EP1882059B1 - Operative devices installed in yarns - Google Patents
Operative devices installed in yarns Download PDFInfo
- Publication number
- EP1882059B1 EP1882059B1 EP06779056A EP06779056A EP1882059B1 EP 1882059 B1 EP1882059 B1 EP 1882059B1 EP 06779056 A EP06779056 A EP 06779056A EP 06779056 A EP06779056 A EP 06779056A EP 1882059 B1 EP1882059 B1 EP 1882059B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- filaments
- yarn
- filament
- around
- length
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920005989 resin Polymers 0.000 claims description 26
- 239000011347 resin Substances 0.000 claims description 26
- 239000002775 capsule Substances 0.000 claims description 22
- 239000004744 fabric Substances 0.000 claims description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 230000005291 magnetic Effects 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 230000003287 optical Effects 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 230000005294 ferromagnetic Effects 0.000 claims description 2
- 235000002723 Dioscorea alata Nutrition 0.000 claims 1
- 235000007056 Dioscorea composita Nutrition 0.000 claims 1
- 235000009723 Dioscorea convolvulacea Nutrition 0.000 claims 1
- 235000005362 Dioscorea floribunda Nutrition 0.000 claims 1
- 235000004868 Dioscorea macrostachya Nutrition 0.000 claims 1
- 235000005361 Dioscorea nummularia Nutrition 0.000 claims 1
- 235000005360 Dioscorea spiculiflora Nutrition 0.000 claims 1
- 240000005760 Dioscorea villosa Species 0.000 claims 1
- 235000006350 apichu Nutrition 0.000 claims 1
- 235000004879 dioscorea Nutrition 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 description 21
- 238000000034 method Methods 0.000 description 14
- 239000000835 fiber Substances 0.000 description 10
- 239000004020 conductor Substances 0.000 description 6
- 230000035882 stress Effects 0.000 description 4
- 238000010924 continuous production Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002952 polymeric resin Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 1
- 229920001225 Polyester resin Polymers 0.000 description 1
- 210000003491 Skin Anatomy 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000003203 everyday Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000002452 interceptive Effects 0.000 description 1
- 239000002365 multiple layer Substances 0.000 description 1
- 230000005298 paramagnetic Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000011528 polyamide (building material) Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 230000001681 protective Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N silver Chemical group [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001702 transmitter Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/22—Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
- D02G3/40—Yarns in which fibres are united by adhesives; Impregnated yarns or threads
- D02G3/404—Yarns or threads coated with polymeric solutions
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/44—Yarns or threads characterised by the purpose for which they are designed
- D02G3/441—Yarns or threads with antistatic, conductive or radiation-shielding properties
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/18—Physical properties including electronic components
Description
- This invention relates to operative devices and their incorporation in yarns. It relates particularly to the provision of protection for such devices for use in situations in which they would be vulnerable to damage. The invention also provides means by which operative devices may be readily incorporated into every day items and particularly fabric products.
- Operative devices such as silicon chips have application in many areas and can be used as sensors and processors of useful information, and transmitters of such information or data. They can be used in RF tagging; position and movement sensors; strain sensors; pressure sensors and signal processors. It is known to fit them in clothing products to monitor movements or characteristics of the wearer.
- It has been proposed to integrate electronic components in individual fibres for use in woven material, and in this respect reference is directed to International Patent Specification No
WO 02/095839 WO 02/084 617 - The present invention is directed specifically at the installation of an operative device within a length of a multi-filament or multi-fibre yarn. The term "filament" is used herein to encompass both filaments and fibres in yarns of this type. The yarn may, consist of natural and/or synthetic filaments (or fibres). The device can be confined in such a yarn by separating the filaments of the yarn, and installing the device therein with the filaments spread around it. According to the invention filaments of the yarn form a capsule around the device, which capsule comprises the filaments and a resin cured therebetween.
- Installation of operative devices in a yarn can be conducted in a pultrusion process, with a series of devices being installed seriatim in the same length of yarn. The devices can have conductors connected to them, which conductors can also become part of the yarn or filaments of the yarn. Thus, not only is the device confined within the yarn, but connected conductors can also become an integral part of the yarn construction. The operative device itself can take any suitable form, including electronic, such as a piezzoelectric crystal device or a silicon chip referred to above; magnetic (including ferro-magnetic and paramagnetic); optical, providing reflective or generated light signals, or showing symbols such as bar codes; and thermal to generate a signal upon heating or cooling. The device can also respond chemically to an external or internal influence, rendering the invention useful in pharmaceutical and cosmetic applications.
- In the preferred method of confining a device in a multifilament yarn to form a length of yarn according to the invention, a plurality of filaments are delivered centripetally to a central axis, and then drawn along that central axis. An operative device is delivered to the conjoining filaments at the axis to install the device between the filaments are the filaments are drawn along the axis. This method can be carried out as a continuous process with operative devices being delivered seriatim such that they are installed in successive lengths of yarn drawn along the axis. Resin can be delivered continuously to the central axis, or intermittently with each operative device, to secure and protest the device when it is confined within the yarn.
- The method described above can be readily adapted to form first and second layers of filaments around the device by delivering a further plurality of filaments to the central axis defined by the already formed multi-filament yarn. They can be drawn into and around the yarn with or without resin as required. It is also possible to install a shock-absorbing layer around the first filament layer, which is held in place by the second filament layer formed in this second stage.
- Apparatus for carrying out the method of the invention typically comprises supplies of individual filaments disposed around a central aperture to deliver filaments thereto; a mechanism for delivering operative devices to the central aperture; and means for drawing yarn formed from said filaments from the central aperture. The supplies of filaments may be mounted on a carousel having an axis coincident with the central aperture. It can include supplies of additional filaments disposed around the path of yarn drawn from the aperture to deliver yarn to the path and create an additional layer of filaments around yarn drawn from the central aperture. These can be mounted on a further carousel with a central aperture aligned with that of the first.
- The operative device within a length of yarn according to the invention is confined within a capsule around the device and comprising the yarn fibres and/or filaments. Such a capsule can be sealed around the device and at both ends to provide complete protection for the device. The resin of the capsule can also be cured around the device. Adjacent filaments of the yarn may be bonded to each other around the the device. It is also possible to create first and second layers of filaments around the device, possibly with a shock-absorbing layer between them using for example, the method outlined above.
- As noted above, one or more devices according to the invention can be encapsulated in a single length of yarn, and the yarn can be used in various forms of fabric including knitted, braided, stitch bonded and woven fabrics. If conductors are connected to the device or devices and extend within the fabric, then a central processor or power source spaced from the electronic device itself, can be readily connected thereto along those conductors. Of course, such conductors may not be needed in all circumstances, a the device may provide its own power source. Depending upon its load requirements, it may be able to generate sufficient power either from ambient light or heat, or movement. If a device is being used to monitor adjacent movement or ambient variations, then its power requirements may be very low indeed.
- The invention will now be described by way of example and with reference to the accompanying schematic drawings wherein:
-
Figure 1 illustrates a length of yarn with two operative devices installed therein; -
Figure 2 is a cross-section taken on line A-A ofFigure 1 illustrating one technique for installing a device in the yarn; -
Figure 3 is a cross-section taken on line B-B ofFigure 1 showing another technique for installing a device in the yarn; -
Figure 4 is a view similar to those ofFigures 2 and 3 , showing the creation of multiple layers of filaments around a device in the yarn; -
Figure 5 is a perspective view of a carousel of filament supply spools in apparatus according to the invention for confining operative devices in a multi-filament yarn; -
Figure 6 is an enlarged sectional view taken at the centre of the other plate of the carousel ofFigure 5 , showing how the yarn is formed around the operative device; -
Figure 7 illustrates a length of yarn with a device installed within thermally bonded filaments; and -
Figure 8 illustrates a length of yarn with a device installed within a capsule defined by resin impregnated filaments. -
Figure 1 illustrates a notional length of yarn with two operative devices installed at different locations therealong.. The yarn 2 is a multi filament yarn comprising fibre and conductive filaments 4, 6. Each electronic device does, of course, create an expanded section of yarn, and although this will be evident in the yarn, it would not be inconsistent with some yarns used in various fabrics. Accordingly, in many fabrics the presence of anything unusual in the constituent yarns will not be readily apparent. - Typical yarn diameters around a device will be of the order of 1mm using filaments of approximately 0.15 mm diameter. The volume of a typical device to be installed will be less than 0.5 mm3. The shape of the device is not critical, but it is normally rectanguloid, cylindrical or spherical. Spherical devices of diameter as little as 0.5 mm are contemplated.
-
Figure 2 illustrates how the filaments in the yarn can be distributed around the device to confine it within the yarn. It also shows how the conductive filaments and fibre filaments are distributed. As can be seen four conductive filaments 6 are located at opposite ends of perpendicular diameters in the yarn cross-section, with two fibre filaments 4 located therebetween. Resin 8 is cast within the volume defined by the filaments 4 and 6, and around the electronic device or chip 10. The resin will normally be a polymer resin such as polyester or polyurethane resin; and the fibre filaments polyester or polyamide. The conductive filaments will normally be metal filament wires in the form of a polymeric monofilament yarn with either a copper or silver metal core wire. - The cured resin 8 provides a solid casing and protection for the chip 10, which is sealed not only around the chip towards the yarn surface, but also at its ends within the yarn. The resin thus forms a solid capsule which provides effective protection for the chip even when the yarn in which it is confined is subject to the inevitable rigours of flexure during use, and particularly if used to form part of a fabric; thermal stress of the kind to which it will be subject during post processing and washing, and physical damage arising from contact with other bodies.
-
Figure 3 illustrates an alternative technique for confining and protecting an electronic device confined between the filaments of a multi filament yarn. In this variant, conductive filaments 6 are located as they are inFigure 2 , at the opposite end of perpendicular diameters. However, inFigure 3 three fibre filaments 4 are shown between adjacent conductive filament 6. The reason for this is to ensure that adjacent filaments are in proper contact. Heat is applied to the filaments in a carefully controlled manner to soften and then melt abutting external sections of filament so that a bond is created when the fibres are allowed to cool. Using heat to create these thermal bonds has the benefit of interfering less directly with the enclosed chip 10, but does, of course, expose the chip to heat. What, or which of the two techniques described herein should be used does therefore depend very much upon the nature of the component filaments in the yarn; the characteristics of the chip, and its potential vulnerability on the one hand to heat and on the other to a chemical resin, as well as the need to ensure that the chip is securely held or encapsulated within the filaments of the yarn. In this respect, it should be noted that impregnating with resin the volume defined by the yarn filaments around the chip wholly envelopes or encapsulates the chip thereby providing maximum stability and protection. The thermal bonding technique ofFigure 3 does not so readily provide a seal at the axial ends of the chip but as a consequence, the chip is more readily accessible by virtue of being more exposed at its ends. -
Figure 4 shows how two layers of filaments can be arranged around an operative device in a multi-filament yarn. A group of inner filaments 12 creates a first protective layer around an operative device 14 within a mass of resin 16 in a manner similar to the arrangements described above with reference toFigures 2 and 3 . Outer filaments 18 form a second layer around the first layer, and in the arrangement shown a shock-absorbing layer 20 is interposed between the first and second layers. The use of two separate layers of filaments enables the inner layer to provide protection for the operative device. The outer layer, as well as providing some additional protection, can serve to identify the nature of the confined device 14, for example by being colour coded. - The shock-absorbing layer 20 is not essential to the arrangement of
Figure 4 , and can be omitted. However, by providing what can be a relatively stiff shell around the protective device, it enables the use of a softer resin encapsulating the device 14, and this can be of value in some circumstances. The layer 20 is typically a ring pre-formed from a length of plastics tube, itself reinforced by auxiliary filaments 22. These auxiliary filaments can be glass fibre filaments, but metal filaments could also be used, depending upon the nature of the operative device 14 and the influence they might have on its function. -
Figures 5 and 6 illustrate a preferred process for confining an operative device within a multi-filament yarn of the invention. A plurality of spools 24 are arranged in a carousel 26 from which filaments 28 are drawn through appropriate openings in an upper plate 30, and then drawn to the carousel axis as indicated. At the axis the filaments 28 are drawn into a manifold from which they are drawn downwards along the axis. The carousel 26 will normally rotate during the process to impart a twist to the drawn yarn, but may be stationary. - The filaments 28 are drawn into and through the manifold 32 at a steady rate. At intervals, an operative device such as a microchip is injected into the space between the conjoining filaments with a predetermined mass of polymer resin from a syringe 34. The syringe 34 has a reservoir 36 of resin from which the resin is drawn through a tip 38 defining a passage having a generally cylindrical cross-section. The operative device is delivered to a central chamber 40 in the tip, and when activated the syringe delivers the device and a mass of resin along the duct 42 to the manifold 32. The delivery of devices to the chamber 40, and the operation of the syringe 34 will be determined by a computer (not shown).
- Between the manifold 32 and the upper plate 30 of the carousel 26 the filaments and resin encapsulated device pass through a curing station 44. This will provide an appropriate curing environment for the resin, such as a heated zone or ultraviolet light, and the yarn 46 can be drawn down from the curing station 44 in the form of successive lengths, each including an encapsulated operative device. What is described is essentially pultrusion process in which the drawing down of the finished yarn 46 provides the essential movement of the filaments 28 from the spools 24.
- It will be appreciated that a completed multi-filament yarn 46 of the kind referred to above can be drawn through a second carousel which delivers additional filaments to form a second layer of filaments around the first layer formed by the filaments 28. The result is an arrangement similar to that described above with reference to
Figure 4 , and shock-absorbing layers (20) can similarly be introduced between the first and second layers of filaments so formed. - Whatever technique is adopted, in preferred embodiments of the invention the electronic device is effectively confined in a resilient capsule integrated as an element in the length of yarn. This does, of course, alter the physical and mechanical properties of the yarn as a whole, and this must be taken into account when the yarn is subject to subsequent treatment or use. Some of the elastic properties of the yarn will have been lost, as will a degree of flexibility if only for the reason that the capsule itself will be substantially inflexible, with bending strains being transferred directly to opposite axial ends of the capsule. The elastic modulus of the yarn will be influenced by the dimensions of the chip which is encapsulated between the fibres/filaments of the yarn. Stresses will also be generated during the encapsulation process as a consequence of heating or shrinkage, and these stresses have to be taken into account.
-
Figures 7 and 8 provide some guidance as to the increased stresses the yarn filaments will undergo as a consequence of confining an electronic device in a section thereof. Because the capsule can be substantially rigid or inflexible, when the yarn is bent this has to be accommodated in other sections. Most importantly, this flexure may focus particularly on the section of the yarns where they engage or merge with the capsule ends. For this reason it is important as far as possible to preserve the integrity of the yarns in the capsule area, and this is, of course, of especial significance in embodiments in which heat is applied to thermally bond adjacent filaments. On the other hand, when the filaments are thermally bonded, the yarn cross-section at which the filaments adjoin the capsule is less well defined, allowing filament bending to be concentrated at different adjacent locations. - Although in the above description the operative device confined in the yarn is identified as a silicon chip, it will be understood that other devices can also be confined in this manner. As noted above, a suitable operative device might take any form, such as electronic , magnetic, optical or thermal.
- The present invention provides a means by which a continuous process can be used to confine operative devices in multi-fibre or multi-filament yarns. Pultrusion is a continuous process that produces little waste of materials. A pultrusion process embodying the invention can be used to draw soft skin and hard core filament fibres through pre-formed plates and around an electronic device before the device is encapsulated using one of the techniques referred to above. A twist can be imparted to the yarn as desired after the electronic device is installed, and the capsule formed. The result is a continuous string of encapsulated devices, which can be used as a yarn in various applications such as those referred to above, or merely as a supply of encapsulated devices having many different applications. They can be separated for sale or use very simply, and in yarn form can be readily stored.
Claims (32)
- A length of multi-filament yarn (2) including an operative device (10) within a portion thereof, the device (10) being confined between the filaments (4, 6) of the yarn (2)
CHARACTERIZED IN THAT
filaments (4, 6) of the yarn (2) form a capsule around the device (10), which capsule comprises the filaments (4, 6) and a resin (8) cured therebetween. - A length of multi-filament yarn (2) according to Claim 1 wherein the device (10) comprises at least one of electronic, magnetic, optical and thermal elements, or combinations thereof.
- A length of multi-filament yarn (2) according to Claim 1 or Claim 2 wherein the capsule forms an enclosure sealed around the device (10) and at both ends.
- A length of multi-filament yarn (2) according to any preceding Claim wherein the resin (8) is cured around the device (10).
- A length of multi-filament yarn (2) according to any of Claims 1 to 3 wherein the device (10) is encased in a resin mass (16) within the capsule.
- A length of multi-filament yarn (2) according to any preceding Claim wherein adjacent filaments (4, 6) of the yarn (2) are bonded to each other around the device (10).
- A length of multi-filament yarn (2) according to any preceding Claim comprising a first layer of filaments (12) confining the device (14) and a second layer of filaments (18) extending around the first layer (12).
- A length of multi-filament yarn (2) according to Claim 7 including a shock-absorbing layer (20) between the first (13) and second (18) filament layers.
- A length of multi-filament yarn (2) according to any preceding Claim wherein at least one of the yarn filaments (6) is electrically conductive.
- A length of multi-filament yarn (2) according to Claim 9 wherein said at least one yarn is a metal core filament (22).
- A length of multi-filament yarn (2) according to Claim 9 or Claim 10 wherein said at least one yarn filament (22) comprises copper.
- A length of multi-filament yarn (2) according to any of Claims 9 to 11 wherein said at least one yarn filament (22) is coupled to the device (14) to form an electrical connection thereto.
- A length of multi-filament yarn (2) according to any preceding Claim wherein the device (14) is a silicon chip, a ferro-magnetic polymeric chip or a phase change chip.
- A fabric comprising at least one length of yarn (2) according to any preceding Claim.
- A knitted fabric according to Claim 14.
- A woven or a braided fabric according to Claim 14.
- Yam comprising successive lengths thereof according to any preceding Claim.
- A method of confining an operative device (10) in a multi-filament yarn (2), comprising delivering a plurality of filaments (28) centripetally to a central axis and drawing them along the axis; delivering an operative device to the conjoining filaments at the axis to install the device (10) between the filaments (28) as the filaments (28) are drawn along the axis; and applying resin (8) to the yarn (2) to form a capsule comprising the filaments (28) around the device (10).
- A method according to Claim 18 wherein a resin (8) is cast and cured between the fibres and/or filaments (28) to form the capsule.
- A method according to Claim 19 wherein the resin (8) is also cast and cured around the device (10).
- A method according to any of Claims 18 to 20 wherein adjacent filaments (28) around the device are bonded to one another.
- A method according to Claim 21 wherein the device (10) is encased in a resin mass (8) within the capsule.
- A method according to any of Claims 18 to 22 wherein the plurality of filaments (28) delivered centripetally and drawn along the axis form a first layer of filaments (12) around the device, the method including the step of delivering a further plurality of filaments (46) towards the axis and drawing them parallel to the axis to form a second layer (18) of filaments around the first layer (12).
- A method according to Claim 23 including the step of introducing a shock-absorbing layer (20) between the first (12) and second (18) filament layers.
- A method according to any of Claims 18 to 24 wherein at least one of the filaments (6) in the yarn (2) is electrically conductive.
- A method according to Claim 25 wherein said at least one yarn filament (6) is coupled to the device (14) to form an electrical connection thereto.
- A method according to any of Claims 18 to 26 wherein a plurality of devices (14) are confined in successive lengths of the same yarn (2).
- Apparatus for carrying out the method of any of Claims 18 to 27, which apparatus comprises supplies (24) of individual filaments (28) disposed around a central aperture to deliver filaments (28) thereto; a mechanism for delivering operative devices (10) to the central aperture; means for drawing yarn (2) formed from said filaments (28) from the central aperture; and means for delivering an encapsulating resin (8) to the central aperture with a said operative device (10).
- Apparatus according to Claim 28 wherein the supplies (24) of filaments (28) are mounted on a carouse (26) having an axis coincident with the central aperture.
- Apparatus according to Claim 28 or Claim 29 including means for bonding filaments (28) together around an operative device (10) confined thereby.
- Apparatus according to any of Claims 28 to 30 including supplies of additional filaments (46) disposed around the path of yarn drawn from the aperture to deliver yarn to the path and create an additional layer of filaments (18) around yarn drawn from the central aperture.
- Apparatus according to Claim 31 wherein the supplies of additional filaments (46) are mounted on a carousel having an axis coincident with the path.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0509963A GB2426255B (en) | 2005-05-16 | 2005-05-16 | Operative devices |
PCT/GB2006/001804 WO2006123133A1 (en) | 2005-05-16 | 2006-05-16 | Operative devices installed in yarns |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1882059A1 EP1882059A1 (en) | 2008-01-30 |
EP1882059B1 true EP1882059B1 (en) | 2010-07-07 |
EP1882059B8 EP1882059B8 (en) | 2010-09-01 |
Family
ID=34708240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06779056A Active EP1882059B8 (en) | 2005-05-16 | 2006-05-16 | Operative devices installed in yarns |
Country Status (6)
Country | Link |
---|---|
US (1) | US20090139198A1 (en) |
EP (1) | EP1882059B8 (en) |
AT (1) | AT473314T (en) |
DE (1) | DE602006015300D1 (en) |
GB (1) | GB2426255B (en) |
WO (1) | WO2006123133A1 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008080245A2 (en) * | 2006-12-28 | 2008-07-10 | Gerhard Staufert | Filament |
GB2472026A (en) | 2009-07-21 | 2011-01-26 | Univ Manchester | Signalling device |
GB2529900B (en) * | 2014-09-08 | 2017-05-03 | Univ Nottingham Trent | Electronically functional yarns |
DK3096368T3 (en) * | 2015-05-22 | 2017-12-04 | Sanko Tekstil Isletmeleri San Ve Tic As | STRUCTURAL COMPOSITE YARN |
FR3042203B1 (en) * | 2015-10-12 | 2018-06-22 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | INCORPORATION OF ELEMENTS TO CHIP IN A WIRE GUIPE. |
US10602932B2 (en) | 2015-12-16 | 2020-03-31 | Siren Care, Inc. | System and method for detecting inflammation in a foot |
US10954611B2 (en) | 2016-04-07 | 2021-03-23 | Adetexs Ltd | Relating to textiles incorporating electronic devices |
CA3038078A1 (en) * | 2016-09-27 | 2018-04-05 | Siren Care, Inc. | Smart yarn and method for manufacturing a yarn containing an electronic device |
US11035058B2 (en) * | 2017-08-16 | 2021-06-15 | Inman Mills | Yarn containing a core of functional components |
KR102431255B1 (en) * | 2017-10-18 | 2022-08-11 | 유니버시티 오브 센트럴 플로리다 리서치 파운데이션, 인코포레이티드 | Fibers with an electrically conductive core and a color-changing coating |
WO2020118694A1 (en) | 2018-12-14 | 2020-06-18 | Siren Care, Inc. | Temperature-sensing garment and method for making same |
CN111334912A (en) * | 2018-12-18 | 2020-06-26 | 任学勤 | Production method of electromagnetic intelligent yarn |
US11479886B2 (en) | 2020-05-21 | 2022-10-25 | University Of Central Florida Research Foundation, Inc. | Color-changing fabric and applications |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2114216A5 (en) * | 1970-11-18 | 1972-06-30 | Rhodiaceta | |
EP0393536B1 (en) * | 1989-04-17 | 1996-02-07 | Teijin Limited | Fiber-reinforced polymeric resin composite material and process for producing same |
EP0519359B1 (en) * | 1991-06-21 | 1996-02-21 | Akzo Nobel N.V. | Textile fabrics for protective garment |
US5568719A (en) * | 1992-06-11 | 1996-10-29 | Prospin Industries, Inc. | Composite yarn including a staple fiber covering a filament yarn component and confining the filament yarn component to a second thickness that is less than a first thickness of the filament in a relaxed state and a process for producing the same |
US5963132A (en) * | 1996-10-11 | 1999-10-05 | Avid Indentification Systems, Inc. | Encapsulated implantable transponder |
GB9701555D0 (en) * | 1997-01-25 | 1997-03-12 | Leonard Philip N | Identification or control arrangements |
WO1998033155A1 (en) * | 1997-01-25 | 1998-07-30 | Philip Noel Leonard | Identification or control arrangements |
IT1298474B1 (en) * | 1997-02-25 | 2000-01-10 | Viva Sistems Di U Vivarelli E | WIRE INCLUDING AT LEAST ONE IDENTIFIABLE FIBER |
JP2001064870A (en) * | 1999-06-21 | 2001-03-13 | Sony Corp | Functional material and production thereof and functional structure body and photo-functional element |
AU2088200A (en) * | 2000-01-21 | 2001-07-31 | Mxt Inc. | Textile yarn containing magnetic fibers for use as magnetic marker |
GB0108950D0 (en) * | 2001-04-10 | 2001-05-30 | Leonard Philip N | Personal computer systems |
US6437422B1 (en) * | 2001-05-09 | 2002-08-20 | International Business Machines Corporation | Active devices using threads |
DE10124457A1 (en) * | 2001-05-18 | 2002-12-05 | Siemens Ag | Fiber with integrated electronic component, electronic fabric, manufacturing process and use therefor |
US7592276B2 (en) * | 2002-05-10 | 2009-09-22 | Sarnoff Corporation | Woven electronic textile, yarn and article |
US6682816B1 (en) * | 2002-07-30 | 2004-01-27 | Yao I Fabric Co., Ltd. | Fishing line and method for making the same |
EP1639614A1 (en) * | 2003-06-24 | 2006-03-29 | Koninklijke Philips Electronics N.V. | Stretchable fabric switch |
US20050262646A1 (en) * | 2004-05-28 | 2005-12-01 | Mathias Berlinger | Process for depositing microcapsules into multifilament yarn and the products produced |
-
2005
- 2005-05-16 GB GB0509963A patent/GB2426255B/en not_active Expired - Fee Related
-
2006
- 2006-05-16 DE DE602006015300T patent/DE602006015300D1/en active Active
- 2006-05-16 EP EP06779056A patent/EP1882059B8/en active Active
- 2006-05-16 US US11/914,194 patent/US20090139198A1/en not_active Abandoned
- 2006-05-16 AT AT06779056T patent/AT473314T/en not_active IP Right Cessation
- 2006-05-16 WO PCT/GB2006/001804 patent/WO2006123133A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
DE602006015300D1 (en) | 2010-08-19 |
US20090139198A1 (en) | 2009-06-04 |
EP1882059B8 (en) | 2010-09-01 |
GB2426255B (en) | 2009-09-23 |
GB2426255A (en) | 2006-11-22 |
EP1882059A1 (en) | 2008-01-30 |
AT473314T (en) | 2010-07-15 |
GB0509963D0 (en) | 2005-06-22 |
WO2006123133A1 (en) | 2006-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1882059B1 (en) | Operative devices installed in yarns | |
EP3191632B1 (en) | Electronically functional yarns | |
US10954611B2 (en) | Relating to textiles incorporating electronic devices | |
US20150280102A1 (en) | Piezoelectric element | |
KR20070107777A (en) | Transponder-thread and application thereof | |
EP3397799B1 (en) | Electronic strip yarn | |
GB2472025A (en) | Identification device | |
CN109313967B (en) | Traceable power cable and method | |
WO2019209498A1 (en) | Electronically functional yarn | |
CN114729475A (en) | Composite yarn and method for producing same | |
US20010054682A1 (en) | Composite ribbon member | |
KR940003020B1 (en) | Packing | |
US20210395928A1 (en) | Multi-material fibers and methods of manufacturing the same | |
US20210362396A1 (en) | Multi-material fibers and methods of manufacturing the same | |
US11091855B2 (en) | Electronically functional yarn and textile | |
JP6440333B1 (en) | RFID tag and method of manufacturing RFID tag | |
US20210079569A1 (en) | Forming Electrical Connections in Fabric-Based Items | |
KR20110117573A (en) | Electric line for fabric | |
WO2017021719A1 (en) | Printed system yarns |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20071114 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20080714 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: ENTELLFIBRES LIMITED |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 602006015300 Country of ref document: DE Date of ref document: 20100819 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20100707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100707 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20100707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100707 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100707 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100707 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101108 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100707 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101107 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100707 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100707 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101008 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100707 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100707 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100707 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100707 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100707 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100707 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100707 |
|
26N | No opposition filed |
Effective date: 20110408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101018 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602006015300 Country of ref document: DE Effective date: 20110408 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20110523 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20110614 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110531 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110531 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110516 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20130131 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602006015300 Country of ref document: DE Effective date: 20121201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110516 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100707 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20150723 AND 20150729 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20220422 Year of fee payment: 17 |