EP1848273A1 - 18-membered macrocycles and analogs thereof - Google Patents

18-membered macrocycles and analogs thereof

Info

Publication number
EP1848273A1
EP1848273A1 EP20050712354 EP05712354A EP1848273A1 EP 1848273 A1 EP1848273 A1 EP 1848273A1 EP 20050712354 EP20050712354 EP 20050712354 EP 05712354 A EP05712354 A EP 05712354A EP 1848273 A1 EP1848273 A1 EP 1848273A1
Authority
EP
Grant status
Application
Patent type
Prior art keywords
composition
tiacumicin
ketone
pharmaceutical composition
ethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20050712354
Other languages
German (de)
French (fr)
Other versions
EP1848273A4 (en )
Inventor
Youe-Kong Shue
Chan-Kou Hwang
Yu-Hung Chiu
Alex Romero
Farah Babakhani
Pamela Sears
Franklin Okumu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Sharp & Dohme Corp
Original Assignee
Optimer Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES, AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/04Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
    • A01N43/22Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom rings with more than six members
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • C07H17/04Heterocyclic radicals containing only oxygen as ring hetero atoms
    • C07H17/08Hetero rings containing eight or more ring members, e.g. erythromycins

Abstract

The present invention relates generally to the 18-membered macrocyclic antimicrobial agents called Tiacumicins, specifically, OPT-80 (which is composed almost entirely of the R-Tiacumicin B), pharmaceutical compositions comprising OPT-80, and methods using OPT-80. In particular, this compound is a potent drug for the treatment of bacterial infections, specifically C. difficile infections.

Description

18-MEMBERED MACROCYCLES AND ANALOGS THEREOF

FIELD OF INVENTION

The present invention relates generally to the 18-membered macrocyclic antimicrobial agents called Tiacumicins, specifically, the R-Tiacumicin B or Tiacumicin B and its related compounds. In particular, substantially pure R-Tiacumicin B, as a potent antibiotic agent for the treatment of bacterial infections, specifically GI infections caused by toxin producing strains of Clostridium difficile (C. difficile), Staphylococcus aureus (S. aureus) including methicillin-resistant Staphylococcus aureus (MRSA) and Clostridium perfringens (C. perfringens). BACKGROUM) OF THE INVENTION

Macrocycles are an important therapeutic class of antibiotics. These compounds are frequently produced as a family of closely related biogenetic congeners. The Tiacumicins are a series of 18-membered macrocyclic antibiotics in which the macrocyclic ring is glycosidically attached to one or two sugars. A seven-carbon sugar is esterfϊed at various positions with small fatty acids. The other sugar, when present, is esterified with an isomer of the fully substituted benzoic acid, everninic acid. (Journal of Liquid Chromatography, 1988, 11: 191-201).

Tiacumicins are a family of related compounds that contain the 18-membered ring shown in Formula I below.

Formula I

At present, several distinct Tiacumicins have been identified and six of these (Tiacumicin A-F) are defined by their particular pattern of substituents R1 , R2, and R3 (US Patent No.4,918,174; J. Antibiotics, 1987, 40: 575-588), as shown in Table 1.

Table 1. Substituents Present In Tiacumcins A-F

Tiacumicins A-F have been characterized spectroscopically and by other physical methods. The chemical structures of Tiacumicins are based on spectroscopy: UV-vis, IR and 1H and 13C NMR, see for example J. Antibiotics, 1987, 40: 575-588. Inspection of Table 1 reveals that certain members of the family are structurally related isomers and/or differ by the presence or absence of certain moieties. Others differ in the nature of their ester groups.

Tiacumicins are produced by bacteria, including Dactylosporangium aurantiacum subspecies hamdenensis, which may be obtained from the ARS Patent Collection of the Northern Regional Research Center, United States Department of Agriculture, 1815 North University Street, Peoria, IL 61604, accession number NRRL 18085. The characteristics of strain AB 718C-41 are given in J. Antibiotics, 1987, 40: 567-574 and US Patent No. 4,918,174.

C. difficile-associated diarrhea (CDAD) is a disease characterized by severe and painful diarrhea. C. difficile is responsible for approximately 20% of the cases of antibiotic- associated diarrhea (AAD) and the majority of the cases of antibiotic-associated colitis (AAC). These diseases are typically caused by toxin producing strains of C. difficile, S. aureus including methicillin-resistant S. aureus (MRSA) and Clostridium perfringens (C. perfringens). AAD represents a major economic burden to the healthcare system that is conservatively estimated at $3-6 billion per year in excess hospital costs in the U.S. alone. Vancomycin-resistant enterococci, for which intestinal colonization provides a constant reservoir for infection, has also emerged as a major nosocomial pathogen associated with increased health care cost and mortality. VRE can appear as coinfection in patients infected with C. difficile, or more commonly cause infection in certain high risk patients such as haematology and oncology patients, patients in intensive care units and patients receiving solid organ transplants.

Methicillin-resistant Staphylococci, such as MRSA, are increasing in prevalence in both the hospital and community settings. Staphylococci are found on the skin and within the digestive and respiratory tracts but can infect open wounds and burns and can progress to serious systemic infection. The emergence of multi-drug resistant Staphylococci, especially, in the hospital where antibiotic use is frequent and selective pressure for drug-resistant organisms is high, has proven a challenge for treating these patients. The presence of MRSA on the skin of patients and health care workers promotes transmission of the multidrug resistant organisms. Similar diseases, including but not limited to clostridial enterocolitis, neonatal diarrhea, antibiotic-associated enterocolitis, sporadic enterocolitis, and nosocomial enterocolitis are also significant problems in some animal species.

AAD is a significant problem in hospitals and long-term care facilities and in the community. C. difficile is the leading cause of AAD in the hospital setting, accounting for approximately 20% of cases of AAD and the majority of cases of antibiotic-associated colitis (AAC). The rising incidence of Clostridium difficile-associated diarrhea (CDAD) has been attributed to the frequent prescription of broad-spectrum antibiotics to hospitalized patients.

The most serious form of the disease is pseudomembranous colitis (PMC), which is manifested histologically by colitis with mucosal plaques, and clinically by severe diarrhea, abdominal cramps, and systemic toxicity. The overall mortality rate from CDAD is low, but is much greater in patients who develop severe colitis or systemic toxicity. A recent study has shown that even when death is not directly attributable to C. difficile, the rate of mortality in CDAD patients as compared to case-matched controls is much greater.

Diarrhea and colitis are caused by the elaboration of one or more C. difficile toxins. The organism proliferates in the colon in patients who have been given broad-spectrum antibiotics or, less commonly, cancer chemotherapy. CDAD is diagnosed in approximately 20% of hospitalized patients who develop diarrhea after treatment with such agents. There are currently two dominant therapies for CDAD: vancomycin and metronidazole. Vancomycin is not recommended for first-line treatment of CDAD mainly because it is the only antibiotic active against some serious life-threatening multi-drug resistant bacteria. Therefore, in an effort to minimize the emergence of vancomycin-resistant Enterococcus (VRE) or vancomycin-resistant S. aureus (VRSA), the medical community discourages the use of this drug except when absolutely necessary.

Metronidazole is recommended as initial therapy out of concern for the promotion and selection of vancomycin resistant gut flora, especially enterococci. Despite reports that the frequency of C. difficile resistance may be >6% in some countries, metronidazole remains nearly as effective as vancomycin, is considerably less expensive, and can be used either orally or intravenously. Metronidazole is associated with significant adverse effects including nausea, neuropathy, leukopenia, seizures, and a toxic reaction to alcohol. Furthermore, it is not safe for use in children or pregnant women. Clinical recurrence occurs in up to 20% of cases after treatment with either vancomycin or metronidazole. Therapy with metronidazole has been reported to be an important risk factor for VRE colonization and infection. The current treatment regime against Gastrointestinal infections, e.g., Clostridium difficile- associated diarrhea (CDAD) is rather cumbersome, requiring up to 500 mg four-times daily for 10 to 14 days. Thus, there is a need for better treatment for cases of CDAD as well as for cases of other Antibiotic-associated diarrhea (AAD) and Antibiotic-associated colitis (AAC). Tiacumicins, specifically Tiacumicin B, show activity against a variety of bacterial pathogens and in particular against C. difficile, a Gram-positive bacterium (Antimicrob. Agents Chemother. 1991, 1108-1111). C. difficile is an anaerobic spore-forming bacterium that causes an infection of the bowel. Diarrhea is the most common symptom but abdominal pain and fever may also occur. C. difficile is a major causative agent of colitis (inflammation of the colon) and diarrhea that may occur following antibiotic intake. This bacterium is primarily acquired in hospitals and chronic care facilities. Because Tiacumicin B shows promising activity against C. difficile, it is expected to be useful in the treatment of bacterial infections, especially those of the gastrointestinal tract, in mammals. Examples of such treatments include but are not limited to treatment of colitis and treatment of irritable bowel syndrome. Tiacumicins may also find use for the treatment of gastrointestinal cancers.

Tiacumicin antibiotics are described in U.S. Patent No. 4,918,174 (issued Apr. 17, 1990), J. Antibiotics 1987, 40: 575-588, J. Antibiotics 1987, 40: 567-574, J. Liquid Chromatography 1988, 11: 191-201, Antimicrobial Agents and Chemotherapy 1991, 35: 1108-1111, U.S. Patent No. 5,583,115 (issued Dec. 10, 1996), and U.S. Patent No. 5,767,096 (issued Jim. 16, 1998), which are all incorporated herein by reference. Related compounds are the Lipiarmycin antibiotics (c.f., J. Chem. Soc. Perkin Trans. I, 1987, 1353-1359 and J. Antibiotics 1988, 41: 308-315) and the Clostomicin antibiotics (J. Antibiotics 1986, 39: 1407-1412), which are all incorporated herein by reference.

SUMMARY OF THE INVENTION

The present invention relates to new pharmaceutical compositions containing R- Tiacumicins, specifically the optically pure R-Tiacumicin B, and to the use of these new compositions in combination with existing drugs to treat infections caused by gram-positive anerobes.

One embodiment of the present invention is directed towards the discovery that the chiral center at C- 19 of Tiacumicin B has great effect on biological activity. It has now been discovered that a substantially pure preparation of higher activity R-Tiacumicin B, which has an R-hydroxy group at C- 19 has surprisingly lower MIC values than the optically pure S- isomer of Tiacumicin B and other Tiacumicin B related compounds.

In another embodiment of the present invention the substantially pure R-Tiacumicin B has an unusually long post-antibiotic activity (PAE).

This invention encompasses the composition of novel antibiotic agents, containing substantially pure R-Tiacumicins, by submerged aerobic fermentation of the microorganism Dactylosporangium aurantiacum subspecies hamdenensis. The production method is covered by WO 2004/014295 A2, which is hereby incorporated by reference.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 shows the Oak Ridge Thermal Ellipsoid Plot Program (ORTEP) chemical structure of R-Tiacumicin B.

DETAILED DESCRIPTION OF THE INVENTION Definitions

The term "antibiotic-associated condition" refers to a condition resulting when antibiotic therapy disturbs the balance of the microbial flora of the gut, allowing pathogenic organisms such as enterotoxin producing strains of C. difficile, S. aureus and C. perfringens to flourish. These organisms can cause diarrhea, pseudomembranous colitis, and colitis and are manifested by diarrhea, urgency, abdominal cramps, tenesmus, and fever among other symptoms. Diarrhea, when severe, causes dehydration and the medical complications associated with dehydration.

The term "asymmetrically substituted" refers to a molecular structure in which an atom having four tetrahedral valences is attached to four different atoms or groups. The commonest cases involve the carbon atom. In such cases, two optical isomers (D- and L- enantiomers or R- and S- enantiomers) per carbon atom result which are nonsuperposable mirror images of each other. Many compounds have more than one asymmetric carbon. This results in the possibility of many optical isomers, the number being determined by the formula 2n, where n is the number of asymmetric carbons.

The term "broth" as used herein refers to the fluid culture medium as obtained during or after fermentation. Broth comprises a mixture of water, the desired antibiotic(s), unused nutrients, living or dead organisms, metabolic products, and the adsorbent with or without adsorbed product.

The term "C- 19 Ketone" refers to a Tiacumicin B related compound shown below in Formula II:

Formula II The term "diastereomers" refers to stereoisomers that are not mirror images of each other.

The term "enantiomer" refers to a non-superimposable mirror image of itself. An enantiomer of an optically active isomer rotates plane polarized light in an equal but opposite direction of the original isomer. A solution of equal parts of an optically active isomer and its enantiomer is known as a racemic solution and has a net rotation of plane polarized light of zero. Enantiomers will have the opposite prefixes of each other: D- becomes L- or R- becomes S-. Often only one enantiomer is active in a biological system, because most biological reactions are enzymatic and the enzymes can only attach to one of the enantiomers. The term "excipient" refers to an inert substance added to a pharmacological composition to further facilitate administration of a compound. Examples of excipients include but are not limited to, calcium carbonate, calcium phosphate, various sugars and types of starch, cellulose derivatives, gelatin, vegetable oils and polyethylene glycols.

The term "halogen" includes F, Cl, Br and I.

The term "isomeric mixture" means a mixture of two or more configurationally distinct chemical species having the same chemical formula. An isomeric mixture is a genus comprising individual isomeric species. Examples of isomeric mixtures include stereoisomers (enantiomers and diastereomers), regioisomers, as might result for example from a pericyclic reaction. The compounds of the present invention comprise asymmetrically substituted carbon atoms. Such asymmetrically substituted carbon atoms can result in mixtures of stereoisomers at a particular asymmetrically substituted carbon atom or a single stereoisomer. As a result, racemic mixtures, mixtures of diastereomers, as well as single diastereomers of the compounds of the invention are included in the present invention.

The term "Lipiarmycin A4" refers to a Tiacumicin B related compound shown below in Formula III:

OH Formula III

The term "lower alkyl," alone or in combination, refers to an optionally substituted straight-chain or optionally substituted branched-chain having from 1 to about 8 carbons (e.g., Ci, C2, C3, C4, C5, C6, C7, C8,), more preferably 1 to 4 carbons (e.g., Ci, C2, C3, C4,). Examples of alkyl radicals include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec- butyl, tert-butyl. A "lower alkyl" is generally a shorter alkyl, e.g., one containing from 1 to about 4 carbon atoms (e.g., Ci, C2, C3, C4,).

The term "macrocycles" refers to organic molecules with large ring structures usually containing over 10 atoms. The term "18-membered macrocycles" refers to organic molecules with ring structures containing 18 atoms.

The term "membered ring" can embrace any cyclic structure, including carbocycles and heterocycles as described above. The term "membered" is meant to denote the number of skeletal atoms that constitute the ring. Thus, for example, pyridine, pyran and thiopyran are 6 membered rings and pyrrole, furan, and thiophene are 5 membered rings.

The term "MIC" or "minimum inhibitory concentration" refers to the lowest concentration of an antibiotic that is needed to inhibit growth of a bacterial isolate in vitro. A common method for determining the MIC of an antibiotic is to prepare several tubes containing serial dilutions of the antibiotic, that are then inoculated with the bacterial isolate of interest. The MIC of an antibiotic can be determined from the tube with the lowest concentration that shows no turbidity (no growth).

The term "MIC50" refers to the lowest concentration of antibiotic required to inhibit the growth of 50% of the bacterial strains tested within a given bacterial species. The term "MIC90" refers to the lowest concentration of antibiotic required to inhibit the growth of 90% of the bacterial strains tested within a given bacterial species.

The term "OPT-80" refers to a preparation containing approximately 70-100%, preferably, 90% (with respect to the whole antibiotic substance, by HPLC assay) of the optically pure R-Tiacumicin B (which has an R-hydroxy group at C-19, see Formula IV). The remaining portions consist essentially of small amounts of Tiacumicin B related compounds (including, but not limited to Lipiarmycin A4 and C-19 Ketone). Preparations of this type are described in detail in PCT application PCT/US03/21977, having an international publication number of WO 2004/014295 A2 and which preparations and are incorporated here by reference. However, for exclusive use in non-humans crude "OPT-80" that contains less than 70% of the optically pure R-Tiacumicin B (with respect to the whole antibiotic substance, by HPLC assay) may be used.

The term "ORTEP" refers to the Oak Ridge Thermal Ellipsoid Plot computer program, written in Fortran, for drawing crystal structure illustrations. Ball-and-stick type illustrations of a quality suitable for publication are produced with either spheres or thermal- motion probability ellipsoids, derived from anisotropic temperature factor parameters, on the atomic sites. The program also produces stereoscopic pairs of illustrations which aid in the visualization of complex arrangements of atoms and their correlated thermal motion patterns. The term "PAE" or "post-antibiotic effect" refers to a well-established pharmacodynamic parameter that reflects the persistent suppression of bacterial growth following antibiotic exposure.

The term "patient" refers to a human or animal in need of medical treatment. For the purposes of this invention, human patients are typically institutionalized in a primary medical care facility such as a hospital or nursing home. However, treatment of a disease associated with the use of antibiotics or cancer chemotherapies or antiviral therapies can occur on an outpatient basis, upon discharge from a primary care facility, or can be prescribed by a physician for home-care, not in association with a primary medical care facility. Animals in need of medical treatment are typically in the care of a veterinarian.

The term "pharmaceutically acceptable c arrier" refers to a carrier or diluent that i s pharmaceutically acceptable.

The term "pharmaceutically acceptable salts" refers to those derived from pharmaceutically acceptable inorganic and organic bases. Salts derived from appropriate bases include alkali metal (e.g., sodium or potasium), alkaline earth metal (e.g., magnesium), ammonium and N(Ci-C4 alkyl)4 + salts, and the like. Illustrative examples of some of these include sodium hydroxide, potassium hydroxide, choline hydroxide, sodium carbonate, and the like.

The term "pharmaceutical composition" refers to a mixture of one or more of the Tiacumicins described herein, or physiologically acceptable salts thereof, with other chemical components, such as physiologically acceptable carriers and/or excipients. The purpose of a pharmaceutical composition is to facilitate administration of a compound to an organism.

The term "physiologically acceptable carrier" refers to a carrier or diluent that does not cause significant irritation to an organism and does not abrogate the biological activity and properties of the administered compound.

The term "pseudomembranous colitis" or "enteritis" refers to the formation of pseudomembranous material (i.e., material composed of fibrin, mucous, necrotic epithelial cells and leukocytes) due to inflammation of the mucous membrane of both the small and large intestine. The terms "R" and "S" configuration, as used herein, are as defined by the IUPAC

1974 Recommendations for Section E, Fundamental Stereochemistry, Pure Appl. Chern. (1976) 45, 13-30. Chiral molecules can be named based on the atomic numbers of the atoms or groups of atoms, the ligands that are attached to the chiral center. The ligands are given a priority (the higher the atomic number the higher the priority) and if the priorities increase in a clockwise direction, they are said to be R-. Otherwise, if they are prioritized in a counterclockwise direction they are said to be S-.

The term "R-Tiacumicin B" refers to the optically pure (R)-isomer of Tiacumicin B with an (R)-hydroxy group at C- 19, as shown below in Formula IV:

Formula IV

The term "S-Tiacumicin B" refers to the optically pure (S)-isomer of Tiacumicin B with an (S)-hydroxy group at C-19, as shown below in Formula V:

OH

Formula V The term "stereoisomers" refers to compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial arrangement.

The term "sugar" generally refers to mono-, di- or oligosaccharides. A saccharide may be substituted, for example, glucosamine, galactosamine, acetylglucose, acetylgalactose, N- acetylglucosamine, N-acetyl-galactosamine, galactosyl -N-acetylglucosamine, N- acetylneuraminic acid (sialic acid), etc., as well as sulfated and phosphorylated sugars. For the purposes of this definition, the saccharides are in their pyranose or furanose form. The term "Tiacumicin" as used herein refers to a family of compounds all of which comprise the 18-membered macrocycle shown below in Formula I:

Formula I

The term "Tiacumicin B" as used herein refers to the 18-membered macrocycle shown below in Formula VI:

Formula VI

The term "yield" as used herein refers to an amount of crude Tiacumicin reconstituted in methanol to the same volume as the original fermentation broth. Yield is determined using standard HPLC techniques. Yield is reported in units of mg/L.

This invention encompasses the composition of novel antibiotic agents, Tiacumicins, by submerged aerobic fermentation of the microorganism Dactylosporangiwn aurantiacum subspecies hamdenensis. The production method is covered by WO 2004/014295 A2.

The present invention relates to new antibacterial compositions containing R- Tiacumicins, specifically the R-Tiacumicin B (which has an R-hydroxy at C- 19), and to the use of these new compositions in combination with existing drugs to treat infections caused by gram-positive anerobes.

The present invention further relates to the novel OPT-80 preparation which contains 70-100% preferably, 90% (with respect to the whole antibiotic substance, by HPLC assay) of the R-Tiacumicin B. The remaining portions consist essentially of small amounts of Tiacumicin B related compounds (including, but not limited to Lipiarmycin A4 and C- 19 Ketone). Preparations of this type are described in detail in PCT application PCT/US03/21977, having an international publication number of WO 2004/014295 A2. However, for exclusive use in non-humans crude OPT-80 that contains less than 70% of the R-Tiacumicin B (with respect to the whole antibiotic substance, by HPLC assay) may be used. In accordance with the present invention there are provided compounds with the structure of Formula VII:

Formula VII wherein: X is selected from lower alkyl, and wherein the term "lower alkyl" as used herein refers to branched or straight chain alkyl groups comprising one to two carbon atoms, including methyl, ethyl, n-propyl, isopropyl, and the like; and Y is selected from OH or a ketone (=0); and

Z is selected from H or lower alkyl, and wherein the term "lower alkyl" as used herein refers to branched or straight chain alkyl groups comprising one to five carbon atoms, including methyl, ethyl, propyl, isopropyl, n-butyl, t-butyl, and the like.

Preferred compounds of the invention are compounds of Formula VII wherein X is methyl or ethyl, Y is ketone (=0) or OH and Z is isopropyl.

More preferred compounds of the invention are the compound of the Formula VII wherein X is ethyl, Y is ketone (=0) or OH and Z is isopropyl.

The most preferred compounds of the invention are the compounds of Formula VII wherein X is ethyl, Y is OH R and Z is isopropyl.

One embodiment of the present invention is directed towards the discovery that the chiral center at C- 19 of Tiacumicin B has great effect on biological activity. It has now been discovered that R-Tiacumicin B, which has an R-hydroxy group at C- 19 has significantly higher activity than the S-Tiacumicin B and other Tiacumicin B related compounds (Lipiarmycin A4 and C-19 Ketone). The higher activity is shown by much lowered MIC values, which can be seen below in Example 3, Tables 3 and 4 for several strains of C. difficile, S. aureus, E.faecalis, and E. faecium. This effect of the C-19 chiral center on biological activity is an unexpected and novel discovery. In another embodiment of the present invention OPT-80 (which is composed almost entirely of the R-Tiacumicin B) has an unusually long post-antibiotic effect (PAE). This is discussed below in Example 4, where it is shown that OPT-80 has a PAE of greater than 24 hours. This PAE is unexpectedly longer than the usual antibiotic PAE of 1-5 hours.

The present invention also relates to the disclosure of pharmaceutical compositions, which comprise a compound of the present invention in combination with a pharmaceutically acceptable carrier.

Yet another aspect of the invention discloses a method of inhibiting or treating bacterial infections in humans, comprising administering to the patient a therapeutically effective amount of a compound of the invention alone or in combination with another antibacterial or antifungal agent.

Production

The 18-membered macrocycles and analogs thereof are produced by fermentation. Cultivation of Dactylosporangium aurantiacum subsp. hamdenensis AB 718C-41 NRRL 18085 for the production of the Tiacumicins is carried out in a medium containing carbon sources, inorganic salts and other organic ingredients with one or more absorbents under proper aeration conditions and mixing in a sterile environment.

The microorganism to produce the active antibacterial agents was identified as belonging to the family Actinoplanaceae, genus Dactylosporangium (Journal of Antibiotics, 1987, 40: 567-574 and US patent 4,918, 174). It has been designated Dactylasporangium aurantiacum subspecies hamdenensis 718C-41. The subculture was obtained from the ARS Patent Collection of the Northern Regional Research Center, United States Department of Agriculture, 1815 North University Street, Peoria, IL. 61604, U.S.A., where it was assigned accession number NRRL 18085. The characteristics of strain AB 718C-41 are given in the Journal of Antibiotics, 1987, 40: 567-574 and US patent 4,918,174.

This invention encompasses the composition of novel antibiotic agents, Tiacumicins, by submerged aerobic fermentation of the microorganism Dactylosporangium aurantiacum subspecies hamdenensis. The production method is covered by WO 2004/014295 A2, which is hereby incorporated by reference. Pharmaceutical Formulation and Administration

Pharmaceutical compositions of the Tiacumicin compounds of the present invention, specifically OPT-80 (which is composed almost entirely of the R-Tiacumicin), according to the invention may be formulated to release an antibiotic substantially immediately upon administration or at any predetermined time or time period after administration.

The latter types of compositions are generally known as modified release formulations, which include formulations that create a substantially constant concentration of the drug within the intestinal tract over an extended period of time, and formulations that have modified release characteristics based on temporal or environmental criteria as described in Modified-Release Drug Delivery Technology, ed. M. J. Rathbone, J. Hodgraft and M. S. Roberts. Marcel Dekker, Inc. New York.

Any oral biologically-acceptable dosage form, or combinations thereof, can be employed in the methods of the invention. Examples of such dosage forms include, without limitation, chewable tablets, quick dissolve tablets, effervescent tablets, reconstitutable powders, elixirs, liquids, suppositories, creams, solutions, suspensions, emulsions, tablets, multi-layer tablets, bi-layer tablets, capsules, soft gelatin capsules, hard gelatin capsules, osmotic tablets, osmotic capsules, caplets, lozenges, chewable lozenges, beads, powders, granules, particles, microparticles, dispersible granules, ingestibles, infusions, health bars, confections, animal feeds, cereals, cereal coatings, foods, nutritive foods, functional foods and combinations thereof. The preparation of any of the above dosage forms is well known to persons of ordinary skill in the art. Additionally, the pharmaceutical formulations may be designed to provide either immediate or controlled release of the antibiotic upon reaching the target site. The selection of immediate or controlled release compositions depends upon a variety of factors including the species and antibiotic susceptibility of Gram-positive bacteria being treated and the bacteriostatic/bactericidal characteristics of the therapeutics. Methods well known in the art for making formulations are found, for example, in Remington: The Science and Practice of Pharmacy (20th ed.), ed. A.R. Gennaro, 2000, Lippincott Williams & Wilkins, Philadelphia, or in Encyclopedia of Pharmaceutical Technology, eds. J. Swarbrick and J. C. Boylan, 1988-1999, Marcel Dekker, New York.

Immediate release formulations for oral use include tablets or capsules containing the active ingredient(s) in a mixture with non-toxic pharmaceutically acceptable excipients. These excipients may be, for example, inert diluents or fillers (e.g., sucrose, sorbitol, sugar, mannitol, microcrystalline cellulose, starches including potato starch, calcium carbonate, sodium chloride, lactose, calcium phosphate, calcium sulfate, or sodium phosphate); granulating and disintegrating agents (e.g., cellulose derivatives including microcrystalline cellulose, starches including potato starch, croscarmellose sodium, alginates, or alginic acid); binding agents (e.g., sucrose, glucose, mannitol, sorbitol, acacia, alginic acid, sodium alginate, gelatin, starch, pregelatmized starch, microcrystalline cellulose, magnesium aluminum silicate, carboxymethylcellulose sodium, methylcellulose, hydroxypropyl methylcellulose, ethylcellulose, polyvinylpyrrolidone, or polyethylene glycol); and lubricating agents, glidants, and antiadhesives (e.g., magnesium stearate, zinc stearate, stearic acid, silicas, hydrogenated vegetable oils, or talc). Other pharmaceutically acceptable excipients can be colorants, flavoring agents, plasticizers, humectants, buffering agents, and the like as are found, for example, in The Handbook of Pharmaceutical Excipients, third edition, edited by Arthur H. Kibbe, American Pharmaceutical Association Washington DC.

Dissolution or diffusion controlled release can be achieved by appropriate coating of a tablet, capsule, pellet, or granulate formulation of compounds, or by incorporating the compound into an appropriate matrix. A controlled release coating may include one or more of the coating substances mentioned above and/or, e.g., shellac, beeswax, glycowax, castor wax, carnauba wax, stearyl alcohol, glyceryl monostearate, glyceryl distearate, glycerol palmitostearate, ethylcellulose, acrylic resins, dl-polylactic acid, cellulose acetate butyrate, polyvinyl chloride, polyvinyl acetate, vinyl pyrrolidone, polyethylene, polymethacrylate, methylmethacrylate, 2-hydroxymethacrylate, methacrylate hydrogels, 1,3 butylene glycol, ethylene glycol methacrylate, and/or polyethylene glycols. In a controlled release matrix formulation, the matrix material may also include, e.g., hydrated methylcellulose, carnauba wax and stearyl alcohol, carbopol 934, silicone, glyceryl tristearate, methyl acrylate-methyl methacrylate, polyvinyl chloride, polyethylene, and/or halogenated fluorocarbon. A controlled release composition may also be in the form of a buoyant tablet or capsule (i.e., a tablet or capsule that, upon oral administration, floats on top of the gastric content for a certain period of time). A buoyant tablet formulation of the compound(s) can be prepared by granulating a mixture of the antibiotic with excipients and 20-75% w/w of hydrocolloids, such as hydroxyethylcellulose, hydroxypropylcellulose, or hydroxypropylmethylcellulose. The obtained granules can then be compressed into tablets. On contact with the gastric juice, the tablet forms a substantially water-impermeable gel barrier around its surface. This gel barrier takes part in maintaining a density of less than one, thereby allowing the tablet to remain buoyant in the gastric juice. Other useful controlled release compositions are known in the art (see, for example, U.S. Patent Nos. 4,946,685 and 6,261,601).

A modified release composition may be comprised of a compression-coated core whose geometric configuration controls the release profile of the encapsulated antibiotic. By varying the geometry of the core, the profile of the antibiotic release can be adjusted to follow zero order, first order or a combination of these orders. The system can also be designed to deliver more beneficial agents at the same time, each having a different release profile (see, for example U.S. Patent Nos. 4,111,202 and 3,279,995).

Formulations that target the Tiacumicin compounds of the present invention, specifically OPT-80 (which is composed almost entirely of the R-Tiacumicin), that release to particular regions of the intestinal tract can also be prepared. The Tiacumicin compounds of the present invention, specifically OPT-80, can be encapsulated in an enteric coating that prevents release degradation and release from occurring in the stomach, but dissolves readily in the mildly acidic or neutral pH environment of the small intestine. A formulation targeted for release of antibiotic to the colon, utilizing technologies such as time-dependent, pH- dependent, or enzymatic erosion of polymer matrix or coating can also be used.

The targeted delivery properties of the Tiacumicin compounds of the present invention, specifically OPT-80 (which is composed almost entirely of the R-Tiacumicin B), containing formulation may be modified by other means. For example, the antibiotic may be complexed by inclusion, ionic association, hydrogen bonding, hydrophobic bonding, or covalent bonding. In addition polymers or complexes susceptible to enzymatic or microbial lysis may also be used as a means to deliver drug.

Microsphere encapsulation of the Tiacumicin compounds of the present invention, specifically OPT-80 (which is composed almost entirely of the R-Tiacumicin B), is another useful pharmaceutical formulation for targeted antibiotic release. The antibiotic-containing microspheres can be used alone for antibiotic delivery, or as one component of a two-stage release formulation. Suitable staged release formulations may consist of acid stable microspheres, encapsulating the compounds of the present invention, specifically OPT-80 (which is composed almost entirely of the R-Tiacumicin B), to be released later in the lower intestinal tract admixed with an immediate release formulation to deliver antibiotic to the stomach and upper duodenum.

Microspheres can be made by any appropriate method, or from any pharmaceutically acceptable material. Particularly useful are proteinoid microspheres (see, for example, U.S. Patent Nos. 5,601,846, or 5,792,451) and PLGA-containing microspheres (see, for example, U.S. Patent Nos. 6,235,224 or 5,672,659). Other polymers commonly used in the formation of microspheres include, for example, poly-ε-caprolactone, poly(e~caprolactone- Co-DL- lactic acid), poly(DL-lactic acid), poly(DL-lactic acid-Co-glycolic acid) and poly(s- caprolactone-Co-glycolic acid) (see, for example, Pitt et al, J. Pharm. Sci., 68:1534,1979). Microspheres can be made by procedures well known in the art including spray drying, coacervation, and emulsification (see for example Davis et al. Microsphere and Drug Therapy, 1984, Elsevier; Benoit et al. Biodegradable Microspheres: Advances in Production Technologies, Chapter 3, ed. Benita, S, 1996, Dekker, New York; Microencapsulation and Related Drug Processes, Ed. Deasy, 1984, Dekker, New York; U.S. Patent No. 6,365,187). Powders, dispersible powders, or granules suitable for preparation of aqueous solutions or suspensions of the Tiacumicin compounds of the present invention, specifically OPT-80 (which is composed almost entirely of the R-Tiacumicin B), by addition of water are convenient dosage forms for oral administration. Formulation as a suspension provides the active ingredient in a mixture with a dispersing or wetting agent, suspending agent, and one or more preservatives. Suitable dispersing or wetting agents are, for example, naturally- occurring phosphatides (e.g., lecithin or condensation products of ethylene oxide with a fatty acid, a long chain aliphatic alcohol, or a partial ester derived from fatty acids) and a hexitol or a hexitol anhydride (e.g., polyoxyethylene stearate, polyoxyethylene sorbitol monooleate, polyoxyethylene sorbitan monooleate, and the like). Suitable suspending agents are, for example, sodium carboxymethylcellulose, methylcellulose, sodium alginate, and the like.

EXAMPLES

The following examples are provided by way of describing specific embodiments of the present invention without intending to limit the scope of the invention in any way.

Example 1 - Exact Structure of R-Tiacumicin B

The exact structure of the R-Tiacumicin B (the major most active component of OPT-

80) is shown below in Formula IV. The X-ray crystal structure of the R-Tiacumicin B was obtained from a colorless, parallelepiped-shaped crystal (0.08 x 0.14 x 0.22 mm) grown in methanol and is shown as an ORTEP diagram in Figure 1. This x-ray structure confirms the structure shown below in Formula IV. The official chemical name is 3-[[[6-Deoxy-4-<9-(3,5- dichloro-2-ethyl-4,6-dihydroxybenzoyl)-2-0-methyl-β-D-mannopyranosyl]oxy]-methyl]- 12(i?)-[[6-deoxy-5-C-methyl-4-O-(2-methyl-l-oxopropyl)-β-D-lyxo-hexopyranosyl]oxy]- 11 (5)-ethyl-8(S)-hydroxy-l 8(S)-( 1 (i?)-hydroxyethyl)-9, 13, 15-trimethyloxacyclooctadeca- 3, 5,9,13, 15-pentaene-2 -one.

OH

Formula IV Example 2 - Analytical Data of OPT-80 and Related Substances

The analytical data of OPT-80 (which is composed almost entirely of the R- Tiacumicin B, which is the most active component of OPT-80) and three related compounds (S-Tiacumicin B, Lipiarmycin A4, and C-19 ketone) are summarized below. The structures of these compounds are shown in Formula VIII and Table 2 below.

Formula VIII

Table 2: Structure of R-Tiacumicin B (the major most active component of OPT-80) and related substances

Analytical data of R-Tiacumicin B mp 166 - 169 0C (white needle from isopropanol);

[α]D 20 -6.9 (c 2.0, MeOH);

MS m/z (ESI) 1079.7(M + Na)+;

1H 1H NMR NMR (400 MHz, CD3OD) δ 7.21 (d, IH), 6.59 (dd, IH), 5.95 (ddd, IH), 5.83 (br s, IH), 5.57 (t, IH), 5.13 (br d, IH), 5.09 (t, IH), 5.02 (d, IH), 4.71 (m, IH), 4.71 (br s, IH), 4.64 (br s, IH), 4.61 (d, IH), 4.42 (d, IH), 4.23 (m, IH), 4.02 (pentet, IH), 3.92 (dd, IH), 3.73 (m, 2H), 3.70 (d, IH), 3.56 (s, 3H), 3.52-3.56 (m, 2H), 2.92 (m, 2H), 2.64-2.76 (m, 3H), 2.59 (heptet, IH), 2.49 (ddd, IH), 2.42 (ddd, IH), 2.01 (dq, IH), 1.81 (s, 3H), 1.76 (s, 3H), 1.65 (s, 3H), 1.35 (d, 3H), 1.29 (m, IH), 1.20 (t, 3H), 1.19 (d, 3 H), 1.17 (d, 3H), 1.16 (d, 3 H), 1.14 (s, 3H), 1.12 (s, 3H), 0.87 (t, 3H);

13C NMR (100 MHz, CD3OD) δ 178.4, 169.7, 169.1, 154.6, 153.9, 146.2, 143.7, 141.9, 137.1, 137.0, 136.4, 134.6, 128.5, 126.9, 125.6, 124.6, 114.8, 112.8, 108.8, 102.3,

97.2, 94.3, 82.5, 78.6, 76.9, 75.9, 74.5, 73.5, 73.2, 72.8, 71.6, 70.5, 68.3, 63.9, 62.2, 42.5,

37.3, 35.4, 28.7, 28.3, 26.9, 26.4, 20.3, 19.6, 19.2, 18.7, 18.2, 17.6, 15.5, 14.6, 14.0, 11.4. Analytical data of the S-Tiacumicin B:

Formula II (C- 19 Ketone) Formula V (S-Tiacumicin B)

NaBH4 (9 eq, 48mg) was added in three portions to a solution of C- 19 Ketone (150mg) in 3 mL MeOH. After 1 h, saturated NH4CI solution was added. The mixture was extracted with CHCI3, and then concentrated. S-Tiacumicin B was purified by YMC -pack ODS-A 75x30mm LD. column (H20:Me0H:Ac0H 28:72:1) yielding pure 35 mg of pure S- Tiacumicin B.

MS m/z 1074.5 (M + NH4)+;

1H NMR (400 MHz, CDCl3) δ 7.15 (d, J= 11.4 Hz, IH), 6.58 (dd, J= 14.1, 11.4 Hz, IH), 5.82 (ddd, J= 14.1, 10.6, 3.5 Hz, IH), 5.78 (s, IH), 5.40 (dd, J= 7.8, 7.8 Hz, IH), 5.15 (dd, J = 9.5, 9.5 Hz, IH), 5.01 (d, J = 9.9 Hz, IH), 5.01 (d, J = 9.9 Hz, IH), 4.77 (ddd, J = 5.8, 5.3, 5.3 Hz, IH), 4.68 (d, J= 11.6 Hz, IH), 4.65 (br s, IH), 4.62 (br s, IH), 4.42 (d, J = 11.6 Hz, IH), 4.28 (br s, IH), 4.07-3.97 (m, 2H), 3.74-3.58 (m, 4H), 3.61 (s, 3H), 3.52 (dq, J = 9.5, 5.8 Hz, IH), 3.08 (dq, J= 12.6, 6.1 Hz, IH), 3.01 (dq, J= 12.6, 6.1 Hz, IH), 2.77-2.65 (m, 2H), 2.60 (heptet, J = 6.9 Hz, IH), 2.55-2.44 (m, 3H), 1.95-1.84 (m, IH), 1.80 (s, 3H), 1.76 (s, 3H), 1.66 (s, 3H), 1.34 (d, J = 5.8 Hz, 3H), 1.29-1.24 (m, IH), 1.27 (d, J = 6.6 Hz, 3H), 1.21 (t, J= 6.1 Hz, 3H), 1.19 (d, J= 6.9 Hz, 3H), 1.18 (d, J= 6.9 Hz, 3H), 1.15 (s, 3H), 1.10 (s, 3H), 0.84 (t, J= 7.2 Hz, 3H);

13C NMR (100 MHz, CDCl3) δ 177.4, 170.1, 168.8, 157.6, 152.8, 144.4, 143.1, 141.1, 136.7, 136.2, 134.9, 133.8, 128.7, 125.7, 125.2, 123.0, 113.9, 107.5, 107.2, 101.7, 94.9, 92.6, 80.8, 79.2, 76.6, 74.8, 73.5, 72.7, 71.9, 71.7, 70.2, 70.1, 69.5, 63.5, 62.3, 41.5, 36.6, 34.3, 29.5, 28.2, 26.2, 26.0, 19.4, 19.3, 18.9, 18.5, 17.8, 17.3, 15.3, 14.1, 13.7, 11.1; Analytical data of Lipiarmycin A4 MS m/z 1060.5 (M + NH4)+;

1H NMR (400 MHz, CDCl3) δ 7.12 (d, J = 11.6 Hz, IH), 6.59 (dd, J = 14.1, 11.6 Hz,

IH), 5.85 (br s, IH), 5.83 (ddd, J= 14.1, 10.6, 4.8 Hz, IH), 5.47 (dd, J= 8.3, 8.3 Hz, IH), 5.12 (dd, J= 9.6, 9.6 Hz, IH), 5.00 (d, J= 10.1 Hz, IH), 4.98 (br d, J= 10.6 Hz, IH), 4.75-

4.69 (m, IH), 4.68 (d, J= 11.4 Hz, IH), 4.66 (br s, IH), 4.62 (br s, IH), 4.40 (d, J= 11.4 Hz,

IH), 4.26 (br s, IH), 4.07-4.00 (m, IH), 4.02 (br d, J= 3.3 Hz, IH), 3.75-3.61 (m, 4H), 3.62

(s, 3H), 3.55 (dq, J = 9.6, 6.1 Hz, IH), 2.82-2.45 (m, 6H), 2.60 (s, 3H), 2.07-1.97 (m, IH),

1.92 (s, 3H), 1.81 (s, 3H), 1.67 (s, 3H), 1.32 (d, J= 6.1 Hz, 3H), 1.30-1.22 (m, IH), 1.21 (d, J = 6.6 Hz, 3H), 1.19 (d, J= 7.1 Hz, 3H), 1.18 (d, J= 7.1 Hz, 3H), 1.15 (s, 3H), 1.10 (s, 3H),

0.83 (t, J= 7.2 Hz, 3H);

13C NMR (IOO MHZ, CDCl3) δ 177.4, 170.5, 168.9, 157.8, 153.0, 144.3, 140.9, 137.7, 137.0, 136.3, 134.6, 134.4, 129.1, 127.9, 125.3, 123.2, 114.5, 107.4, 107.0, 101.8, 94.7, 92.5, 80.3, 79.6, 76.7, 74.9, 73.5, 72.7, 71.9, 71.6, 70.2, 70.1, 69.1, 63.6, 62.3, 41.9, 36.9, 34.4, 28.8, 28.2, 25.9, 20.0, 19.3, 19.0, 18.6, 18.5, 17.8, 17.2, 15.5, 13.8. 11.2;

Analytical data of C- 19 Ketone MS m/z 1072.5 (M + NH4)+;

1H NMR (400 MHz, CDCl3) 5 7.27 (d, J= 11.4 Hz, IH), 6.61 (dd, J= 14.7, 11.4 Hz, IH), 5.91 (ddd, J= 14.7, 9.1, 5.8 Hz, IH), 5.83 (s, IH), 5.31 (dd, J= 7.9, 7.9 Hz, IH), 5.14

(dd, J= 9.7, 9.7 Hz, IH), 5.06 (d, J= 10.6 Hz, IH), 5.00 (d, J= 10.1 Hz, IH), 4.98 (dd, J =

7.1, 4.8 Hz, IH), 4.67 (d, J= 11.9 Hz, IH), 4.66 (br s, IH), 4.61 (br s, IH), 4.42 (d, J= 11.9

Hz, IH), 4.30 (br s, IH), 4.02 (br d, J= 3.3 Hz, IH), 3.63-3.60 (m, 4H), 3.62 (s, 3H), 3.51

(dq, J = 9.7, 6.1 Hz, IH), 3.09 (dq, J = 14.4, 7.3 Hz, IH), 3.03 (dq, J = 14.4, 7.3 Hz, IH), 2.76-2.50 (m, 6H), 2.21 (s, 3H), 1.93-1.87 (m, IH), 1.87 (s, 3H), 1.75 (s, 3H), 1.63 (s, 3H),

1.32 (d, J= 6.1 Hz, 3H), 1.27-1.22 (m, IH), 1.21 (t, J= 7.3 Hz, 3H), 1.19 (d, J= 7.1 Hz, 3H),

1.18 (d, J= 7.1 Hz, 3H), 1.14 (s, 3H), 1.10 (s, 3H), 0.84 (t, J= 7.3 Hz, 3H);

13C NMR (100 MHz, CDCl3) δ 205.5, 177.4, 170.1, 166.9, 157.6, 152.8, 145.7, 143.1, 142.0, 137.1, 136.8, 135.5, 133.7, 128.3, 124.8, 124.0, 122.8, 113.9, 107.3, 107.2, 101.3, 94.8, 92.4, 80.4, 77.7, 76.6, 74.7, 73.5, 72.6, 71.8, 71.7, 70.2, 70.0, 63.0, 62.3, 41.5, 36.5, 34.3, 29.6, 28.1, 26.2, 26.1, 26.0, 19.2, 18.9, 18.5, 17.8, 17.3, 15.2, 14.0, 13.3, 11.0 Example 3: Biological activity

MIC values determined for several C. difficile strains

OPT-80 (which is composed almost entirely of the R-Tiacumicin B) and its related compounds were tested against C. difficile. The MIC values are reported below in Table 3. As we can see, OPT-80 was especially active when compared to S-Tiacumicin B and Lipiarmycin A4. Table 3: MIC /ml versus C. di cile strains

MIC values determined for various microorganisms

OPT-80 (which is composed almost entirely of the R-Tiacumicin B) and its related compounds were tested against several other pathogens. The MIC values are reported below in Table 4. As we can see, OPT-80 was especially active when compared to S-Tiacumicin B and Lipiarmycin A4. Table 4: MIC (μg/ml) against other microorganisms

Example 4: Post-Antibiotic Effect of OPT-80 in C. difficile

The post-antibiotic effect (PAE) of OPT-80 (which is composed almost entirely of the R-Tiacumicin B) was measured versus two strains of C. difficile, ATCC 43255 and a clinical isolate, LC3. Vancomycin and rifampin were tested additionally versus LC3. The PAE at 4x the MIC was observed to be extremely long: greater than 24 hours, for both strains. Because of the long duration of this effect, an exact PAE was not calculated. Vancomycin, on the other hand, had a more normal PAE of less than an hour when used at 4x the MIC versus strain LC3.

Example 5: In Vitro Activity of OPT-80

The in vitro efficacy of OPT-80 (which is composed almost entirely of the R-Tiacumicin B), metronidazole, and vancomycin were assessed versus 110 genetically distinct clinical isolates of C. difficile via agar dilution. The MIC data are presented in Tables 5 and 6.

Table 5. Geometric mean, MIC ranges, MIC50, and MIC90 values for OPT-80against 110 C. di icile clinical isolates, vancom cin, and metronidazole, in /mL.

Example 6: Activity of OPT-80 Compared Against Selected Anaerobic Species

The in vitro activity of OPT-80 was determined against 350 anaerobes. The experimental procedure for which is outlined in Antimicrobial Agents and Chemotherapy , 2004, 48: 4430-4434, which is hereby incorporated by reference in its entirety. All organisms, including the 21 C. difficile strains, were separate isolates and not clonally related. All quality-control gram-negative and -positive strains recommended by NCCLS were included with each run: in every case, results (where available) were in range.

Results of MIC testing are presented in Table 7.

Table 7 MICs (μg/ml) of OPT-80

Example 7: In Vitro Activities of OPT-80 Against Intestinal Bacteria

The in vitro activity of OPT-80 against intestinal bacteria was evaluated. The experimental procedure for which is outlined in Antimicrobial Agents and Chemotherapy, 2004, 48: 4898-4902, which is hereby incorporated by reference in its entirety.

Antimicrobial concentration ranges were selected to encompass or surpass the levels that would be achieved in the gut (to the extent that this information is available), subject to the limitations of solubility of the drugs in the testing medium. The range of concentration of OPT-80used during testing was 0.03 μg/ml to 1024 μg/ml.

For analysis, the bacteria tested were generally placed into genus, species, or other groups with at least 10 isolates. The ranges and the MICs at which 50 and 90% of isolates were inhibited were determined except for organisms with fewer than 10 strains tested, for which only the ranges are reported (Table 8).

OPT-80 had good activity against most anaerobic gram-positive non-spore-forming rods and anaerobic gram-positive cocci. OPT-80 also showed good activity against enterococci and staphylococci.

OTHER EMBODIMENTS

All references discussed above are herein incorporated by reference in their entirety for all purposes. While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims

We claim:
1. A composition that is comprised of 70% - 100% of a compound of the Formula VII
Formula VII wherein
X is a lower alkyl selected from the group consisting of methyl, ethyl, n-propyl, and isopropyl; and Y is OH or ketone (=O); and
Z is H or a lower alkyl selected from the group consisting of methyl, ethyl, propyl, isopropyl, n-butyl, t-butyl, and pentyl.
2. The composition of claim 1, wherein said composition is further comprised of 0% - 30% of Tiacumicin B related compounds.
3. The composition of claim 1 , wherein said composition is comprised of 75% of Formula VII.
4. The composition of claim 1 , wherein said composition is comprised of 80% of Formula VII.
5. The composition of claim 1, wherein said composition is comprised of 85% of Formula VII.
6. The composition of claim 1, wherein said composition is comprised of 90% of Formula VII.
7. The composition of claim 1 , wherein said composition is comprised of 95% of Formula VII.
8. The composition of claim 1, wherein said X is methyl or ethyl; and Y is OH or ketone (=O); and
Z is isopropyl.
9. The composition of claim 8, wherein said X is ethyl; and
Y is OH or ketone (=0); and Z is isopropyl.
10. The composition of claim 9, wherein said X is ethyl; and
Y is OH; and Z is isopropyl.
11. A composition that is comprised of 70-100% of a compound of the Formula PV
Formula IV.
12. The composition of claim 11, wherein said composition further comprises 0 - 30% of Tiacumicin B related compounds.
13. The composition of claim 12, wherein said Tiacumicin B related compounds are selected from the group consisting of Lipiarmycin A4 and C-19 Ketone.
14. The composition of claim 12, wherein said composition comprises
(a) > 90% of said compound of Formula IV; and
(b) < 10% of said Tiacumicin B related compounds.
15. The composition of claim 14, wherein said Tiacumicin B related compounds are selected from the group consisting of Lipiarmycin A4 and C-19 Ketone.
16. A pharmaceutical composition which is comprised of: (a) 70% - 100% of a compound of the Formula VII wherein
X is a lower alkyl selected from the group consisting of methyl, ethyl, n- propyl, and isopropyl; and
Y is OH or ketone (=0); and Z is H or a lower alkyl selected from the group consisting of methyl, ethyl, propyl, isopropyl, n-butyl, t-butyl, and pentyl; and
(b) 0% - 30% of Tiacumicin B related compounds; and
(c) a pharmaceutically acceptable carrier.
17. The pharmaceutical composition of claim 16, which is further comprised of an additional agent selected from the group consisting of an antimicrobial agent and an antifungal agent.
18. The pharmaceutical composition of claim 16, wherein said X is methyl or ethyl; and Y is OH or ketone (=0); and
Z is isopropyl.
19. The pharmaceutical composition of claim 18, wherein said X is ethyl; and
Y is OH or ketone (=0); and Z is isopropyl.
20. The pharmaceutical composition of claim 19, wherein said X is ethyl; and
Y is OH; and Z is isopropyl.
21. The pharmaceutical composition of claim 20, wherein said Tiacumicin B related compounds are selected from the group consisting of Lipiarmycin A4 and C- 19 Ketone.
22. A pharmaceutical composition which is comprised of: (a) 70% - 100% of a compound of the Formula IV (b) 0% - 30% of Tiacumicin B related compounds; and
(c) a pharmaceutically acceptable carrier.
23. The pharmaceutical composition of claim 22, wherein said pharmaceutical composition is composed of
(a) > 90% of said compound of formula IV; and (b) < 10% of said Tiacumicin B related compounds; and
(c) said pharmaceutically acceptable carrier.
24. The pharmaceutical composition of claim 23, wherein said Tiacumicin B related compounds are selected from the group consisting of Lipiarmycin A4 and C-19 Ketone.
25. A method for treating bacterial infections in a mammal, which comprises administering to said mammal a pharmaceutical composition comprising a therapeutically effective amount of said pharmaceutical composition of claim 16.
26. The method of claim 25, wherein said X is methyl or ethyl; and
Y is OH or ketone (=0); and Z is isopropyl.
27. The method of claim 26, wherein said X is ethyl; and Y is OH or ketone (=O); and
Z is isopropyl.
28. The method of claim 27, wherein said X is ethyl; and
Y is OH; and Z is isopropyl.
29. The method of claim 28, wherein said Tiacumicin B related compounds are selected from the group consisting of Lipiarmycin A4 and C- 19 Ketone.
30. The method of claim 28, wherein the pharmaceutical composition is composed of said pharmaceutical composition of claim 23.
31. The method of claim 30, wherein said Tiacumicin B related compounds are selected from the group consisting of Lipiarmycin A4 and C- 19 Ketone.
32. The method of claim 30, wherein said pharmaceutical composition has a MIC value, which is significantly lower than the MIC value of Tiacumicin B related compounds.
33. The method of claim 32, wherein said Tiacumicin B related compounds are selected from the group consisting of Lipiarmycin A4, and C- 19 Ketone.
34. The method of claim 32, wherein said MIC value is determined using bacteria selected from the group consisting of C. difficile, S. aureus, E.faecalis, and E. faecium.
35. The method of claim 30, wherein said pharmaceutical composition has a post- antibiotic effect (PAE) of greater than 24 hours.
36. The method of claim 30, wherein said pharmaceutical composition further comprises an additional agent selected from the group consisting of an antimicrobial agent and an antifungal agent.
EP20050712354 2005-01-31 2005-01-31 18-membered macrocycles and analogs thereof Pending EP1848273A4 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/US2005/002887 WO2006085838A1 (en) 2005-01-31 2005-01-31 18-membered macrocycles and analogs thereof

Publications (2)

Publication Number Publication Date
EP1848273A1 true true EP1848273A1 (en) 2007-10-31
EP1848273A4 true EP1848273A4 (en) 2010-02-24

Family

ID=36793325

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20050712354 Pending EP1848273A4 (en) 2005-01-31 2005-01-31 18-membered macrocycles and analogs thereof

Country Status (6)

Country Link
EP (1) EP1848273A4 (en)
JP (1) JP5166040B2 (en)
KR (1) KR101203118B1 (en)
CN (2) CN101128114B (en)
CA (1) CA2596387C (en)
WO (1) WO2006085838A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7906489B2 (en) 2004-05-14 2011-03-15 Optimer Pharmaceuticals, Inc. 18-membered macrocycles and analogs thereof
CA2626698C (en) * 2005-10-21 2015-12-01 Optimer Pharmaceuticals, Inc. Method of treating clostridium difficile-associated diarrhea
ES2625930T3 (en) * 2006-08-21 2017-07-21 Astrazeneca Ab , Suitable for oral administration compositions, comprising a derivative of triazolo [4, 5-d] pyrimidine
US20080176927A1 (en) 2007-01-19 2008-07-24 Optimer Pharmaceuticals, Inc. Compositions of stable tiacumicins
CN101663312B (en) * 2007-01-22 2013-10-23 浩鼎生技公司 Macrocyclic polymorphs, compositions comprising such polymorphs, and methods of use and manufacture thereof
US7378508B2 (en) * 2007-01-22 2008-05-27 Optimer Pharmaceuticals, Inc. Polymorphic crystalline forms of tiacumicin B
US8044030B2 (en) 2007-11-27 2011-10-25 Optimer Pharmaceuticals, Inc. Antibiotic macrocycle compounds and methods of manufacture and use thereof
US20140024609A1 (en) * 2011-02-04 2014-01-23 Optimer Pharmaceuticals ,Inc. Treatment of Bacterial Infections
CN104768963A (en) * 2012-05-10 2015-07-08 特瓦制药厂有限公司 Solid state forms of fidaxomycin and processes for preparation thereof
US8722863B2 (en) 2012-05-10 2014-05-13 Teva Pharmaceutical Works Ltd. Solid state forms of fidaxomycin and processes for preparation thereof
US9808530B2 (en) 2013-01-15 2017-11-07 Astellas Pharma Europe Ltd. Composition of tiacumicin compounds
CN103275152B (en) * 2013-05-29 2015-11-18 华北制药集团新药研究开发有限责任公司 A high-purity preparation of a non-rapamycin
CA2940902A1 (en) * 2014-03-18 2015-09-24 Xellia Pharmaceuticals Aps New polymorphs and new solid states of tiacumicin b
CN103897003B (en) * 2014-03-28 2016-07-06 华北制药集团新药研究开发有限责任公司 Ii fidaxomicin Form and preparation method
US20170143750A1 (en) 2014-05-09 2017-05-25 Astellas Pharma Europe Ltd. Treatment Regimen Tiacumicin Compound
EP3316892A1 (en) 2015-07-03 2018-05-09 Astellas Pharma Europe Ltd. Novel dosage regimen tiacumicin compound
CN105237599A (en) * 2015-10-09 2016-01-13 华北制药集团新药研究开发有限责任公司 Lipiarmycin A4 crystal and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004014295A2 (en) 2002-07-29 2004-02-19 Optimer Pharmaceuticals, Inc. Tiacumicin production

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1458512A (en) * 1973-11-22 1976-12-15 Lepetit Spa Antibiotic substance
US4918174A (en) * 1986-09-26 1990-04-17 Abbott Laboratories Tiacumicin compounds
US5583115A (en) * 1995-05-09 1996-12-10 Abbott Laboratories Dialkyltiacumicin compounds
US5767096A (en) * 1996-07-12 1998-06-16 Abbott Laboratories Bromotiacumicin compounds

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004014295A2 (en) 2002-07-29 2004-02-19 Optimer Pharmaceuticals, Inc. Tiacumicin production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2006085838A1

Also Published As

Publication number Publication date Type
KR20070110504A (en) 2007-11-19 application
WO2006085838A1 (en) 2006-08-17 application
CA2596387A1 (en) 2006-08-17 application
JP5166040B2 (en) 2013-03-21 grant
KR101203118B1 (en) 2012-11-20 grant
CA2596387C (en) 2012-11-20 grant
CN102614207B (en) 2016-01-13 grant
EP1848273A4 (en) 2010-02-24 application
CN101128114B (en) 2012-03-28 grant
CN101128114A (en) 2008-02-20 application
JP2008528582A (en) 2008-07-31 application
CN102614207A (en) 2012-08-01 application

Similar Documents

Publication Publication Date Title
Demain et al. Microbial drug discovery: 80 years of progress
Preac-Mursic et al. Comparative antimicrobial activity of the new macrolides againstBorrelia burgdorferi
US7378508B2 (en) Polymorphic crystalline forms of tiacumicin B
US4640910A (en) Erythromycin A silylated compounds and method of use
US20040106590A1 (en) Methods and reagents for treating infections of clostridium difficile and diseases associated therewith
CN1554355A (en) Bite spiramycin and its use in anti inflammatory disease
US20070105791A1 (en) Method of treating clostridium difficile-associated diarrhea
Counter et al. Synthesis and antimicrobial evaluation of dirithromycin (AS-E 136; LY237216), a new macrolide antibiotic derived from erythromycin.
US20100010076A1 (en) Macrocyclic Polymorphs, Compositions Comprising Such Polymorphs and Methods of Use and Manufacture Thereof
JP2003171274A (en) Medicinal composition and disinfectant for treating infection with drug-resistant microorganism
US20070173462A1 (en) Treatment of diseases associated with the use of antibiotics
Rolón et al. Selective activity of polyene macrolides produced by genetically modified Streptomyces on Trypanosoma cruzi
WO1998056755A1 (en) Physiologically active substances tkr2449, process for producing the same, and microorganism
US8247394B2 (en) Methods of treating urethritis and related infections using fusidic acid
Sugawara et al. Novel 12-membered non-antibiotic macrolides from erythromycin A; EM900 series as novel leads for anti-inflammatory and/or immunomodulatory agents
WO2011008193A1 (en) Fusidic acid dosing regimens for treatment of bacterial infections
JP2005023000A (en) Anti-bacterial agent and method for producing the same, and food preparation and antiseptic
US20060229262A1 (en) Pharmaceutical composition for treatment of infection with drug resistant bacterium and disinfectant
JP2001139507A (en) Antibiotic blasticidin a derivative
WO2008082017A1 (en) Cyclic sulfonium salt, method for production of cyclic sulfonium salt, and glycosidase inhibitor
WO2003024437A1 (en) Allicin
WO2006085838A1 (en) 18-membered macrocycles and analogs thereof
Tran et al. Synthesis and anti Methicillin resistant Staphylococcus aureus activity of substituted chalcones alone and in combination with non-beta-lactam antibiotics
Mitscher Coevolution: mankind and microbes
WO1990009435A1 (en) Altromycin compounds

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 20070831

AK Designated contracting states:

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent to

Extension state: AL BA HR LV MK YU

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1110476

Country of ref document: HK

A4 Despatch of supplementary search report

Effective date: 20100127

RIC1 Classification (correction)

Ipc: A61P 31/04 20060101ALI20100118BHEP

Ipc: A61K 31/70 20060101ALI20100118BHEP

Ipc: A01N 43/04 20060101AFI20060822BHEP

17Q First examination report

Effective date: 20111130

RAP1 Transfer of rights of an ep published application

Owner name: OPTIMER PHARMACEUTICALS, INC.

RAP1 Transfer of rights of an ep published application

Owner name: MERCK SHARP & DOHME CORP.

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1110476

Country of ref document: HK