EP1881287A1 - Aparatus for cooling bulky material - Google Patents

Aparatus for cooling bulky material Download PDF

Info

Publication number
EP1881287A1
EP1881287A1 EP06015148A EP06015148A EP1881287A1 EP 1881287 A1 EP1881287 A1 EP 1881287A1 EP 06015148 A EP06015148 A EP 06015148A EP 06015148 A EP06015148 A EP 06015148A EP 1881287 A1 EP1881287 A1 EP 1881287A1
Authority
EP
European Patent Office
Prior art keywords
grate
dispersion element
bulk material
conveying direction
cooling gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06015148A
Other languages
German (de)
French (fr)
Inventor
Peter Ording
Uwe Sprinz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Claudius Peters Technologies GmbH
Original Assignee
Claudius Peters Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Claudius Peters Technologies GmbH filed Critical Claudius Peters Technologies GmbH
Priority to EP06015148A priority Critical patent/EP1881287A1/en
Priority to EP07785969A priority patent/EP2044378B1/en
Priority to US12/374,256 priority patent/US20090249637A1/en
Priority to CNA2007800272432A priority patent/CN101490492A/en
Priority to DE502007005065T priority patent/DE502007005065D1/en
Priority to PCT/EP2007/006103 priority patent/WO2008009374A1/en
Priority to EA200900150A priority patent/EA014357B1/en
Priority to AT07785969T priority patent/ATE481608T1/en
Publication of EP1881287A1 publication Critical patent/EP1881287A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D15/00Handling or treating discharged material; Supports or receiving chambers therefor
    • F27D15/02Cooling
    • F27D15/0206Cooling with means to convey the charge
    • F27D15/0213Cooling with means to convey the charge comprising a cooling grate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D15/00Handling or treating discharged material; Supports or receiving chambers therefor
    • F27D15/02Cooling
    • F27D15/0206Cooling with means to convey the charge
    • F27D15/0213Cooling with means to convey the charge comprising a cooling grate
    • F27D15/022Cooling with means to convey the charge comprising a cooling grate grate plates

Definitions

  • the invention relates to a device for cooling bulk material comprising a grate conveying a layer of the bulk material along a conveying direction with a device for supplying cooling gas, wherein the grate comprises conveying elements and forms a substantially planar support surface for the layer of bulk material.
  • Devices of the type mentioned serve as a grate cooler in particular for cooling burned Good, for example for emerging from an upstream furnace cement clinker.
  • the bulk material dropped from the upstream workstation usually the furnace, is transported along the cooling grid to the downstream workstation and thereby cooled.
  • the grate cooler In order to cool the bulk material located on the grate, the grate cooler has a feed for cooling gas. This is usually done by blowing cooling gas through the grate so that it enters from below into the bulk material to be cooled, flows through it and leaves upwards. Difficulties often arise in the supply of cooling gas from the fact that for effecting the promotion of the bulk material along the cooling grate parts of the grate are designed to be movable.
  • the invention is based on the object to provide, starting from the above-mentioned prior art, an improved cooling grate which avoids the disadvantages mentioned.
  • a device for cooling bulk material which has a grate conveying a layer of the bulk material along a conveying direction with a device for supplying cooling gas, the grate comprising conveying elements and forming a substantially planar support surface for the layer of bulk material, according to the invention provided that the support surface is at least partially provided with a flat blow-out device, which has a spatially extended dispersion element on which the bulk material rests directly, and a support structure arranged thereunder.
  • the invention is based on the idea of creating a composite by means of the dispersion element and the support structure arranged directly underneath, which on the one hand provides a large outlet area for the cooling gas, and on the other hand is sufficiently robust for supporting the overlying layer of the bulk material to be cooled.
  • the dispersion element provides a plurality of small passageways for the cooling gas.
  • the dispersion element can be embodied as a fleece or as a (woven) fabric.
  • the support structure Due to its structure, on the one hand, it provides a large area for the passage of cooling gas and, on the other hand, prevents rust throughput, ie the falling through of bulk material to be cooled into the space below the grate, due to the smallness of the channels (or mesh or pores) conducting the cooling gas.
  • the support structure has the effect that the dispersion element, which in itself is not sufficiently stable, is given sufficient mechanical strength and carrying capacity.
  • this further achieved that due to the better air distribution through the dispersion element on the one hand an improved heat exchange of the cooling and thus lower energy costs are achieved and on the other hand, the pressure losses incurred on entry of the cooling gas over known designs of cooling grates are reduced so far that further significant energy savings can be achieved.
  • a cooling grate is known in which the support surface is formed as a perforated plate, on which rests a layer of the bulk material to be cooled and on the underside of a fabric material is arranged.
  • the fabric material can act as a dispersion element for supplied from below cooling gas.
  • the perforated plate arranged above the fabric material protects the fabric material from wear.
  • a particular advantage of the arrangement of the support structure directly under the dispersion element is that thus a Reliable mechanical support is achieved.
  • Ausackungen or depressions which were traditionally under the weight of the weight of the overlying layer of the bulk material to be cooled, no longer occur thanks to the invention.
  • the burden on the dispersion element can thus be reduced thanks to the invention. This not only allows the use of thinner material for the dispersion element, but also reduces the susceptibility to damage of the construction according to the invention.
  • a trough is provided, in which the support structure and on the edge of the dispersion element are arranged, wherein the trough on the bottom side has a supply port for the cooling gas.
  • a separate unit is created, which can be manufactured separately from the grid and mounted.
  • the composite of dispersion element and support structure is designed as an exchangeable module. This makes it possible to provide standardized modules, which only need to be used on appropriately prepared receiving points of the grate. Production and assembly are thus considerably easier. It is also possible with the execution as a module, if necessary, easily make an exchange.
  • a matrix arrangement In an embodiment as a module, it is expedient to provide a matrix arrangement.
  • it has proven useful in cooling grids according to the "walking floor” principle with several parallel side by side longitudinally displaceable in the conveying direction and alternately back and forth Planks several modules in the conveying direction to arrange one behind the other.
  • webs projecting into the bulk material are arranged transversely to the conveying direction.
  • an area is formed in which the bulk material resting directly on the dispersion element does not or hardly moves, up to a certain layer thickness influenced by the web height.
  • This part of the bulk material layer is thus virtually calm with respect to the dispersion element. It thus forms another protection, which automatically develops during operation, from wear by the bulk material to be cooled.
  • the dispersion element is thus spared by the lowermost layer of the bulk material to be cooled, which is quasistationär thanks to the transverse to the conveying direction webs to the respective element of the grate, from wear by the rest, due to their abrasive components wear-aggressive bulk of the bulk material.
  • a material sump is expediently provided parallel to the conveying direction of the side of the dispersion element in the support grid. It serves to provide a collecting space downwards from the layer of the bulk material to be conveyed, which migrates away from the bulk material, in particular fine dust constituents. It has been found that otherwise the downwardly migrating fines could clog the dispersing element.
  • the material sump it is achieved that this material accumulates in the space created by the material sump. As a result, the dispersion element may be blocked be protected, and possibly still reaching small residues of fine components can be discharged thanks to the guided through the dispersion element cooling gas flow.
  • the material sump may have any desired shape in cross-section, in particular it may be square, rectangular or even round.
  • the dispersion element is formed across several adjacent modules.
  • overlapping is understood here to mean that a uniform piece of the dispersion element spans the area of a plurality of support structures which adjoin one another, in particular in the conveying direction.
  • the support structures can in this case be arranged at a certain distance from each other, but it is more expedient to arrange them directly adjacent to one another. This allows a maximum extent of the area used for blowing out of cooling gas.
  • the support structure is preferably formed by a plurality of cross member arranged plate elements.
  • the plate elements may be provided with slot-like recesses corresponding to the width of the support grid to allow mating of the plate elements to the support structure.
  • the plate elements are designed so that they are the same shape. It can be further provided that they are equal in length, but this is not absolutely necessary.
  • the inventive composite of dispersion element and support structure can be arranged in a fixed part or a movable part of the cooling grid. It can also be provided a combined arrangement.
  • a particular advantage of the construction according to the invention lies in the fact that it is due to their simplicity and in particular their modular design to an arrangement in a movable element of cooling grates suitable.
  • the dispersion surface can be arranged so that it is positioned between the remaining space for conveying elements for the layer of the bulk material to be cooled.
  • the use of the cooling grid according to the invention is also possible in such Brenngutkühlern, the separate. (and not in the actual grate integrated as in the "Walking Floor” principle) conveying elements.
  • the dispersion element is such that its grid width is less than 1 mm.
  • grid width hereby means the width of a channel leading through the dispersion element for the supply of cooling gas. With this width sufficient security against an undesirable entry of bulk material can be achieved without any unnecessarily high pressure loss occurs with respect to penetrating or falling bulk material.
  • a schematic embodiment of cooler according to the invention is shown in Fig. 1.
  • a housing 1 has at one end to a feed chute 12, in which a discharge end of a rotary kiln 2 opens.
  • refrigerated goods falls in the feed chute 12 on a task section 14 of the radiator and passes from there to an inventively designed grate 3.
  • This is formed substantially horizontally and forms a support and transport surface for the refrigerated goods.
  • the cooling material lying on the grate 3 is supplied with cooling gas from below through the grate 3.
  • the material along the grate 3 in a Transport direction 60 transported to a discharge end 16.
  • the chilled goods then fall to a downstream processing stage, for example to a crusher 8.
  • the grate 3 is formed from a plurality of planks 31 arranged parallel in the conveying direction 60.
  • the planks are individually movable back and forth and are driven by a motion controller so that they are advanced together and moved back individually.
  • This conveying principle for cooling grates is known as "walking floor" ( DE-A-19651741 ); to the explanation of details on structure and operation can therefore be omitted.
  • a cross-sectional view through a plank 31 of the grate 3 is shown in Fig. 2.
  • the plank 31 has upstanding cheeks 32 at its side edges facing the adjacent planks 31 '.
  • the two cheeks 32 of a plank 31 form side boundaries of a trough.
  • the plank 31 forms with its top a support surface for the refrigerated goods.
  • supply means for Cooling gas arranged, of which cooling gas is supplied to the planks 31.
  • the planks 31 on its underside connecting piece 40 To connect the feeders, the planks 31 on its underside connecting piece 40.
  • blow-out devices 4 are provided, which through the planks 31 through the cooling gas is supplied from the connecting piece 40.
  • the construction of one of the blow-off devices 4 will be explained in more detail below.
  • It is of generally box-like shape.
  • the upper side is double-layered with a flat expanded dispersion element and a support element.
  • the dispersion element is formed by a metal mesh 41 in this embodiment. It spans the entire top of the blower 4. It lies on a support structure designed as a support grid 42, which supports the metal fabric 41 from below.
  • the support grid 42 is formed from a plurality of plate-like segments 43, which are joined together in a cross-compound.
  • the upper edges of the segments 43 are in one plane and form a support for the metal fabric 41. This ensures that the metal fabric 41 is not deformed or damaged even under the weight of a resting layer of goods to be cooled.
  • the cooling gas supplied via the connecting piece 40 is distributed between the segments 43 of the support grid 42, so that it is supplied to the metal fabric 41 from below. It flows through the metal fabric 41, wherein it is finely distributed and large area of the metal fabric 41 enters the overlying layer of material. This results in both a large-scale and uniform transfer of the cooling gas into the refrigerated goods.
  • the upcoming low Cooling gas velocities cause a low pressure loss and, on the other hand, optimum cooling of the refrigerated goods. Both together allow a low energy consumption.
  • the metal fabric 41 is sufficiently fine-meshed to prevent unwanted falling through of goods to be cooled by the metal fabric 41.
  • a material sump 5 can be provided between the blow-off devices 4. It serves to provide a receiving space for ist fallendes refrigerated goods. The risk of clogging of the metal fabric 41 is further reduced.
  • the blow-out device 4 can also have a shape other than a box-like contour.
  • the embodiment of the blower 4 described above is shown in the lower part of FIG. 3 by solid lines.
  • a variant is shown in which the blow-out device has a cylindrical contour.
  • the blower 4 is designed in the form of a basin 44 which extends over almost the entire width of the plank 31.
  • a material sump 5 may be provided. It is arranged on the longitudinal sides of the basin 44 'and partially extends below the bottom of the basin 44.
  • a central connecting piece 40 or a direct flow of cooling gas over the entire width is provided in the bottom of the basin 44.
  • FIGS. 5 and 6 A third embodiment of the invention is shown in FIGS. 5 and 6.
  • the blow-out devices are designed modularly in this embodiment.
  • the edge strips 46 are fastened in the illustrated embodiment by means of a screw on the edge of the trough 45; but it can also be provided another type of fastening, which provides sufficient fastening security.
  • the support structure 42 is arranged. It is designed so that its lower edge along its outer sides with an inclination corresponding to that of the edges of the trough 45 is executed.
  • the support grid 42 can be used so self-centering in the trough 45.
  • the metal fabric 41 is placed on the support structure 42 and fastened by means of the edge strips 46.
  • the bottom of the trough 45 has a large-area opening for the supply of cooling gas.
  • the module 47 needs to be inserted only in its place to the specific element for its inclusion of the grate 3, whereby it is automatically centered thanks to the inclined edges 46 in its receiving position and the connection to the taking place from below cooling gas supply.
  • FIG. 6 shows a plan view of a module 47.
  • FIGS. 7 and 8 show an alternative embodiment, in which, viewed in the conveying direction 60, a web 34 protruding into the refrigerated goods is arranged behind the blow-out device 4. It is understood that the blow-out devices 4 adjacent in the conveying direction are likewise provided with such a web 34.
  • the webs 34 are expediently arranged along the boundary sides of the dispersion element 41 which are oriented transversely to the conveying direction. This ensures that at both transverse to the conveying direction 60 oriented boundary sides of the blower 4 each one of the webs 34 is arranged.
  • the webs 34 serve to form depressions on the grate 3, in which refrigerated goods accumulates during operation of the cooler.
  • This deposition occurs as a layer that is not moved along the conveying direction 60 during normal operation of the cooler, but remains quasi-stationary with respect to the respective area of the surface of the grate 3; In the case of a walking floor, this layer moves in accordance with the forward and backward movements of the plank 31.
  • the quasi-stationary arranged in the respective trough part of the refrigerated product performs substantially no relative movement to the plank 31. This means that the dispersion element 41 'not or only minimally by abrasive components of the bulk material is charged. The risk of damaging the dispersion element 41 'is thus minimized.
  • the support structure 42 ' may be formed to further reduce the flow resistance.
  • the support grid 42 ' is integrated into the surface of the grate 3.
  • the quasi-stationary material layer located between the webs 34 acts as a filter that does not allow particles below a certain size to pass. All this makes it possible to perform the dispersion element 41 'comparatively marmaschig, for example, as an industry-standard wire mesh.
  • a large-area blow-out is achieved, which in addition, thanks to the large average cross-section in this area can have a high throughput.
  • a separate connection for the cooling gas at a bottom of the blower is not required.
  • the supply of cooling gas is achieved by providing the cooling gas with overpressure in the space below the grate 3. This results in a simple structure a wear-protected and working with low pressure drop blow-out.
  • FIGS. 9 and 10 show a modification of the embodiment according to FIG. 3. It differs essentially in that a dispersion element 41 "extends longitudinally (parallel to the conveying direction 60) over a plurality of support structures 42 ' when the cooler is a "walking floor” principle. Abutting edges between adjoining dispersion elements 41 "and possibly therefrom resulting sealing problems are avoided. In addition, the assembly and the replacement of the dispersion element are simplified, since only one dispersion element 41 "is to be removed or installed.
  • the overarching arrangement of the dispersion element 41" offers advantages in particular when the blow-off devices 4, and in particular the support grids 42 '. , are executed in the above-explained modular design.
  • blow-off devices 4 according to the present invention are not limited to an application to moving elements of the grate 3. It can also be provided to arrange them or instead on stationary elements of the grate 3. This is especially true for such Brenngutkühler that have separate from the grate 3 conveying elements for the refrigerated goods.
  • FIGs. 11 and 12 sixth and seventh embodiments are shown in which the blow-out devices 4 according to the invention are arranged on or between moving separate conveyor elements of the grate of the combustor.
  • a stationary grate 3 ' is provided which has a plurality of separate conveying elements 6 arranged next to one another. These are guided longitudinally movable in parallel to the conveying direction 60 slots in the grid 3 'and moved by a drive device, not shown.
  • a (right half of Fig. 11) or more (left half of Fig. 11) blowout 4 are arranged. They may be formed according to one of the embodiments described above.
  • the blow-off devices are embedded flush in the upper side of the grate 3 '.
  • This arrangement has the advantage of a uniform surface, whereby a more uniform loading of the cooling product is favored with cooling gas.
  • the area provided for the blow-off devices 4 and thus the total effective blow-out area can be maximized.
  • a separate material sump is not provided in this embodiment; to reduce the breakdown of refrigerated goods serves a denser version of the metal fabric 41. Due to the denser design resulting larger flow resistance fall because of the large Ausblasthesis not negatively.
  • FIG. 13 shows a variant of the embodiments according to FIG. 11 as the eighth embodiment, in which the blow-off devices are not arranged on the stationary part of the grate 3 ', but on the movable conveying elements 6'.
  • the structure of the blow-out 4 corresponds to the above.
  • One difference lies in the way in which cooling gas is supplied. It is supplied from below via a connection piece arranged between longitudinal bearings 61 of the conveying elements 6 'and is guided via an ascending line 64 integrated into the conveying element 6' to the blow-off device 4 arranged at the upper end of the conveying element.
  • an uncooled and almost stationary layer of the material is generated in operation, which rests on the top of the grate 3 '.
  • FIG. 14 shows a variant as the ninth embodiment, which is essentially a combination of the sixth and seventh embodiments.
  • the conveying elements extend across the entire radiator width.
  • the blow-out devices 4 according to the invention are designed either as separate modules above or as an integral part of the stationary cooling grid 3 ".

Abstract

The device for cooling bulk material e.g. cement clinker from upstream process stage of oven, comprises a grate (3) with a mechanism for supplying cooling gas, a tub for arranging a supporting structure and a dispersion element on its edge, and a material sump intended to a conveying direction (60) on the side of the dispersion element. The grate conveys a layer of the bulk material along the conveying direction, has conveying elements and forms an even support surface for the layer of the bulk material. The support surface is partly provided with a laminar exhaust mechanism. The device for cooling bulk material e.g. cement clinker from upstream process stage of oven, comprises a grate (3) with a mechanism for supplying cooling gas, a tub for arranging a supporting structure and a dispersion element on its edge, and a material sump intended to a conveying direction (60) on the side of the dispersion element. The grate conveys a layer of the bulk material along the conveying direction, has conveying elements and forms an even support surface for the layer of the bulk material. The support surface is partly provided with a laminar exhaust mechanism that comprises a spatially enlarged dispersion element, on which the bulk material directly rests, and the supporting structure arranged under it. The tub has a supply connection at the bottom for the cooling gas. The dispersion element and the supporting structure are combined into modules, which are arranged exchangeably at the grate and which are intended in matrix arrangement. Footpaths projecting on the grate and or its boards are arranged in the bulk material transverse to the conveying direction. The supporting structure connects the together-bordering modules directly to each other, and is formed as a supporting grid, which is arranged on plate elements arranged in cross connection. The dispersion element and the supporting structure are arranged in a movable element of the grate. The dispersion element is formed from the support surface of the grate in projecting manner. Frames that are oriented in the conveying direction, are intended on the boards, which form troughs holding together with the footpaths. The frames are arranged at sidewalls of the boards. An additional frame is arranged at inner side of a sealing section of the boards.

Description

Die Erfindung betrifft eine Vorrichtung zum Kühlen von Schüttgut die einen eine Schicht des Schüttguts entlang einer Förderrichtung fördernden Rost mit einer Einrichtung zum Zuführen von Kühlgas aufweist, wobei der Rost Förderelemente umfasst und eine im Wesentlichen ebene Unterstützungsfläche für die Schicht des Schüttguts bildet.The invention relates to a device for cooling bulk material comprising a grate conveying a layer of the bulk material along a conveying direction with a device for supplying cooling gas, wherein the grate comprises conveying elements and forms a substantially planar support surface for the layer of bulk material.

Vorrichtungen der eingangs genannten Art dienen als Rostkühler insbesondere zur Kühlung von gebranntem Gut, beispielsweise für aus einem vorgeschalteten Ofen austretenden Zementklinker. Das aus der vorgeschalteten Arbeitsstation, in der Regel dem Ofen, abgeworfene Schüttgut wird längs des Kühlrosts zu der nachgeschalteten Arbeitsstation transportiert und dabei abgekühlt. Um das auf dem Rost befindliche Schüttgut zu kühlen, weist der Rostkühler eine Zuführung für Kühlgas auf. Dies erfolgt in der Regel durch Einblasen von Kühlgas durch den Rost, so dass dieses von unten in das zu kühlende Schüttgut eintritt, es durchströmt und nach oben hin verlässt. Schwierigkeiten entstehen bei der Zuführung von Kühlgas häufig daraus, dass zum Bewirken der Förderung des Schüttguts längs des Kühlrosts Teile des Rostes beweglich ausgeführt sind. Daraus und aus dem Ziel einer möglichst gleichmäßigen Zuführung von Kühlgas resultiert eine komplizierte Führung des Kühlgases durch die Kühlgaseinrichtung. Dadurch entstehen Druckverluste, welche den Energiebedarf der Kühleinrichtung erhöhen. Eine weitere Schwierigkeit besteht darin, dass in manchen Ausführungsformen der Kühlvorrichtungen Förderelemente zum Bewirken der Förderung des Schüttguts von unten durch die Rostfläche beweglich hindurchgeführt sein müssen, was den konstruktiven Aufwand erhöht. Zudem sind die Förderelemente innerhalb der heißen Schicht des Schüttguts hohem Verschleiß ausgesetzt, weshalb sie zur Erreichung einer ausreichenden Betriebssicherheit und Lebensdauer stärker dimensioniert sein müssen. Jedoch ist in denjenigen Bereichen des Kühlrosts, in welchen sich die Förderungselemente und ihre Antriebseinrichtungen befinden, der Luftdurchsatz für das Kühlgas verringert und damit die Kühlwirkung eingeschränkt. Es hat sich gezeigt, dass auch bei einem modernen Kühlrost ( DE-U-202004020574 ) es doch zu einem unerwünscht hohen Strömungswiderstand insbesondere im Bereich des Austritts des Kühlgases kommt, und die Verteilung des Kühlgases über die Rostfläche hinweg ungleichmäßig ist. Abhilfe durch ein einfaches Vergrößern der Austrittsfläche für das Kühlgas ist nicht möglich, da hierdurch ein Durchfall von Schüttgutmaterial in den Rostunterraum auftreten würde, mit der Folge einer Beschädigung der Förderelemente.Devices of the type mentioned serve as a grate cooler in particular for cooling burned Good, for example for emerging from an upstream furnace cement clinker. The bulk material dropped from the upstream workstation, usually the furnace, is transported along the cooling grid to the downstream workstation and thereby cooled. In order to cool the bulk material located on the grate, the grate cooler has a feed for cooling gas. This is usually done by blowing cooling gas through the grate so that it enters from below into the bulk material to be cooled, flows through it and leaves upwards. Difficulties often arise in the supply of cooling gas from the fact that for effecting the promotion of the bulk material along the cooling grate parts of the grate are designed to be movable. From this and from the goal of the most uniform possible supply of cooling gas results in a complicated guidance of the cooling gas through the cooling gas device. This creates pressure losses, which increase the energy consumption of the cooling device. Another difficulty is that in some embodiments of the cooling devices conveying elements for effecting the promotion of the bulk material must be movably guided from below through the grate surface, which increases the design effort. In addition, the conveying elements are exposed to high wear within the hot layer of the bulk material, which is why they must be more strongly dimensioned to achieve adequate reliability and service life. However, in those areas of the cooling grate in which the conveying elements and their drive means are located, the air flow rate for the cooling gas is reduced and thus the cooling effect is limited. It has been shown that even with a modern cooling grate ( DE-U-202004020574 ) there is nevertheless an undesirably high flow resistance, in particular in the region of the exit of the cooling gas, and the distribution of the cooling gas over the surface of the grate is uneven. Remedy by simply increasing the exit area for the cooling gas is not possible, as this would cause a diarrhea of bulk material in the grate subspace, with the result of damage to the conveyor elements.

Der Erfindung liegt die Aufgabe zu Grunde, ausgehend von dem oben genannten Stand der Technik einen verbesserten Kühlrost zu schaffen, der die genannten Nachteile vermeidet.The invention is based on the object to provide, starting from the above-mentioned prior art, an improved cooling grate which avoids the disadvantages mentioned.

Die erfindungsgemäße Lösung liegt in einem Kühlrost mit den Merkmalen des Anspruchs 1. Vorteilhafte Weiterbildungen sind Gegenstand der abhängigen Ansprüche.The solution according to the invention is in a cooling grate with the features of claim 1. Advantageous developments are the subject of the dependent claims.

Bei einer Vorrichtung zum Kühlen von Schüttgut, die einen eine Schicht des Schüttguts entlang einer Förderrichtung fördernden Rost mit einer Einrichtung zum Zuführen von Kühlgas aufweist, wobei der Rost Förderelemente umfasst und eine im Wesentlichen ebene Unterstützungsfläche für die Schicht des Schüttguts bildet, ist gemäß der Erfindung vorgesehen, dass die Unterstützungsfläche mindestens teilweise mit einer flächigen Ausblaseinrichtung versehen ist, die ein räumlich ausgedehntes Dispersionselement, auf dem das Schüttgut unmittelbar aufliegt, und eine darunter angeordnete Stützkonstruktion aufweist.In a device for cooling bulk material, which has a grate conveying a layer of the bulk material along a conveying direction with a device for supplying cooling gas, the grate comprising conveying elements and forming a substantially planar support surface for the layer of bulk material, according to the invention provided that the support surface is at least partially provided with a flat blow-out device, which has a spatially extended dispersion element on which the bulk material rests directly, and a support structure arranged thereunder.

Die Erfindung beruht auf dem Gedanken, mittels dem Dispersionselement und der unmittelbar darunter angeordneten Stützkonstruktion einen Verbund zu schaffen, welcher einerseits eine große Austrittsfläche für das Kühlgas bereitstellt, und anderseits ausreichend robust ist zum Tragen der aufliegenden Schicht des zu kühlenden Schüttguts. Dabei stellt das Dispersionselement eine Vielzahl von kleinen Durchtrittskanälen für das Kühlgas bereit. Das Dispersionselement kann als Vlies oder als (Draht-)Gewebe ausgeführt sein. Aufgrund seiner Struktur stellt es einerseits eine große Fläche für den Kühlgasdurchtritt bereit und verhindert andererseits aufgrund der Kleinheit der das das Kühlgas leitenden Kanäle (bzw. Maschen oder Poren) Rostdurchfall, also das Durchfallen von zu kühlendem Schüttgut in den Raum unterhalb des Rostes. Die Stützkonstruktion bewirkt, dass dem an sich nicht ausreichend stabilen Dispersionselement eine ausreichende mechanische Festigkeit und Tragfähigkeit gegeben wird. Neben dem beschriebenen mechanischen Effekt der Erfindung erreicht diese weiter, dass aufgrund der besseren Luftverteilung durch das Dispersionselement einerseits ein verbesserten Wärmeaustausch der Kühlung und damit niedrigere Energiekosten erzielt werden und andererseits die bei Eintritt des Kühlgases entstehenden Druckverluste gegenüber bekannten Ausführungen von Kühlrosten soweit reduziert werden, dass weitere erhebliche Energieeinsparungen erzielt werden können.The invention is based on the idea of creating a composite by means of the dispersion element and the support structure arranged directly underneath, which on the one hand provides a large outlet area for the cooling gas, and on the other hand is sufficiently robust for supporting the overlying layer of the bulk material to be cooled. In this case, the dispersion element provides a plurality of small passageways for the cooling gas. The dispersion element can be embodied as a fleece or as a (woven) fabric. Due to its structure, on the one hand, it provides a large area for the passage of cooling gas and, on the other hand, prevents rust throughput, ie the falling through of bulk material to be cooled into the space below the grate, due to the smallness of the channels (or mesh or pores) conducting the cooling gas. The support structure has the effect that the dispersion element, which in itself is not sufficiently stable, is given sufficient mechanical strength and carrying capacity. In addition to the mechanical effect of the invention described this further achieved that due to the better air distribution through the dispersion element on the one hand an improved heat exchange of the cooling and thus lower energy costs are achieved and on the other hand, the pressure losses incurred on entry of the cooling gas over known designs of cooling grates are reduced so far that further significant energy savings can be achieved.

Aus der DE-A-2 345 734 ist ein Kühlrost bekannt, bei dem die Unterstützungsfläche als ein Lochblech ausgebildet ist, auf dem eine Schicht des zu kühlenden Schüttguts aufliegt und an dessen Unterseite ein Gewebematerial angeordnet ist. Das Gewebematerial kann als Dispersionselement für von unten zugeführtes Kühlgas fungieren. Das über dem Gewebematerial angeordnete Lochblech schützt das Gewebematerial vor Verschleiß. Diese Konstruktion erreicht zwar mit dem oberhalb des Gewebes angeordneten Lochblech als Stütze einen guten Verschleißschutz für das Gewebematerial, jedoch ergibt sich durch die in dem Lochblech vorzusehenden Öffnungen zum Durchtritt des Kühlgases eine beachtliche Erhöhung des Strömungswiderstands. Die Effizienz der Kühlung verschlechtert sich dadurch. Ein weiterer Nachteil des oberhalb des Gewebes angeordneten Stützelements, nämlich des Lochblechs, ist, dass Material aus der Schicht des zu kühlenden Schüttguts in die Öffnungen des Lochblechs hineinfallen kann, und diese damit zu blockieren oder zumindest den Durchtritt des Kühlgases zu behindern. Gerade unter den rauen Betriebsbedingungen eines Klinkerkühlers erweist sich diese Konstruktion damit als stark verbesserungswürdig.From the DE-A-2 345 734 is a cooling grate is known in which the support surface is formed as a perforated plate, on which rests a layer of the bulk material to be cooled and on the underside of a fabric material is arranged. The fabric material can act as a dispersion element for supplied from below cooling gas. The perforated plate arranged above the fabric material protects the fabric material from wear. Although this construction achieved with the above the fabric arranged perforated plate as a support good wear protection for the fabric material, however, results from the provided in the perforated plate openings for the passage of the cooling gas, a considerable increase in the flow resistance. The efficiency of the cooling thereby deteriorates. Another disadvantage of the above the fabric arranged support member, namely the perforated plate is that material from the layer of bulk material to be cooled can fall into the openings of the perforated plate, and thus block it or at least to hinder the passage of the cooling gas. Especially under the harsh operating conditions of a clinker cooler, this construction proves to be much in need of improvement.

Ein besonderer Vorteil der Anordnung der Stützkonstruktion direkt unter dem Dispersionselement ist, dass damit eine zuverlässige mechanische Abstützung erreicht wird. Aussackungen oder Einsenkungen, die sich herkömmlicherweise unter der Last der Gewichtskraft der aufliegenden Schicht des zu kühlenden Schüttguts ergaben, treten dank der Erfindung nicht mehr auf. Die Belastung für das Dispersionselement kann somit dank der Erfindung verringert werden. Dies ermöglicht nicht nur die Verwendung von dünnerem Material für das Dispersionselement, sondern verringert auch die Schadensanfälligkeit der erfindungsgemäßen Konstruktion.A particular advantage of the arrangement of the support structure directly under the dispersion element is that thus a Reliable mechanical support is achieved. Ausackungen or depressions, which were traditionally under the weight of the weight of the overlying layer of the bulk material to be cooled, no longer occur thanks to the invention. The burden on the dispersion element can thus be reduced thanks to the invention. This not only allows the use of thinner material for the dispersion element, but also reduces the susceptibility to damage of the construction according to the invention.

Zweckmäßigerweise ist eine Wanne vorgesehen, in der die Stützkonstruktion und auf deren Rand das Dispersionselement angeordnet sind, wobei die Wanne bodenseitig einen Zufuhranschluss für das Kühlgas aufweist. Mit einer solchen Wanne wird eine eigene Baueinheit geschaffen, die gesondert vom Rost hergestellt und montiert werden kann. Dies ermöglicht eine einfachere und rationellere Herstellung. Zweckmäßigerweise ist der Verbund aus Dispersionselement und Stützkonstruktion als ein austauschbares Modul ausgeführt. Dies ermöglicht es, standardisierte Module vorzusehen, welche lediglich noch an entsprechend vorbereitete Aufnahmestellen des Rostes eingesetzt zu werden brauchen. Herstellung und Montage erleichtern sich dadurch beträchtlich. Weiter ist es mit der Ausführung als Modul ermöglicht, im Bedarfsfall leicht einen Austausch vorzunehmen.Appropriately, a trough is provided, in which the support structure and on the edge of the dispersion element are arranged, wherein the trough on the bottom side has a supply port for the cooling gas. With such a tub, a separate unit is created, which can be manufactured separately from the grid and mounted. This allows a simpler and more efficient production. Conveniently, the composite of dispersion element and support structure is designed as an exchangeable module. This makes it possible to provide standardized modules, which only need to be used on appropriately prepared receiving points of the grate. Production and assembly are thus considerably easier. It is also possible with the execution as a module, if necessary, easily make an exchange.

Bei einer Ausführung als Modul ist es zweckmäßig, eine Matrixanordnung vorzusehen. Insbesondere hat es sich bewährt, bei Kühlrosten gemäß dem "Walking-Floor"-Prinzip mit mehreren parallel nebeneinander längsverschieblich in Förderrichtung und abwechselnd vor- und zurückbewegten Planken mehrere Module in Förderrichtung hintereinander anzuordnen.In an embodiment as a module, it is expedient to provide a matrix arrangement. In particular, it has proven useful in cooling grids according to the "walking floor" principle with several parallel side by side longitudinally displaceable in the conveying direction and alternately back and forth Planks several modules in the conveying direction to arrange one behind the other.

Bei einer besonders zweckmäßigen Ausführungsform sind in das Schüttgut ragende Stege quer zur Förderrichtung angeordnet. Mittels der Stege wird ein Bereich gebildet, in dem sich das unmittelbar auf dem Dispersionselement aufliegende Schüttgut bis zu einer gewissen, durch die Steghöhe beeinflussten Schichtstärke, nicht oder nur kaum bewegt. Dieser Teil der Schüttgutschicht liegt also bezogen auf das Dispersionselement nahezu ruhig. Er bildet damit einen weiteren, im Betrieb selbsttätig entstehenden Schutz vor Verschleiß durch das zu kühlende Schüttgut. Das Dispersionselement wird also durch die unterste Schicht des zu kühlenden Schüttguts, die dank der quer zur Förderrichtung angeordneten Stege quasistationär zu dem jeweiligen Element des Rosts liegt, vor einem Verschleiß durch die übrige, aufgrund ihrer abrasiven Bestandteile häufig verschleißaggressiven Hauptmenge des Schüttguts verschont.In a particularly advantageous embodiment, webs projecting into the bulk material are arranged transversely to the conveying direction. By means of the webs, an area is formed in which the bulk material resting directly on the dispersion element does not or hardly moves, up to a certain layer thickness influenced by the web height. This part of the bulk material layer is thus virtually calm with respect to the dispersion element. It thus forms another protection, which automatically develops during operation, from wear by the bulk material to be cooled. The dispersion element is thus spared by the lowermost layer of the bulk material to be cooled, which is quasistationär thanks to the transverse to the conveying direction webs to the respective element of the grate, from wear by the rest, due to their abrasive components wear-aggressive bulk of the bulk material.

Weiter ist zweckmäßigerweise parallel zur Förderrichtung seitlich des Dispersionselementes in dem Stützgitter ein Materialsumpf vorgesehen. Er dient dazu, nach unten aus der Schicht des zu fördernden Schüttguts abwandernden Bestandteilen des Schüttguts, insbesondere feinen Staubbestandteilen, einen Auffangraum zu bieten. Es hat sich gezeigt, dass es ansonsten dazu kommen könnte, dass die nach unten wandernden feinen Bestandteile das Dispersionselement verstopfen könnten. Durch den Materialsumpf wird erreicht, dass dieses Material sich in dem durch den Materialsumpf geschaffenen Raum ansammelt. Dadurch kann das Dispersionselement vor einer Verstopfung geschützt werden, und eventuell noch darauf gelangende geringe Reste an feinen Bestandteilen können dank des durch das Dispersionselement geführten Kühlgasstroms ausgetragen werden. Der Materialsumpf kann im Querschnitt an sich beliebig geformt sein, insbesondere kann er quadratisch, rechteckig oder auch rund ausgeführt sein.Next, a material sump is expediently provided parallel to the conveying direction of the side of the dispersion element in the support grid. It serves to provide a collecting space downwards from the layer of the bulk material to be conveyed, which migrates away from the bulk material, in particular fine dust constituents. It has been found that otherwise the downwardly migrating fines could clog the dispersing element. Through the material sump it is achieved that this material accumulates in the space created by the material sump. As a result, the dispersion element may be blocked be protected, and possibly still reaching small residues of fine components can be discharged thanks to the guided through the dispersion element cooling gas flow. The material sump may have any desired shape in cross-section, in particular it may be square, rectangular or even round.

Vorzugsweise kann vorgesehen sein, dass das Dispersionselement mehrere angrenzende Module übergreifend ausgebildet ist. Unter übergreifend wird hierbei verstanden, dass ein einheitliches Stück des Dispersionselements den Bereich mehrerer insbesondere in Förderrichtung aneinander grenzender Stützkonstruktionen überspannt. Dadurch werden Stoßkanten zwischen den Dispersionselementen und daraus eventuell resultierende Abdichtungsprobleme vermieden. Außerdem verringert sich der Aufwand für die Herstellung, und die Wartung erleichtert sich dementsprechend bei einem eventuell erforderlich werdenden Austausch des Dispersionselementes. Die Stützkonstruktionen können hierbei voneinander mit einem gewissen Abstand angeordnet sein, zweckmäßiger ist es aber, sie unmittelbar aneinandergrenzend anzuordnen. Dies ermöglicht eine maximale Ausdehnung der zum Ausblasen von Kühlgas genutzten Fläche.Preferably, it can be provided that the dispersion element is formed across several adjacent modules. The term "overlapping" is understood here to mean that a uniform piece of the dispersion element spans the area of a plurality of support structures which adjoin one another, in particular in the conveying direction. As a result, abutting edges between the dispersion elements and possibly resulting sealing problems are avoided. In addition, the cost of production is reduced, and the maintenance is facilitated accordingly in a possibly required replacement of the dispersion element. The support structures can in this case be arranged at a certain distance from each other, but it is more expedient to arrange them directly adjacent to one another. This allows a maximum extent of the area used for blowing out of cooling gas.

Die Stützkonstruktion ist vorzugsweise von mehreren im Kreuzverband angeordneten Plattenelementen gebildet. Dies ermöglicht eine rationelle und zugleich mechanisch stabile Ausführung der Stützkonstruktion als Stützgitter. Die Plattenelemente können mit schlitzartigen Ausnehmungen entsprechend der Weite des Stützgitters versehen sein, um ein Zusammenstecken der Plattenelemente zur Stützkonstruktion zu ermöglichen. Dies erlaubt eine besonders einfache Herstellung. Zweckmäßigerweise sind die Plattenelemente dabei so ausgebildet, dass sie formgleich sind. Es kann weiter vorgesehen sein, dass sie längengleich sind, unbedingt nötig ist dies aber nicht. Bereits mit der formgleichen Ausführung der Plattenelemente für die Stützkonstruktion kann eine erhebliche Verringerung der Teilevielfalt, und damit eine vereinfachte Herstellung erreicht werden.The support structure is preferably formed by a plurality of cross member arranged plate elements. This allows a rational and at the same time mechanically stable design of the support structure as a support grid. The plate elements may be provided with slot-like recesses corresponding to the width of the support grid to allow mating of the plate elements to the support structure. This allows one particularly simple production. Appropriately, the plate elements are designed so that they are the same shape. It can be further provided that they are equal in length, but this is not absolutely necessary. Already with the identical design of the plate elements for the support structure, a significant reduction in the variety of parts, and thus a simplified production can be achieved.

Grundsätzlich kann der erfindungsgemäße Verbund aus Dispersionselement und Stützkonstruktion in einem feststehenden Teil oder einem beweglichen Teil des Kühlrosts angeordnet werden. Es kann auch eine kombinierte Anordnung vorgesehen sein. Ein besonderer Vorteil der erfindungsgemäßen Konstruktion liegt aber darin, dass sie sich aufgrund ihrer Einfachheit und insbesondere ihrer Modulbauweise zu einer Anordnung in einem beweglichen Element von Kühlrosten eignet. Dabei kann die Dispersionsfläche so angeordnet sein, dass sie zwischen dem verbleibenden Raum für Förderelemente für die Schicht des zu kühlenden Schüttguts positioniert ist. Damit ist die Verwendung des erfindungsgemäßen Kühlrosts auch bei solchen Brenngutkühlern ermöglicht, die gesonderte. (und nicht wie bei dem "Walking-Floor"-Prinzip in den eigentlichen Rost integrierte) Förderelemente aufweisen.In principle, the inventive composite of dispersion element and support structure can be arranged in a fixed part or a movable part of the cooling grid. It can also be provided a combined arrangement. However, a particular advantage of the construction according to the invention lies in the fact that it is due to their simplicity and in particular their modular design to an arrangement in a movable element of cooling grates suitable. In this case, the dispersion surface can be arranged so that it is positioned between the remaining space for conveying elements for the layer of the bulk material to be cooled. Thus, the use of the cooling grid according to the invention is also possible in such Brenngutkühlern, the separate. (and not in the actual grate integrated as in the "Walking Floor" principle) conveying elements.

Zweckmäßigerweise ist das Dispersionselement so beschaffen, dass seine Gitterweite weniger als 1 mm beträgt. Unter Gitterweite wird hiermit die Weite eines durch das Dispersionselement führenden Kanals zur Zuführung von Kühlgas verstanden. Mit dieser Weite kann eine ausreichende Sicherheit gegenüber einem unerwünschten Eintrag von Schüttgutmaterial erreicht werden, ohne dass dabei ein unnötig hoher Druckverlust in Bezug auf eindringendes oder durchfallendes Schüttgutmaterial entsteht.Conveniently, the dispersion element is such that its grid width is less than 1 mm. The term "grid width" hereby means the width of a channel leading through the dispersion element for the supply of cooling gas. With this width sufficient security against an undesirable entry of bulk material can be achieved without any unnecessarily high pressure loss occurs with respect to penetrating or falling bulk material.

Die Erfindung wird nachfolgend unter Bezugnahme auf die beigefügte Zeichnung erläutert, in der ein vorteilhaftes Ausführungsbeispiel abgebildet ist. Es zeigen:

Fig. 1
einen schematischen Längsschnitt durch einen Kühler gemäß der Erfindung;
Fig. 2
einen Teil-Querschnitt eines Kühlers gemäß einer ersten Ausführungsform;
Fig. 3
eine Teil-Aufsicht auf den in Fig. 2 dargestellten Kühler;
Fig. 4
einen Teil-Querschnitt eines Kühlers gemäß einer zweiten Ausführungsform;
Fig. 5
eine Queransicht eines Dispersionselements eines Kühlers gemäß einer dritten Ausführungsform;
Fig. 6
eine Aufsicht auf das in Fig. 5 dargestellte Dispersionselement;
Fig. 7
einen Querschnitt einer Planke des Rosts gemäß einer vierten Ausführungsform;
Fig. 8
eine perspektivische Teilansicht der gemäß Fig. 7 dargestellten Planke ;
Fig. 9
eine perspektivische Teilansicht eines Kühlers gemäß einer fünften Ausführungsform;
Fig. 10
einen Teil-Querschnitt der in Fig. 9 dargestellten Ausführungsform;
Fig. 11
einen Teil-Querschnitt eines Kühlers mit gesonderten Förderelementen und zwei verschiedenen Ausführungen der Dispersionselemente gemäß einer sechsten Ausführungsform;
Fig. 12
einen Teil-Querschnitt eines Kühlers gemäß einer siebten Ausführungsform;
Fig. 13
einen Teil-Querschnitt eines Kühlers gemäß einer achten Ausführungsform;
Fig. 14
einen Teil-Querschnitt eines Kühlers gemäß einer Kombination aus den in Fig. 11 und 12 dargestellten Ausführungsformen.
The invention will be explained below with reference to the accompanying drawing, in which an advantageous embodiment is shown. Show it:
Fig. 1
a schematic longitudinal section through a radiator according to the invention;
Fig. 2
a partial cross section of a radiator according to a first embodiment;
Fig. 3
a partial plan view of the cooler shown in Figure 2;
Fig. 4
a partial cross section of a radiator according to a second embodiment;
Fig. 5
a transverse view of a dispersion element of a radiator according to a third embodiment;
Fig. 6
a plan view of the dispersion element shown in Figure 5;
Fig. 7
a cross section of a plank of the grate according to a fourth embodiment;
Fig. 8
a partial perspective view of the plank shown in FIG. 7;
Fig. 9
a partial perspective view of a radiator according to a fifth embodiment;
Fig. 10
a partial cross-section of the embodiment shown in Figure 9;
Fig. 11
a partial cross section of a cooler with separate conveying elements and two different embodiments of the dispersion elements according to a sixth embodiment;
Fig. 12
a partial cross section of a cooler according to a seventh embodiment;
Fig. 13
a partial cross section of a radiator according to an eighth embodiment;
Fig. 14
a partial cross section of a radiator according to a combination of the embodiments shown in FIGS. 11 and 12.

Ein schematisches Ausführungsbeispiel für erfindungsgemäße Kühler ist in Fig. 1 dargestellt. Ein Gehäuse 1 weist an einem Ende einen Aufgabeschacht 12 auf, in welchem ein Abwurfende eines Drehrohrofen 2 mündet. Von dem Drehrohrofen 2 abgeworfenes zu kühlendes Schüttgut, welches nachfolgend als Kühlgut bezeichnet wird, fällt im Aufgabeschacht 12 auf einen Aufgabeabschnitt 14 des Kühlers und gelangt von dort auf einen erfindungsgemäß ausgeführten Rost 3. Dieser ist im wesentlichen horizontal ausgebildet und bildet eine Unterstützungs- und Transportfläche für das Kühlgut. Dem auf dem Rost 3 liegenden Kühlgut wird Kühlgas von unten durch den Rost 3 zugeführt. Mittels einer Fördereinrichtung wird das Gut entlang des Rosts 3 in einer Förderrichtung 60 zu einem Abwurfende 16 transportiert. Über einen optional angeordneten Abwurfabschnitt 18 fällt das Kühlgut dann zu einer nachgeordneten Bearbeitungsstufe, beispielsweise zu einem Brecher 8.A schematic embodiment of cooler according to the invention is shown in Fig. 1. A housing 1 has at one end to a feed chute 12, in which a discharge end of a rotary kiln 2 opens. From the rotary kiln 2 dropped bulk material to be cooled, which is hereinafter referred to as refrigerated goods falls in the feed chute 12 on a task section 14 of the radiator and passes from there to an inventively designed grate 3. This is formed substantially horizontally and forms a support and transport surface for the refrigerated goods. The cooling material lying on the grate 3 is supplied with cooling gas from below through the grate 3. By means of a conveyor, the material along the grate 3 in a Transport direction 60 transported to a discharge end 16. Via an optionally arranged discharge section 18, the chilled goods then fall to a downstream processing stage, for example to a crusher 8.

Bei dem ersten Ausführungsbeispiel ist vorgesehen, dass der Rost 3 aus einer Mehrzahl von parallel in Förderrichtung 60 angeordneten Planken 31 gebildet ist. Die Planken sind einzeln vor- und zurückbeweglich und sind von einer Bewegungssteuereinrichtung so angetrieben werden, dass sie gemeinsam vorgeschoben und einzeln zurückbewegt sind. Dieses Förderprinzip für Kühlroste ist unter der Bezeichnung "walking floor" bekannt ( DE-A-19651741 ); auf die Erläuterung von Einzelheiten zu Aufbau und Funktionsweise kann daher verzichtet werden. Eine Querschnittsansicht durch eine Planke 31 des Rosts 3 ist in Fig. 2 dargestellt. Die Planke 31 weist an ihren den benachbarten Planken 31' zugewendeten Seitenkanten hochstehende Wangen 32 auf. Die beiden Wangen 32 einer Planke 31 bilden Seitenbegrenzungen einer Mulde. Zum Schutz gegen unerwünschtes Eindringen von Kühlgut in den Zwischenraum zwischen benachbarten Wangen 32, 32' ist ein die oberen Enden der Wangen 32, 32' übergreifendes Dichtprofil 33 vorgesehen. Optional ist neben der Wange 32 auf dem der dem Dichtprofil 33 zugewandten Seite der Planke 31 eine abgrenzende Wange 32" angeordnet. Hierdurch wird sichergestellt, dass durch die Relativbewegung zwischen den einzelnen Planken entstehende Feinpartikel des Schüttguts nicht zum Dispersionselement gelangen können.In the first exemplary embodiment, it is provided that the grate 3 is formed from a plurality of planks 31 arranged parallel in the conveying direction 60. The planks are individually movable back and forth and are driven by a motion controller so that they are advanced together and moved back individually. This conveying principle for cooling grates is known as "walking floor" ( DE-A-19651741 ); to the explanation of details on structure and operation can therefore be omitted. A cross-sectional view through a plank 31 of the grate 3 is shown in Fig. 2. The plank 31 has upstanding cheeks 32 at its side edges facing the adjacent planks 31 '. The two cheeks 32 of a plank 31 form side boundaries of a trough. To protect against unwanted ingress of refrigerated goods in the space between adjacent cheeks 32, 32 'is a the upper ends of the cheeks 32, 32' cross-sealing profile 33 is provided. Optionally, a delimiting cheek 32 "is arranged next to the cheek 32 on the side of the plank 31 facing the sealing profile 33. This ensures that fine particles of the bulk material resulting from the relative movement between the individual planks can not reach the dispersion element.

Die Planke 31 bildet mit ihrer Oberseite eine Unterstützungsfläche für das Kühlgut. Unterseitig der Planken 31 sind nicht dargestellte Zufuhreinrichtungen für Kühlgas angeordnet, von denen Kühlgas den Planken 31 zugeführt wird. Zum Anschluss der Zufuhreinrichtungen weisen die Planken 31 an ihrer Unterseite Anschlussstutzen 40 auf.The plank 31 forms with its top a support surface for the refrigerated goods. On the underside of the planks 31 are not shown supply means for Cooling gas arranged, of which cooling gas is supplied to the planks 31. To connect the feeders, the planks 31 on its underside connecting piece 40.

An der Oberseite der Planke sind gemäß der Erfindung ausgeführte Ausblaseinrichtungen 4 vorgesehen, denen durch die Planken 31 hindurch das Kühlgas von dem Anschlussstutzen 40 zugeführt wird. Nachfolgend wird der Aufbau einer der Ausblaseinrichtungen 4 näher erläutert. Sie ist von generell kastenartiger Gestalt. Die Oberseite ist doppellagig ausgeführt mit einem flächig ausgedehntem Dispersionselement und einem Stützelement. Das Dispersionselement ist bei dieser Ausführungsform durch ein Metallgewebe 41 gebildet. Es überspannt die gesamte Oberseite der Ausblaseinrichtung 4. Es liegt auf einer als Stützgitter ausgeführten Stützkonstruktion 42, welches das Metallgewebe 41 von unten stützt. Das Stützgitter 42 ist aus einer Mehrzahl von plattenartigen Segmenten 43 gebildet, die in einem Kreuzverbund zusammengefügt sind. Die Oberkanten der Segmente 43 sind in einer Ebene und bilden eine Stütze für das Metallgewebe 41. Damit wird erreicht, dass sich das Metallgewebe 41 auch unter der Gewichtskraft einer aufliegenden Schicht von Kühlgut nicht deformiert oder beschädigt wird. Das über den Anschlussstutzen 40 zugeführte Kühlgas verteilt sich zwischen den Segmenten 43 des Stützgitters 42, so dass es von unten dem Metallgewebe 41 zugeführt wird. Es durchströmt das Metallgewebe 41, wobei es fein verteilt wird und großflächig aus dem Metallgewebe 41 in die aufliegende Gutschicht eintritt. Es ergibt sich damit ein sowohl großflächiger wie auch gleichmäßiger Übertritt des Kühlgases in das Kühlgut. Die dabei anstehenden niedrigen Kühlgasgeschwindigkeiten bewirken einerseits einen niedrigen Druckverlust und andererseits eine optimale Kühlung des Kühlgutes. Beides zusammen ermöglicht einen niedrigen Energiebedarf. Das Metallgewebe 41 ist dabei ausreichend feinmaschig, um ein unerwünschtes Durchfallen von Kühlgut durch das Metallgewebe 41 zu verhindern.At the top of the plank according to the invention executed blow-out devices 4 are provided, which through the planks 31 through the cooling gas is supplied from the connecting piece 40. The construction of one of the blow-off devices 4 will be explained in more detail below. It is of generally box-like shape. The upper side is double-layered with a flat expanded dispersion element and a support element. The dispersion element is formed by a metal mesh 41 in this embodiment. It spans the entire top of the blower 4. It lies on a support structure designed as a support grid 42, which supports the metal fabric 41 from below. The support grid 42 is formed from a plurality of plate-like segments 43, which are joined together in a cross-compound. The upper edges of the segments 43 are in one plane and form a support for the metal fabric 41. This ensures that the metal fabric 41 is not deformed or damaged even under the weight of a resting layer of goods to be cooled. The cooling gas supplied via the connecting piece 40 is distributed between the segments 43 of the support grid 42, so that it is supplied to the metal fabric 41 from below. It flows through the metal fabric 41, wherein it is finely distributed and large area of the metal fabric 41 enters the overlying layer of material. This results in both a large-scale and uniform transfer of the cooling gas into the refrigerated goods. The upcoming low Cooling gas velocities, on the one hand, cause a low pressure loss and, on the other hand, optimum cooling of the refrigerated goods. Both together allow a low energy consumption. The metal fabric 41 is sufficiently fine-meshed to prevent unwanted falling through of goods to be cooled by the metal fabric 41.

Um der Gefahr von Verstopfungen der Ausblaseinrichtung 4 durch Kühlgut weiter entgegen zu wirken, kann zwischen den Ausblaseinrichtungen 4 ein Materialsumpf 5 vorgesehen sein. Er dient dazu, einen Aufnahmeraum für durchfallendes Kühlgut bereitzustellen. Die Gefahr einer Verstopfung des Metallgewebes 41 verringert sich dadurch weiter.In order to further counteract the risk of clogging of the blow-out device 4 by means of refrigerated goods, a material sump 5 can be provided between the blow-off devices 4. It serves to provide a receiving space for durchfallendes refrigerated goods. The risk of clogging of the metal fabric 41 is further reduced.

Wie die Aufsicht in Fig. 3 zeigt, kann die Ausblaseinrichtung 4 auch eine andere als eine kastenartige Kontur aufweisen. Die vorstehend beschriebene Ausführungsform der Ausblaseinrichtung 4 ist im unteren Bereich der Fig. 3 mit durchgezogenen Linien dargestellt. Im oberen Bereich der Fig. 3 ist eine Variante dargestellt, bei der die Ausblaseinrichtung eine zylinderförmige Kontur aufweist. Für deren Aufbau gelten obige Ausführungen sinngemäß.As the plan view in FIG. 3 shows, the blow-out device 4 can also have a shape other than a box-like contour. The embodiment of the blower 4 described above is shown in the lower part of FIG. 3 by solid lines. In the upper part of FIG. 3, a variant is shown in which the blow-out device has a cylindrical contour. For their construction, the above statements apply mutatis mutandis.

Bei einer zweiten Ausführungsform der Erfindung, die in Fig. 4 dargestellt ist, ist die Ausblaseinrichtung 4 in Gestalt eines Beckens 44 ausgeführt, das sich nahezu über die gesamte Breite der Planke 31 erstreckt. Mit dieser Ausführungsform wird im Vergleich zu der in den Fig. 2 und 3 dargestellten Ausführungsform eine Vergrößerung der für den Austritt des Kühlgases zur Verfügung stehenden Fläche erreicht. Damit ergibt sich eine noch bessere und vor allem gleichmäßigere Kühlwirkung. Auch bei dieser Ausführungsform kann ein Materialsumpf 5 vorgesehen sein. Er ist an den Längsseiten des Beckens 44' angeordnet und erstreckt sich teilweise unter dem Boden des Beckens 44. Zur Zuführung des Kühlgases ist in dem Boden des Beckens 44 ein zentraler Anschlussstutzen 40 oder über die gesamte Breite eine direkte Anströmung mit Kühlgas vorgesehen.In a second embodiment of the invention, which is shown in Fig. 4, the blower 4 is designed in the form of a basin 44 which extends over almost the entire width of the plank 31. With this embodiment, an enlargement of the area available for the exit of the cooling gas is achieved in comparison with the embodiment shown in FIGS. 2 and 3. This results in an even better and above all more uniform cooling effect. Also in this embodiment a material sump 5 may be provided. It is arranged on the longitudinal sides of the basin 44 'and partially extends below the bottom of the basin 44. For supplying the cooling gas, a central connecting piece 40 or a direct flow of cooling gas over the entire width is provided in the bottom of the basin 44.

Eine dritte Ausführungsform der Erfindung ist in den Fig. 5 und 6 dargestellt. Die Ausblaseinrichtungen sind bei dieser Ausführungsform in Modulbauweise ausgeführt. Einen Querschnitt durch ein solches Modul, in seiner Gesamtheit mit der Bezugsziffer 47 versehen, zeigt Fig. 5. Es umfasst eine Wanne 45 mit optional geneigten Rändern, an die mittels Randleisten 46 das Metallgewebe 41 eingespannt ist. Die Randleisten 46 sind in dem dargestellten Ausführungsbeispiel mittels einer Verschraubung an dem Rand der Wanne 45 befestigt; es kann aber auch eine andere Befestigungsart vorgesehen sein, die eine ausreichende Befestigungssicherheit bietet. Unmittelbar unter dem Metallgewebe 41 ist die Stützkonstruktion 42 angeordnet. Es ist so ausgebildet, dass seine Unterkante entlang seinen Außenseiten mit einer Neigung entsprechend derjenigen der Ränder der Wanne 45 ausgeführt ist. Das Stützgitter 42 kann so selbstzentrierend in die Wanne 45 eingesetzt werden. Das Metallgewebe 41 ist auf die Stützkonstruktion 42 gelegt und mittels der Randleisten 46 befestigt. Der Boden der Wanne 45 weist eine großflächige Öffnung für die Zuführung von Kühlgas auf. Damit braucht das Modul 47 nur an seinen Platz dem zu seiner Aufnahme bestimmten Element des Rosts 3 eingesetzt zu werden, wodurch es sich selbsttätig dank der geneigten Ränder 46 in seiner Aufnahmeposition zentriert und der Anschluss an die von unten erfolgende Kühlgaszuführung erfolgt. In der Regel ist durch die eigene Gewichtskraft und die des aufliegenden Kühlguts ausreichend sicher arretiert, gewünschtenfalls können zur größeren Befestigungssicherheit aber noch gesonderte Befestigungselemente (nicht dargestellt) vorgesehen sein. In Fig. 6 ist eine Aufsicht auf ein Modul 47 dargestellt.A third embodiment of the invention is shown in FIGS. 5 and 6. The blow-out devices are designed modularly in this embodiment. A cross-section through such a module, provided in its entirety by the reference numeral 47, is shown in FIG. 5. It comprises a trough 45 with optionally inclined edges, to which the metal mesh 41 is clamped by means of edge strips 46. The edge strips 46 are fastened in the illustrated embodiment by means of a screw on the edge of the trough 45; but it can also be provided another type of fastening, which provides sufficient fastening security. Immediately below the metal mesh 41, the support structure 42 is arranged. It is designed so that its lower edge along its outer sides with an inclination corresponding to that of the edges of the trough 45 is executed. The support grid 42 can be used so self-centering in the trough 45. The metal fabric 41 is placed on the support structure 42 and fastened by means of the edge strips 46. The bottom of the trough 45 has a large-area opening for the supply of cooling gas. Thus, the module 47 needs to be inserted only in its place to the specific element for its inclusion of the grate 3, whereby it is automatically centered thanks to the inclined edges 46 in its receiving position and the connection to the taking place from below cooling gas supply. Usually is through your own Weight force and the resting of the refrigerated goods sufficiently securely locked, if desired, can be provided for greater attachment security but still separate fasteners (not shown). FIG. 6 shows a plan view of a module 47.

In den Fig. 7 und 8 ist eine alternative Ausführungsform gezeigt, bei der in Förderrichtung 60 gesehen hinter der Ausblaseinrichtung 4 ein in das Kühlgut ragender Steg 34 angeordnet ist. Es versteht sich, dass die in Förderrichtung benachbarten Ausblaseinrichtungen 4 ebenfalls mit einem solchen Steg 34 versehen sind. Die Stege 34 sind zweckmäßigerweise entlang von quer zur Förderrichtung orientierten Begrenzungsseiten des Dispersionselementes 41 angeordnet. Damit wird erreicht, dass an beiden quer zur Förderrichtung 60 orientierten Begrenzungsseiten der Ausblaseinrichtung 4 je einer der Stege 34 angeordnet ist. Die Stege 34 dienen zur Bildung von Mulden auf dem Rost 3, in denen sich im Betrieb des Kühlers Kühlgut anlagert. Diese Anlagerung erfolgt als eine Schicht, die im normalen Betrieb des Kühlers nicht entlang der Förderrichtung 60 bewegt wird, sondern quasistationär in Bezug auf den jeweiligen Bereich der Oberfläche des Rosts 3 verbleibt; bei einem "walking floor" bewegt sich diese Schicht entsprechend den Vor- und Rückbewegungen der Planke 31 mit. Die durch die Stege 34 begrenzten Mulden halten im Betrieb also Kühlgut fest. Sie werden daher auch als "guthaltende Mulden" bezeichnet. Der quasistationär in der jeweiligen Mulde angeordnete Teil des Kühlguts führt im Wesentlichen keine Relativbewegung zu der Planke 31 aus. Das bedeutet, dass das Dispersionselement 41' nicht oder nur minimal durch abrasive Komponenten des Schüttgut belastet ist. Die Gefahr einer Beschädigung der Dispersionselements 41' ist damit minimiert. Hierbei kann die Stützkonstruktion 42' zur weiteren Verminderung des Strömungswiderstand ausgebildet sein. Das Stützgitter 42' ist in die Oberfläche des Rosts 3 integriert.. Außerdem wirkt die zwischen den Stegen 34 befindliche quasistationäre Gutschicht als ein Filter, der Partikel unterhalb einer bestimmten Größe nicht passieren lässt. All dies ermöglicht es, das Dispersionselement 41' vergleichsweise weitmaschig auszuführen, beispielsweise als ein industrieübliches Drahtgewebe. Bei dieser Ausführungsform wird eine großflächige Ausblasung erreicht, die zudem dank des großen mittleren Querschnitts in diesem Bereich einen hohen Durchsatz aufweisen kann. Ein gesonderter Anschluss für das Kühlgas an einer Unterseite der Ausblaseinrichtung ist nicht erforderlich. Die Versorgung mit Kühlgas wird durch Bereitstellen des Kühlgases mit Überdruck in dem Raum unterhalb des Rosts 3 erreicht. Damit ergibt sich bei einfachem Aufbau eine verschleißgeschützte und mit geringem Druckverlust arbeitende Ausblaseinrichtung.FIGS. 7 and 8 show an alternative embodiment, in which, viewed in the conveying direction 60, a web 34 protruding into the refrigerated goods is arranged behind the blow-out device 4. It is understood that the blow-out devices 4 adjacent in the conveying direction are likewise provided with such a web 34. The webs 34 are expediently arranged along the boundary sides of the dispersion element 41 which are oriented transversely to the conveying direction. This ensures that at both transverse to the conveying direction 60 oriented boundary sides of the blower 4 each one of the webs 34 is arranged. The webs 34 serve to form depressions on the grate 3, in which refrigerated goods accumulates during operation of the cooler. This deposition occurs as a layer that is not moved along the conveying direction 60 during normal operation of the cooler, but remains quasi-stationary with respect to the respective area of the surface of the grate 3; In the case of a walking floor, this layer moves in accordance with the forward and backward movements of the plank 31. The limited by the webs 34 troughs hold during operation so refrigerated goods. They are therefore also referred to as "well-holding wells". The quasi-stationary arranged in the respective trough part of the refrigerated product performs substantially no relative movement to the plank 31. This means that the dispersion element 41 'not or only minimally by abrasive components of the bulk material is charged. The risk of damaging the dispersion element 41 'is thus minimized. Here, the support structure 42 'may be formed to further reduce the flow resistance. The support grid 42 'is integrated into the surface of the grate 3. In addition, the quasi-stationary material layer located between the webs 34 acts as a filter that does not allow particles below a certain size to pass. All this makes it possible to perform the dispersion element 41 'comparatively weitmaschig, for example, as an industry-standard wire mesh. In this embodiment, a large-area blow-out is achieved, which in addition, thanks to the large average cross-section in this area can have a high throughput. A separate connection for the cooling gas at a bottom of the blower is not required. The supply of cooling gas is achieved by providing the cooling gas with overpressure in the space below the grate 3. This results in a simple structure a wear-protected and working with low pressure drop blow-out.

In Fig. 9 und 10 ist eine Abwandelung der Ausführungsform gemäß Fig. 3 dargestellt. Sie unterscheidet sich im Wesentlichen dadurch, dass ein Dispersionselement 41" sich in Längsrichtung (parallel zur Förderrichtung 60) über mehrere Stützkonstruktionen 42' erstreckt. Zweckmäßigerweise sind die gemeinsam von dem Dispersionselement 41" überspannten Stützkonstruktionen 42' in einer Planke 31 angeordnet, sofern es sich bei dem Kühler um einen nach dem "walking floor"-Prinzip handelt. Stoßkanten zwischen aneinandergrenzenden Dispersionselementen 41" sowie daraus eventuell resultierende Abdichtungsprobleme werden hierbei vermieden. Zudem sind die Montage und das Auswechseln des Dispersionselements vereinfacht, da nur ein Dispersionselement 41" zu entfernen bzw. zu installieren ist. Die übergreifende Anordnung des Dispersionselements 41" bietet hierbei insbesondere dann Vorteile, wenn die Ausblaseinrichtungen 4, und zwar insbesondere die Stützgitter 42', in der oben erläuterten Modulbauweise ausgeführt sind.FIGS. 9 and 10 show a modification of the embodiment according to FIG. 3. It differs essentially in that a dispersion element 41 "extends longitudinally (parallel to the conveying direction 60) over a plurality of support structures 42 ' when the cooler is a "walking floor" principle. Abutting edges between adjoining dispersion elements 41 "and possibly therefrom resulting sealing problems are avoided. In addition, the assembly and the replacement of the dispersion element are simplified, since only one dispersion element 41 "is to be removed or installed.The overarching arrangement of the dispersion element 41" offers advantages in particular when the blow-off devices 4, and in particular the support grids 42 '. , are executed in the above-explained modular design.

Die Ausblaseinrichtungen 4 gemäß der vorliegenden Erfindung sind nicht auf eine Anwendung an bewegten Elementen des Rosts 3 beschränkt. Es kann genauso vorgesehen sein, sie auch oder stattdessen an stationären Elementen des Rosts 3 anzuordnen. Dies gilt insbesondere für solche Brenngutkühler, die von dem Rost 3 gesonderte Förderelemente für das Kühlgut aufweisen.The blow-off devices 4 according to the present invention are not limited to an application to moving elements of the grate 3. It can also be provided to arrange them or instead on stationary elements of the grate 3. This is especially true for such Brenngutkühler that have separate from the grate 3 conveying elements for the refrigerated goods.

In Fig. 11 und 12 sind sechste und siebte Ausführungsformen dargestellt, bei denen die erfindungsgemäßen Ausblaseinrichtungen 4 an oder zwischen bewegten gesonderten Förder-elementen des Rosts des Brenngutkühlers angeordnet sind. Bei der Ausführungsform gemäß Fig. 11 ist ein stationärer Rost 3' vorgesehen, der eine Mehrzahl von nebeneinander angeordneten gesonderten Förderelementen 6 aufweist. Diese sind in parallel zur Förderrichtung 60 laufenden Schlitzen im Rost 3' längsbeweglich geführt und von einer nicht dargestellten Antriebseinrichtung bewegt. In den Zwischenräumen zwischen den Förderelementen 6 sind eine (rechte Hälfte von Fig. 11) oder mehrere (linke Hälfte von Fig. 11) Ausblaseinrichtungen 4 angeordnet. Sie können gemäß einer der vorstehend beschriebenen Ausführungsformen ausgebildet sein. Sie sind so angeordnet, dass sie nach oben aus der Oberfläche des Rosts 3 herausstehen. Damit wird erreicht, dass zwischen ihnen Räume gebildet sind, die als Materialsumpf 5 fungieren. Bei der Ausführungsform gemäß Fig. 12 sind die Ausblaseinrichtungen bündig in die Oberseite des Rosts 3' eingelassen. Diese Anordnung hat den Vorteil einer gleichmäßigen Oberfläche, wodurch eine gleichmäßigere Beaufschlagung des Kühlguts mit Kühlgas begünstigt wird. Außerdem kann bei dieser Ausführungsform der für die Ausblaseinrichtungen 4 vorgesehene Bereich und damit die insgesamt wirksame ausblasende Fläche maximiert werden. Ein gesonderter Materialsumpf ist bei dieser Ausführungsform nicht vorgesehen; zur Verringerung des Durchfalls von Kühlgut dient eine dichtere Ausführung des Metallgewebes 41. Durch die dichtere Ausführung entstehende größere Strömungswiderstände fallen wegen der großen Ausblasfläche nicht negativ ins Gewicht.In Figs. 11 and 12 sixth and seventh embodiments are shown in which the blow-out devices 4 according to the invention are arranged on or between moving separate conveyor elements of the grate of the combustor. In the embodiment according to FIG. 11, a stationary grate 3 'is provided which has a plurality of separate conveying elements 6 arranged next to one another. These are guided longitudinally movable in parallel to the conveying direction 60 slots in the grid 3 'and moved by a drive device, not shown. In the spaces between the conveying elements 6, a (right half of Fig. 11) or more (left half of Fig. 11) blowout 4 are arranged. They may be formed according to one of the embodiments described above. They are arranged so that they follow sticking out of the surface of the grate 3 at the top. This ensures that spaces are formed between them, which act as a material sump 5. In the embodiment according to FIG. 12, the blow-off devices are embedded flush in the upper side of the grate 3 '. This arrangement has the advantage of a uniform surface, whereby a more uniform loading of the cooling product is favored with cooling gas. In addition, in this embodiment, the area provided for the blow-off devices 4 and thus the total effective blow-out area can be maximized. A separate material sump is not provided in this embodiment; to reduce the breakdown of refrigerated goods serves a denser version of the metal fabric 41. Due to the denser design resulting larger flow resistance fall because of the large Ausblasfläche not negatively.

In Fig. 13 ist eine Variante der Ausführungsformen gemäß Fig. 11 als achte Ausführungsform dargestellt, bei der die Ausblaseinrichtungen nicht an dem stationären Teil des Rosts 3', sondern an den beweglichen Förderelementen 6' angeordnet sind. Der Aufbau der Ausblaseinrichtungen 4 entspricht den vorstehenden Ausführungen. Ein Unterschied liegt in der Art der Zuführung von Kühlgas. Es wird von unten über einen zwischen Längslagern 61 der Förderelemente 6' angeordneten Anschlussstutzen zugeführt, und über eine in das Förderelement 6' integrierte Steigleitung 64 zu der am oberen Ende des Förderelements angeordneten Ausblaseinrichtung 4 geleitet. Bei dieser Ausführungsform wird im Betrieb eine ungekühlte und nahezu unbewegte Schicht des Guts erzeugt, die auf der Oberseite des Rosts 3' aufliegt. Sie nimmt an den Vorgängen des Kühlens und Förderns nicht teil. Sie bildet eine Art stationäre Schutzschicht des Rosts 3' gegenüber Verschleiß. Da die Temperatur dieser Schicht etwa derjenigen des Rosts 3' entspricht, ist eine Kühlung dieser Schicht unnötig und wird dank der erhöhten Anordnung der Ausblaseinrichtungen 4 an dem oberen Ende der Förderelemente 6' auch vermieden. Durch die Anordnung der Ausblaseinrichtungen oben an den Förderelementen 6' wird erreicht, dass das Kühlgas erst an der Untergrenze des bewegten Kühlguts zugeführt wird. Damit werden Verluste aufgrund von Strömungswiderständen minimiert und so ein hoher Wirkungsgrad erreicht.FIG. 13 shows a variant of the embodiments according to FIG. 11 as the eighth embodiment, in which the blow-off devices are not arranged on the stationary part of the grate 3 ', but on the movable conveying elements 6'. The structure of the blow-out 4 corresponds to the above. One difference lies in the way in which cooling gas is supplied. It is supplied from below via a connection piece arranged between longitudinal bearings 61 of the conveying elements 6 'and is guided via an ascending line 64 integrated into the conveying element 6' to the blow-off device 4 arranged at the upper end of the conveying element. In this embodiment, an uncooled and almost stationary layer of the material is generated in operation, which rests on the top of the grate 3 '. It does not participate in the processes of cooling and conveying. It forms a kind of stationary Protective layer of rust 3 'against wear. Since the temperature of this layer corresponds approximately to that of the grate 3 ', cooling of this layer is unnecessary and is also avoided thanks to the increased arrangement of the blow-off devices 4 at the upper end of the conveying elements 6'. The arrangement of the blow-out at the top of the conveying elements 6 'ensures that the cooling gas is supplied only at the lower limit of the moving goods to be cooled. This minimizes losses due to flow resistance and thus achieves high efficiency.

In Fig. 14 ist eine Variante als neunte Ausführungsform dargestellt, die im Wesentlichen eine Kombination aus den sechsten und siebten Ausführungsformen ist. Bei dieser Ausführungsform erstrecken sich die Förderelemente quer über die gesamte Kühlerbreite. Die erfindungsgemäßen Ausblaseinrichtungen 4 sind entweder als separate Module oberhalb oder als integrierter Bestandteil des feststehenden Kühlrost 3" ausgeführt sind.FIG. 14 shows a variant as the ninth embodiment, which is essentially a combination of the sixth and seventh embodiments. In this embodiment, the conveying elements extend across the entire radiator width. The blow-out devices 4 according to the invention are designed either as separate modules above or as an integral part of the stationary cooling grid 3 ".

Claims (15)

Vorrichtung zum Kühlen von Schüttgut, die einen eine Schicht des Schüttguts entlang einer Förderrichtung fördernden Rost (3) mit einer Einrichtung zum Zuführen von Kühlgas aufweist, wobei der Rost (3) Förderelemente (31, 6) umfasst und eine im Wesentlichen ebene Unterstützungsfläche für die Schicht des Schüttguts bildet,
dadurch gekennzeichnet, dass
die Unterstützungsfläche mindestens teilweise mit einer flächigen Ausblaseinrichtung (4) versehen ist, die ein räumlich ausgedehntes Dispersionselement (41), auf dem das Schüttgut unmittelbar aufliegt, und eine darunter angeordnete Stützkonstruktion (42) aufweist.
Apparatus for cooling bulk material, comprising a grate (3) conveying a layer of the bulk material along a conveying direction, with a device for supplying cooling gas, the grate (3) comprising conveying elements (31, 6) and a substantially planar support surface for the Layer of the bulk material,
characterized in that
the support surface is at least partially provided with a flat blow-out device (4), which has a spatially extended dispersion element (41) on which the bulk material rests directly, and a support structure (42) arranged thereunder.
Vorrichtung nach Anspruch 1,
dadurch gekennzeichnet, dass
eine Wanne (45) vorgesehen ist, in der die Stützkonstruktion (42) und auf deren Rand das Dispersionselement (41) angeordnet sind, wobei die Wanne (45) bodenseitig einen Zufuhranschluss (40) für das Kühlgas aufweist.
Device according to claim 1,
characterized in that
a trough (45) is provided, in which the support structure (42) and on the edge of the dispersion element (41) are arranged, wherein the trough (45) on the bottom side has a supply port (40) for the cooling gas.
Vorrichtung nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
das Dispersionselement (41) und die Stützkonstruktion (42) zu einem Modul (47) zusammengefasst sind, das austauschbar an dem Rost (3) angeordnet ist.
Apparatus according to claim 1 or 2,
characterized in that
the dispersion element (41) and the support structure (42) are combined to form a module (47), which is arranged interchangeably on the grate (3).
Vorrichtung nach Anspruch 3,
dadurch gekennzeichnet, dass
mehrere Module (47) in Matrixanordnung vorgesehen sind.
Device according to claim 3,
characterized in that
a plurality of modules (47) are provided in matrix arrangement.
Vorrichtung nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass
auf dem Rost(3) und/oder seinen Planken (31) in das Schüttgut ragende Stege (34) quer zur Förderrichtung (60) angeordnet sind.
Device according to one of the preceding claims,
characterized in that
on the grid (3) and / or its planks (31) in the bulk material projecting webs (34) are arranged transversely to the conveying direction (60).
Vorrichtung nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass
in Förderrichtung (60) seitlich des Dispersionselementes (41) ein Materialsumpf (5) vorgesehen ist.
Device according to one of the preceding claims,
characterized in that
in the conveying direction (60), a material sump (5) is provided laterally of the dispersion element (41).
Vorrichtung nach einem der Ansprüche 3 bis 6,
dadurch gekennzeichnet, dass
das Dispersionselement (41) mehrere angrenzende Module (47) übergreifend ausgebildet ist.
Device according to one of claims 3 to 6,
characterized in that
the dispersion element (41) is designed to encompass several adjacent modules (47).
Vorrichtung nach Anspruch 7,
dadurch gekennzeichnet, dass
die Stützkonstruktionen (42) der aneinandergrenzenden Module (47) unmittelbar aneinander anschließen.
Device according to claim 7,
characterized in that
connect the support structures (42) of the adjacent modules (47) directly to each other.
Vorrichtung nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass
die Stützkonstruktion (42) als ein Stützgitter ausgebildet ist.
Device according to one of the preceding claims,
characterized in that
the support structure (42) is designed as a support grid.
Vorrichtung nach Anspruch 9,
dadurch gekennzeichnet, dass
das Stützgitter (42) aus im Kreuzverbund angeordneten Plattenelementen (43) angeordnet ist.
Device according to claim 9,
characterized in that
the support grid (42) is arranged from plate elements (43) arranged in a cross-connection.
Vorrichtung nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass
das Dispersionselement (41) und die Stützkonstruktion (42) in einem beweglichen Element (31) des Rosts (3) angeordnet sind.
Device according to one of the preceding claims,
characterized in that
the dispersion element (41) and the support structure (42) are arranged in a movable element (31) of the grate (3).
Vorrichtung nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass
das Dispersionselement (41) aus der Unterstützungsfläche des Rosts (3) hervorstehend ausgebildet ist.
Device according to one of the preceding claims,
characterized in that
the dispersion element (41) is formed protruding from the support surface of the grate (3).
Vorrichtung nach einem der Ansprüche 5 bis 12,
dadurch gekennzeichnet, dass
in Förderrichtung orientierte Wangen (32) auf dem Rost (3), vorzugsweise dessen Planken (31), vorgesehen sind, die zusammen mit den Stegen (34) guthaltende Mulden bilden.
Device according to one of claims 5 to 12,
characterized in that
in the conveying direction oriented cheeks (32) on the grate (3), preferably the planks (31), are provided which form together with the webs (34) well-holding wells.
Vorrichtung nach Anspruch 13,
dadurch gekennzeichnet, dass
die Wangen (32) an Längsseiten der Planken angeordnet sind.
Device according to claim 13,
characterized in that
the cheeks (32) are arranged on longitudinal sides of the planks.
Vorrichtung nach Anspruch 14,
dadurch gekennzeichnet, dass
eine zusätzliche Wange (32") innenseitig eines Dichtprofils der Planke (31) angeordnet ist.
Device according to claim 14,
characterized in that
an additional cheek (32 ") is arranged on the inside of a sealing profile of the plank (31).
EP06015148A 2006-07-20 2006-07-20 Aparatus for cooling bulky material Withdrawn EP1881287A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP06015148A EP1881287A1 (en) 2006-07-20 2006-07-20 Aparatus for cooling bulky material
EP07785969A EP2044378B1 (en) 2006-07-20 2007-07-10 Device for the cooling of bulk products
US12/374,256 US20090249637A1 (en) 2006-07-20 2007-07-10 Apparatus for cooling bulk material
CNA2007800272432A CN101490492A (en) 2006-07-20 2007-07-10 Device for the cooling of bulk products
DE502007005065T DE502007005065D1 (en) 2006-07-20 2007-07-10 DEVICE FOR COOLING BULK GOODS
PCT/EP2007/006103 WO2008009374A1 (en) 2006-07-20 2007-07-10 Device for the cooling of bulk products
EA200900150A EA014357B1 (en) 2006-07-20 2007-07-10 Device for the cooling of bulk products
AT07785969T ATE481608T1 (en) 2006-07-20 2007-07-10 DEVICE FOR COOLING BULK GOODS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06015148A EP1881287A1 (en) 2006-07-20 2006-07-20 Aparatus for cooling bulky material

Publications (1)

Publication Number Publication Date
EP1881287A1 true EP1881287A1 (en) 2008-01-23

Family

ID=37488055

Family Applications (2)

Application Number Title Priority Date Filing Date
EP06015148A Withdrawn EP1881287A1 (en) 2006-07-20 2006-07-20 Aparatus for cooling bulky material
EP07785969A Not-in-force EP2044378B1 (en) 2006-07-20 2007-07-10 Device for the cooling of bulk products

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP07785969A Not-in-force EP2044378B1 (en) 2006-07-20 2007-07-10 Device for the cooling of bulk products

Country Status (7)

Country Link
US (1) US20090249637A1 (en)
EP (2) EP1881287A1 (en)
CN (1) CN101490492A (en)
AT (1) ATE481608T1 (en)
DE (1) DE502007005065D1 (en)
EA (1) EA014357B1 (en)
WO (1) WO2008009374A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017042176A1 (en) * 2015-09-09 2017-03-16 Thyssenkrupp Industrial Solutions Ag Cooler for cooling hot bulk material
CN113883906A (en) * 2021-11-01 2022-01-04 莱芜钢铁集团泰东实业有限公司 Quick cooling and discharging device for rotary kiln roasting furnace charge

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5319964B2 (en) * 2008-06-09 2013-10-16 スチールプランテック株式会社 AIR SUPPLY DEVICE AND HIGH-TEMPERATURE POWDER COOLING EQUIPMENT HAVING THE AIR SUPPLY DEVICE
DE102010055825C5 (en) 2010-12-23 2017-05-24 Khd Humboldt Wedag Gmbh Method for cooling hot bulk material and cooler
EP3112786B2 (en) 2015-07-03 2021-02-17 Alite GmbH Clinker inlet distribution of a cement clinker cooler
CN105433411A (en) * 2015-12-13 2016-03-30 重庆长源饲料有限公司 Cooling device for feed
DE102019121870A1 (en) * 2019-08-14 2021-02-18 Thyssenkrupp Ag Cooler for cooling bulk goods

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3543413A (en) * 1968-12-18 1970-12-01 Hanford Foundry Co Removable clinker cooler grate plates and support frame therefor
DE2454202A1 (en) * 1974-11-15 1976-05-26 Kloeckner Humboldt Deutz Ag Cooler grate plate, esp. for cooling cement clinker - made of metal box-frame contg. refractory layer and air holes
DE19633969A1 (en) * 1996-08-22 1998-02-26 Karl Von Wedel Grid for material processing e.g. for cement production
EP1103762A1 (en) * 1999-11-27 2001-05-30 Rheinkalk GmbH & Co. KG Grate bar for mobile grate
EP1122504A1 (en) * 2000-02-04 2001-08-08 BMH Claudius Peters GmbH Grate plate, especially for the cooling of roasted materials
WO2005052482A1 (en) * 2003-11-28 2005-06-09 Khd Humboldt Wedag Gmbh Bulk material cooler for cooling hot materials to be cooled
DE202004020573U1 (en) * 2003-05-08 2005-08-04 Claudius Peters Technologies Gmbh Process for treating, especially cooling, a bulk material layer uses a gas stream on a grid consisting of panels driven forward and backward in the conveying direction

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2527455A (en) * 1950-02-18 1950-10-24 Huron Portland Cement Company Apparatus for conveying materials
BE792769A (en) * 1971-12-22 1973-06-14 Selas Corp Of America COLLECTOR MECHANISM FOR OVEN IN PARTICULAR FOR THE MANUFACTURE OF CERAMIC FOAMS
JPS5130869B2 (en) * 1972-06-13 1976-09-03
DE2307165B2 (en) * 1973-02-14 1976-03-25 Claudius Peters Ag, 2000 Hamburg METHOD AND DEVICE FOR DIRECT COOLING OF FINE-GRAIN TO COARSE-GRAIN PRODUCTS USING COOLING AIR
DE3616630A1 (en) * 1986-05-16 1987-11-19 Krupp Polysius Ag COOLING DEVICE
EP1475594A1 (en) * 2003-05-08 2004-11-10 Claudius Peters Technologies GmbH Process and apparatus to transport bulk material on a grid
US6948436B2 (en) * 2003-11-10 2005-09-27 Rem Engineereing, Inc. Method and apparatus for the gasification and combustion of animal waste, human waste, and/or biomass using a moving grate over a stationary perforated plate in a configured chamber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3543413A (en) * 1968-12-18 1970-12-01 Hanford Foundry Co Removable clinker cooler grate plates and support frame therefor
DE2454202A1 (en) * 1974-11-15 1976-05-26 Kloeckner Humboldt Deutz Ag Cooler grate plate, esp. for cooling cement clinker - made of metal box-frame contg. refractory layer and air holes
DE19633969A1 (en) * 1996-08-22 1998-02-26 Karl Von Wedel Grid for material processing e.g. for cement production
EP1103762A1 (en) * 1999-11-27 2001-05-30 Rheinkalk GmbH & Co. KG Grate bar for mobile grate
EP1122504A1 (en) * 2000-02-04 2001-08-08 BMH Claudius Peters GmbH Grate plate, especially for the cooling of roasted materials
DE202004020573U1 (en) * 2003-05-08 2005-08-04 Claudius Peters Technologies Gmbh Process for treating, especially cooling, a bulk material layer uses a gas stream on a grid consisting of panels driven forward and backward in the conveying direction
WO2005052482A1 (en) * 2003-11-28 2005-06-09 Khd Humboldt Wedag Gmbh Bulk material cooler for cooling hot materials to be cooled

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017042176A1 (en) * 2015-09-09 2017-03-16 Thyssenkrupp Industrial Solutions Ag Cooler for cooling hot bulk material
CN113883906A (en) * 2021-11-01 2022-01-04 莱芜钢铁集团泰东实业有限公司 Quick cooling and discharging device for rotary kiln roasting furnace charge
CN113883906B (en) * 2021-11-01 2023-10-24 山东泰东实业有限公司 Quick cooling and discharging device for roasting burden of rotary kiln

Also Published As

Publication number Publication date
DE502007005065D1 (en) 2010-10-28
EA014357B1 (en) 2010-10-29
EP2044378A1 (en) 2009-04-08
WO2008009374A1 (en) 2008-01-24
ATE481608T1 (en) 2010-10-15
EA200900150A1 (en) 2009-06-30
US20090249637A1 (en) 2009-10-08
EP2044378B1 (en) 2010-09-15
CN101490492A (en) 2009-07-22
WO2008009374A8 (en) 2008-02-28

Similar Documents

Publication Publication Date Title
EP2044378B1 (en) Device for the cooling of bulk products
DE69801285T3 (en) COOLER FOR GRAINY GOOD
EP1992897B1 (en) Method and device for cooling a bulk good layer lying on a supply grid
DD232539B5 (en) Rostbodenelement to build a Rostflaeche
EP1695015B1 (en) Bulk material cooler for cooling hot materials to be cooled
DE102011080998B4 (en) Cooling grid and grate segment for cooling cement clinker
WO2008017500A1 (en) Cooler for bulk material having a sealing device between adjoining conveying planks
EP3347662B1 (en) Cooler for cooling hot bulk material
EP0553878A1 (en) Grate cooler
DE202006011213U1 (en) Device for cooling bulk material
WO1996014549A1 (en) Plate for a sliding cooler grate
AT404284B (en) DRY DEDUSTERS
DE102019215735A1 (en) Cooler for cooling bulk goods with one stage
WO2021074057A1 (en) Cooler and method for cooling bulk material
DE4205534A1 (en) Grid plate for push grid cooler for hot material - is suitable for hot cement clinker and has troughs on its upper side for accommodation of clinker so as to protect the grid plate against overheating.
DE2000631B2 (en) Heat exchanger with continuous bulk material conveyance
BE1028148B1 (en) Cooler for cooling bulk goods, in particular cement clinker
DE102004056276B4 (en) cooler
BE1027674B1 (en) Cooler for cooling bulk goods with one stage
DE2801967C2 (en) Device for cooling cement clinker
EP3384221B1 (en) Grate plate for a grate cooler
BE1027673B1 (en) Cooler and method for cooling bulk goods
WO2003008863A1 (en) Device and method for constructing a slatted floor consisting of positively connected lamellar structures
DE19604808A1 (en) Pneumatic conveyor for hot granulate or powder products, e.g. cement clinker
WO2021180723A1 (en) Cooler for cooling bulk material, in particular cement clinker

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AKX Designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080724

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566