EP1907642B1 - Verfahren zum herstellen einer wand-decken-konstruktion in stahlbetonausführung - Google Patents

Verfahren zum herstellen einer wand-decken-konstruktion in stahlbetonausführung Download PDF

Info

Publication number
EP1907642B1
EP1907642B1 EP05769655A EP05769655A EP1907642B1 EP 1907642 B1 EP1907642 B1 EP 1907642B1 EP 05769655 A EP05769655 A EP 05769655A EP 05769655 A EP05769655 A EP 05769655A EP 1907642 B1 EP1907642 B1 EP 1907642B1
Authority
EP
European Patent Office
Prior art keywords
ceiling
wall
formwork system
formwork
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05769655A
Other languages
English (en)
French (fr)
Other versions
EP1907642A1 (de
Inventor
Michael Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VST Verbundschalungstechnik GmbH
Original Assignee
VST Verbundschalungstechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VST Verbundschalungstechnik GmbH filed Critical VST Verbundschalungstechnik GmbH
Publication of EP1907642A1 publication Critical patent/EP1907642A1/de
Application granted granted Critical
Publication of EP1907642B1 publication Critical patent/EP1907642B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/16Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material
    • E04B1/161Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material with vertical and horizontal slabs, both being partially cast in situ
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/84Walls made by casting, pouring, or tamping in situ
    • E04B2/86Walls made by casting, pouring, or tamping in situ made in permanent forms
    • E04B2/8635Walls made by casting, pouring, or tamping in situ made in permanent forms with ties attached to the inner faces of the forms

Definitions

  • the invention relates to a method for producing a reinforced concrete wall-ceiling construction, wherein prefabricated lost formwork systems from a wall formwork system and a slab formwork system are used.
  • a conventional wall formwork is usually first provided with the required static, structural and required connection reinforcement and poured with in-situ concrete. Once the concrete has reached a certain concrete strength, it is possible to start installing the reinforced concrete slab formwork. This can in particular lead to problems in the area of the end support, which is statically defined as freely rotatable, but experiences a sectioneinposition when, for example, over the Endauflager a second wall is built. If the second wall is formed, occurs there according to static theory, a tensile moment, which must be removed with a corresponding reinforcement. To determine the required reinforcement, internationally or nationally valid standards can be used.
  • a wall-ceiling construction is to be formed, for example, in the middle of the field of the ceiling plate, the load-bearing walls due to use are not superimposed, but arranged offset from each other.
  • the ceiling which is formed at this point without support, should remove the loads from the upper floors and the ceiling lying under the wall and in addition to their acting dead loads and traffic loads, which can be particularly problematic statically and economically for large spans.
  • EP 0 611 852 B1 discloses a composite formwork system for forming a wall, which is used according to the principle of a lost formwork and which is suitable for the inventive method of a wall-ceiling construction.
  • EP 0 811 731 B1 and DE 296 09 800 U1 discloses a prefabricated formwork system for forming a blanket, which is used according to the principle of a lost formwork and which is suitable for the inventive method of a wall-ceiling construction.
  • Such prefabricated ceiling formwork system is formed lattice girder free and provided with a plurality of individual longitudinal bars, which are parallel to each other on the base plate in the Distance above the base plate are arranged and each anchored by means of a plurality of brackets which are bolted to the base plate to the base plate and are spaced from the base plate so that they after the application of the concrete in the lower region, in particular in the lower third Thickness of the finished concrete layer of the ceiling to be created to come to rest.
  • the projecting longitudinal bars which are perpendicular to the walls carrying the ceiling, may be fixed to the already finished walls such that the longitudinal bars have a supporting function for the finished reinforced concrete floor.
  • a method for producing a reinforced concrete wall-ceiling construction in which for the wall rising from a cast ceiling plate, a base plate is used as a ceiling formwork system and a wall formwork system with two formwork panels, spaced by means of coupling devices attached to each other.
  • an angular connection reinforcement is used, which can be fixed in the prefabrication of the wall formwork system in this so that the relevant wall formwork element can be placed on it.
  • connection reinforcement spacer blocks may be fixed, with which the connection reinforcement rests on the base plate of the ceiling formwork system.
  • the reinforcement of the base plate is laid after the displacement of the wall formwork systems, wherein a lower and an upper mesh reinforcement can be provided and the plate reinforcement can be connected after their laying with the connection reinforcements.
  • the object of the invention is to provide a method for producing a wall-ceiling construction, in particular on the wall-ceiling connection.
  • two formwork systems are combined for erecting wall and ceiling.
  • the wall formwork system has two formwork panels, which are held by means of coupling devices at a distance from each other and secured to each other.
  • the ceiling formwork system which is formed lattice girder-free, has a base plate, with which a plurality of parallel longitudinal bars are anchored, which come to rest in the lower third of the ceiling to be created. Both formwork systems are attached to each other in such a way that the longitudinal bars of the ceiling formwork system are perpendicular to the wall formwork system.
  • a connection reinforcement is used in the two formwork systems so that it is anchored to the single longitudinal bars of the ceiling formwork system and thus also directly to the base plate.
  • the method according to the invention combines the advantages of the wall-type composite shuttering system EP 0 611 852 B1 to be able to quickly produce large-scale wall panels, with the advantages of the ceiling formwork system according to EP 0 811 731 B1 , which can take over during the ceiling production before concreting as well as the ceiling plate in the finished state supporting functions.
  • the necessary reinforcement for removing the moment occurring due to the partial tightening when setting up the ceiling formwork system does not extend into the ceiling area and therefore does not have to be bent back, since these demolition Reinforcement is only inserted when both the wall formwork system and the ceiling formwork system are set up.
  • the demolition reinforcement is fastened with suitable anchoring elements on the one hand to the wall formwork system and on the other hand to the existing single bar reinforcement of the ceiling formwork system, wherein the individual longitudinal members of the ceiling formwork system protrude into the wall formwork system at the end support with the required anchoring length.
  • wall formwork panels are used with the same dimensions at the Endillerlager, wherein both the ceiling facing inner formwork panel and the ceiling facing away formwork panel in height the base plate of the ceiling formwork system or the concrete ceiling bottom edge.
  • cement paste may leak out of the concrete surface during concreting of the concrete pavement, thus impairing the aesthetic impression.
  • the concreting of the wall and the ceiling should be carried out without time interruption.
  • the outer shuttering panel can be extended by the distance from the upper edge of the outer shuttering panel to the finished concrete ceiling top with additional shuttering panels.
  • the outer formwork panel of the wall formwork system for an end support may already be designed to be higher than the inner formwork panel by the thickness of the concrete floor, which avoids additional formwork on the construction site, which promotes concreting in one go and wherein the Training a working joint between the wall and ceiling bottom edge is avoided.
  • the deflection of the reinforced concrete slab produced by the method according to the invention is substantially improved due to the corner-like configuration of the end supports.
  • the required plate thickness is usually calculated from the limitation of plate deflection. Due to the lower deflection of the plate, the plate thickness compared to reinforced concrete ceiling panels with freely rotatable Endauflagern with otherwise the same deflection can be constructed as a whole thinner and therefore more cost-effective.
  • the vertical bond between the reinforced concrete ceiling slab and the wall plate is improved, since the anchored with the single longitudinal bars of the ceiling formwork system demolition reinforcement with a sufficient anchoring length can be loaded inexpensively on the one hand in the wall formwork system and on the other hand in the ceiling formwork system.
  • the method according to the invention can also be used to create a wall-plate bending support for a suspended ceiling. Since the single longitudinal bars of the ceiling formwork system take over both during the ceiling and in the finished reinforced concrete slab supporting functions and thus statically taken into account, the necessary suspension for hanging the ceiling slab to a wall bending beam inexpensively with allowable anchoring elements on the single longitudinal bars of the ceiling Be attached to a formwork system. After the reinforced concrete slab has been concreted and hardened, the wall composite formwork is inexpensively connected to the suspension.
  • the wall formwork system is previously provided at the factory with the static and constructive reinforcement in the form of mats and round steel required for the formation of the wall plate bending support.
  • Self-compacting concrete is a particularly suitable concrete for the process of producing a reinforced concrete wall-ceiling construction for concreting both of the wall-ceiling formwork systems described above.
  • SVB is normal concrete which, when placed in the formwork, fills all cavities solely by gravity and independently vents it without the use of concrete compactors (eg internal vibrators). When introducing the SVB's therefore the application of compression energy for venting is not necessary. The personnel necessary for the compaction as well The equipment required for compaction is saved, and noise and vibration are avoided, which otherwise occur when using concrete compaction equipment.
  • FIG. 1 Fig. 3 is a sectional plan view of a wall-ceiling construction at an end support of a multi-storey building made by the method of the invention using prefabricated lost formwork systems having a ceiling formwork system 120 and a wall formwork system 100.
  • the wall formwork system 100 off FIG. 1 can, for example, according to EP 0 611 852 B1 be applied and has two shuttering panels, namely a facing away from the ceiling, outer shuttering plate 101 and a ceiling facing, inner shuttering plate 103, which are held by coupling devices 102 at a distance from each other and connected to each other.
  • the wall formwork system according to EP 0 611 852 B1 is particularly suitable for the method for producing a reinforced concrete wall-ceiling construction, since the wall formwork system can be used to easily produce large-scale formwork walls.
  • the formwork panels of the wall formwork system with their lateral impact edges (not shown) butted together.
  • the impact edges are arranged parallel to each other on the longitudinal sides of the formwork panel, wherein the formwork panel at a bumper edge with Ein knowledgean algorithmsn (not shown) and at the other impact edge with Ein cognitiveaus fundamentallessness (not shown) is formed for interconnecting the shuttering panels in the longitudinal direction of the shutter wall.
  • the lattice-free ceiling formwork system 120 is preferably according to EP 0 811 731 B applied and has a base plate 123, a plurality of parallel juxtaposed Einzellärigsstäben 121 and a plurality of brackets 122.
  • the brackets 122 are arranged distributed in a plurality of parallel rows on the base plate 123 and are in particular U-shaped with pointing to the base plate 123 leg plates and at a distance above the base plate 123 parallel to this extending web plate.
  • the leg plates may be provided at their free ends with the leg plates by 90 ° angled flange plates on which the bracket 122 are fixed, for example by means of screws to the base plate 123.
  • the single longitudinal bars 121 are welded in the corners between the web plate and the leg plates of the bracket 122, which have a height such that the single longitudinal bars 121 after the application of the concrete in the lower part of a finished concrete ceiling 171, in particular in the lower third of Thickness of the concrete pavement, come to rest. Additional lattice girders are not provided in the concrete floor 171.
  • the individual longitudinal bars 121 are subjected to tensile stress, so that they can remove the tensile forces.
  • the single longitudinal bars 121 can also be statically taken into account before and during the concrete casting, which reduces the number of supporting devices required and their required equipment and equipment time, because the single longitudinal bars 121 are pressure transmitting before pouring the concrete and to solidify the concrete layer, whereas the base plate 123 has a tensile effect.
  • the wall composite formwork system 100 is erected and secured with a suitable temporary support (not shown) against the concrete pressure encountered during pouring of the liquid concrete, with the required structural and static reinforcement (not shown) of the wall 172 to be concreted already with the formwork walls can be moved.
  • the ceiling formwork system 120 is attached to the wall formwork system 100 so that the single longitudinal bars 121 of the ceiling formwork system 120 extend perpendicular to the wall formwork system 100, and by appropriate means attached to the inner formwork wall 103 of the wall formwork system and sealed so that no concrete or cement paste can escape before the wall formwork system 100 is poured with concrete.
  • the single longitudinal bars of the ceiling formwork system 120 may be dimensioned so that they at the end support in the wall formwork system with the required anchoring length, so at least up to the calculated Auflagerline, protrude.
  • the required anchoring length of the single longitudinal bars can be provided both with a direct as well as with an indirect bearing at the final support with the ceiling formwork system.
  • the inner shuttering panel 103 of the wall formwork system 100 adjacent the ceiling 171 is lower than the formwork panel 101 facing away from the ceiling by the thickness of the finished ceiling 171, with the base panel 123 of the ceiling formwork system 120 being flush with the inner wall toward the wall Shuttering plate 103 is placed.
  • connection reinforcement 150 per meter is used at the Endierlager, which with suitable anchoring means on the one hand with the wall formwork system 100 and on the other hand with the ceiling formwork system 120 is connected.
  • connection reinforcement 150 at the end support has an angular tear-off reinforcement 151 and in particular also a distribution reinforcement 155, for example in the form of round steel, in the angle vertex of the tear-off reinforcement 151.
  • the demolition reinforcement 151 is inserted with its one first leg 152 between the shuttering panels 101, 103 of the wall formwork system 100, so that the distribution reinforcement 155 is likewise arranged in the wall formwork system and the other second leg 153 in the upper region of the ceiling 171 to be produced lie comes.
  • the Abrasion reinforcement 151 is hung with its protruding into the ceiling 171 second leg 153 by means of a structural anchoring element 154 under the EinzellCodefitäbe 121 and / or their mounting bracket 122 of the ceiling formwork system 120, which positively among other things on the necessary anchoring length of the demolition reinforcement 151 in the concrete ceiling 171 effects.
  • the anchoring length can thus be shortened, which means a smaller amount of steel.
  • the wall formwork system 100 can be poured together with the ceiling formwork system with concrete.
  • any suitable concrete can be used, in which method, in particular self-compacting concrete is suitable.
  • self-compacting concrete the liquid concrete does not need to be compressed and vented with internal vibrators, which in turn saves additional work steps.
  • the ceiling-wall formwork system is constructed as described above on a working joint 190 at the end support and cast accordingly with concrete.
  • FIG. 2 a simplified plan of reinforcement is shown in cross-sectional view of a wall formwork system 100 in the form of a suspended wall slab bender beam 272 made using the method of the invention using prefabricated lost formwork systems comprising a ceiling formwork system 120 and a wall formwork system 100 become.
  • a concrete ceiling 171 is first produced with the ceiling formwork system 120, which may be superimposed, for example, on masonry and / or a concrete wall.
  • the ceiling formwork system 120 Before concreting the concrete floor 171, the ceiling formwork system 120 is provided with the required structural and / or static reinforcement.
  • a statically or constructively determined connection reinforcement 150 is laid before concreting the concrete ceiling 171 in the ceiling formwork system 120, which has a suspension reinforcement 252 and its anchoring elements 154 per meter running in the ceiling Formwork 120 are laid for engagement in the wall formwork system 100. Again, the anchoring elements 154 are suspended under the single longitudinal bars 121 of the ceiling formwork system 120 and connected thereto.
  • the concrete pavement 201 After completion of the reinforcement work, the concrete pavement 201 is poured with concrete.
  • the wall formwork system 100 which is factory provided with the required reinforcing mats 210 and reinforcing bars 211 for forming a wall-bending beam 202, is erected on a working joint 190 and suitably not shown Support devices secured.
  • the protruding from the concrete ceiling 171 portion of the suspension reinforcement 252 is connected by means of fastening elements with the reinforcing mats 210 and / or reinforcing bars 211.
  • the wall formwork system 100 can be poured with concrete.
  • wall formwork system 100 and the ceiling formwork system 120 of the method according to the invention is in particular shieldverêtnder as concrete Concrete (SVB) particularly suitable because of its good properties, such as segregation-free outflow of the SVB's to complete leveling, almost complete bleeding without additional compression work and failure-free compression.
  • SVB concrete Concrete
  • the installation performance increases and it is less staff needed to install the SVB's, because due to the self-ventilation of SVB's no one has to operate the internal vibrators and because of the self-leveling of SVB's, especially in horizontal ceilings nobody level the concrete floor.

Description

  • Die Erfindung betrifft ein Verfahren zum Herstellen einer Wand-Decken-Konstruktion in Stahlbetonausführung, wobei vorgefertigte verlorene Schalungssysteme aus einem Wandschalungssystem und einem Deckenschalungssystem verwendet werden.
  • Ein dergleiches Verfahren ist aus EP 1 046 758 A bekannt. Dieses Dokument offenbart die Merkmale des Oberbegriffes von Anspruch 1.
  • Beim Erstellen einer herkömmlichen Wand-Decken-Konstruktion aus Stahlbeton an einem Endauflager wird üblicherweise zuerst eine herkömmliche Wand-Schalung mit der erforderlichen statischen, konstruktiven und erforderlichen Anschlussbewehrung versehen und mit Ortbeton ausgegossen. Wenn der Beton eine bestimmte Betonfestigkeit erreicht hat, kann mit der Einrüstung der Stahlbeton-Decken-Schalung begonnen werden. Dies kann insbesondere zu Problemen im Bereich des Endauflagers führen, welches statisch als frei drehbar definiert ist, jedoch eine Teileinspannung erfährt, wenn beispielsweise über dem Endauflager eine zweite Wand errichtet wird. Wenn die zweite Wand ausgebildet ist, tritt dort nach statischer Theorie ein Zug-Moment auf, welches mit einer entsprechenden Bewehrung abgetragen werden muss. Zum Bestimmen der erforderlichen Bewehrung können international oder national gültige Normen zu Hilfe genommen werden.
  • Beispielsweise ist es nach DIN 1045, 20.1.6.2.(2) vorgeschrieben, dass im vorstehend genannten Fall ein bestimmter Anteil einer berechneten, statischen Bewehrung zusätzlich am Endauflager einzubringen ist. Eine solche Bewehrung am Endauflager ragt in den Deckenbereich und stört bei den weiteren Baumaßnahmen und stellt auch ein Verletzungsrisiko für die dort arbeitenden Bauarbeiter dar, insbesondere dann, wenn die Schalung für die Stahlbeton-Deckenplatten und deren erforderliche statische und konstruktive Bewehrung verlegt wird. Wenn die BewehrungsStäbe zu weit in den Deckenbereich hineinragen, kann es erforderlich sein, dass zum Einsetzen des Schaltisches die Bewehrungsstäbe zurückgebogen werden müssen, sodass der Schaltisch eingesetzt werden kann. Ein solches Biegen erfordert zusätzliche Arbeitsschritte und kann Nachteile aufweisen.
  • Mit den auf der Baustelle verfügbaren Hilfsmitteln ist es jedoch kaum möglich, einen gebogenen Stab im kalten zustand wieder vollständig geradezurichten. Es verbleibt bei einem im kalten Zustand hin- und hergebogenen Bewehrungsstab eine S-förmige Doppelkrümmung. Durch die von der Doppelkrümmung verursachten Umlenkkräfte entsteht eine Zugbeanspruchung im Beton, was zu Rissen führen kann.
  • Außerdem kann es notwendig sein, wenn von der erforderlichen Bewehrung die Schalung gekreuzt wird, dass die Schalung an der Kreuzungs-Stelle zum Durchführen der Stabbewehrung angebohrt werden muss oder es muss eine aufwendige Stoßverbindung, wie beispielsweise ein Muffenstoß, für die später anzuschließende Stabbewehrung vorgesehen werden.
  • Ferner stellt sich in der Baupraxis häufig das Problem, dass eine Wand-Decken-Konstruktion beispielsweise in Feldmitte der Deckenplatte auszubilden ist, wobei die lastabtragenden Wände nutzungsbedingt nicht übereinander, sonder zueinander versetzt angeordnet sind. Hierbei endet eine lastabtragende Wand in einem Geschoß, ohne dass die auftretenden Lasten von einer darunter angeordneten lastabtragenden Wand, einer Stütze oder einem Unterzug oder dergleichen zum zugehörigen Fundament abgetragen werden. Dies kann beispielsweise der Fall sein, wenn geschoßweise eine unterschiedliche Nutzung vorgesehen ist (z. B. ein Hotel: im Obergeschoß sind Zimmer vorgesehen, im darunterliegenden Geschoß ist das Restaurant mit größtmöglicher Stützenfreiheit vorgesehen). Die Decke, welche an dieser Stelle ohne Auflager ausgebildet ist, sollte die Lasten aus den Obergeschoßen und der unter der Wand liegenden Decke und zusätzlich die auf sie einwirkenden Eigenlasten und Verkehrslasten abtragen, was insbesondere bei großen Stützweiten statisch und wirtschaftlich problematisch sein kann.
  • Ein anderes Stand-der-Technik-Problem ist, dass es an den Stoßverbindungen üblicher Schalungssystem beim Verwenden von Normalbeton zum Ausbluten von Zementschlämmen des Frischbetons kommen kann. Um dies zu verhindern, muss bei herkömmlichen, wiederzuverwendenden Schalungssystemen eine Abdichtung angebracht werden und es müssen entsprechende Trennmittel auf die Oberfläche eines wiederzuverwendenden Schalungssystemen aufgebracht werden, damit das Ablösen der Schalung vom ausgehärteten Beton ohne Schaden an der Betonoberfläche und der Schalungsoberfläche durchgeführt werden kann. Eine Beschädigung der Betonoberfläche bzw. ein Ausbluten ist gerade bei Sichtbeton unästhetisch und kann eine Nachbehandlung erfordern.
  • Zusätzlich können bei herkömmlichen Schalungssystemen Probleme auftreten, wenn der noch flüssige Beton verdichtet werden muss. Um beim Einbringen von Normalbeton in der Schalung das Ausfüllen aller Hohlräume und das Entlüften sicherzustellen, werden üblicherweise Innenrüttler verwendet. Die Verwendung eines Innenrüttlers erzeugt Lärm und Erschütterungen, was sich negativ auf den Bediener des Innenrüttlers, welcher den Innenrütler hält und in den flüssigen Beton eintaucht, und die nähere Umgebung und das Bauwerk auswirken kann.
  • Neben der Belastung für die Arbeitskräfte können durch einen unsachgemäßen Umgang mit Innenrüttlern erhebliche Schäden an der Schalung entstehen. Im Besondern ist davon die Schalungshaut betroffen, wenn ein direkter Kontakt mit dem Innenrüttler stattfindet.
  • Auch der direkte Kontakt des Innenrüttlers mit der Bewehrung kann zu Problemen führen, wie z.B., dass an der Schnittstelle der Bewehrung mit dem flüssigen Beton durch die Vibration der Bewehrung, die durch den Kontakt des Innenrüttlers mit der Bewehrung entsteht, der Kieszuschlag von der Bewehrung wegsinkt und der Zementleim-Anteil dort höher ist. Es gibt dort kein "Stützgerüst" aus Kieszuschlag, welches im erhärteten Beton Druckkräfte ableiten soll, die bei der Kraftübertragung zwischen Beton und Bewehrung auftreten können.
  • In EP 0 611 852 B1 wird ein Verbundschalungssystem zum Ausbilden einer Wand offenbart, welches gemäß dem Prinzip einer verlorenen Schalung verwendet wird und welche für das erfindungsgemäße Verfahren einer Wand-Decken-Konstruktion geeignet ist.
  • In EP 0 811 731 B1 und DE 296 09 800 U1 wird ein vorgefertigtes Schalungssystem zum Ausbilden einer Decke offenbart, welches gemäß dem Prinzip einer verlorenen Schalung verwendet wird und welche für das erfindungsgemäße Verfahren einer Wand-Decken-Konstruktion geeignet ist. Ein derartiges vorgefertigtes Decken-Schalungssystem ist gitterträgerfrei ausgebildet und mit einer Mehrzahl von Einzellängsstäben versehen, die auf der Grundplatte parallel nebeneinander im Abstand über der Grundplatte angeordnet sind und jeweils mittels einer Mehrzahl von Bügeln, die mit der Grundplatte verschraubt sind, an der Grundplatte verankert und von der Grundplatte derart im Abstand angeordnet sind, dass sie nach dem Aufbringen des Betons im unteren Bereich, insbesondere im unteren Drittel, der Dicke der fertigen Betonschicht der zu erstellenden Decke zu liegen kommen.
  • Gemäß vorstehend genannten Druckschriften können die überstehenden Längsstäbe, die senkrecht zu den die Decke tragenden wänden verlaufen, auf den bereits fertig vergossenen Wänden derart befestigt sein, dass die Längsstäbe für die fertige Stahlbetondecke tragende Funktion haben.
  • Gemäß EP 1 046 758 A1 ist ein Verfahren zum Herstellen einer Wand-Decken-Konstruktion in Stahlbetonausführung bekannt, bei welchem für die von einer gegossenen Deckenplatte aufgehende Wand eine Grundplatte als Decken-Schalungssystem und ein Wand-Schalungssystem mit zwei Schalungsplatten verwendet wird, die mittels Kupplungsvorrichtungen im Abstand voneinander angeordnet und aneinander befestigt sind. Als Verbindungselement zwischen Wand und Decke wird eine winkelförmige Anschlussbewehrung verwendet, die bereits bei der vorfabrikation des Wand-Schalungssystem in diesem derart fixiert sein kann, dass das betreffende Wand-Schalungselement darauf abgestellt werden kann. An einer solchen Anschlussbewehrung können Distanzklötzchen befestigt sein, mit denen die Anschlussbewehrung auf der Grundplatte des Decken-Schalungssystems aufliegt. Die Bewehrung der Grundplatte wird nach dem Versetzen des Wand-Schalungssysteme verlegt, wobei eine untere und eine obere Netzbewehrung vorgesehen sein können und die Plattenbewehrung nach deren Verlegung mit den Anschlussbewehrungen verbunden werden kann.
  • Aufgabe der Erfindung ist es, ein Verfahren zum Herstellen einer Wand-Decken-Konstruktion insbesondere an der Wand-Decken-Verbindung bereitzustellen.
  • Gemäß der Erfindung, wie definiert in Anspruch 1, werden zum Errichten von Wand und Decke zwei Schalungssysteme kombiniert. Das Wand-Schalungssystem weist zwei Schalungsplatten auf, welche mittels Kupplungsvorrichtungen im Abstand voneinander gehalten und aneinander befestigt sind. Das Decken-Schalungssystem, welches gitterträgerfrei ausgebildet ist, weist eine Grundplatte auf, mit der eine Mehrzahl von parallelen Längsstäben verankert sind, welche im unteren Drittel der zu erstellenden Decke zu liegen kommen. Beide Schalungssysteme werden derart aneinander angesetzt, dass die Längsstäbe des Decken-Schalungssystems senkrecht zu dem Wand-Schalungssystem verlaufen. Als Übergang von Wand und Decke wird in die beiden Schalungssysteme eine Anschlussbewehrung so eingesetzt, dass sie mit den Einzellängsstäben des Decken-Schalungssystems und dadurch auch unmittelbar an der Grundplatte verankert ist.
  • Durch das erfindungsgemäße Verfahren ist es im Bereich eines Endauflagers der Decke möglich, die Wand und die Decken zusammen einzurüsten und in einem Stück zu betonieren, ohne dass die Bewehrung verbogen, die Schalung angebohrt, oder aufwendige Stoßverbindungen erforderlich sind. Das erfindungsgemäße Verfahren kombiniert insbesondere die Vorteile des Wand-Verbundschalungssystems gemäß EP 0 611 852 B1 , rasch großflächige Wandscheiben herstellen zu können, mit den Vorteilen des Decken-Schalungssystems gemäß EP 0 811 731 B1 , welches sowohl während der Deckenherstellung vor dem Betonieren als auch bei der Deckenplatte im fertigen Zustand tragende Funktionen übernehmen kann.
  • Beim Ausbilden eines Endauflagers, bei dem aufgrund der auftretenden konstruktiven und/oder statischen Probleme mit einer Teileinspannung zu rechnen ist, kann mit dem erfindungsgemäßen Verfahren auf diese Teileinspannung unaufwendig und einfach reagiert werden. Durch das erfindungsgemäße Verfahren ist es möglich, die erforderliche konstruktive und/oder statische Bewehrung am Endauflager, welches eine Teileinspannung erfährt, in das bereits aufgestellten Wand-Schalungssystem und das Decken-Schalungssystem von der Oberseite des Decken-Schalungssystems aus einzusetzen. Nachdem das Wand-Schalungssystem aufgestellt ist, kann sofort das Decken-Schalungssystem aufgestellt werden, ohne dass irgendwelche Bewehrungsstäbe im Wege stehen, wie bei herkömmlich mit wiederverwendbarer Schalung hergestellten Beton-Wandscheiben üblich, oder dass darauf gewartet werden muss, dass zuerst der in die Wandverschalung eingegossene Beton eine ausreichende Festigkeit hat, um mit dem Bau der Deckenplatte beginnen zu können.
  • Insbesondere ist es für die Montage des Decken-Schalungssystems von Vorteil, dass die notwendige Bewehrung zum Abtragen des durch die Teilanspannung auftretenden Moments, beim Aufstellen des Decken-Schalungssystems nicht in den Decken-Bereich hineinreicht und daher nicht zurückgebogen werden muss, da diese Abriss-Bewehrung erst dann eingelegt wird, wenn sowohl das Wand-Schalungssystem und als auch das Decken-Schalungssystem aufgestellt sind. Die Abriss-Bewehrung wird mit geeigneten Verankerungselementen einerseits an dem Wand-Schalungssystem und andererseits an der schon vorhandenen Einzelstabbewehrung des Decken-Schalungssystems befestigt, wobei die Einzellängstäbe des Decken-Schalungssystem in das Wandschalungssystem am Endauflager mit der erforderlichen Verankerungslänge hineinragen.
    Nachdem die zusätzlich zu der Abriss-Bewehrung notwendige statische und konstruktive Bewehrung in die Schalungssysteme eingelegt worden ist, können dann das Wand-Schalungssystem und das Decken-Schalungssystem in einem Zug mit Beton ausgegossen werden.
  • Will man am Endauflager mit dem Wand-Schalungssystem eine Arbeitsfuge zwischen der Oberkante der Betonwand und der Unterkante der Betondecke ausbilden, werden am Endauflager Wandschalungsplatten mit gleichen Abmessungen verwendet, wobei sowohl die der Decke zugewandte innere Schalungsplatte als auch die der Decke abgewandte Schalungsplatte in der Höhe der Grundplatte des Decken-Schalungssystems oder der Betondeckenunterkante enden. An jener Arbeitsfuge kann jedoch Zementleim beim Betonieren der Betondecke austreten und damit den ästhetischen Eindruck verschlechtern.
  • Um das Ausbilden einer Arbeitsfuge zwischen der Betonwand und der Beton-Decke an der Deckenunterkante zu vermeiden, sollte das Betonieren der Wand und der Decke ohne zeitliche Unterbrechung durchgeführt werden. Dazu kann die äußere Schalungsplatte um den Abstand vom oberen Rand der äußern Schalungsplatte zur fertigen Beton-Deckenoberkante mit zusätzlichen Schalungsplatten verlängert werden. Jedoch kann die äußere Schalungsplatte des Wand-Schalungssystems für ein Endauflager schon so ausgebildet sein, dass sie um die Dicke der Betondecke höher als die innere Schalungsplatte ausgebildet ist, was zusätzliche Schalungsarbeiten an der Baustelle vermeidet, was das Betonieren in einem Zug begünstigt und wobei die Ausbildung einer Arbeitsfuge zwischen Wand und Deckenunterkante vermieden wird.
  • Im Falle eines Endauflagers tritt durch die Teileinspannung am Endauflager an der Oberseite der Deckenplatte eine Zugspannung auf, welche von einer Zugbewehrung abzutragen ist, hier als Abriss-Bewehrung bezeichnet. Mit dem erfindungsgemäßen Verfahren kann bei Endauflagern, die einer Teileinspannung unterliegen, besser auf die statische und mechanische Situation bzw. auf die Reaktions-Kräfte (Stützmoment) reagiert werden.
  • Im Vergleich zu einer Stahlbeton-Deckenplatte, bei der die Endauflager freidrehbar berechnet und definiert sind, ist die Durchbiegung der Stahlbeton-Deckenplatte, die mit dem Verfahren gemäß der Erfindung hergestellt wurde, aufgrund der rahmeneck-ähnlichen Ausbildung der Endauflager wesentlich verbessert. Die erforderliche Plattendicke wird üblicherweise aus der Begrenzung der Platten-Durchbiegung berechnet. Durch die geringere Durchbiegung der Platte kann die Plattendicke im Vergleich zu Stahlbeton-Deckenplatten mit freidrehbaren Endauflagern bei sonst gleicher Durchbiegung insgesamt dünner und damit kostengünstiger konstruiert werden.
  • Dadurch, dass die Abriss-Bewehrung bei dem erfindungsgemäßen Verfahren erst nach dem Aufstellung des Decken-Schalungssystems und des Wand-Schalungssystems verlegt wird, braucht weniger Rücksicht auf die Bewehrungsführung genommen zu werden, da es beispielsweise nicht erforderlich ist, die Bewehrung hochzubiegen, um den Schaltisch der Decken-Schalungssystems einzufahren.
  • Durch das erfindungsgemäße Verfahren wird der vertikale Verbund zwischen der Stahlbeton-Deckenplatte und der Wandscheibe verbessert, da die mit den Einzellängsstäben des Decken-Schalungssystems verankerte Abriss-Bewehrung mit einer ausreichenden Verankerungslänge unaufwendig einerseits in das Wand-Schalungssystem und andererseits in das Decken-Schalungssystem eingelegt werden kann.
  • Das erfindungsgemäße Verfahren kann auch zum Erstellen eines Wandscheiben-Biegeträgers für eine aufgehängte Decke verwendet werden. Da die Einzellängsstäbe des Decken-Schalungssystems sowohl während der Deckenherstellung als auch bei der fertigen Stahlbeton-Deckenplatte tragende Funktionen übernehmen und somit statisch berücksichtigt werden, kann die notwendige Aufhängebewehrung zum Aufhängen der Deckenplatte an einen Wandscheiben-Biegeträger unaufwendig mit zulässigen Verankerungselementen an den Einzellängsstäben des Decken-Schalungssystems befestigt werden. Nachdem die Stahlbeton-Deckenplatte ausbetoniert und ausgehärtet ist, wird die Wand-Verbundschalung unaufwendig mit der Aufhängebewehrung verbunden. Das Wand-Schalungssystem wird zuvor werkseitig mit der zum Ausbildung des Wandscheiben-Biegeträgers erforderlichen statischen und konstruktiven Bewehrung in Form von Matten und Rundstählen versehen.
  • Selbstverdichtender Beton (SVB) ist für das Verfahren zum Herstellen einer Wand-Decken-Konstruktion in Stahlbetonausführung zum Betonieren beider der oben beschriebenen Wand-Decken-Schalungssysteme ein besonders geeigneter Beton. Bei SVB handelt es sich um Normalbeton, welcher beim Einbringen in die Schalung allein aufgrund der Schwerkraft alle Hohlräume ausfüllt und eigenständig, ohne die Anwendung von Betonverdichtungsgeräten (z.B. Innenrüttler) entlüftet. Beim Einbringen des SVB's ist daher das Aufbringen von Verdichtungsenergie zum Entlüften nicht notwendig. Das für die Verdichtung notwendige Personal sowie die zum Verdichten notwendigen Geräte werden eingespart, und es werden Lärm und Erschütterungen vermieden, die sonst beim Verwenden von Betonverdichtungsgeräten auftreten.
  • Durch das Verwenden von SVB werden Fehler wie Schaden an der Schalung durch unsachgemäßen Umgang mit Innenrüttlern und direkten Kontakt mit der Bewehrung vermieden. Durch das kohäsive Verhalten des SVB gibt es in der Regel keine Probleme mit dem Ausbluten des Frischbetons. Dadurch reduzieren sich etwaige Ausbesserungsarbeiten. Anders als beim Rüttelbeton, dessen Entlüftung durch die Vibration des Rüttlers begünstigt wird, entlüftet der SVB ohne die Einwirkung einer äußeren Energie durch das Fließen des Betons.
  • Baustellenbeobachtungen haben gezeigt, dass bei einer Fließstrecke von 3-5 m innerhalb des Bauteils das Betonprodukt fast lunkerfrei ist. Das Einbringen des SVB sowohl in vertikale Bauteile wie Wände und Stützen, und insbesondere bei horizontalen flächigen Bauteilen wie Decken, wird durch seine selbstnivelliernden Eigenschaften vereinfacht, d.h. der SVB bietet ein entmischungsfreies Ausfließen bis zum vollständigen Niveauausgleich.
  • Im Folgenden wird die Erfindung anhand bevorzugter Ausführungsbeispiele mit Bezugnahme auf die Zeichnung erläutert.
  • In der Zeichnung zeigen:
    • Figur 1 einen vereinfachten Bewehrungsplan in Schnittansicht eines erstes Ausführungsbeispiels des erfindungsgemäße Verfahren zum Ausbilden einer Wand-Decken-Konstruktion mit einem Wand-Schalungssystem und einem Decken-Schalungssystem,
    • Figur 2 einen vereinfachten Bewehrungsplan in Schnittansicht einer zweiten Ausführungsform des erfindungsgemäßen Verfahrens zum Ausbilden eines Wandscheiben-Biegeträgers für eine aufgehängte Decke mit dem Wand-Schalungssystem und dem Decken-Schalungssystem.
  • In Figur 1 ist ein Bewehrungsplan in Schnittansicht einer Wand-Decken-Konstruktion an einem Endauflager eines mehrgeschossigen Gebäudes gezeigt, welche mit Hilfe des erfindungsgemäßen Verfahrens hergestellt wird, wobei vorgefertigte verlorene Schalungssysteme verwendet werden, die ein Decken-Schalungssystem 120 und ein Wand-Schalungssystem 100 aufweisen.
  • Das Wand-Schalungssystem 100 aus Figur 1 kann beispielsweise gemäß EP 0 611 852 B1 angelegt sein und weist zwei Schalungsplatten, nämlich eine der Decke abgewandte, äußere Schalungsplatte 101 und eine der Decke zugewandte, innere Schalungsplatte 103 auf, welche von Kupplungsvorrichtungen 102 im Abstand voneinander gehalten und miteinander verbunden sind. Das Wand-Schalungssystem gemäß EP 0 611 852 B1 ist besonders für das Verfahren zum Herstellen einer Wand-Decken-Konstruktion in Stahlbetonausführung geeignet, da mit dem Wand-Schalungssystem einfach großflächige Schalungswände erzeugt werden können. Zum Erstellen der Wandschalung werden die Schalungsplatten des Wand-Schalungssystems mit ihren seitlichen Stoßrändern (nicht gezeigt) stumpf aneinander gestoßen. Die Stoßränder sind zueinander parallel an den Längsseiten der Schalungsplatte eingerichtet, wobei die Schalungsplatte an einem Stoßrand mit Einhängeansätzen (nicht gezeigt) und am anderen Stoßrand mit Einhängeausnehmungen (nicht gezeigt) ausgebildet ist zum miteinander Verbinden der Schalungsplatten in Längsrichtung der Schalwand. Die Einhängeausnehmungen und Einhängeansätze sind derart ausgebildet, dass die Einhängeansätze einer an einer aufgestellten ersten Schalungsplatte anzubringenden zweiten Schalungsplatte derart ausgebildet sind, dass jene Einhängeansätze der zweiten Schalungsplatte in die Einhängeausnehmungen der ersten Schalungsplatte passen, was eine sehr schnelle Montage einer Wandseite einer großflächigen Schalwand ermöglicht. Die Schalplatten der anderen Wandseite sind in Querrichtung der Schalwand über die Kupplungsvorrichtung 102 miteinander mit einem Abstand verbunden.
  • Das gitterträgerfreie Decken-Schalungssystem 120 ist vorzugsweise gemäß EP 0 811 731 B angelegt und weist eine Grundplatte 123, eine Mehrzahl von parallel nebeneinander angeordneten Einzellärigsstäben 121 und eine Mehrzahl von Bügeln 122 auf. Die Bügel 122 sind in mehreren parallelen Reihen über die Grundplatte 123 hin verteilt angeordnet und sind insbesondere U-förmig mit zu der Grundplatte 123 hinweisenden Schenkelplatten und im Abstand über der Grundplatte 123 parallel zu dieser verlaufenden Stegplatte ausgebildet. Die Schenkelplatten können an ihren freien Enden mit von den Schenkelplatten um 90° abgewinkelten Flanschplatten versehen sein, an denen die Bügel 122 z.B. mittels Schrauben an der Grundplatte 123 festgelegt sind. Die Einzellängsstäbe 121 sind in den Ecken zwischen der Stegplatte und den Schenkelplatten der Bügel 122 verschweißt, die eine solche Höhe aufweisen, dass die Einzellängsstäbe 121 nach dem Aufbringen des Betons im unteren Bereich einer fertigen Betondecke 171, insbesondere im unteren Drittel der Dicke der Betondecke, zu liegen kommen. Zusätzliche Gitterträger werden in der Betondecke 171 nicht vorgesehen.
  • Im ausgehärteten Zustand der Betondecke sind daher die Einzellängsstäbe 121 auf Zug beansprucht, sodass sie die Zugkräfte abtragen können. Im Bauzustand hingegen können die Einzellängsstäbe 121 statisch vor und während dem Betonvergießen ebenfalls berücksichtigt werden, was die Anzahl an notwendigem Stützvorrichtungen und deren erforderliche Einrüst- und Ausrüstzeit vermindert, weil die Einzellängsstäbe 121 vor dem Aufgießen des Betons und bis zum Verfestigen der Betonschicht druckübertragend sind, wohingegen die Grundplatte 123 zugübertragend wirkt.
  • Zunächst wird das Wand-Verbundschalungssystem 100 aufgestellt und mit einer geeigneten (nicht gezeigten) temporär aufgestellten Stützvorrichtung gegen den beim Vergießen des flüssigen Betons auftretenden Betondrucks gesichert, wobei die erforderliche konstruktive und statische Bewehrung (nicht dargestellt) der zu betonierenden Wand 172 schon mit den Schalwänden verlegt werden kann. Dann wird, anders als beim Stand-der-Technik-Verfahren, das Decken-Schalungssystem 120 an das Wand-Schalungssystem 100 angesetzt, sodass die Einzellängsstäbe 121 des Decken-Schalungssystems 120 sich senkrecht zu dem Wand-Schalungssystem 100 erstrecken, und mit geeigneten Mitteln so an der inneren Schalungswand 103 des Wand-Schalungssystems befestigt und abgedichtet, dass kein Beton oder Zementleim austreten kann, bevor das Wand-Schalungssystem 100 mit Beton vergossen wird. Die Einzellängsstäbe des Decken-Schalungssystems 120 können so dimensioniert sein, dass sie am Endauflager in das Wandschalungssystem mit der erforderlichen Verankerungslänge, also mindestens bis über die rechnerische Auflagerlinie, hineinragen. Die erforderliche Verankerungslänge der Einzellängsstäbe kann sowohl bei einer direkten als auch bei einer indirekten Auflagerung am Endauflager mit dem Decken-Schalungssystem bereitgestellt werden.
  • Bei der in Fig. 1 gezeigten Ausführungsform ist die der Decke 171 benachbarte innere Schalungsplatte 103 des Wand-Schalungssystems 100 um die Dicke der fertigen Decke 171 niedriger als die der Decke abgewandte Schalungsplatte 101, wobei die Grundplatte 123 des Decken-Schalungssystems 120 nach innen zur Wand hin bündig auf der inneren Schalungsplatte 103 aufgelegt ist.
  • Wenn die beiden Schalungssysteme 100, 120 mit entsprechenden Stützvorrichtungen gegen den Betondruck und gegen die sonst auftretenden Lasten gesichert sind und die in der Decke 171 zusätzlich vorgesehene Zusatzbewehrung eingelegt und verankert ist, wird am Endauflager eine Anschlussbewehrung 150 pro laufenden Meter eingesetzt, welche mit geeigneten Verankerungsmitteln einerseits mit dem Wand-Schalungssystem 100 und andererseits mit dem Decken-Schalungsystem 120 verbunden wird.
  • Die Anschlussbewehrung 150 am Endauflager weist eine winkelförmige Abrissbewehrung 151 und insbesondere auch eine Verteilerbewehrung 155, beispielsweise in der Form von Rundstahl, im Winkelscheitel der Abrissbewehrung 151 auf. Die Abrissbewehrung 151 ist mit ihrem einen ersten Schenkel 152 zwischen die Schalungsplatten 101, 103 des Wand-Schalungssystems 100 eingesetzt, sodass die Verteilerbewehrung 155 ebenfalls in dem Wand-Schalungssystem angeordnet ist und der andere zweite Schenkel 153 im oberen Bereich der zu fertigenden Decke 171 zu liegen kommt. Die Abrissbewehrung 151 ist mit ihrem in die Decke 171 ragenden zweiten Schenkel 153 mittels eines konstruktiven Verankerungselements 154 unter die Einzellängsstäbe 121 und/oder deren Befestigungsbügel 122 des Decken-Schalungssystems 120 eingehängt, was sich positiv unter anderem auf die notwendige Verankerungslänge der Abrissbewehrung 151 in der Betondecke 171 auswirkt. Die Verankerungslänge kann somit verkürzt werden, was eine geringere Stahlmenge bedeutet.
  • Nachdem die Abrissbewehrung 151 von oben eingesetzt ist, kann das Wand-Schalungssystem 100 zusammen mit dem Decken-Schalungssystem mit Beton vergossen werden. Als Beton kann jeder geeignete Beton verwendet werden, wobei bei diesem Verfahren insbesondere selbstverdichtender Beton geeignet ist. Durch die Verwendung von selbstverdichtendem Beton braucht der flüssige Beton nicht mit Innenrüttlern verdichtet und entlüftet zu werden, was seinerseits zusätzliche Arbeitsschritte einspart. Wenn ein zusätzliches Stockwerk wie in Figur 1 gezeigt vorgesehen ist, wird auf ähnliche Weise das Decken-Wand-Schalungssystem wie oben beschrieben an einer Arbeitsfuge 190 am Endauflager aufgebaut und entsprechend mit Beton vergossen.
  • Mit Bezug auf Figur 2 ist ein vereinfachter Bewehrungsplan in Schnittansicht eines Wand-Schalungssystems 100 in Form eines Wandscheiben-Biegeträgers 272 für eine aufgehängte Decke gezeigt, welche mit Hilfe des erfindungsgemäßen Verfahrens hergestellt ist, wobei vorgefertigte verlorene Schalungssysteme aus einem Decken-Schalungssystem 120 und einem Wand-Schalungssystem 100 verwendet werden.
  • Hier wird mit dem Decken-Schalungssystem 120 zuerst eine Betondecke 171 hergestellt, die beispielsweise auf Mauerwerk und/oder einer Betonwand aufgelagert sein kann.
  • Vor dem Betonieren der Betondecke 171 wird das Decken-Schalungssystem 120 mit der erforderlichen konstruktiven und/oder statischen Bewehrung versehen. Zum Ausbilden des hier verlangten Wandscheiben-Biegeträgers wird vor dem Betonieren der Betondecke 171 in das Decken-Schalungssystem 120 eine statisch bzw. konstruktiv ermittelte Anschlussbewehrung 150 verlegt, die eine Aufhänge-Bewehrung 252 und ihre Verankerungselemente 154 aufweist, die pro laufenden Meter in dem Decken-Schalungssystem 120 für den Eingriff in das Wand-Schalungssystem 100 verlegt sind. Auch hier sind die Verankerungselemente 154 unter die Einzellängsstäbe 121 des Decken-Schalungssystems 120 eingehängt und mit diesem verbunden. Nach dem Abschluss der Bewehrungsarbeiten wird die Betondecke 201 mit Beton ausgegossen. Nachdem der Beton eine ausreichende Festigkeit erreicht hat, wird das Wand-Schalungssystem 100, welches werkseitig mit den erforderlichen Bewehrungs-Matten 210 und Bewehrungs-Stäben 211 zum Ausbilden eines Wandscheiben-Biegeträgers 202 versehen ist, an einer Arbeitsfuge 190 aufgestellt und mit geeigneten nicht gezeigten Stützvorrichtungen gesichert. Der aus der Betondecke 171 hervorstehende Abschnitt der Aufhängebewehrung 252 wird mittels Befestigungselementen mit den Bewehrungs-Matten 210 und/oder Bewehrungs-Stäben 211 verbunden. Dann kann das Wand-Schalungssystem 100 mit Beton ausgegossen werden.
  • Bei dem in den Figuren 1 und 2 gezeigten Wand-Schalungssystem 100 und dem Decken-Schalungssystem 120 des erfindungsgemäßen Verfahrens ist als Beton insbesondere selbstverdichtender Beton (SVB) wegen seiner guten Eigenschaften besonders geeignet, wie entmischungsfreies Ausfließen des SVB's bis zum vollständigen Niveauausgleich, nahezu vollständiges Entlüften ohne zusätzliche Verdichtungsarbeit und fehlstellenfreies Verdichten. Durch das Wegfallen der aktiven Verdichtung sinkt insgesamt die Lärmbelästigung an der Baustelle, die Einbauleistung steigt und es wird weniger Personal zum Einbauen des SVB's benötigt, da aufgrund der Selbstentlüftung des SVB's niemand die Innenrüttler bedienen muss und wegen der Selbstnivellierung des SVB's insbesondere bei horizontalen Decken niemand die Betondecke nivellieren muss.

Claims (5)

  1. Verfahren zum Herstellen einer Wand-Decken-Konstruktion in Stahlbetonausführung, bei welchem vorgefertigte verlorene Schalungssysteme aus einem Wand-Schalungssystem (100) und einem Decken-Schalungssystem (120) verwendet werden, von denen das Wand-Schalungssystem zwei Schalungsplatten (101; 103) aufweist, welche mittels Kupplungsvorrichtungen (102) im Abstand voneinander angeordnet und aneinander befestigt sind, und von denen das Decken-Schalungssystem (120) eine Grundplatte (123) aufweist, und bei welchem als Verbindungselement zwischen Wand und Decke eine Anschlussbewehrung (150) verwendet wird, dadurch gekennzeichnet, dass als das Decken-Schalungssystem ein solches vorgefertigtes Decken-Schalungssystem (120) verwendet wird, welches gitterträgerfrei ausgebildet ist und mit einer Mehrzahl von Einzellängsstäben (121) versehen ist, die auf der Grundplatte (123) parallel nebeneinander angeordnet sind und die jeweils mittels einer Mehrzahl von Bügeln (122), die mit der Grundplatte verschraubt sind, an der Grundplatte verankert und über der Grundplatte im Abstand angeordnet sind, wobei die Einzellängsstäbe nach dem späteren Aufbringen des Betons im unteren Bereich, insbesondere im unteren Drittel, der Dicke der fertigen Betonschicht der zu erstellenden Decke (171) zu liegen kommen,
    wobei das Decken-Schalungssystem (120) und das Wand-Schalungssystem (100) derart aneinander angesetzt werden, dass die Einzellängsstäbe (121) des Decken-Schalungssystems (120) senkrecht zu dem Wand-Schalungssystem (100) verlaufen und
    wobei die Anschlussbewehrung (150) einerseits in das Wand-Schalungssystem (100) eingesetzt wird und andererseits unter die Einzellängsstäbe (121) des Decken-Schalungssystems (120) eingehängt und dadurch mittels der Einzellängsstäbe an der Grundplatte (123) des Decken-Schalungssystems verankert wird.
  2. Verfahren nach Anspruch 1, wobei die Decke (171) an eine als Endauflager dienende Wand (172) angeschlossen wird, indem das Decken-Schalungssystem nach Aufstellen des Wand-Schalungssystems (120) oben an dieses angesetzt wird, wonach von der Oberseite des Decken-Schalungssystems (120) aus als Anschlussbewehrung (150) eine winkelförmige Abrissbewehrung (151) mit ihrem einen Schenkel (152) in das Wand-Schalungssystem (100) eingesetzt wird und mit ihrem anderen Schenkel (153) unter die Einzellängsstäbe (121) des Decken-Schalungssystems eingehängt wird, wonach Decke (171) und Wand (172) in einem Zuge mit Beton ausgegossen werden.
  3. Verfahren nach Anspruch 2, wobei das Wand-Schalungssystem (100) derart vorgefertigt wird, dass die der Decke zugewandte innere Schalungsplatte (103) niedriger als die der Decke abgewandte äußere Schalungsplatte (101) ist, wobei das Decken-Schalungssystem mit seiner Grundplatte (123) bündig auf die innere Schalungsplatte (103) des Wandschalungssystems (100) gesetzt wird.
  4. Verfahren nach Anspruch 1, wobei die Decke (171) unter eine als Wandscheiben-Biegeträger ausgebildete Wand (272) aufgehängt wird, indem das Decken-Schalungssystem (120) aufgestützt wird und die Anschlussbewehrung (150) als Aufhängebewehrung (252) unter die Einzellängsstäbe (121) des Decken-Schalungssystems (120) eingehängt wird, so dass ein Abschnitt der Anschlussbewehrung nach oben hinaussteht, und das Decken-Schalungssystem mit Beton unter Erstellen der Decke (171) ausgegossen wird, wonach das Wand-Schalungssystem (100) auf die erstellte Decke (171) gesetzt wird, so dass der hinausstehende Abschnitt der Aufhängebewehrung (252) zwischen die Schalungsplatten (101) des Wand-Schalungssystems (100) hineinragt, und der hineinragende Abschnitt der Aufhängebewehrung mit dem Wand-Schalungssystem verbunden wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, wobei als Beton selbstverdichtender Beton verwendet wird.
EP05769655A 2005-07-28 2005-07-28 Verfahren zum herstellen einer wand-decken-konstruktion in stahlbetonausführung Active EP1907642B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2005/008220 WO2007012345A1 (de) 2005-07-28 2005-07-28 Verfahren zum herstellen einer wand-decken-konstruktion in stahlbetonausführung

Publications (2)

Publication Number Publication Date
EP1907642A1 EP1907642A1 (de) 2008-04-09
EP1907642B1 true EP1907642B1 (de) 2009-09-30

Family

ID=35884020

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05769655A Active EP1907642B1 (de) 2005-07-28 2005-07-28 Verfahren zum herstellen einer wand-decken-konstruktion in stahlbetonausführung

Country Status (6)

Country Link
US (1) US8484928B2 (de)
EP (1) EP1907642B1 (de)
AT (1) ATE444416T1 (de)
DE (1) DE502005008258D1 (de)
NO (1) NO338797B1 (de)
WO (1) WO2007012345A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202012100746U1 (de) 2011-03-02 2012-06-15 Vst Verbundschalungstechnik Gmbh Anlage zum fortlaufenden Herstellen von Verbundschalungs-Plattenelementen

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102477770A (zh) * 2010-11-25 2012-05-30 欧文斯科宁知识产权资产有限公司 混凝土板结构构件和浇注混凝土板的施工方法
CN102477778B (zh) 2010-11-25 2014-07-09 欧文斯科宁知识产权资产有限公司 预制保温复合板及其组件、包括其的模板、混凝土板、其预制方法、模具型材
JP5953018B2 (ja) 2011-08-05 2016-07-13 オムロン株式会社 尿成分分析装置および尿成分分析方法
US10501349B1 (en) * 2016-05-31 2019-12-10 Jarrett Concrete Products One piece watertight concrete structure
AU2018205148A1 (en) * 2017-07-12 2019-01-31 Nicholas William Myles Burnett Expansion joint
CA3112329A1 (en) * 2018-09-10 2020-03-19 Hcsl Pty Ltd Building panel
CN109680797B (zh) * 2018-10-15 2021-03-23 中国建筑第七工程局有限公司 一种环筋扣合锚接装配式剪力墙叠合结构体系及安装方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29609800U1 (de) * 1996-06-03 1997-10-09 Gruber Eva M Deckenkonstruktion und Deckenelement

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1031048A (en) * 1910-04-14 1912-07-02 Unit Construction Co Concrete construction.
US2043697A (en) * 1933-02-23 1936-06-09 Otto A Deichmann Building structure
US2569669A (en) * 1946-02-27 1951-10-02 Peoples First Nat Bank & Trust Beam connection for precast concrete members
US2903880A (en) * 1951-09-22 1959-09-15 Pittsburgh Steel Co Reinforcement fabric for concrete structures
US3315424A (en) * 1963-09-20 1967-04-25 Eugene S Smith Building construction
CH399718A (fr) * 1965-03-24 1965-09-30 Comment Paul Procédé de construction d'un bâtiment
US3662506A (en) * 1970-01-12 1972-05-16 Thomas J Dillon Unitized building structure utilizing precase components
US3846952A (en) * 1972-06-27 1974-11-12 Winter M De Method of on site building
US3961457A (en) * 1974-05-02 1976-06-08 Zalewski Waclaw P Method of building construction
US4147009A (en) * 1975-12-04 1979-04-03 Watry C Nicholas Precast panel building construction
US4128980A (en) * 1976-06-11 1978-12-12 Civil & Civic Pty. Limited Reinforced concrete construction
US4081935A (en) 1976-07-26 1978-04-04 Johns-Manville Corporation Building structure utilizing precast concrete elements
US4409764A (en) * 1976-08-02 1983-10-18 Ennis H. Proctor System and method for reinforced concrete construction
US4211045A (en) * 1977-01-20 1980-07-08 Kajima Kensetsu Kabushiki Kaisha Building structure
US4226061A (en) * 1978-06-16 1980-10-07 Day Jr Paul T Reinforced masonry construction
JPS55159072A (en) * 1979-05-29 1980-12-10 Masayuki Kida Method of constructing reinforced concrete structure
US4648228A (en) * 1983-02-28 1987-03-10 Kiselewski Donald L Modular structure, stud therefor, and method of construction
IL83208A (en) * 1987-07-16 1993-01-14 Tafi Trade & Finance Building structure having high blast and penetration resistance
JPH01203545A (ja) * 1988-02-05 1989-08-16 Nippon Iton Kogyo Kk 建築物の壁体構築方法
JPH0742721B2 (ja) * 1989-10-19 1995-05-10 株木建設株式会社 プレキャスト梁部材を使用した鉄筋コンクリート柱・梁構築法
JPH04140365A (ja) * 1990-09-28 1992-05-14 Shintaro Yamamoto 鉄骨、鉄筋を用いる建築物の配筋方法及びそれに使用する鉄筋吊り具
US5181359A (en) * 1990-10-22 1993-01-26 Square Grip Limited Shearhead reinforcement
JPH04247124A (ja) * 1991-01-28 1992-09-03 Shimizu Corp 地中梁柱筋コンクリートの施工方法およびそれに用いる先組柱筋
JP3008305B2 (ja) * 1991-02-22 2000-02-14 清水建設株式会社 分割形先組み梁鉄筋および分割形先組み梁鉄筋組立て工法
FR2677393B1 (fr) 1991-06-04 1993-08-20 Tellier Claude Dispositif permettant, pour une piscine ou un bassin en beton arme, la realisation simultanee des murs, du fonds, des gorges et du revetement interieur vertical.
US5392580A (en) * 1992-05-06 1995-02-28 Baumann; Hanns U. Modular reinforcement cages for ductile concrete frame members and method of fabricating and erecting the same
JPH0688428A (ja) * 1992-09-09 1994-03-29 Haseko Corp アンポンドpc鋼線の端部補強構造
JPH06193196A (ja) * 1992-12-24 1994-07-12 Takenaka Komuten Co Ltd 鉄筋コンクリート梁の柱との接合端部の開口補強構造
DE9302320U1 (de) 1993-02-17 1994-06-16 Gruber Eva M Wandelement, insbesondere Doppelwandelement
US5682717A (en) * 1994-11-30 1997-11-04 Carranza-Aubry; Rene Prefabricated support elements and method for implementing monolithic nodes
GB2300654A (en) * 1995-05-04 1996-11-13 Univ Sheffield Shear reinforcement for reinforced concrete
US6293063B2 (en) * 1997-06-30 2001-09-25 David A. Van Doren Cast-in-place hybrid building system
DE29805829U1 (de) 1998-03-31 1998-07-09 Degen Paul Wärmegedämmtes, hohlwandiges Bauteil
EP1046758A1 (de) 1999-04-19 2000-10-25 Rolf Bless Verfahren zur Herstellung einer Platte und einer davon aufgehenden Verbundschalungswand, vorfabriziertes Verbundschalungselement
SE513987C2 (sv) * 1999-07-16 2000-12-04 Jacobsson & Widmark Ab Betongplattkonstruktion samt sätt att bygga en sådan konstruktion
AU2001273296A1 (en) * 2000-07-10 2002-01-21 The Regents Of The University Of Michigan Concrete construction employing the use of a ductile strip
US20020100247A1 (en) * 2001-01-31 2002-08-01 Nieh-Hung Lai Method for quickly building a building and moldboard employed in the method
EP1243712A3 (de) 2001-03-23 2003-10-15 Moritz Menge Tragkonstruktion für Betonbauelemente
US6948289B2 (en) * 2002-09-24 2005-09-27 Leonid Bravinski Method and means for prefabrication of 3D construction forms
US7661231B2 (en) * 2002-10-09 2010-02-16 Michael E. Dalton Concrete building system and method
WO2004099515A1 (en) * 2003-05-02 2004-11-18 Powell David W A structure and method for prefabricated construction
US7856778B2 (en) * 2005-05-25 2010-12-28 University Of Utah Foundation FRP composite wall panels and methods of manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29609800U1 (de) * 1996-06-03 1997-10-09 Gruber Eva M Deckenkonstruktion und Deckenelement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202012100746U1 (de) 2011-03-02 2012-06-15 Vst Verbundschalungstechnik Gmbh Anlage zum fortlaufenden Herstellen von Verbundschalungs-Plattenelementen
WO2012116745A1 (de) 2011-03-02 2012-09-07 Vst Verbundschalungstechnik Gmbh Verfahren zum fortlaufenden herstellen von verbundschalungs-plattenelementen

Also Published As

Publication number Publication date
EP1907642A1 (de) 2008-04-09
NO20081030L (no) 2008-04-25
US8484928B2 (en) 2013-07-16
US20080302057A1 (en) 2008-12-11
NO338797B1 (no) 2016-10-17
WO2007012345A1 (de) 2007-02-01
DE502005008258D1 (de) 2009-11-12
ATE444416T1 (de) 2009-10-15

Similar Documents

Publication Publication Date Title
EP1907642B1 (de) Verfahren zum herstellen einer wand-decken-konstruktion in stahlbetonausführung
EP3085843B1 (de) Vorrichtung und verfahren zur wärmeentkopplung von betonierten gebäudeteilen
EP3521556A1 (de) Multifunktionsrahmen im tunnelbau
EP2410096B1 (de) Schalungsvorrichtung und Verfahren zum Schaffen einer Aussparung beim Gießen eines Bauteils
EP0757137A1 (de) Schalung
EP1405961A1 (de) Stahl-Verbund-Konstruktion für Geschossdecken
DE3542651A1 (de) Abschalungselement
DE10310701A1 (de) Verankerungssystem zur Übertragung und Schub-, Zug-, Druck-, Biegezug- und Torsionskräften in Beton und Betonfertigteilen
DE102010025042A1 (de) Stahlträger für Fertigteildecken
EP1126091A2 (de) Montageträgersystem sowie Verfahren zur Befestigung eines Fertigbauteils an einem Gebäudeteil unter Verwendung des Montageträgersystems
EP1046758A1 (de) Verfahren zur Herstellung einer Platte und einer davon aufgehenden Verbundschalungswand, vorfabriziertes Verbundschalungselement
DE10027898B4 (de) Wandsystem
DE202004018655U1 (de) Stahlverbundträger mit brandgeschütztem Auflager für Deckenelemente
DE2153495A1 (de) Fertigteildeckenplatte fuer den montagebau
DE1804657A1 (de) Verfahren zur Herstellung von Beton- bzw.Stahlbetonwaenden und nach diesem Verfahren hergestellte Beton- bzw.Stahlbetonwand
DE19537139A1 (de) Vorgefertigtes Massivhaus in Modulbauweise
AT522813B1 (de) Schalungselement
AT408360B (de) Verfahren zum betonieren einer von verbundstützen getragenen verbunddecke
EP1457609B1 (de) Gebäudegeschoss
EP0480295B1 (de) Bausatz zum Errichten eines Wohn- oder Ferienhauses
DE2636168A1 (de) Verfahren und vorrichtung zum erstellen von bauwerken
AT346048B (de) Mantelbeton - fertigteil - element
DE202021106916U1 (de) Ein vorgefertigtes Scherwand-Platten-Verbindungssystem unter umgekehrter zyklischer Belastung
DE202015105915U1 (de) Modulhaus
AT165622B (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20080528

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502005008258

Country of ref document: DE

Date of ref document: 20091112

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100201

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100130

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100110

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 6704

Country of ref document: SK

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091231

BERE Be: lapsed

Owner name: VST VERBUNDSCHALUNGSTECHNIK GMBH

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100401

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100728

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005008258

Country of ref document: DE

Representative=s name: VIERING, JENTSCHURA & PARTNER PATENT- UND RECH, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005008258

Country of ref document: DE

Representative=s name: VIERING, JENTSCHURA & PARTNER MBB PATENT- UND , DE

Effective date: 20140422

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005008258

Country of ref document: DE

Representative=s name: VIERING, JENTSCHURA & PARTNER PATENT- UND RECH, DE

Effective date: 20140422

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005008258

Country of ref document: DE

Owner name: VST BUILDING TECHNOLOGIES AG, AT

Free format text: FORMER OWNER: VST-VERBUNDSCHALUNGSTECHNIK GMBH, HENNERSDORF, AT

Effective date: 20140422

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20210721

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210721

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210722

Year of fee payment: 17

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20220801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220801

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230713

Year of fee payment: 19

Ref country code: AT

Payment date: 20230713

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230712

Year of fee payment: 19

Ref country code: SE

Payment date: 20230711

Year of fee payment: 19

Ref country code: DE

Payment date: 20230713

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LV

Payment date: 20230711

Year of fee payment: 19