payment: 4

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100815

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090914

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006002609

Country of ref document: DE

Representative=s name: DOMPATENT VON KREISLER SELTING WERNER - PARTNE, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006002609

Country of ref document: DE

Owner name: LEYBOLD GMBH, DE

Free format text: FORMER OWNER: OERLIKON LEYBOLD VACUUM GMBH, 50968 KOELN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220803

Year of fee payment: 17

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230421