EP1905047B1 - Method for production of a soft-magnetic core for generators and generator comprising such a core - Google Patents

Method for production of a soft-magnetic core for generators and generator comprising such a core Download PDF

Info

Publication number
EP1905047B1
EP1905047B1 EP06761818.1A EP06761818A EP1905047B1 EP 1905047 B1 EP1905047 B1 EP 1905047B1 EP 06761818 A EP06761818 A EP 06761818A EP 1905047 B1 EP1905047 B1 EP 1905047B1
Authority
EP
European Patent Office
Prior art keywords
sheets
soft
core
laminated core
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06761818.1A
Other languages
German (de)
French (fr)
Other versions
EP1905047A2 (en
Inventor
Joachim Gerster
Witold Pieper
Rudi Ansmann
Michael KÖHLER
Michael Von Pyschow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuumschmelze GmbH and Co KG
Original Assignee
Vacuumschmelze GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuumschmelze GmbH and Co KG filed Critical Vacuumschmelze GmbH and Co KG
Publication of EP1905047A2 publication Critical patent/EP1905047A2/en
Application granted granted Critical
Publication of EP1905047B1 publication Critical patent/EP1905047B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • H01F1/14716Fe-Ni based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • H01F41/024Manufacturing of magnetic circuits made from deformed sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine
    • Y10T29/49012Rotor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49075Electromagnet, transformer or inductor including permanent magnet or core
    • Y10T29/49078Laminated

Definitions

  • the invention relates to a method for producing a soft-magnetic core for generators and to a generator with such a core.
  • a generator of layers of FeCoV alloy is for example from WO 02/055749 A1 known.
  • a plurality of magnetically formable by a final annealing process sheets of a soft magnetic alloy is stacked and given this stack the shape of a soft magnetic core by eroding the laminated core.
  • Such a method for producing a core into a stack of a plurality of thin-walled layers of a magnetically conductive material is disclosed in the document CH 668 331 A5 known.
  • the cold-rolled soft magnetic sheets for the individual layers are stacked in the same orientation and eroded to the final shape of the core.
  • a final annealing of the core of several thin-walled layers of a magnetically conductive material may follow after eroding.
  • cold rolling forms a crystalline texture that can cause anisotropies in the magnetic and mechanical properties.
  • anisotropies are not desirable for rotating cores of, for example, a high-speed rotor or stators interacting with rotating parts, since for such applications an exact rotationally symmetrical distribution of the magnetic and mechanical properties is desirable.
  • a soft magnetic FeCoV alloy is in the EP 1 475 450 A1 disclosed.
  • a soft magnetic FeCoSi alloy is in the DE 198 02 349 A1 disclosed.
  • the US 3,337,373 discloses sheets of an alloy with Si, Cr and Fe having a (100) [001] texture.
  • the object of the invention is to provide a method for producing a soft magnetic core for generators and a generator with such a core, whereby the above-mentioned problems are overcome.
  • a soft magnetic core is to be produced which is suitable for large-volume applications in corresponding high-speed generators.
  • An electrically insulating coating is applied to the magnetically formed sheets at least on one side prior to stacking.
  • a plurality of magnetically formed and / or magnetically formable sheets of a binary cobalt / iron alloy (CoFe alloy) or a ternary cobalt / iron / vanadium alloy (CoFeV alloy) are produced, wherein the sheets have a cold rolling texture.
  • Such binary iron-cobalt alloys with a cobalt content between 33 and 55 wt.% are extremely brittle, which due to the formation of an ordered superstructure at temperatures below 730 ° C.
  • the addition of about 2% by weight of vanadium impairs the transition into this superstructure, so that a relatively good cold workability after quenching to room temperature can be achieved from temperatures above 730 ° C.
  • the known iron-cobalt-vanadium alloys come into consideration, which contain about 49 wt.% Iron, about 49 wt.% Cobalt and about 2 wt.% Vanadium.
  • This ternary alloy system has been known for a long time. It is for example in " RM Bozorth, Ferromagnetism, van Nostrand, New York (1951 This vanadium-containing iron-cobalt alloy is characterized by its very high saturation induction of about 2.4 T.
  • the US 3,634,072 Therefore proposes as ductility-increasing additives an addition of 0.02 to 0.5 wt.% Niobium and / or 0.07 to 0.3 wt.% Zirconium before.
  • Niobium which by the way can also be replaced by the homologous tantalum, not only has the property in the iron-cobalt alloy system to strongly suppress the degree of order, which, for example, of RV Major and CM Orrock in "High Saturation Ternary Cobalt-Iron Based Alloys", IEEE Trans. Magn. 24 (1988), 1856-1858 , but it also inhibits grain growth.
  • All of the above alloys are eminently suitable for making the laminated cores of the present invention.
  • this plurality of sheets is stacked to form a laminated core. Is there now this stack of formable
  • This method has the advantage that in each case the structuring is carried out at the end of the entire production process for a soft magnetic core.
  • the structuring of the laminated core into a soft-magnetic core can take place by means of an erosion process.
  • spark erosion machining electrical discharge machining
  • the structuring can also be carried out by wire erosion which has the advantage that the laminated core with the aid of the wire electrode in an insulating fluid exactly erodes the preprogrammed profile of the soft magnetic core from the laminated core.
  • wire erosion a 100% monitoring of the final shape and the surface of the processed laminated core possible, so that surfaces with high dimensional accuracy and minimum tolerance can be achieved.
  • a machining operation for structuring the laminated core into a soft-magnetic core can also take place.
  • a final annealing of the CoFeV alloy under inert gas atmosphere at a forming temperature T F is performed between 500 ° C ⁇ T F ⁇ 940 ° C.
  • a change in length of about 0.2% in the rolling direction and a change in length of 0.1% in the transverse direction to the rolling direction in the subsequent forming determined.
  • the sheets change by 0.4 mm in one and only 0.2 mm in the other direction, so that the cross section of a cylindrical soft magnetic core of a circular shape before forming into a Ellipse shape after forming passes.
  • This change in shape is avoided by the inventive method by the erosion of the laminated core takes place only after the soft magnetic forming or after the final annealing of the CoFeV alloy.
  • the sheets are aligned with each other during stacking into a package under different texture directions.
  • This alignment in different directions of texture is in contrast to that of the document CH 668 331 A5 known approach and in this case has the advantage that, in particular for rotating soft magnetic cores, the tendencies to form imbalances are reduced.
  • texture-related anisotropies of the magnetic and mechanical properties are compensated and a rotationally symmetric distribution of the soft magnetic and mechanical properties is achieved.
  • the sheets are in relation aligned with their texture directions at a 45 ° angle in a clockwise or counterclockwise direction.
  • the lamellae or individual laminations of the package are formed before stacking, it is preferably ensured that the lamellae or individual laminations are extremely even in order to achieve the highest possible filling factor f with f ⁇ 90% for the laminated core.
  • the electrically insulated flat and finally annealed sheets are stacked staggered to compensate for a resulting during cold rolling lens profile in cross section. This lens profile is noticeable in that a difference of a few ⁇ m occurs between the sheet thickness in the edge region and that in the center region.
  • an electrically insulating coating is applied to the magnetically formed metal sheets at least on one side. Since already magnetically formed sheets have undergone a final annealing prior to stacking, this insulating coating for magnetic already formed sheets may well include a paint or resin coating, especially since the laminated core no longer has to be subjected to a final annealing. However, if magnetically formable metal sheets are stacked, a ceramic, electrically insulating coating is applied at least on one side prior to stacking, which withstands the above-mentioned forming temperatures. One possibility is to oxidize the magnetically-formed sheets prior to stacking in a steam atmosphere or in an oxygen-containing atmosphere to form an electrically insulating metal oxide layer. This has the advantage that an extremely thin and effective insulation between the metal plates occurs.
  • the laminated core of magnetically formable metal sheets is clamped between two steel plates as hotplate plates. These hot plates can also be used for fixing the laminated core in the subsequent erosion. Due to the steel plates, the position of the sheets is no longer changed, whereby a dimensionally accurate laminated core for both the inner diameter and the outer diameter and for the grooves, which are required for the soft magnetic core of a stator or rotor is obtained. In such dimensionally accurate grooves then the winding for a rotor or stator can be optimally accommodated, which allows high current densities in the groove cross-section in an advantageous manner.
  • a generator is provided with stator and rotor for high-speed aircraft turbines, wherein the stator and / or rotor has a soft magnetic laminated core.
  • the soft-magnetic core is formed from a dimensionally stable eroded laminated core of a stack of a plurality of soft-magnetically formed sheets of a CoFeV alloy.
  • the sheets of the laminated core in this case have a cold rolling texture, and are aligned in the laminated core in different texture directions to each other, the texture directions of the individual sheets are aligned at a 45 ° angle or at a 90 ° angle to each other.
  • Such a soft magnetic core has the advantage that it has a higher than average saturation induction of about 2.4 T and at the same time has the mechanical properties with a yield strength of about 600 MPa for the extreme loads, such as occur in generators for high-speed aircraft turbines with speeds between 10,000 rev / min 40,000 rev / min.
  • the texture directions of the individual sheets are aligned at a 45 ° angle to each other, so that compensate for the differences in the dimensional changes of the different directions of texture.
  • a thickness of the soft magnetic sheets in the laminated core preferably sheets with thicknesses d of d ⁇ 350 microns or d ⁇ 150 microns and in particular extremely thin sheets are used with thicknesses in the order of 75 microns.
  • These thin, soft-magnetic sheets have an electrically insulating coating on at least one side, wherein this insulating coating can be an oxide layer.
  • Ceramic coatings are used for sheets in laminated cores when the soft magnetic forming in the form of a final annealing of the laminated core is carried out after stacking and before the erusiven shaping.
  • this alloy may also have at least one element from the group Ni Zr, Ta or Nb as further alloying elements.
  • the zirconium content in a preferred embodiment of the invention is above 0.3% by weight, resulting in much better mechanical properties Properties can be achieved while achieving excellent magnetic properties.
  • the elements tantalum or niobium are added, whereby preferably a content of 0.04 ⁇ (Ta + 2 ⁇ Nb) ⁇ 0.8% by weight is maintained.
  • CoFeV alloy consisting of 35.0 ⁇ Co ⁇ 55.0% by weight, 0.75 ⁇ V ⁇ 2.5% by weight, 0 ⁇ (Ta + 2 x Nb) ⁇ 1.0 wt%, 0.3 ⁇ Zr ⁇ 1.5% by weight, Ni ⁇ 5.0% by weight, Remainder of Fe as well as melting and / or accidental impurities.
  • CoFeV alloy is advantageously used in order to achieve a weight reduction of the systems.
  • stator and rotor core packages of so-called reluctance motors For aerospace applications, in addition to high magnetic saturation and good soft magnetic properties of the material, extremely close dimensional tolerances are required.
  • stator At high speeds of up to 40,000 rpm, it is above all the rotor that must have high strength. In order to keep the losses at the high alternating field frequencies low, these packages for the soft magnetic core of the rotor or the stator of extremely thin soft magnetic sheets of 500, 350 or 150 microns or 75 microns are constructed.
  • the dimensions of a stator are in this embodiment of the invention with an outer diameter of about 250 mm, an inner diameter of about 150 mm at a plate thickness of 300 microns and a height of about 200 mm.
  • the following three main steps are to be carried out, namely once the magnetic annealing of electrically insulated sheets or strip sections, then optionally the oxidation annealing of these individual sheets or strip sections and finally forming a package and eroding a rotor core or stator core from this package.
  • the following process steps are carried out in detail.
  • a starting material with tight tolerance requirements on the starting strip in relation to its elliptical shape and its pucker is used as the starting material.
  • the thickness tolerances according to EN10140C must be observed. With a thickness of 350 ⁇ m this means a tolerance of +/- 15 ⁇ m, with a thickness of 150 ⁇ m this means a tolerance of +/- 8 ⁇ m and with a thickness of 75 ⁇ m this means a tolerance of +/- 5 ⁇ m.
  • a specially developed cutting device is used for a significantly lower burr when cutting the sheets from the strip.
  • 1-2 holes are punched to suspend the sheets in the oxidation plant.
  • Forming by means of final annealing is carried out between flat hot plates made of steel or ceramic. It is for the respective Stack height during annealing to ensure a homogeneous temperature distribution. The duration of the forming is 3 hours with a stack thickness of 4 cm and about 6 hours with a stack thickness of 7 cm. To this end, for the weighting of the sheet metal plates, hot plates with a thickness of 15 mm are used which lie flat and whose flatness is checked regularly. When stacking the sheets, the individual layers are to be turned together, so that the direction of the respective sheet in the stack changes several times.
  • punch rings and tensile specimens are added to each stack, whereby the amount of sample is also determined by the number of necessary subsequent oxidation anneals.
  • the magnetic properties are checked on the punched rings and the tensile strength is used to determine the mechanical limits.
  • the oxidation is then carried out by suspending the plates one at a time and without touching in an oxidation oven, and carrying out the oxidation under water vapor or in air.
  • the oxidation parameters depend on the Ummagnetleitersticiansfrequenzen and after the later request for the cohesive fixing of the laminated cores, depending on whether the laminated cores are glued together to form a stack or welded together.
  • the layer insulation is checked in each case by a resistance measurement, especially since non-insulated sheet metal areas in the package can lead to local loss maxima and thus cause local heating in the rotor or stator, which should be avoided.
  • a resistance measurement especially since non-insulated sheet metal areas in the package can lead to local loss maxima and thus cause local heating in the rotor or stator, which should be avoided.
  • the resulting soft magnetic core is dried and then stored dry.
  • the properties of the primary material and the quality of the final annealing can be determined, especially since a measurement of the magnetic property on the finished package is usually not possible.
  • the core After the core has been manufactured, it is tested again, wherein in one implementation example of the invention a stator was produced in which it was possible to determine in the final dimensions that the outside diameter had a nominal value of approximately 250 mm and a tolerance of +0 / -0.4 mm showed an actual value deviation between -3 ⁇ m to -33 ⁇ m.
  • a target value of 180.00 + 0.1 / -0 mm was specified, and a deviation of the actual values between +10 ⁇ m to +15 ⁇ m could be determined.
  • the diameter in the slots in which the winding is to be inserted has a nominal value of 220,000 + 0,1 / - 0 mm and a deviation of the actual values resulted in +9 ⁇ m to +28 ⁇ m.
  • compliance with the values of the inner diameter and the inner diameter in the grooves is crucial in such a stator, since a regrinding of the surface is only possible to a limited extent.
  • small deviations in the outer diameter can be corrected by regrinding.
  • a "repair annealing” possible which corrects the negative effects of processing, insbesondre any magnetic damage to the laminated core due to erosion.
  • This "repair annealing” can be performed with the same parameters as the magnetic annealing.
  • the annealing is preferably carried out in a hydrogen atmosphere, and in the case of laminated cores with an oxide insulation coating, the annealing is preferably carried out under reduced pressure.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines weichmagnetischen Kerns für Generatoren sowie einen Generator mit einem derartigen Kern. Ein derartiger Generator aus Lagen einer FeCoV-Legierung ist beispielsweise aus der WO 02/055749 A1 bekannt.The invention relates to a method for producing a soft-magnetic core for generators and to a generator with such a core. Such a generator of layers of FeCoV alloy is for example from WO 02/055749 A1 known.

Dazu wird eine Vielzahl durch einen Schlussglühprozess magnetisch formierbarer Bleche einer weichmagnetischen Legierung gestapelt und diesem Stapel die Form eines weichmagnetischen Kerns durch Erodieren des Blechpakets gegeben. Dazu ist es üblich, nach der endgültigen Formgebung des Blechpakets zu einem Kern ein Schlussglühen anzuschließen, um optimale magnetische Eigenschaften des Kerns in seiner endgültigen Form zu erreichen.For this purpose, a plurality of magnetically formable by a final annealing process sheets of a soft magnetic alloy is stacked and given this stack the shape of a soft magnetic core by eroding the laminated core. For this purpose, it is customary to add a final annealing to the core after final shaping of the lamination stack in order to achieve optimal magnetic properties of the core in its final form.

Ein derartiges Verfahren zur Herstellung eines Kerns zu einem Stapel mehrerer dünnwandiger Lagen aus einem magnetisch leitenden Material ist aus der Druckschrift CH 668 331 A5 bekannt. Bei diesem bekannten Verfahren werden die kalt gewalzten weichmagnetischen Bleche für die einzelnen Lagen in gleicher Ausrichtung aufeinander gestapelt und zu der endgültigen Form des Kerns erodiert. Ein Schlussglühen des Kerns aus mehreren dünnwandigen Lagen eines magnetisch leitenden Materials kann sich nach dem Erodieren anschließen.Such a method for producing a core into a stack of a plurality of thin-walled layers of a magnetically conductive material is disclosed in the document CH 668 331 A5 known. In this known method, the cold-rolled soft magnetic sheets for the individual layers are stacked in the same orientation and eroded to the final shape of the core. A final annealing of the core of several thin-walled layers of a magnetically conductive material may follow after eroding.

In einem derartigen Fall besteht jedoch die Gefahr, dass durch das Schlussglühen bzw. Formatieren sich die Abmessungen des Kerns verändern. Insbesondere dann, wenn bei entsprechenden Phasenbildungen während des Schlussglühens bzw. Formatierens eine anisotrope Umordnung des weichmagnetischen Gefüges auftritt, was sich besonders bei großvolumigen weichmagnetischen Kernen auswirkt, da sich dann die anisotropischen Dimensionsverschiebungen verstärkt. Derartige anisotrope Änderungen können zusätzlich bei rotierenden Kernstrukturen zu Unwuchten führen, was erhebliche Probleme bei hochtourigen Maschinen, insbesondere bei Fluganwendungen, mit sich bringt.In such a case, however, there is a risk that the final annealing or formatting change the dimensions of the core. Especially if at corresponding phase formations during the final annealing or formatting an anisotropic rearrangement of the soft magnetic microstructure occurs, which has an effect especially in large-volume soft magnetic cores, since then amplified the anisotropic dimensional shifts. Such anisotropic changes can also lead to imbalances in rotating core structures, which brings significant problems in high-speed machines, especially in flight applications, with it.

Darüber hinaus bildet sich beim Kaltwalzen eine kristalline Textur aus, die Anisotropien der magnetischen und mechanischen Eigenschaften hervorrufen kann. Diese Anisotropien sind für rotierende Kerne beispielsweise eines hochtourigen Rotors oder mit rotierenden Teilen in Wechselwirkung stehenden Statoren nicht erwünscht, da für derartige Anwendungen eine exakt rotationssymetrische Verteilung der magnetischen und mechanischen Eigenschaften anzustreben ist.In addition, cold rolling forms a crystalline texture that can cause anisotropies in the magnetic and mechanical properties. These anisotropies are not desirable for rotating cores of, for example, a high-speed rotor or stators interacting with rotating parts, since for such applications an exact rotationally symmetrical distribution of the magnetic and mechanical properties is desirable.

Somit sind die Lehren aus der Druckschrift CH 668 331 A5 , bei der kaltgewalzte Bleche gleichförmig in Walzrichtung aufeinander zu stapeln sind, um die verstärkte magnetische Wirkung in Richtung der "GOSS-Textur" für stationäre Magnetköpfe zu nutzen, nicht auf die Erfordernisse von rotierenden Kernen übertragbar.Thus, the teachings of the document are CH 668 331 A5 in which cold-rolled sheets are uniformly stacked in the rolling direction to utilize the enhanced magnetic action in the direction of "GOSS texture" for stationary magnetic heads, not transferable to the requirements of rotating cores.

Eine weichmagnetische FeCoV-Legierung ist in der EP 1 475 450 A1 offenbart. Eine weichmagnetische FeCoSi-Legierung ist in der DE 198 02 349 A1 offenbart. Die US 3 337 373 offenbart Bleche aus einer Legierung mit Si, Cr und Fe, die eine (100)[001] - Textur aufweisen.A soft magnetic FeCoV alloy is in the EP 1 475 450 A1 disclosed. A soft magnetic FeCoSi alloy is in the DE 198 02 349 A1 disclosed. The US 3,337,373 discloses sheets of an alloy with Si, Cr and Fe having a (100) [001] texture.

Es besteht somit der Bedarf, neue Fertigungswege zu entwickeln, um die Forderung nach rotationssymetrischer Gleichförmigkeit magnetischer und mechanischer Eigenschaften eines weichmagnetischen Kerns in Generatoren zu erfüllen.Thus, there is a need to develop new manufacturing ways to meet the demand for rotationally symmetric uniformity of magnetic and mechanical properties of a soft magnetic core in generators.

Aufgabe der Erfindung ist es, ein Verfahren zum Herstellen eines weichmagnetischen Kerns für Generatoren sowie einen Generator mit einem derartigen Kern anzugeben, womit die oben erwähnten Probleme überwunden werden. Insbesondere soll ein weichmagnetischer Kern hergestellt werden, der für großvolumige Anwendungen in entsprechenden hochtourigen Generatoren geeignet ist.The object of the invention is to provide a method for producing a soft magnetic core for generators and a generator with such a core, whereby the above-mentioned problems are overcome. In particular, a soft magnetic core is to be produced which is suitable for large-volume applications in corresponding high-speed generators.

Diese Aufgabe wird mit dem Gegenstand der unabhängigen Ansprüche gelöst. Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.This object is achieved with the subject matter of the independent claims. Advantageous developments of the invention will become apparent from the dependent claims.

Erfindungsgemäß wird ein Verfahren zur Herstellung eines weichmagnetischen Kerns für Generatoren geschaffen, wobei das Verfahren die nachfolgenden Verfahrensschritte aufweist:

  • Herstellen einer Vielzahl magnetisch formierter Bleche einer CoFe-Legierung oder einer CoFeV-Legierung mittels einer Schlussglühung, die eine Textur aufweisen;
  • danach Stapeln der Vielzahl von Blechen zu einem Blechpaket;
  • danach Strukturieren des Blechpakets aus magnetisch formierten Blechen zu einem weichmagnetischen Kern, wobei das Strukturieren des Blechpakets zu einem weichmagnetischen Kern mittels eines Erosionsverfahrens, vorzugsweise mittels eines Drahterosionsverfahrens, oder mittels spanabhebender Bearbeitung oder mittels Wasserstrahlschneidens oder mittels Laserstrahlschneidens oder mittels wasserstrahlgeführten Laserstrahlschneidens erfolgt.
According to the invention, a method is provided for producing a soft-magnetic core for generators, the method having the following method steps:
  • Producing a plurality of magnetically-formed sheets of a CoFe alloy or a CoFeV alloy by means of a final annealing having a texture;
  • then stacking the plurality of sheets into a laminated core;
  • then structuring the laminated core of magnetically formed sheets to a soft magnetic core, wherein the structuring of the laminated core into a soft magnetic core by an erosion process, preferably by means of a wire erosion process, or by machining or by water jet cutting or by laser beam cutting or by water jet Laser beam cutting takes place.

Auf die magnetisch formierten Bleche wird vor dem Stapeln mindestens einseitig eine elektrisch isolierende Beschichtung aufgebracht.An electrically insulating coating is applied to the magnetically formed sheets at least on one side prior to stacking.

Erfindungsgemäß wird ein weiteres Verfahren zur Herstellung eines weichmagnetischen Kerns für Generatoren bereitgestellt, wobei das Verfahren folgende Verfahrensschritte aufweist:

  • Herstellen einer Vielzahl magnetisch formierbarer Bleche einer CoFe-Legierung oder einer CoFeV-Legierung, die eine Kaltwalztextur aufweisen;
  • danach Stapeln der Vielzahl von Blechen zu einem Blechpaket;
  • danach magnetisches Formieren des Blechpakets mittels einer Schlussglühung,
  • danach Strukturieren des magnetisch formierten Blechpakets zu einem weichmagnetischen Kern. Das Strukturieren des Blechpakets zu einem weichmagnetischen Kern erfolgt mittels eines Erosionsverfahrens, vorzugsweise mittels eines Drahterosionsverfahrens, oder mittels spanabhebender Bearbeitung oder mittels Wasserstrahlschneidens oder mittels Laserstrahlschneidens oder mittels wasserstrahlgeführten Laserstrahlschneidens.
According to the invention, a further method for producing a soft-magnetic core for generators is provided, the method comprising the following method steps:
  • Producing a plurality of magnetically formable sheets of a CoFe alloy or a CoFeV alloy having a cold rolling texture;
  • then stacking the plurality of sheets into a laminated core;
  • then magnetically forming the laminated core by means of a final annealing,
  • then patterning the magnetically formed laminated core into a soft magnetic core. The structuring of the laminated core into a soft-magnetic core takes place by means of an erosion process, preferably by means of a wire erosion process, or by machining or by means of water jet cutting or by means of laser beam cutting or by means of water-jet-guided laser beam cutting.

Zunächst wird eine Vielzahl magnetisch formierter und/oder magnetisch formierbarer Bleche einer binären Kobalt-/EisenLegierung (CoFe-Legierung) oder einer ternären Kobalt-/Eisen/Vanadium-Legierung (CoFeV-Legierung) hergestellt, wobei die Bleche eine Kaltwalztextur aufweisen.First, a plurality of magnetically formed and / or magnetically formable sheets of a binary cobalt / iron alloy (CoFe alloy) or a ternary cobalt / iron / vanadium alloy (CoFeV alloy) are produced, wherein the sheets have a cold rolling texture.

Solche binären Eisen-Kobalt-Legierungen mit einem Kobaltgehalt zwischen 33 und 55 Gew.% sind außerordentlich spröde, was auf die Bildung einer geordneten Überstruktur bei Temperaturen unterhalb 730°C zurückzuführen ist. Der Zusatz von ungefähr 2 Gew.% Vanadium beeinträchtigt den Übergang in diese Überstruktur, sodass eine relativ gute Kaltverformbarkeit nach Abschrecken auf Raumtemperatur von der Temperaturen oberhalb 730°C erreicht werden kann.Such binary iron-cobalt alloys with a cobalt content between 33 and 55 wt.% Are extremely brittle, which due to the formation of an ordered superstructure at temperatures below 730 ° C. The addition of about 2% by weight of vanadium impairs the transition into this superstructure, so that a relatively good cold workability after quenching to room temperature can be achieved from temperatures above 730 ° C.

Als ternäre Grundlegierung kommen demnach die bekannten Eisen-Kobalt-Vanadium-Legierungen in Betracht, die ca. 49 Gew.% Eisen, ca. 49 Gew.% Kobalt und ca. 2 Gew.% Vanadium enthalten. Dieses ternäre Legierungssystem ist seit langer Zeit bekannt. Es wird beispielsweise in " R. M. Bozorth, Ferromagnetism, van Nostrand, New York (1951 )" ausführlich beschrieben. Diese vanadiumhaltige Eisen-Kobalt-Legierung zeichnet sich durch ihre sehr hohe Sättigungsinduktion von ca. 2,4 T aus.As a ternary base alloy, therefore, the known iron-cobalt-vanadium alloys come into consideration, which contain about 49 wt.% Iron, about 49 wt.% Cobalt and about 2 wt.% Vanadium. This ternary alloy system has been known for a long time. It is for example in " RM Bozorth, Ferromagnetism, van Nostrand, New York (1951 This vanadium-containing iron-cobalt alloy is characterized by its very high saturation induction of about 2.4 T.

Eine Weiterentwicklung dieser ternären vanadiumhaltigen Kobalt-Eisen-Grundlegierung ist aus der US 3,634,072 bekannt. Dort wird bei der Herstellung von Legierungsbändern ein Abschrecken des warmgewalzten Legierungsbandes von einer Temperatur oberhalb der Phasenübergangstemperatur von 730ºC beschrieben. Dieser Prozess ist notwendig, damit die Legierung hinreichend duktil für das anschließende Kaltwalzen ist. Mit dem Abschrecken wird die Ordnungseinstellung unterdrückt. Fertigungstechnisch ist das Abschrecken jedoch sehr kritisch, da es bei den sogenannten Kaltwalzstichen sehr leicht zu Bandbrüchen kommen kann. Deshalb wurden erhebliche Anstrengungen unternommen, um die Duktilität der Legierungsbänder zu steigern und damit die Fertigungssicherheit zu erhöhen.A further development of this ternary vanadium-containing cobalt-iron base alloy is from the US 3,634,072 known. There, quenching of the hot rolled alloy strip from a temperature above the phase transition temperature of 730 ° C is described in the production of alloy strips. This process is necessary for the alloy to be sufficiently ductile for subsequent cold rolling. With quenching the order setting is suppressed. Quenching, however, is very critical in terms of production technology, since strip breakage is very easy in so-called cold rolling passes. Therefore, considerable efforts have been made to increase the ductility of the alloy strips and thus to increase manufacturing reliability.

Die US 3,634,072 schlägt daher als duktilitätssteigernde Zusätze eine Zugabe von 0,02 bis 0,5 Gew.% Niob und/oder 0,07 bis 0,3 Gew.% Zirkon vor.The US 3,634,072 Therefore proposes as ductility-increasing additives an addition of 0.02 to 0.5 wt.% Niobium and / or 0.07 to 0.3 wt.% Zirconium before.

Niob, das im Übrigen auch durch das homologe Tantal ersetzt werden kann, hat im Eisen-Kobalt-Legierungssystem nicht nur die Eigenschaft, den Ordnungsgrad stark zu unterdrücken, was beispielsweise von R. V. Major und C. M. Orrock in "High saturation ternary cobalt-iron based alloys", IEEE Trans. Magn. 24 (1988), 1856-1858 , beschrieben worden ist, sondern es hemmt auch das Kornwachstum.Niobium, which by the way can also be replaced by the homologous tantalum, not only has the property in the iron-cobalt alloy system to strongly suppress the degree of order, which, for example, of RV Major and CM Orrock in "High Saturation Ternary Cobalt-Iron Based Alloys", IEEE Trans. Magn. 24 (1988), 1856-1858 , but it also inhibits grain growth.

Die Zugabe von Zirkon in den in der US 3,634,072 vorgeschlagenen Mengen von maximal 0,3 Gew.% hemmt ebenfalls das Kornwachstum. Beide Mechanismen verbessern wesentlich die Duktilität der Legierung nach dem Abschrecken.The addition of zircon in the in the US 3,634,072 proposed amounts of at most 0.3 wt.% Also inhibits grain growth. Both mechanisms substantially improve the ductility of the alloy after quenching.

Neben dieser aus der US 3,634,072 bekannten hochfesten niob- und zirkonhaltigen Eisen-Kobalt-Vanadium-Legierung sind des Weiteren noch zirkonfreie Legierungen aus der US 5,501,747 bekannt.Besides this from the US 3,634,072 known high-strength niobium and zirconium-containing iron-cobalt-vanadium alloy are the Further zirconium-free alloys from the US 5,501,747 known.

Dort werden Eisen-Kobalt-Vanadium-Legierungen vorgeschlagen, die ihre Anwendung in schnelldrehenden Flugzeuggeneratoren und Magnetlagern finden. Die US 5,501,747 baut auf der Lehre der US 3,364,072 auf und schränkt den dort gelehrten Niobgehalt auf 0,15 - 0,5 Gew.% ein.
Als besonders geeignet hat sich eine CoFeV-Legierung gezeigt, die aus
35,0 ≤ Co ≤ 55,0 Gew.%,
0,75 ≤ V ≤ 2,5 Gew.%,
0 ≤ (Ta + 2 x Nb) ≤ 1,0 Gew.%,
0,3 < Zr ≤ 1,5 Gew.%,
Ni ≤ 5,0 Gew.%,
There are proposed iron-cobalt-vanadium alloys, which find their application in high-speed aircraft generators and magnetic bearings. The US 5,501,747 builds on the teaching of US 3,364,072 and restricts the niobium content taught there to 0.15-0.5% by weight.
Particularly suitable is a CoFeV alloy has shown that
35.0 ≦ Co ≦ 55.0% by weight,
0.75 ≦ V ≦ 2.5% by weight,
0 ≤ (Ta + 2 x Nb) ≤ 1.0 wt%,
0.3 <Zr ≤ 1.5% by weight,
Ni ≤ 5.0% by weight,

Rest Fe sowie erschmelzungsbedingten und/oder zufälligen Verunreinigungen besteht. Diese Legierung sowie die dazugehörigen Herstellverfahren sind ausführlich in der DE 103 20 350 B3 beschrieben, auf die hiermit ausdrücklich Bezug genommen wird.Residual Fe and melting and / or accidental impurities. This alloy as well as the associated manufacturing processes are described in detail in the DE 103 20 350 B3 described, which is hereby incorporated by reference.

Darüberhinaus ist zusätzlich noch aus der DE 699 03 202 T2 bekannt, bei solchen ternären CoFeV-Legierungen den Borgehalt zwischen 0,001 und 0,003 Gew.% einzustellen, um eine bessere Warmwalzfähigkeit zu erzielen.In addition, is also still from the DE 699 03 202 T2 It is known to adjust the boron content of such ternary CoFeV alloys to between 0.001 and 0.003 wt% in order to achieve better hot rolling capability.

All diese oben genannten Legierungen eigenen sich hervorragend zur Herstellung der Blechpakete nach der vorliegenden Erfindung.All of the above alloys are eminently suitable for making the laminated cores of the present invention.

Anschließend wird diese Vielzahl der Bleche zu einem Blechpaket gestapelt. Besteht nun dieser Stapel aus formierbarenSubsequently, this plurality of sheets is stacked to form a laminated core. Is there now this stack of formable

Blechen, so wird noch vor einem Strukturieren des Blechpakets zu einem weichmagnetischen Kern das Formieren durch ein Schlussglühen des Blechpakets durchgeführt. Besteht jedoch das Blechpaket aus bereits weichmagnetisch formierten Blechen, so kann sich unmittelbar an das Stapeln das Strukturieren des magnetisch formierten Blechpakets bzw. des Pakets aus magnetisch formierten Blechen zu einem weichmagnetischen Kern anschließen.Sheet metal, so even before structuring the laminated core to a soft magnetic core forming by a final annealing of the laminated core is performed. However, if the laminated core already consists of soft magnetically formed metal sheets, structuring of the magnetically formed laminated core or of the package of magnetically formed metal sheets to form a soft-magnetic core can immediately follow the stacking.

Dieses Verfahren hat den Vorteil, dass in jedem Fall das Strukturieren am Ende des gesamten Herstellungsverfahrens für einen weichmagnetischen Kern durchgeführt wird.This method has the advantage that in each case the structuring is carried out at the end of the entire production process for a soft magnetic core.

Das Strukturieren des Blechpakets zu einem weichmagnetischen Kern kann mittels eines Erosionsverfahren erfolgen.The structuring of the laminated core into a soft-magnetic core can take place by means of an erosion process.

Beim Erodieren wird ein Materialabtrag mittels einer Folge nicht stationärer elektrischer Entladungen erziehlt, wobei die Entladungen zeitlich voneinander getrennt sind, d. h., dass bei dieser Funkenerosion nur jeweils ein einziger Funke einmal entsteht. Die Funkenentladungen werden durch Spannungsquellen von über 200 V erzeugt und werden in einem dielektrischen Bearbeitungsmedium, in das das Blechpaket aus weichmagnetischen Lagen eingetaucht ist, durchgeführt. Dieses funkenerosive Bearbeitungsverfahren wird auch als elektroerosives Bearbeiten oder als EDM (electrical discharge machining) bezeichnet.During erosion, material removal is achieved by means of a sequence of non-stationary electrical discharges, the discharges being separated in time, ie. h., that in this EDM only a single spark arises once. The spark discharges are generated by voltage sources of over 200 V and are performed in a dielectric processing medium in which the laminated core of soft magnetic layers is immersed. This spark erosion machining process is also referred to as electrical discharge machining or as EDM (electrical discharge machining).

Das Strukturieren kann auch durch eine Drahterosion durchgeführt werden die den Vorteil hat, dass das Blechpaket mit Hilfe der Drahtelektrode in einer Isolierflüssigkeit exakt das vorprogrammierte Profil des weichmagnetischen Kerns aus dem Blechpaket erodiert. Dabei ist während der Drahterosion eine 100%-ige Überwachung der endgültigen Form und der Oberfläche des bearbeiteten Blechpakets möglich, so dass Oberflächen mit hoher Maßhaltigkeit und minimaler Toleranz erreicht werden können.The structuring can also be carried out by wire erosion which has the advantage that the laminated core with the aid of the wire electrode in an insulating fluid exactly erodes the preprogrammed profile of the soft magnetic core from the laminated core. During the wire erosion a 100% monitoring of the final shape and the surface of the processed laminated core possible, so that surfaces with high dimensional accuracy and minimum tolerance can be achieved.

Sofern die geometrischen Randbedingungen des Blechpakets und die Materialeigenschaften der gestapelten Bleche es zulassen, kann auch eine spanabhebende Bearbeitung zum Strukturieren des Blechpakets zu einem weichmagnetischen Kern erfolgen.If the geometric boundary conditions of the laminated core and the material properties of the stacked sheets allow it, a machining operation for structuring the laminated core into a soft-magnetic core can also take place.

Weitere Strukturierungsverfahren sind das Wasserstrahlschneiden und das Laserstrahlschneiden. Während beim wasserstrahlschneiden die Gefahr der Ausbildung von kraterförmigen Schnittkanten besteht, neigt das Laserstrahlschneiden dazu, abdampfendes Material als Mikrowulst neben den Schnittkanten abzuscheiden. Erst eine Kombination beider Verfahren ermöglicht eine hohe Schnittqualität beim Strukturieren des Blechstapels zu einem weichmagnetischen Kern. Dazu wird mittels Totalreflektion der divergierende Laserstrahl im Mikrowasserstrahl gehalten und das durch den Laserstrahl abgetragene Material wird mit Hilfe des Mikrowasserstrahls fortgerissen, sodass sich keine Ablagerungen auf den Schneidekanten bilden können. Folglich ergeben sich gratfreie Schnittprofile. Auch die Schnittkantenerwärmung ist vernachlässigbar gering, sodass kein thermischer Verzug auftritt. Mit dem wasserstrahlgeführten Laserstrahlschneiden sind Bohrungsdurchmesser dB erreichbar von dB ≤ 60 µm und Schnittbreiten bs mit bs ≤ 50 µm erreichbar. Durch die Wasserstrahlführung erfolgt in vorteilhafter Weise keinerlei Veränderung der Materialeigenschaften in den Schnittrandzonen.Further structuring methods are water jet cutting and laser beam cutting. While water jet cutting involves the risk of the formation of crater-shaped cut edges, laser beam cutting tends to deposit evaporating material as a microwell next to the cut edges. Only a combination of both methods allows a high quality cut when structuring the sheet stack to a soft magnetic core. For this purpose, the diverging laser beam is held in the micro-water jet by means of total reflection and the material removed by the laser beam is carried away with the aid of the micro-water jet so that no deposits can form on the cutting edges. Consequently, burr-free cutting profiles result. The cutting edge heating is negligible, so that no thermal distortion occurs. Bore diameters d B achievable with d B ≤ 60 μm and cutting widths b s with b s ≤ 50 μm can be achieved with water-jet-guided laser beam cutting. Due to the water jet guidance, there is advantageously no change in the material properties in the cut edge zones.

In einem bevorzugten Durchführungsbeispiel des Verfahrens wird zum magnetischen Formatieren ein Schlussglühen der CoFeV-Legierung unter Inertgasatmoshphäre bei einer Formiertemperatur TF zwischen 500 °C ≤ TF ≤ 940 °C durchgeführt. Bei diesem weichmagnetischen Formatieren zeigt sich, dass die Kobalt-/Eisen-/Vanadium-Legierung anisotrop wächst, wobei die Dimensionsänderungen vermutlich durch die Ordnungseinstellung im System CoFe verursacht wird, und eine Anisotropie der Dimensionsänderung auf die beim Kaltwalzen entstehenden Textur zurückzuführen ist.In a preferred embodiment of the method, for magnetic formatting, a final annealing of the CoFeV alloy under inert gas atmosphere at a forming temperature T F is performed between 500 ° C ≤ T F ≤ 940 ° C. This soft magnetic formatting shows that the cobalt / iron / vanadium alloy grows anisotropically, the dimensional changes probably being caused by the order setting in the CoFe system, and an anisotropy of the dimensional change due to the cold rolling texture.

So wird eine Längenänderung von etwa 0,2 % in Walzrichtung und eine Längenänderung von 0,1 % in Querrichtung zur Walzrichtung beim nachfolgenden Formieren festgestellt. Wenn von einer Kerngröße von 200 mm ausgegangen wird, so ändern sich die Bleche um 0,4 mm in der einen und nur 0,2 mm in der anderen Richtung, so dass der Querschnitt eines zylindrischen weichmagnetischen Kerns von einer Kreisform vor dem Formieren in eine Ellipsenform nach dem Formieren übergeht. Diese Formänderung wird durch das erfindungsgemäße Verfahren vermieden, indem das Erodieren des Blechpakets erst nach dem weichmagnetischen Formieren bzw. nach dem Schlussglühen der CoFeV-Legierung erfolgt.Thus, a change in length of about 0.2% in the rolling direction and a change in length of 0.1% in the transverse direction to the rolling direction in the subsequent forming determined. When assuming a core size of 200 mm, the sheets change by 0.4 mm in one and only 0.2 mm in the other direction, so that the cross section of a cylindrical soft magnetic core of a circular shape before forming into a Ellipse shape after forming passes. This change in shape is avoided by the inventive method by the erosion of the laminated core takes place only after the soft magnetic forming or after the final annealing of the CoFeV alloy.

In einem weiteren bevorzugten Durchführungsbeispiel des Verfahrens werden die Bleche beim Stapeln zu einem Paket unter unterschiedlichen Texturrichtungen zueinander ausgerichtet. Dieses Ausrichten in unterschiedliche Texturrichtungen steht im Gegensatz zu dem aus der Druckschrift CH 668 331 A5 bekannten Vorgehensweise und hat in diesem Fall den Vorteil, dass insbesondere für rotierende weichmagnetische Kerne die Tendenzen Unwuchten auszubilden, vermindert werden. Außerdem werden texturbedingte Anisotropien der magnetischen und mechanischen Eigenschaften ausgeglichen und eine rotationssymmetrische Verteilung der weichmagnetischen und mechanischen Eigenschaften erreicht. Vorzugsweise werden die Bleche in Bezug auf ihre Texturrichtungen in einem 45°-Winkel im Uhrzeigersinn oder im Gegenuhrzeigersinn nacheinander ausgerichtet. Somit können die oben erwähnten Längendifferenzen, insbesondere wenn das weichmagnetische Formieren erst mit dem gesamten Blechpaket durchgeführt wird, besser ausgeglichen werden.In a further preferred embodiment of the method, the sheets are aligned with each other during stacking into a package under different texture directions. This alignment in different directions of texture is in contrast to that of the document CH 668 331 A5 known approach and in this case has the advantage that, in particular for rotating soft magnetic cores, the tendencies to form imbalances are reduced. In addition, texture-related anisotropies of the magnetic and mechanical properties are compensated and a rotationally symmetric distribution of the soft magnetic and mechanical properties is achieved. Preferably, the sheets are in relation aligned with their texture directions at a 45 ° angle in a clockwise or counterclockwise direction. Thus, the above-mentioned differences in length, especially when the soft magnetic forming is performed only with the entire laminated core, can be better compensated.

Wenn Einzellamellen bzw. Bleche des Pakets vor dem Stapeln formiert werden, so wird vorzugsweise darauf geachtet, dass die Lamellen bzw. Einzelbleche äußerst eben sind, um auf einen möglichst hohen Füllfaktor f mit f ≥ 90 % für das Blechpaket zu kommen. Die elektrisch isolierten ebenen und schlussgeglühten Bleche werden dazu versetzt gestapelt, um ein beim Kaltwalzen entstehendes Linsenprofil im Querschnitt zu kompensieren. Dieses Linsenprofil macht sich dadurch bemerkbar, dass zwischen der Blechdicke im Randbereich zu der im Mittenbereich ein Unterschied von wenigen µm auftritt. Doch bei Blechstapeln von 1000 und mehr Blechen, wie sie für den weichmagnetischen Kern eines Rotors oder Stators in einem Generator erforderlich werden, ergeben sich dabei Unterschiede von einigen Millimetern, so dass hier das Versetzen um einen 45°-Winkel oder einen 90°-Winkel eine zusätzliche Verbesserung und Vergleichmäßigung in dem Blechpaket ermöglicht.If individual laminations or laminations of the package are formed before stacking, it is preferably ensured that the lamellae or individual laminations are extremely even in order to achieve the highest possible filling factor f with f ≥ 90% for the laminated core. The electrically insulated flat and finally annealed sheets are stacked staggered to compensate for a resulting during cold rolling lens profile in cross section. This lens profile is noticeable in that a difference of a few μm occurs between the sheet thickness in the edge region and that in the center region. But with sheet metal stacks of 1000 and more sheets, as required for the soft magnetic core of a rotor or stator in a generator, this results in differences of a few millimeters, so here the offset by a 45 ° angle or a 90 ° angle an additional improvement and homogenization in the laminated core allows.

Vor dem Stapeln wird auf die magnetisch formierten Bleche mindestens einseitig eine elektrisch isolierende Beschichtung aufgebracht. Da bereits magnetisch formierte Bleche ein Schlussglühen vor dem Stapeln durchlaufen haben, kann diese isolierende Beschichtung für magnetisch bereits formierte Bleche durchaus eine Lack- oder Harzbeschichtung beinhalten, zumal das Blechpaket nicht mehr einem Schlussglühen unterzogen werden muss. Werden jedoch magnetisch formierbare Bleche gestapelt, so wird vor dem Stapeln mindestens einseitig eine keramische, elektrisch isolierende Beschichtung aufgebracht, die den oben erwähnten Formierungstemperaturen standhält. Eine Möglichkeit ist es, die magnetisch formierten Bleche vor dem Stapeln in einer Wasserdampfatmosphäre oder in einer sauerstoffhaltigen Atmosphäre unter Bildung einer elektrisch isolierenden Metalloxidschicht zu oxidieren. Dieses hat den Vorteil, dass eine äußerst dünne und effektive Isolation zwischen den Metallplatten auftritt.Before stacking, an electrically insulating coating is applied to the magnetically formed metal sheets at least on one side. Since already magnetically formed sheets have undergone a final annealing prior to stacking, this insulating coating for magnetic already formed sheets may well include a paint or resin coating, especially since the laminated core no longer has to be subjected to a final annealing. However, if magnetically formable metal sheets are stacked, a ceramic, electrically insulating coating is applied at least on one side prior to stacking, which withstands the above-mentioned forming temperatures. One possibility is to oxidize the magnetically-formed sheets prior to stacking in a steam atmosphere or in an oxygen-containing atmosphere to form an electrically insulating metal oxide layer. This has the advantage that an extremely thin and effective insulation between the metal plates occurs.

Für das Schlussglühen vor dem Erodieren wird das Blechpaket aus magnetisch formierbaren Blechen zwischen zwei Stahlplatten als Glühplatten eingespannt. Diese Glühplatten können bei dem nachfolgenden Erodieren ebenfalls für ein Fixieren des Blechpakets eingesetzt werden. Durch die Stahlplatten wird die Lage der Bleche nicht mehr verändert, wodurch ein maßgenaueres Blechpaket sowohl für den Innendurchmesser als auch für den Außendurchmesser sowie für die Nuten, die für den weichmagnetischen Kern eines Stators oder Rotors erforderlich sind, erhalten wird. In derartigen maßgenauen Nuten kann dann die Wicklung für einen Rotor oder Stator optimal untergebracht werden, was hohe Stromdichten im Nutenquerschnitt in vorteilhafter Weise ermöglicht.For final annealing before eroding, the laminated core of magnetically formable metal sheets is clamped between two steel plates as hotplate plates. These hot plates can also be used for fixing the laminated core in the subsequent erosion. Due to the steel plates, the position of the sheets is no longer changed, whereby a dimensionally accurate laminated core for both the inner diameter and the outer diameter and for the grooves, which are required for the soft magnetic core of a stator or rotor is obtained. In such dimensionally accurate grooves then the winding for a rotor or stator can be optimally accommodated, which allows high current densities in the groove cross-section in an advantageous manner.

In einer bevorzugten Ausführungsform der Erfindung wird ein Generator mit Stator und Rotor für hochtourige Flugturbinen geschaffen, wobei der Stator und/oder Rotor einen weichmagnetischen laminierten Kern aufweist. Der weichmagnetische Kern ist aus einem formstabil erodierten Blechpaket eines Stapels einer Vielzahl weichmagnetisch formierter Bleche einer CoFeV-Legierung geformt. Die Bleche des Blechpaketes weisen dabei eine Kaltwalztextur auf, und sind in dem Blechpaket in unterschiedlichen Texturrichtungen zueinander ausgerichtet, wobei die Texturrichtungen der einzelnen Bleche in einem 45°-Winkel oder in einem 90°-Winkel zueinander ausgerichtet sind. Ein derartiger weichmagnetischer Kern hat den Vorteil, dass er eine überdurchschnittlich hohe Sättigungsinduktion von etwa 2,4 T aufweist und gleichzeitig die mechanischen Eigenschaften mit einer Streckgrenze von über 600 MPa für die extremen Belastungen, wie sie in Generatoren für hochtourige Flugturbinen mit Drehzahlen zwischen 10.000 U/min 40.000 U/min auftreten, gewachsen ist.In a preferred embodiment of the invention, a generator is provided with stator and rotor for high-speed aircraft turbines, wherein the stator and / or rotor has a soft magnetic laminated core. The soft-magnetic core is formed from a dimensionally stable eroded laminated core of a stack of a plurality of soft-magnetically formed sheets of a CoFeV alloy. The sheets of the laminated core in this case have a cold rolling texture, and are aligned in the laminated core in different texture directions to each other, the texture directions of the individual sheets are aligned at a 45 ° angle or at a 90 ° angle to each other. Such a soft magnetic core has the advantage that it has a higher than average saturation induction of about 2.4 T and at the same time has the mechanical properties with a yield strength of about 600 MPa for the extreme loads, such as occur in generators for high-speed aircraft turbines with speeds between 10,000 rev / min 40,000 rev / min.

Die Texturrichtungen der einzelnen Bleche sind in einem 45°-Winkel zueinander ausgerichtet, so dass sich die Unterschiede in den Dimensionsänderungen der unterschiedlichen Texturrichtungen ausgleichen. Für die Dicke der weichmagnetischen Bleche in dem Blechpaket werden vorzugsweise Bleche mit Dicken d von d < 350 µm oder von d < 150 µm und insbesondere äußerst dünne Bleche mit Dicken in der Größenordnung von 75 µm eingesetzt. Diese dünnen weichmagnetischen Bleche weisen mindestens einseitig eine elektrisch isolierende Beschichtung auf, wobei diese isolierende Beschichtung eine Oxidschicht sein kann.The texture directions of the individual sheets are aligned at a 45 ° angle to each other, so that compensate for the differences in the dimensional changes of the different directions of texture. For the thickness of the soft magnetic sheets in the laminated core preferably sheets with thicknesses d of d <350 microns or d <150 microns and in particular extremely thin sheets are used with thicknesses in the order of 75 microns. These thin, soft-magnetic sheets have an electrically insulating coating on at least one side, wherein this insulating coating can be an oxide layer.

Keramische Beschichtungen werden für Bleche in Blechpaketen dann eingesetzt, wenn das weichmagnetische Formieren in Form eines Schlussglühens des Blechpakets nach dem Stapeln und vor der erusiven Formgebung durchgeführt wird.Ceramic coatings are used for sheets in laminated cores when the soft magnetic forming in the form of a final annealing of the laminated core is carried out after stacking and before the erusiven shaping.

Abhängig von den Dimensionen, die für derartige weichmagnetische Kerne eines Rotors oder eines Stators erforderlich sind, wird eine Vielzahl n von weichmagnetisch formierten Blechen gestapelt, wobei die Zahl n ≥ 100 ist. Neben den Hauptbestandteilen der CoFeV-Legierung kann diese Legierung auch mindestens ein Element aus der Gruppe Ni Zr, Ta oder Nb als weitere Legierungselemente aufweisen. Dabei liegt der Zirkoniumgehalt in einer bevorzugten Ausführungsform der Erfindung oberhalb 0,3 Gew.%, wodurch wesentlich bessere mechanische Eigenschaften unter gleichzeitiger Erzielung hervorragender magnetischer Eigenschaften erreicht werden.Depending on the dimensions required for such soft magnetic cores of a rotor or a stator, a plurality n of soft magnetic formed sheets are stacked, wherein the number n is ≥ 100. In addition to the main constituents of the CoFeV alloy, this alloy may also have at least one element from the group Ni Zr, Ta or Nb as further alloying elements. In this case, the zirconium content in a preferred embodiment of the invention is above 0.3% by weight, resulting in much better mechanical properties Properties can be achieved while achieving excellent magnetic properties.

Diese Verbesserung ist auch darauf zurückzuführen, dass es durch die Zugabe von Zirkon in einer Menge oberhalb von 0,3 Gew.% innerhalb des Gefüges der CoFeV-Legierung mitunter zur Ausbildung einer bisher nicht bekannten kubischen Laves-Phase zwischen den einzelnen Körner der CoFeV-Legierung kommt, die diesen positiven Einfluss auf die mechanischen und magnetischen Eigenschaften bewirken.This improvement is also due to the fact that the addition of zirconium in an amount above 0.3 wt.% Within the microstructure of the CoFeV alloy sometimes leads to the formation of a hitherto unknown cubic Laves phase between the individual grains of the CoFeV alloy. Alloy comes, which cause this positive influence on the mechanical and magnetic properties.

Um die Streckgrenzen über 600 MPa zu vergrößern, werden die Elemente Tantal oder Niob hinzulegiert, wobei vorzugsweise ein Gehalt von 0,04 ≤ (Ta + 2 x Nb) ≤ 0,8 Gew.% eingehalten wird.In order to increase the yield strengths above 600 MPa, the elements tantalum or niobium are added, whereby preferably a content of 0.04 ≦ (Ta + 2 × Nb) ≦ 0.8% by weight is maintained.

Als besonders geeignet hat sich eine CoFeV-Legierung gezeigtbestehend aus
35,0 ≤ Co ≤ 55,0 Gew.%,
0,75 ≤ V ≤ 2,5 Gew.%,
0 ≤ (Ta + 2 x Nb) ≤ 1,0 Gew.%,
0,3 < Zr ≤ 1,5 Gew.%,
Ni ≤ 5,0 Gew.%,
Rest Fe sowie erschmelzungsbedingten und/oder zufälligen Verunreinigungen.
Particularly suitable is a CoFeV alloy consisting of
35.0 ≦ Co ≦ 55.0% by weight,
0.75 ≦ V ≦ 2.5% by weight,
0 ≤ (Ta + 2 x Nb) ≤ 1.0 wt%,
0.3 <Zr ≤ 1.5% by weight,
Ni ≤ 5.0% by weight,
Remainder of Fe as well as melting and / or accidental impurities.

Die Erfindung wird nun anhand eines Ausführungsbeispiels näher erläutert.The invention will now be explained in more detail with reference to an embodiment.

Für Aktuatoren, Generatoren und/oder Elektromotoren für Luftfahrtanwendungen wird in vorteilhafter Weise eine CoFeV-Legierung eingesetzt, um eine Gewichtsreduktion der Systeme zu erreichen. Bei Stator- und Rotorblechpaketen von sog. Reluktanz-Motoren für Luftfahrtanwendungen werden neben einer hohen magnetischen Sättigung und guten weichmagnetischen Eigenschaften des Materials äußerst enge Toleranzen der Abmessungen gefordert.For actuators, generators and / or electric motors for aerospace applications, a CoFeV alloy is advantageously used in order to achieve a weight reduction of the systems. For stator and rotor core packages of so-called reluctance motors For aerospace applications, in addition to high magnetic saturation and good soft magnetic properties of the material, extremely close dimensional tolerances are required.

Bei den hohen Drehzahlen bis zu 40.000 U/min muss vor allem der Rotor eine hohe Festigkeit aufweisen. Um auch die Verluste bei den hohen Wechselfeldfrequenzen niedrig zu halten, werden diese Pakete für den weichmagnetischen Kern des Rotors bzw. des Stators aus extrem dünnen weichmagnetischen Blechen von 500, 350 oder 150 µm oder 75 µm aufgebaut. Die Abmessungen eines Stators liegen bei dieser Ausführungsform der Erfindung bei einem Außendurchmesser von ca. 250 mm, einem Innendurchmesser von ca. 150 mm bei einer Blechdicke von 300 µm und einer Höhe von ca. 200 mm.At high speeds of up to 40,000 rpm, it is above all the rotor that must have high strength. In order to keep the losses at the high alternating field frequencies low, these packages for the soft magnetic core of the rotor or the stator of extremely thin soft magnetic sheets of 500, 350 or 150 microns or 75 microns are constructed. The dimensions of a stator are in this embodiment of the invention with an outer diameter of about 250 mm, an inner diameter of about 150 mm at a plate thickness of 300 microns and a height of about 200 mm.

Dazu werden außen ca. 650 Bleche im Blechpaket für den Stator eingesetzt. Wie oben erwähnt bei den CoFeV-Legierungen nach einem magnetischen Schlussglühen oder Formieren von kaltgewalzten Bändern ein Längenwachstum von 0,2 % in Bandrichtung und ein Breitenwachstum von 0,1 % senkrecht zur Bandrichtung auf. Um dennoch die Maßhaltigkeit von Teilen mit engen Toleranzbereichen sicherzustellen, werden in dieser Ausführungsform der Erfindung, die Teile aus formierten Bändern hergestellt. Um die einzelnen Bleche voneinander zu isolieren, wird in dieser Ausführungsform der Erfindung ein Oxidationsglühen der Bleche nach dem Formieren angeschlossen. Wegen der geringen Blechdicken und den engen Maßtoleranzen wäre eine Einzelblechfertigung und ein anschließendes Stapeln dieser fertigen Bleche mit einem hohen Aufwand und hohen Ausfallraten verbunden. Somit wird bei dieser Durchführung des Verfahrens das Erodieren eines Paketes aus weichmagnetisch formierten und schlussgeglühten sowie oxidierten Blechen durchgeführt.For this purpose, about 650 sheets are used in the laminated core for the stator on the outside. As mentioned above, in the CoFeV alloys, after magnetic finish annealing or cold-rolled strip forming, 0.2% tape-length growth and 0.1% widthwise growth perpendicular to the tape direction. In order nevertheless to ensure the dimensional accuracy of parts with narrow tolerance ranges, in this embodiment of the invention, the parts are made of formed bands. In order to insulate the individual sheets from one another, an oxidation annealing of the sheets after forming is connected in this embodiment of the invention. Because of the small sheet thicknesses and the narrow dimensional tolerances, a single sheet production and subsequent stacking of these finished sheets would be associated with a high cost and high failure rates. Thus, in this implementation of the method, the erosion of a package of soft magnetic formed and finally annealed and oxidized sheets.

Zusammenfassend sind folgende drei Hauptschritte durchzuführen, nämlich einmal das magnetische Formieren bzw. Schlussglühen von elektrisch isolierten Blechen oder Bandabschnitten, anschließend optional das Oxidationsglühen dieser einzelnen Bleche bzw. Bandabschnitte und schließlich das Bilden eines Pakets und das Erodieren eines Rotorkerns bzw. Statorkerns aus diesem Paket. Dazu werden im einzelnen folgende Verfahrensschritte durchgeführt.In summary, the following three main steps are to be carried out, namely once the magnetic annealing of electrically insulated sheets or strip sections, then optionally the oxidation annealing of these individual sheets or strip sections and finally forming a package and eroding a rotor core or stator core from this package. For this purpose, the following process steps are carried out in detail.

Zunächst wird als Vormaterial ein Vormaterial mit engen Toleranzforderungen an das Ausgangsband in Bezug auf seine Ellipsenform und seine Bogigkeit eingesetzt. Dabei sind die Dickentoleranzen nach der Norm EN10140C einzuhalten. Bei einer Dicke eines Bleches von 350 µm bedeutet das eine Toleranz von +/- 15 µm, bei einer Dicke von 150 µm bedeutet das eine Toleranz von +/- 8 µm und bei einer Dicke von 75 µm bedeutet das eine Toleranz von +/- 5 µm. Beim Schneiden der Bleche wird darauf geachtet, dass der Grat an den Rändern der Bleche gering gehalten wird.First of all, a starting material with tight tolerance requirements on the starting strip in relation to its elliptical shape and its pucker is used as the starting material. The thickness tolerances according to EN10140C must be observed. With a thickness of 350 μm this means a tolerance of +/- 15 μm, with a thickness of 150 μm this means a tolerance of +/- 8 μm and with a thickness of 75 μm this means a tolerance of +/- 5 μm. When cutting the sheets, care is taken to keep the burr at the edges of the sheets low.

Deshalb wird eine speziell entwickelte Ablängeinrichtung für einen deutlich geringeren Grat beim Ablängen der Bleche aus dem Band eingesetzt. Um die Bleche bei einem sich anschließenden Oxidationsprozess zu halten, werden in Bereichen, die nicht für den Kern des Rotors oder Stators gebraucht werden, 1 - 2 Löcher gestanzt, um die Bleche in der Oxidationsanlage aufzuhänge.Therefore, a specially developed cutting device is used for a significantly lower burr when cutting the sheets from the strip. In order to hold the sheets in a subsequent oxidation process, in areas not needed for the core of the rotor or stator, 1-2 holes are punched to suspend the sheets in the oxidation plant.

Das Formieren mittels Schlussglühen erfolgt zwischen ebenen Glühplatten aus Stahl oder aus Keramik. Dabei ist für die jeweilige Stapelhöhe beim Glühen eine homogene Temperaturverteilung sicherzustellen. Die Dauer des Formierens liegt bei 3 Stunden bei einer Stapeldicke von 4 cm und etwa bei 6 Stunden bei einer Stapeldicke von 7 cm. Dazu werden zur Beschwerung der Blechsplatten Glühplatten mit einer Dicke von 15 mm verwendet, die eben aufliegen und deren Ebenheit regelmäßig geprüft wird. Beim Aufstapeln der Bleche sind die einzelnen Lagen untereinander zu wenden, so dass die Richtung des jeweiligen Bogens im Stapel mehrfach wechselt.Forming by means of final annealing is carried out between flat hot plates made of steel or ceramic. It is for the respective Stack height during annealing to ensure a homogeneous temperature distribution. The duration of the forming is 3 hours with a stack thickness of 4 cm and about 6 hours with a stack thickness of 7 cm. To this end, for the weighting of the sheet metal plates, hot plates with a thickness of 15 mm are used which lie flat and whose flatness is checked regularly. When stacking the sheets, the individual layers are to be turned together, so that the direction of the respective sheet in the stack changes several times.

Für eine Nachprüfung der Formatierung mittels Schlussglühens werden in jeden Stapel Stanzringe und Zugproben beigelegt, wobei die Probenmenge auch an der Anzahl der notwendigen folgenden Oxidationsglühungen bemessen wird. An den Stanzringen werden die magnetischen Eigenschaften überprüft und mit den Zugproben werden die mechanischen Grenzen ermittelt. Die Oxidation wiederum wird anschließend durchgeführt, indem die Platten einzeln und sich nicht berührend in einem Oxidationsofen aufgehängt werden und die Oxidation unter Wasserdampf oder an Luft durchgeführt wird. Dabei richten sich die Oxidationsparameter nach dem Ummagnetierungsierungsfrequenzen und nach der späteren Anforderung für das stoffschlüssige Fixieren der Blechpakete, je nachdem ob die Blechpakete zu einem Stapel zusammengeklebt oder zusammengeschweißt werden. Die Lagenisolation wird jeweils durch eine Widerstandsmessung überprüft, zumal nicht isolierte Blechbereiche im Paket zu lokalen Verlustmaxima führen können und damit eine lokale Aufheizung im Rotor oder Stator nach sich ziehen, was vermieden werden soll. Beim Stapeln zum Erodieren ist eine Versetzung der Bleche um einen 45°-Winkel von Vorteil.For a re-examination of the formatting by means of final annealing, punch rings and tensile specimens are added to each stack, whereby the amount of sample is also determined by the number of necessary subsequent oxidation anneals. The magnetic properties are checked on the punched rings and the tensile strength is used to determine the mechanical limits. The oxidation, in turn, is then carried out by suspending the plates one at a time and without touching in an oxidation oven, and carrying out the oxidation under water vapor or in air. In this case, the oxidation parameters depend on the Ummagnetierungsierungsfrequenzen and after the later request for the cohesive fixing of the laminated cores, depending on whether the laminated cores are glued together to form a stack or welded together. The layer insulation is checked in each case by a resistance measurement, especially since non-insulated sheet metal areas in the package can lead to local loss maxima and thus cause local heating in the rotor or stator, which should be avoided. When stacking for eroding a displacement of the sheets by a 45 ° angle is advantageous.

Jedoch können sich durch die Ellipsenform des verwendeten Bandes mit einer größten Banddicke in der Mitte Luftspalte zwischen den Blechen am Stapelrand ergeben. Durch die 45°-Versetzung werden diese Luftspalte minimiert. Zum Erodieren wird das Blechpaket erst eingespannt, um ein Aufbiegen der Bleche während des Erosionsvorgangs zu verhindern und ein Eindringen von Isolierflüssigkeit zwischen die Bleche gering zu halten.However, due to the elliptical shape of the tape used, with the largest tape thickness in the middle, air gaps may be present result between the sheets at the stack edge. Due to the 45 ° -Versetzung these air gaps are minimized. For eroding the laminated core is first clamped to prevent bending of the sheets during the erosion process and to keep penetration of insulating liquid between the sheets low.

Nach dem Erodieren wird der entstandene weichmagnetische Kern getrocknet und anschließend trocken gelagert. Durch die Probenringe, die während des Formierens von jedem Stapel genommen werden, können die Eigenschaften des Vormaterials und die Qualität der Schlussglühung ermittelt werden, zumal eine Messung der Magneteigenschaft am fertigen Paket in der Regel nicht möglich ist. Nach dem Fertigen des Kerns wird dieser nochmals geprüft, wobei in einem Durchführungsbeispiel der Erfindung ein Stator hergestellt wurde, bei dem in den Endma-ßen festgestellt werden konnte, dass der Durchmesser außen mit einem Sollwert von ca. 250 mm und einer Toleranz +0/-0,4 mm eine Istwertabweichung zwischen -3 µm bis -33 µm zeigte.After eroding, the resulting soft magnetic core is dried and then stored dry. Through the sample rings taken from each stack during forming, the properties of the primary material and the quality of the final annealing can be determined, especially since a measurement of the magnetic property on the finished package is usually not possible. After the core has been manufactured, it is tested again, wherein in one implementation example of the invention a stator was produced in which it was possible to determine in the final dimensions that the outside diameter had a nominal value of approximately 250 mm and a tolerance of +0 / -0.4 mm showed an actual value deviation between -3 μm to -33 μm.

Beim Innendurchmesser, und zwar auf den Zähnen, war ein Sollwert von 180,00 + 0,1/-0 mm vorgegeben, und eine Abweichung der Istwerte zwischen +10 µm bis +15 µm konnte festgestellt werden. Der Durchmesser in den Nuten, in die ja die Wicklung eingelegt werden soll, hat einen Sollwert von 220,000 + 0,1/- 0 mm und eine Abweichung der Istwerte ergab +9 µm bis +28 µm. Insbesondere die Einhaltung der Werte des Innendurchmessers und des Innendurchmessers in den Nuten ist bei einem derartigen Stator entscheident, da ein Nachschleifen der Oberfläche nur bedingt möglich ist. Hingegen können geringe Abweichungen beim Außendurchmesser durch Nachschleifen korrigiert werden.For the inside diameter, namely on the teeth, a target value of 180.00 + 0.1 / -0 mm was specified, and a deviation of the actual values between +10 μm to +15 μm could be determined. The diameter in the slots in which the winding is to be inserted has a nominal value of 220,000 + 0,1 / - 0 mm and a deviation of the actual values resulted in +9 μm to +28 μm. In particular, compliance with the values of the inner diameter and the inner diameter in the grooves is crucial in such a stator, since a regrinding of the surface is only possible to a limited extent. On the other hand, small deviations in the outer diameter can be corrected by regrinding.

Bei verschweissten Blechpaketen ist anschließend auch eine "Reparaturglühung" möglich, die die negativen Effekte der Verarbeitung, insbesondre eine etwaige magnetische Schädigung des Blechpakets infolge des Erodierens korrigiert. Diese "Reparaturglühung" kann mit den selben Parametern wie die magnetische Schlussglühung durchgeführt werden. Bei Blechpaketen mit keramischer Isolationsbeschichtung wird das Glühen vorzugsweise in einer Wasserstoffatmosphäre und bei Blechpaketen mit einer oxidischen Isolationsbeschichtung erfolgt das Glühen vorzugsweise unter Vakuum.In welded laminated cores is then also a "repair annealing" possible, which corrects the negative effects of processing, insbesondre any magnetic damage to the laminated core due to erosion. This "repair annealing" can be performed with the same parameters as the magnetic annealing. For laminated cores with a ceramic insulation coating, the annealing is preferably carried out in a hydrogen atmosphere, and in the case of laminated cores with an oxide insulation coating, the annealing is preferably carried out under reduced pressure.

Claims (18)

  1. Method for producing a soft-magnetic core for generators, the method comprising the following steps:
    - the production of a plurality of magnetically formed sheets of a CoFe alloy or a CoFeV alloy by means of a final annealing process from sheets having a cold-rolling texture;
    - followed by the stacking the plurality of sheets to form a laminated core;
    - followed by the structuring of the laminated core of magnetically formed sheets into a soft-magnetic core, wherein the laminated core is structured into a soft-magnetic core by means of an erosion process, preferably by means of a wire erosion process, or by means of chip removal, or by means of water jet cutting, or by means of laser beam cutting or by means of water jet-guided laser beam cutting,
    characterised in that
    an electrically insulating coating is applied to at least one side of the magnetically formed sheets before stacking.
  2. Method for producing a soft-magnetic core for generators, the method comprising the following steps:
    - the production of a plurality of magnetically formable sheets of a CoFe alloy or a CoFeV alloy having a cold-rolling texture;
    - followed by the stacking the plurality of sheets to form a laminated core;
    - followed by the magnetic forming of the laminated core by means of a final annealing process;
    - followed by the structuring of the magnetically formed laminated core into a soft-magnetic core,
    wherein
    the laminated core is structured into a soft-magnetic core by means of an erosion process, preferably by means of a wire erosion process, or by means of chip removal, or by means of water jet cutting, or by means of laser beam cutting or by means of water jet-guided laser beam cutting.
  3. Method according to claim 2,
    wherein
    an electrically insulating ceramic coating is applied to at least one side of the magnetically formable sheets before stacking.
  4. Method according to claim 2 or 3,
    wherein
    the laminated core of magnetically formable sheets is located between two annealing plates before the magnetic forming process.
  5. Method according to any of the preceding claims,
    wherein
    the magnetically formed and/or formable sheets are oxidised in an oxidising atmosphere while forming an electrically insulating metal oxide layer before stacking.
  6. Method according to any of claims 2 to 5,
    wherein
    for magnetic forming, the CoFe alloy is final-annealed in an inert gas atmosphere or a vacuum at a forming temperature between 500°C ≤ TF ≤ 940°C.
  7. Method according to any of claims 2 to 6,
    wherein
    in the stacking process, the sheets are oriented in different texture directions relative to one another.
  8. Method according to any of claims 2 to 7,
    wherein
    the texture directions of the individual sheets are oriented at a 45° angle relative to one another.
  9. Method according to any of the preceding claims,
    wherein
    prior to stacking, the sheets are cold-rolled to a thickness d 75 µm ≤ d ≤ 500 µm, preferably d ≤ 150 um.
  10. Method according to any of the preceding claims,
    wherein
    for the production of rotor or stator cores, a plurality n of soft-magnetically formed and/or formable sheets of n ≥ 100 is stacked.
  11. Generator with a stator and a rotor, wherein the stator and/or the rotor has/have a soft-magnetic, laminated core produced according to claim 1 or claim 2, and wherein the soft-magnetic core comprises the dimensionally stable, structured laminated core of the stack of the plurality of soft-magnetically formed sheets of the CoFeV alloy, and wherein the sheets in the laminated core are oriented in different texture directions relative to one another,
    wherein
    the texture directions of the individual sheets are oriented at a 45° angle or a 90° angle relative to one another.
  12. Generator according to claim 11,
    wherein
    the rotor of the generator with the laminated core is located on the shaft of an aviation turbine for speeds D between 10 000 rpm < D ≤ 60 000 rpm.
  13. Generator according to claim 11 or claim 12,
    wherein
    the sheets have a thickness d of 75 µm ≤ d ≤ 500 µm, preferably of 150 µm < d ≤ 350 µm.
  14. Generator according to any of claims 11 to 13,
    wherein
    the soft-magnetic sheets have an electrically insulating oxide layer on at least one side.
  15. Generator according to any of claims 11 to 14,
    wherein
    the magnetically formable sheets have an electrically insulating ceramic layer on at least one side.
  16. Generator according to any of claims 11 to 15,
    wherein
    the soft-magnetic core of the rotor and/or the stator comprises a plurality n of soft-magnetically formed sheets, with n ≥ 100.
  17. Generator according to any of claims 11 to 16,
    wherein
    the CoFeV alloy comprises at least one of the elements from the group Zr, Ta, Nb as a further alloying element.
  18. Generator according to claim 17,
    wherein
    the CoFeV alloy consists of
    35.0 ≤ Co < 55.0 % w/w,
    0.75 ≤ V < 2.5 % w/w,
    0 ≤ (Ta + 2 x Nb) < 1.0 % w/w,
    0.3 < Zr ≤ 1.5 % w/w,
    Ni ≤ 5.0 % w/w,
    rest Fe and melting-related and/or incidental impurities.
EP06761818.1A 2005-07-20 2006-07-18 Method for production of a soft-magnetic core for generators and generator comprising such a core Active EP1905047B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005034486A DE102005034486A1 (en) 2005-07-20 2005-07-20 Process for the production of a soft magnetic core for generators and generator with such a core
PCT/DE2006/001241 WO2007009442A2 (en) 2005-07-20 2006-07-18 Method for production of a soft-magnetic core or generators and generator comprising such a core

Publications (2)

Publication Number Publication Date
EP1905047A2 EP1905047A2 (en) 2008-04-02
EP1905047B1 true EP1905047B1 (en) 2019-04-10

Family

ID=37600748

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06761818.1A Active EP1905047B1 (en) 2005-07-20 2006-07-18 Method for production of a soft-magnetic core for generators and generator comprising such a core

Country Status (4)

Country Link
US (1) US8887376B2 (en)
EP (1) EP1905047B1 (en)
DE (1) DE102005034486A1 (en)
WO (1) WO2007009442A2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10134056B8 (en) * 2001-07-13 2014-05-28 Vacuumschmelze Gmbh & Co. Kg Process for the production of nanocrystalline magnetic cores and apparatus for carrying out the process
US7909945B2 (en) * 2006-10-30 2011-03-22 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and method for its production
US8012270B2 (en) * 2007-07-27 2011-09-06 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron/cobalt/chromium-based alloy and process for manufacturing it
US9057115B2 (en) * 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it
WO2010109272A2 (en) * 2009-03-26 2010-09-30 Vacuumschmelze Gmbh & Co. Kg Laminated core having a soft magnetic material and method for joining core sheets in a bonded manner to form a soft-magnetic laminated core
US8209850B2 (en) * 2010-03-25 2012-07-03 Tempel Steel Company Method for manufacturing pencil cores
WO2012167136A2 (en) 2011-06-03 2012-12-06 Fatigue Technology, Inc. Expandable crack inhibitors and methods of using the same
US10294549B2 (en) * 2011-07-01 2019-05-21 Vacuumschmelze Gmbh & Co. Kg Soft magnetic alloy and method for producing soft magnetic alloy
US9243304B2 (en) * 2011-07-01 2016-01-26 Vacuumschmelze Gmbh & Company Kg Soft magnetic alloy and method for producing a soft magnetic alloy
EP3231086B1 (en) 2014-12-08 2020-06-03 Icepower A/S Self-oscillating amplifier with high order loop filter
CN108028122B (en) * 2016-02-01 2020-06-30 株式会社村田制作所 Electronic component and method for manufacturing the same
CN110268075A (en) * 2016-10-21 2019-09-20 Crs 控股公司 Reduce the ordering growth in soft magnetism FE-CO alloy
DE102016222805A1 (en) 2016-11-18 2018-05-24 Vacuumschmelze Gmbh & Co. Kg Semi-finished product and method for producing a CoFe alloy
KR20210082511A (en) * 2018-12-17 2021-07-05 닛폰세이테츠 가부시키가이샤 Laminated Cores and Rotating Electrical Machines
DE102019107422A1 (en) 2019-03-22 2020-09-24 Vacuumschmelze Gmbh & Co. Kg Strip made from a cobalt-iron alloy, laminated core and method for producing a strip made from a cobalt-iron alloy
EP3809560A1 (en) * 2019-10-16 2021-04-21 Siemens Aktiengesellschaft Magnetic sheet stack, method for producing same and electrical machine
DE102020102641A1 (en) 2020-02-03 2021-08-05 Vacuumschmelze Gmbh & Co. Kg Laminated core, electrical machine, transformer and method for manufacturing a laminated core
DE102020125897A1 (en) * 2020-10-02 2022-04-07 Vacuumschmelze Gmbh & Co. Kg Laminated core, electrical machine and method for manufacturing a laminated core
DE102021109326A1 (en) 2021-04-14 2022-10-20 Vacuumschmelze Gmbh & Co. Kg Process for the heat treatment of at least one sheet of a soft magnetic alloy

Family Cites Families (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502063C (en) 1927-09-16 1930-07-10 August Zopp Transformer with a leafed iron core
DE694374C (en) 1939-02-04 1940-07-31 Brown Boveri & Cie Akt Ges Process for the continuous operation of a single-channel rotary hearth furnace provided with a glow and heat exchange zone
US2225730A (en) * 1939-08-15 1940-12-24 Percy A E Armstrong Corrosion resistant steel article comprising silicon and columbium
US2926008A (en) * 1956-04-12 1960-02-23 Foundry Equipment Company Vertical oven
GB833446A (en) 1956-05-23 1960-04-27 Kanthal Ab Improved iron, chromium, aluminium alloys
DE1740491U (en) 1956-12-20 1957-02-28 Vakuumschmelze A G RING-SHAPED HOLLOW MAGNETIC CORE.
US2960744A (en) * 1957-10-08 1960-11-22 Gen Electric Equilibrium atmosphere tunnel kilns for ferrite manufacture
US3255512A (en) * 1962-08-17 1966-06-14 Trident Engineering Associates Molding a ferromagnetic casing upon an electrical component
US3502462A (en) * 1965-11-29 1970-03-24 United States Steel Corp Nickel,cobalt,chromium steel
DE1564643A1 (en) 1966-07-02 1970-01-08 Siemens Ag Ring-shaped coil core for electromagnets, choke coils and the like.
US3337373A (en) * 1966-08-19 1967-08-22 Westinghouse Electric Corp Doubly oriented cube-on-face magnetic sheet containing chromium
US3401035A (en) * 1967-12-07 1968-09-10 Crucible Steel Co America Free-machining stainless steels
US3634072A (en) * 1970-05-21 1972-01-11 Carpenter Technology Corp Magnetic alloy
DE2045015A1 (en) * 1970-09-11 1972-03-16 Siemens Ag Energy supply system, especially for aircraft, with an asynchronous generator driven by an engine with variable speed
SU338550A1 (en) 1970-10-05 1972-05-15 А. Б. Альтман, П. А. Гладышев, И. Д. Растанаев, Н. М. Шамрай METAL AND CERAMIC MAGNETIC SOFT MATERIAL
US3624568A (en) * 1970-10-26 1971-11-30 Bell Telephone Labor Inc Magnetically actuated switching devices
US3718776A (en) * 1970-12-11 1973-02-27 Ibm Multi-track overlapped-gap magnetic head, assembly
DE2242958A1 (en) 1972-08-29 1974-03-14 Siemens Ag CURRENT CONVERTER WITH PRIMARY DEVELOPMENT ARRANGEMENT EMBEDDED IN A CAST RESIN BODY
US3977919A (en) * 1973-09-28 1976-08-31 Westinghouse Electric Corporation Method of producing doubly oriented cobalt iron alloys
JPS5180998A (en) * 1975-01-14 1976-07-15 Fuji Photo Film Co Ltd
JPS5298613A (en) * 1976-02-14 1977-08-18 Inoue K Spenodal dissolvic magnet alloy
US4076525A (en) * 1976-07-29 1978-02-28 General Dynamics Corporation High strength fracture resistant weldable steels
US4120704A (en) * 1977-04-21 1978-10-17 The Arnold Engineering Company Magnetic alloy and processing therefor
JPS546808A (en) 1977-06-20 1979-01-19 Toshiba Corp Magnetic alloy of iron-chromium-cobalt base
US4160066A (en) * 1977-10-11 1979-07-03 Teledyne Industries, Inc. Age-hardenable weld deposit
DE2816173C2 (en) 1978-04-14 1982-07-29 Vacuumschmelze Gmbh, 6450 Hanau Method of manufacturing tape cores
US4201837A (en) * 1978-11-16 1980-05-06 General Electric Company Bonded amorphous metal electromagnetic components
DE2924280A1 (en) * 1979-06-15 1981-01-08 Vacuumschmelze Gmbh AMORPHE SOFT MAGNETIC ALLOY
JPS57164935A (en) 1981-04-04 1982-10-09 Nippon Steel Corp Unidirectionally inclined heating method for metallic strip or metallic plate
JPS599157A (en) 1982-07-08 1984-01-18 Sony Corp Heat treatment of amorphous magnetic alloy
JPS5958813A (en) 1982-09-29 1984-04-04 Toshiba Corp Manufacture of amorphous metal core
US4601765A (en) * 1983-05-05 1986-07-22 General Electric Company Powdered iron core magnetic devices
JPS59177902U (en) 1983-05-13 1984-11-28 松下電器産業株式会社 Positive characteristic thermistor device
JPS60101260U (en) 1983-12-16 1985-07-10 三輪精機株式会社 Lubrication mechanism of planetary gear reducer
JPS6158450A (en) * 1984-08-30 1986-03-25 Toshiba Corp Processing of amorphous metal core of rotary electric machine
US4648929A (en) * 1985-02-07 1987-03-10 Westinghouse Electric Corp. Magnetic core and methods of consolidating same
JP2615543B2 (en) 1985-05-04 1997-05-28 大同特殊鋼株式会社 Soft magnetic material
JPH0421436Y2 (en) 1985-08-19 1992-05-15
EP0216457A1 (en) 1985-09-18 1987-04-01 Kawasaki Steel Corporation Method of producing two-phase separation type Fe-Cr-Co series permanent magnets
JPS6293342A (en) 1985-10-17 1987-04-28 Daido Steel Co Ltd Soft magnetic material
CH668331A5 (en) * 1985-11-11 1988-12-15 Studer Willi Ag Magnetic head core mfr. from stack of laminations - involves linear machining of patterns from adhesively bonded and rolled sandwich of permeable and non-permeable layers
DE3542257A1 (en) 1985-11-29 1987-06-04 Standard Elektrik Lorenz Ag Device for tempering in a magnetic field
DE3611527A1 (en) 1986-04-05 1987-10-08 Vacuumschmelze Gmbh METHOD FOR OBTAINING A FLAT MAGNETIZING LOOP IN AMORPHOUS CORES BY A HEAT TREATMENT
JPH0319307Y2 (en) 1986-05-12 1991-04-24
JPS63115313A (en) 1986-11-04 1988-05-19 Kawasaki Steel Corp Manufacture of core using amorphous magnetic alloy thin strip laminated plate
US4881989A (en) 1986-12-15 1989-11-21 Hitachi Metals, Ltd. Fe-base soft magnetic alloy and method of producing same
DE3884491T2 (en) 1987-07-14 1994-02-17 Hitachi Metals Ltd Magnetic core and manufacturing method.
US4923533A (en) * 1987-07-31 1990-05-08 Tdk Corporation Magnetic shield-forming magnetically soft powder, composition thereof, and process of making
JPS6453404U (en) 1987-09-30 1989-04-03
KR910009974B1 (en) * 1988-01-14 1991-12-07 알프스 덴기 가부시기가이샤 High saturated magnetic flux density alloy
JP2698369B2 (en) * 1988-03-23 1998-01-19 日立金属株式会社 Low frequency transformer alloy and low frequency transformer using the same
JPH0215143A (en) * 1988-06-30 1990-01-18 Aichi Steel Works Ltd Soft magnetic stainless steel for cold forging
DE3824075A1 (en) * 1988-07-15 1990-01-18 Vacuumschmelze Gmbh COMPOSITE BODY FOR GENERATING VOLTAGE PULSES
JPH0633199Y2 (en) 1988-08-05 1994-08-31 三和シヤッター工業株式会社 Traffic control device in electric shutter for construction
JP2597678B2 (en) 1988-10-20 1997-04-09 松下電工株式会社 Current transformer
JPH02301544A (en) 1989-05-13 1990-12-13 Aichi Steel Works Ltd Soft-magnetic alloy with high electric resistance for cold forging
US5252148A (en) * 1989-05-27 1993-10-12 Tdk Corporation Soft magnetic alloy, method for making, magnetic core, magnetic shield and compressed powder core using the same
US5091024A (en) * 1989-07-13 1992-02-25 Carpenter Technology Corporation Corrosion resistant, magnetic alloy article
US4994122A (en) * 1989-07-13 1991-02-19 Carpenter Technology Corporation Corrosion resistant, magnetic alloy article
JPH03146615A (en) 1989-11-02 1991-06-21 Toshiba Corp Production of fe-base soft-magnetic alloy
EP0429022B1 (en) 1989-11-17 1994-10-26 Hitachi Metals, Ltd. Magnetic alloy with ulrafine crystal grains and method of producing same
DE69018422T2 (en) * 1989-12-28 1995-10-19 Toshiba Kawasaki Kk Iron-based soft magnetic alloy, its manufacturing process and magnetic core made from it.
JPH03223444A (en) 1990-01-26 1991-10-02 Alps Electric Co Ltd High saturation magnetic flux density alloy
US5268044A (en) * 1990-02-06 1993-12-07 Carpenter Technology Corporation High strength, high fracture toughness alloy
CA2040741C (en) * 1990-04-24 2000-02-08 Kiyonori Suzuki Fe based soft magnetic alloy, magnetic materials containing same, and magnetic apparatus using the magnetic materials
JPH0559498A (en) * 1990-12-28 1993-03-09 Toyota Motor Corp Ferritic heat resistant cast steel and its manufacture
JP2975142B2 (en) * 1991-03-29 1999-11-10 株式会社日立製作所 Amorphous iron core manufacturing method and apparatus
JP3147926B2 (en) 1991-06-13 2001-03-19 株式会社デンソー Stator for solenoid
US5622768A (en) * 1992-01-13 1997-04-22 Kabushiki Kaishi Toshiba Magnetic core
JPH05283238A (en) 1992-03-31 1993-10-29 Sony Corp Transformer
JPH05299232A (en) 1992-04-20 1993-11-12 Matsushita Electric Ind Co Ltd Resin molded magnetic material
JPH06176921A (en) 1992-12-02 1994-06-24 Nippondenso Co Ltd Method and equipment for manufacturing cylindrical stator
JPH06224023A (en) 1993-01-28 1994-08-12 Sony Corp Manufacture of ferrite resin
US5534081A (en) * 1993-05-11 1996-07-09 Honda Giken Kogyo Kabushiki Kaisha Fuel injector component
JP3688732B2 (en) * 1993-06-29 2005-08-31 株式会社東芝 Planar magnetic element and amorphous magnetic thin film
JP3233313B2 (en) 1993-07-21 2001-11-26 日立金属株式会社 Manufacturing method of nanocrystalline alloy with excellent pulse attenuation characteristics
DE69408916T2 (en) * 1993-07-30 1998-11-12 Hitachi Metals Ltd Magnetic core for pulse transmitters and pulse transmitters
AUPM644394A0 (en) * 1994-06-24 1994-07-21 Electro Research International Pty Ltd Bulk metallic glass motor and transformer parts and method of manufacture
ATE224581T1 (en) * 1994-06-24 2002-10-15 Electro Res Internat Pty Ltd METAL GLASS CUTTING APPARATUS AND METHOD
US5611871A (en) * 1994-07-20 1997-03-18 Hitachi Metals, Ltd. Method of producing nanocrystalline alloy having high permeability
US5594397A (en) * 1994-09-02 1997-01-14 Tdk Corporation Electronic filtering part using a material with microwave absorbing properties
DE19537362B4 (en) 1994-10-06 2008-03-06 Denso Corp., Kariya Method for producing a cylindrical stator
US5817191A (en) * 1994-11-29 1998-10-06 Vacuumschmelze Gmbh Iron-based soft magnetic alloy containing cobalt for use as a solenoid core
DE4442420A1 (en) 1994-11-29 1996-05-30 Vacuumschmelze Gmbh Soft magnetic iron-based alloy with cobalt for magnetic circuits or excitation circuits
DE4444482A1 (en) 1994-12-14 1996-06-27 Bosch Gmbh Robert Soft magnetic material
JP3748586B2 (en) 1995-03-08 2006-02-22 本田技研工業株式会社 Durable fuel injection valve device and method for manufacturing the same
CA2175401C (en) * 1995-05-02 1999-08-31 Toshiro Tomida Magnetic steel sheet having excellent magnetic characteristics and blanking performance
US5501747A (en) 1995-05-12 1996-03-26 Crs Holdings, Inc. High strength iron-cobalt-vanadium alloy article
DE29514508U1 (en) * 1995-09-09 1995-11-02 Vacuumschmelze Gmbh Sheet package for magnetic cores for use in inductive components with a longitudinal opening
JPH09246034A (en) 1996-03-07 1997-09-19 Alps Electric Co Ltd Magnetic core for pulse transformer
DE19608891A1 (en) 1996-03-07 1997-09-11 Vacuumschmelze Gmbh Toroidal choke for radio interference suppression of semiconductor circuits using the phase control method
DE69700259T2 (en) 1996-03-11 2000-03-16 Denso Corp Electromagnetic device with position control for stator
DE19635257C1 (en) 1996-08-30 1998-03-12 Franz Hillingrathner Compact orbital heat treatment furnace
JPH1092623A (en) 1996-09-12 1998-04-10 Tokin Corp Electromagnetic interference suppressing material
US6118365A (en) * 1996-09-17 2000-09-12 Vacuumschmelze Gmbh Pulse transformer for a u-interface operating according to the echo compensation principle, and method for the manufacture of a toroidal tape core contained in a U-interface pulse transformer
JPH1097913A (en) 1996-09-24 1998-04-14 Tokin Corp Compound magnetic body, its manufacture and electromagnetic interference restraint
FR2755292B1 (en) * 1996-10-25 1998-11-20 Mecagis PROCESS FOR MANUFACTURING A MAGNETIC CORE IN NANOCRYSTALLINE SOFT MAGNETIC MATERIAL
FR2756966B1 (en) 1996-12-11 1998-12-31 Mecagis METHOD FOR MANUFACTURING A MAGNETIC COMPONENT MADE OF SOFT MAGNETIC ALLOY IRON BASED HAVING A NANOCRYSTALLINE STRUCTURE
DE19653428C1 (en) * 1996-12-20 1998-03-26 Vacuumschmelze Gmbh Producing amorphous ferromagnetic cobalt alloy strip for wound cores
US5976274A (en) * 1997-01-23 1999-11-02 Akihisa Inoue Soft magnetic amorphous alloy and high hardness amorphous alloy and high hardness tool using the same
US5769974A (en) * 1997-02-03 1998-06-23 Crs Holdings, Inc. Process for improving magnetic performance in a free-machining ferritic stainless steel
US5741374A (en) * 1997-05-14 1998-04-21 Crs Holdings, Inc. High strength, ductile, Co-Fe-C soft magnetic alloy
JPH1167532A (en) 1997-08-19 1999-03-09 Nippon Soken Inc Manufacture of cylindrical stator
US5914088A (en) * 1997-08-21 1999-06-22 Vijai Electricals Limited Apparatus for continuously annealing amorphous alloy cores with closed magnetic path
TW455631B (en) 1997-08-28 2001-09-21 Alps Electric Co Ltd Bulky magnetic core and laminated magnetic core
DE19741364C2 (en) * 1997-09-19 2000-05-25 Vacuumschmelze Gmbh Method and device for producing packages for magnetic cores consisting of sheet metal lamellae
JPH11102827A (en) * 1997-09-26 1999-04-13 Hitachi Metals Ltd Saturable reactor core and magnetic amplifier mode high output switching regulator using the same, and computer using the same
JP4216917B2 (en) * 1997-11-21 2009-01-28 Tdk株式会社 Chip bead element and manufacturing method thereof
IL128067A (en) 1998-02-05 2001-10-31 Imphy Ugine Precision Iron-cobalt alloy
DE19818198A1 (en) * 1998-04-23 1999-10-28 Bosch Gmbh Robert Producing rotor or stator from sheet metal blank
EP1114429B1 (en) * 1998-09-17 2003-11-12 Vacuumschmelze GmbH Current transformer with a direct current tolerance
US6462456B1 (en) * 1998-11-06 2002-10-08 Honeywell International Inc. Bulk amorphous metal magnetic components for electric motors
US6331363B1 (en) 1998-11-06 2001-12-18 Honeywell International Inc. Bulk amorphous metal magnetic components
ES2264277T3 (en) 1998-11-13 2006-12-16 Vacuumschmelze Gmbh SUITABLE MAGNETIC NUCLEUS FOR USE IN AN INTENSITY TRANSFORMER, PROCEDURE FOR MANUFACTURING A MAGNETIC NUCLEUS AND INTENSITY TRANSFORMER WITH A MAGNETIC NUCLEUS.
JP2000182845A (en) 1998-12-21 2000-06-30 Hitachi Ferrite Electronics Ltd Composite core
DE19860691A1 (en) 1998-12-29 2000-03-09 Vacuumschmelze Gmbh Magnet paste for production of flat magnets comprises a carrier paste with embedded particles made of a soft-magnetic alloy
DE19907542C2 (en) * 1999-02-22 2003-07-31 Vacuumschmelze Gmbh Flat magnetic core
JP2000277357A (en) 1999-03-23 2000-10-06 Hitachi Metals Ltd Saturatable magnetic core and power supply apparatus using the same
EP1045402B1 (en) * 1999-04-15 2011-08-31 Hitachi Metals, Ltd. Soft magnetic alloy strip, manufacturing method and use thereof
US6181509B1 (en) * 1999-04-23 2001-01-30 International Business Machines Corporation Low sulfur outgassing free machining stainless steel disk drive components
DE19928764B4 (en) 1999-06-23 2005-03-17 Vacuumschmelze Gmbh Low coercivity iron-cobalt alloy and process for producing iron-cobalt alloy semi-finished product
JP2001068324A (en) 1999-08-30 2001-03-16 Hitachi Ferrite Electronics Ltd Powder molding core
JP3617426B2 (en) * 1999-09-16 2005-02-02 株式会社村田製作所 Inductor and manufacturing method thereof
FR2808806B1 (en) * 2000-05-12 2002-08-30 Imphy Ugine Precision IRON-COBALT ALLOY, IN PARTICULAR FOR A MOBILE CORE OF ELECTROMAGNETIC ACTUATOR, AND ITS MANUFACTURING METHOD
DE10024824A1 (en) 2000-05-19 2001-11-29 Vacuumschmelze Gmbh Inductive component and method for its production
DE10031923A1 (en) 2000-06-30 2002-01-17 Bosch Gmbh Robert Soft magnetic material with a heterogeneous structure and process for its production
DE10045705A1 (en) * 2000-09-15 2002-04-04 Vacuumschmelze Gmbh & Co Kg Magnetic core for a transducer regulator and use of transducer regulators as well as method for producing magnetic cores for transducer regulators
AU2002226875A1 (en) * 2000-10-10 2002-04-22 Crs Holdings, Inc. Co-Mn-Fe soft magnetic alloys
US6737784B2 (en) * 2000-10-16 2004-05-18 Scott M. Lindquist Laminated amorphous metal component for an electric machine
US6416879B1 (en) * 2000-11-27 2002-07-09 Nippon Steel Corporation Fe-based amorphous alloy thin strip and core produced using the same
US6685882B2 (en) 2001-01-11 2004-02-03 Chrysalis Technologies Incorporated Iron-cobalt-vanadium alloy
JP3593986B2 (en) * 2001-02-19 2004-11-24 株式会社村田製作所 Coil component and method of manufacturing the same
JP2002324714A (en) * 2001-02-21 2002-11-08 Tdk Corp Coil sealed dust core and its manufacturing method
JP4284004B2 (en) * 2001-03-21 2009-06-24 株式会社神戸製鋼所 Powder for high-strength dust core, manufacturing method for high-strength dust core
JP2002294408A (en) 2001-03-30 2002-10-09 Nippon Steel Corp Iron-based vibration damping alloy and manufacturing method therefor
DE10119982A1 (en) * 2001-04-24 2002-10-31 Bosch Gmbh Robert Fuel injection device for an internal combustion engine
US6668444B2 (en) * 2001-04-25 2003-12-30 Metglas, Inc. Method for manufacturing a wound, multi-cored amorphous metal transformer core
JP2002343626A (en) 2001-05-14 2002-11-29 Denso Corp Solenoid stator and method of manufacturing the same
DE10128004A1 (en) * 2001-06-08 2002-12-19 Vacuumschmelze Gmbh Wound inductive device has soft magnetic core of ferromagnetic powder composite of amorphous or nanocrystalline ferromagnetic alloy powder, ferromagnetic dielectric powder and polymer
US6616125B2 (en) * 2001-06-14 2003-09-09 Crs Holdings, Inc. Corrosion resistant magnetic alloy an article made therefrom and a method of using same
WO2003003385A2 (en) * 2001-06-26 2003-01-09 Johns Hopkins University Magnetic devices comprising magnetic meta-materials
DE10134056B8 (en) * 2001-07-13 2014-05-28 Vacuumschmelze Gmbh & Co. Kg Process for the production of nanocrystalline magnetic cores and apparatus for carrying out the process
JP3748055B2 (en) * 2001-08-07 2006-02-22 信越化学工業株式会社 Iron alloy plate material for voice coil motor magnetic circuit yoke and yoke for voice coil motor magnetic circuit
DE10211511B4 (en) 2002-03-12 2004-07-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for joining planar laminates arranged one above the other to form laminate packages or laminate components by laser beam welding
US6803693B2 (en) * 2002-04-11 2004-10-12 General Electric Company Stator core containing iron-aluminum alloy laminations and method of using
DE10216098A1 (en) * 2002-04-12 2003-10-23 Bosch Gmbh Robert Rotor for electrical machine, especially motor, has lamella with at least one fixing element made in one piece with lamella, and permanent magnet held between two fixing elements of one or more lamellas
JP2004063798A (en) 2002-07-29 2004-02-26 Mitsui Chemicals Inc Magnetic composite material
DE10320350B3 (en) * 2003-05-07 2004-09-30 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-based alloy used as a material for magnetic bearings and rotors, e.g. in electric motors and in aircraft construction contains alloying additions of cobalt, vanadium and zirconium
EP1503486B1 (en) * 2003-07-29 2009-09-09 Fanuc Ltd Motor and motor manufacturing apparatus
JP2006193779A (en) 2005-01-13 2006-07-27 Hitachi Metals Ltd Soft magnetic material
JP2006322057A (en) 2005-05-20 2006-11-30 Daido Steel Co Ltd Soft magnetic material
JP4764134B2 (en) 2005-10-21 2011-08-31 日本グラスファイバー工業株式会社 Conductive nonwoven fabric
US20070176025A1 (en) 2006-01-31 2007-08-02 Joachim Gerster Corrosion resistant magnetic component for a fuel injection valve
US8029627B2 (en) * 2006-01-31 2011-10-04 Vacuumschmelze Gmbh & Co. Kg Corrosion resistant magnetic component for a fuel injection valve
US7909945B2 (en) * 2006-10-30 2011-03-22 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and method for its production
DE102006055088B4 (en) 2006-11-21 2008-12-04 Vacuumschmelze Gmbh & Co. Kg Electromagnetic injection valve and method for its manufacture and use of a magnetic core for an electromagnetic injection valve
DE102007034532A1 (en) * 2007-07-24 2009-02-05 Vacuumschmelze Gmbh & Co. Kg Magnetic core, process for its production and residual current circuit breaker
US8012270B2 (en) * 2007-07-27 2011-09-06 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron/cobalt/chromium-based alloy and process for manufacturing it
US9057115B2 (en) * 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US8887376B2 (en) 2014-11-18
WO2007009442A2 (en) 2007-01-25
US20080042505A1 (en) 2008-02-21
DE102005034486A1 (en) 2007-02-01
WO2007009442A3 (en) 2007-04-26
EP1905047A2 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
EP1905047B1 (en) Method for production of a soft-magnetic core for generators and generator comprising such a core
EP2612942B1 (en) Non-grain oriented electrical steel or sheet metal, component produced from same and method for producing non-grain oriented electrical steel or sheet metal
WO2010109272A2 (en) Laminated core having a soft magnetic material and method for joining core sheets in a bonded manner to form a soft-magnetic laminated core
DE102017208719A1 (en) Soft magnetic laminated core and method for producing a soft magnetic laminated core for a stator and / or rotor of an electric machine
EP3712283B1 (en) Method of manufacturing a cobalt-iron alloy strip
WO2007116047A1 (en) Method for lamination of an electrical strip for transformer cores
EP3730286A1 (en) Laminated core and method for producing high permeability soft magnetic alloy
EP3029692A1 (en) Composite sheet metal package and method for producing the same
EP2629922B1 (en) Process for laser cutting an electric strip material by adapted laser beam output, focus diameter and advancement of the laser beam ; corresponding electric strip material
DE2366048C2 (en) Due to a heat treatment, a layer material that forms a solid layer bond for electrotechnical components operated at high frequency and processes for their production
WO2021185398A1 (en) Method for producing a layer assembly from electrical sheet metal, accordingly produced layer assembly, rotor or stator and electric motor
DE102019125862A1 (en) Multi-part stator, electrical machine and method for manufacturing a multi-part stator and an electrical machine
DE202022103395U1 (en) electrical steel
WO2019149582A1 (en) Electrical steel strip that can be but doesn&#39;t have to be reannealed
EP3503139B1 (en) Method and semi-finished product for manufacturing of at least one packet segment of a soft-magnetic component
DE102020134300A1 (en) Water-based alkaline composition for forming an insulating layer of an annealing separator, coated soft magnetic alloy and method of manufacturing a coated soft magnetic ribbon
DE102022120602A1 (en) Method for producing a sheet from a soft magnetic alloy for a laminated core
EP1795617B1 (en) Process for heat treating an electrical steel sheet
EP4027357A1 (en) Fecov alloy and method for producing a fecov alloy strip
WO2024074465A1 (en) Method for producing a cofe alloy for a laminated core
DE102021213935A1 (en) Process for manufacturing a laminated core of an electrical machine
EP4193449A1 (en) Electric machine and installation
DE102018133491A1 (en) Method for producing a semi-finished product for an electrical machine and method for producing a functional unit for an electrical machine
EP3979465A1 (en) Electrical machine and system
DE102010050844A1 (en) Laser treatment of a workpiece by a laser beam, by lowering contours with laser beam, generating two crack columns on the surface of the workpiece, and forming the grain-oriented portions with a grain orientation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070319

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100531

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502006016224

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01F

Ipc: H01F0041020000

RIC1 Information provided on ipc code assigned before grant

Ipc: H01F 1/147 20060101ALI20180319BHEP

Ipc: H01F 41/02 20060101AFI20180319BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180503

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181026

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1119796

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006016224

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190410

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190910

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190711

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190810

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006016224

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20200113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190718

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190718

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1119796

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060718

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230725

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230725

Year of fee payment: 18

Ref country code: DE

Payment date: 20230726

Year of fee payment: 18