EP1825292A1 - Single-chip radar for motor vehicle applications - Google Patents

Single-chip radar for motor vehicle applications

Info

Publication number
EP1825292A1
EP1825292A1 EP05815809A EP05815809A EP1825292A1 EP 1825292 A1 EP1825292 A1 EP 1825292A1 EP 05815809 A EP05815809 A EP 05815809A EP 05815809 A EP05815809 A EP 05815809A EP 1825292 A1 EP1825292 A1 EP 1825292A1
Authority
EP
European Patent Office
Prior art keywords
oscillator
radar transceiver
antenna
mixer
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05815809A
Other languages
German (de)
French (fr)
Inventor
Thomas Walter
Dirk Steinbuch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1825292A1 publication Critical patent/EP1825292A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/032Constructional details for solid-state radar subsystems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • the invention relates to a radar transceiver, comprising at least one tunable with a control voltage oscillator, at least one mixer and at least one antenna for transmitting and receiving high-frequency signals, wherein the mixer mixes the received signal with the signal of the oscillator and outputs a demodulated signal.
  • Such radar transceivers i. Transceiver modules are used in the microwave and millimeter wave range for locating objects in the room or for determining the speed of, for example, vehicles.
  • a radar transceiver for locating objects in space and determining the speed emits highest-frequency signals in the form of electromagnetic waves, which are reflected by the target object, received by the radar transceiver again and further processed.
  • several such radar transceivers are interconnected to form an overall module.
  • Such radar transceivers are used in particular for the so-called distance warning radar, which is used for determining the distance of a further vehicle ahead of a vehicle and for issuing warnings when falling below a predetermined threshold value of the distance.
  • At least one mixer comprising at least one diode and at least one passive circuit element
  • a substrate having at least two dielectric layers arranged directly above one another, in which metallization planes are provided on, below and between the dielectric layers, the underside of the substrate having external contacts for contacting to a system carrier and the top side of the substrate contacts for contacting the external electrodes of at least has an electronic single component,
  • Circuit element of the mixer and / or the at least one resonant circuit of the voltage controlled oscillator is integrated in one of the metallization of the substrate.
  • MID Molded Interconnection Devices
  • MCM microwave monolithic integrated circuits
  • MCM multi-chip module
  • the invention has for its object to avoid such a complex structure of the MCM and its placement on a special board to ensure the RF transitions and to provide a radar transceiver, which not only has a simple to manufacture structure and small dimensions, but the especially suitable for mounting on known circuit carriers, for example, ordinary circuit boards and the like in the simplest way.
  • This object is achieved in a radar transceiver of the type described above according to the invention that the at least one oscillator, the at least one mixer and in addition the at least one antenna on a single chip in a plane are arranged side by side. Due to this structure, all radar functions are arranged on a single chip. By avoiding expensive RF transitions, this limits the production to a simple sticking of the chip (MMICs) on any low-frequency printed circuit board, wherein an electrical connection between circuit elements of the circuit board and the chip is required only in the low-frequency or DC range.
  • MMICs simple sticking of the chip
  • a phase locked loop circuit for controlling the oscillator may be arranged in a phase locked loop.
  • At least one amplifier for example an intermediate frequency amplifier or an antenna amplifier for amplifying the transmitted and / or the received signals, is preferably also arranged in the plane.
  • the antenna is preferably a patch antenna, so that here also no RF connection is necessary.
  • a coupling to larger antennas can be done without contact by electromagnetic radiation coupling.
  • bonding pads are arranged in the plane of the chip, which serve for contacting the radar transceiver after it has been arranged on, for example, a printed circuit board.
  • FIG. 1 shows a first embodiment of a radar transceiver according to the invention
  • Fig. 2 shows a second embodiment of a radar transceiver according to the invention
  • Fig. 3 shows schematically the arrangement of polyrods via patch antennas according to the invention radar transceiver.
  • a radar transceiver designed as a single-chip front end is realized as a single silicon germanium chip, as shown in FIG. In the plane of the chip are juxtaposed a fundamental oscillator 110 which generates a frequency of 77 GHz, a mixer 120 and an intermediate frequency amplifier 130 and at least one patch antenna 140.
  • the signal generated by the fundamental oscillator 110 is supplied to the mixer 120.
  • the mixer 120 is further supplied with the antenna signal of the patch antenna 140.
  • this received signal of the patch antenna 140 is mixed with the signal of the oscillator 110, and a demodulated signal is output after amplification in the intermediate frequency amplifier 130 is applied to corresponding bond pads 135 and from there via low-frequency known bonding wires to components on a circuit board 400, on which the chip is arranged (see Fig .. 3), is forwarded.
  • the oscillator 110 For the voltage supply of the oscillator 110 further bond pads 112 are provided, further provided for frquency tuning bond pads 115, which are all arranged in the plane of the chip 100.
  • the oscillator 110 is stabilized via an internal LC resonant circuit. Its frequency can be detuned in a known manner via a dedicated tuning input, which is electrically connected to the bond pads 115.
  • the radar transceiver shown in Fig. 2 differs from that shown in Fig. 1 in that in addition to the oscillator 110, the mixer 120, the amplifier 130 and the antenna 140 is also a phase locked loop circuit (PLL circuit) 150 in the level of the chip 100 is arranged, which is provided for controlling the oscillator in a known phase locked loop.
  • the oscillator 110 has an output 111 at which e.g. a quarter of the frequency is spent. This output is supplied to the PLL circuit 150 integrated in the plane of the chip 100.
  • bond pads 152 for the voltage supply there are provided bonding pads 155 for tuning the oscillator 110 via the PLL circuit 150 on the chip 100.
  • FIGS. 1 and 2 no antenna amplifiers are shown.
  • Signals may also be provided in the plane of the chip 100.
  • the antenna 140 is a patch antenna which is referred to as a polyrod 200 (see FIG. 3), as is known from DE 199 39 834 A1 and EP 1 121 726 B1, to which reference is made for the purposes of disclosure. evident.
  • the polyrod 200 see FIG. 3
  • the 200 has the task of bundling and emitting the electromagnetic energy of the antenna patch 140. Through such a polyrod 200, in particular, a vofocusing on a dielectric lens 220 takes place. There is no physical contact of the Polyrods 200 to the chip 100 itself, but the Polyrod 200 can be on a Printed circuit board, on which the chip 100 is disposed, be attached. The center of the polyrod 200 is arranged exactly above the center of the patch antenna 140, as is apparent from Fig. 3.
  • the advantage of the above-described radar transceiver is the fact that all components of the transceiver are arranged on a single chip 100. This not only allows easy production, but also high integration. In addition, the function disruptive RF line connections are so largely unnecessary.

Abstract

The invention relates to a radar transceiver comprising: at least one oscillator (110) that can be detuned using a control voltage; at least one mixer (120), and; at least one antenna (140) for transmitting and receiving extra-high frequency signals, the mixer (120) mixing the received signal with the signal of the oscillator (110) and outputting a demodulated signal. The invention is characterized in that the at least one oscillator (110), the at least one mixer (120) and the at least one antenna (140) are placed on a single chip (100) while being situated side-by-side in a plane.

Description

Radar-TransceiverRadar transceiver
Die Erfindung betrifft einen Radar-Transceiver, umfassend wenigstens einen mit einer Steuerspannung verstimmbaren Oszillator, wenigstens einen Mischer und wenigstens eine Antenne zum Senden und Empfangen höchstfrequenter Signale, wobei der Mischer das Empfangssignal mit dem Signal des Oszillators mischt und ein demoduliertes Signal ausgibt.The invention relates to a radar transceiver, comprising at least one tunable with a control voltage oscillator, at least one mixer and at least one antenna for transmitting and receiving high-frequency signals, wherein the mixer mixes the received signal with the signal of the oscillator and outputs a demodulated signal.
Derartige Radar-Transceiver, d.h. Sende-/Empfängermodule, kommen im Mikrowellen- und Millimeterwellenbereich zur Ortung von Gegenständen im Raum oder zur Geschwindigkeitsbestimmung beispielsweise von Fahrzeugen zum Einsatz. Dabei sendet ein derartiger Radar-Transceiver zur Ortung von Gegenständen im Raum und zur Geschwindigkeitsbestimmung höchstfrequente Signale in Form elektromagnetischer Wellen aus, die vom Zielgegenstand reflektiert werden, von dem Radar-Transceiver wieder empfangen und weiterverarbeitet werden. Nicht selten werden dabei mehrere derartige Radar-Transceiver zu einem Gesamtmodul verschaltet. Bei einem Einsatz inSuch radar transceivers, i. Transceiver modules are used in the microwave and millimeter wave range for locating objects in the room or for determining the speed of, for example, vehicles. In this case, such a radar transceiver for locating objects in space and determining the speed emits highest-frequency signals in the form of electromagnetic waves, which are reflected by the target object, received by the radar transceiver again and further processed. Not infrequently, several such radar transceivers are interconnected to form an overall module. When used in
Automobilen kommen Frequenzen von etwa 77 GHz zum Einsatz. Derartige Radar- Transceiver werden insbesondere für das sogenannte Abstandswarnradar eingesetzt, welches zur Bestimmung des Abstands eines vor einem Fahrzeug vorherfahrenden weiteren Fahrzeugs und zur Ausgabe von Warnhinweisen bei Unterschreiten eines vorgegebenen Schwellenwerts des Abstands eingesetzt wird.Automobiles use frequencies of about 77 GHz. Such radar transceivers are used in particular for the so-called distance warning radar, which is used for determining the distance of a further vehicle ahead of a vehicle and for issuing warnings when falling below a predetermined threshold value of the distance.
Aus der DE 103 00 955 Al ist ein gattungsgemäßer Radar-Transceiver für Mikrowellen- und Millimeterwellen- Anwendungen mit folgenden Merkmalen bekannt: - zumindest einen Oszillator, der zumindest ein aktives Schaltungselement, zumindest einen frequenzbestimmenden Resonanzkreis und zumindest eine zur Frequenzbestimmung geeignete Komponente umfaßt,DE 103 00 955 A1 discloses a generic radar transceiver for microwave and millimeter wave applications with the following features: at least one oscillator comprising at least one active circuit element, at least one frequency-determining resonant circuit and at least one component suitable for frequency determination,
- zumindest einen Mischer, der zumindest eine Diode und zumindest ein passives Schaltungselement umfaßt,at least one mixer comprising at least one diode and at least one passive circuit element,
- ein Substrat mit zumindest zwei direkt übereinander angeordneten dielektrischen Lagen, bei denen auf, unterhalb und zwischen den dielektrischen Lagen Metallisierungsebenen vorgesehen sind, wobei die Unterseite des Substrats Außenkontakte zur Ankontaktierung an einen Systemträger und die Oberseite des Substrats Kontakte zur Ankontaktierung an die Außenelektroden der zumindest einen elektronischen Einzelkomponente aufweist,a substrate having at least two dielectric layers arranged directly above one another, in which metallization planes are provided on, below and between the dielectric layers, the underside of the substrate having external contacts for contacting to a system carrier and the top side of the substrate contacts for contacting the external electrodes of at least has an electronic single component,
- eine oder mehrere auf der Oberseite des Substrats angeordnete elektronische Einzelkomponenten, die- One or more arranged on top of the substrate electronic components, the
- zumindest eine aktive oder nichtlineare Schaltungskomponente des Mischers und- At least one active or non-linear circuit component of the mixer and
- zumindest eine aktive oder nichtlineare Schaltungskomponente des spannungsgesteuerten Oszillators umfassen, wobei das zumindest eine passivecomprise at least one active or non-linear circuit component of the voltage-controlled oscillator, wherein the at least one passive
Schaltungselement des Mischers und/oder der zumindest eine Resonanzkreis des spannungsgesteuerten Oszillators in einer der Metallisierungsebene des Substrats integriert ist.Circuit element of the mixer and / or the at least one resonant circuit of the voltage controlled oscillator is integrated in one of the metallization of the substrate.
Als Substrat kommen dabei alle Arten von planaren Schaltungsträgern in Frage. Darunter fallen keramische Substrate (Dünnschichtkeramik, Dickschichtkeramik, LTCC = Low Temperature Cofϊred Ceramics, HTCC = High Temperature Cofϊred Ceramics), wobei LTCC und HTCC keramische Mehrlagenschaltungen sind, polymere Substrate, also herkömmliche Leiterplatten wie FR4 oder Softsubstrate, deren Polymerbasis z.B. aus PTFE besteht und die typischerweise glasfaserverstärkt oder keramikpulvergefüllt sind,Suitable substrates are all types of planar circuit carriers. These include ceramic substrates (thin-film ceramics, thick-film ceramics, LTCC = high-temperature cofϊred ceramics), where LTCC and HTCC are multilayer ceramic circuits, polymeric substrates, ie conventional circuit boards such as FR4 or soft substrates whose polymer base is e.g. PTFE and typically glass fiber reinforced or ceramic powder filled,
Silizium sowie metallische Substrate, bei denen metallische Leiterbahnen und eine metallische Basisplatte durch polymere oder keramische Materialien voneinander isoliert sind. Verwendet werden können ferner auch sogenannte Molded-Interconnection-Devices (MID), die aus thermoplastischen Polymeren bestehen, auf denen Leiterbahnen strukturiert sind.Silicon and metallic substrates in which metallic interconnects and a metallic base plate are isolated from each other by polymeric or ceramic materials. Furthermore, it is also possible to use so-called Molded Interconnection Devices (MID), which consist of thermoplastic polymers on which printed conductors are structured.
Derartige Microwave Monolithic Integrated Circuit (MMICs) werden demnach zusammen mit diskreten Bauteilen zu einem Multichip-Modul (MCM) verbaut. Dieses MCM wird wie ein herkömmliches SMD-Bauelement noch auf ein Trägermaterial aufgebracht, welche höchstfrequente Leitungsführungen und Antennen beinhaltet. Die Verbindung muß dabei so ausgeführt sein, daß eine Übertragung von höchstfrequenten HF-Signalen möglich ist. Solche HF-Übergänge einigermaßen verlustarm herstellen zu können, sind bei einem solchen MCM sehr hohe Anforderungen an die Fertigung zu stellen.Such microwave monolithic integrated circuits (MMICs) are therefore installed together with discrete components to a multi-chip module (MCM). This MCM is like a conventional SMD component still on a substrate applied, which includes high-frequency wiring and antennas. The connection must be made so that a transmission of high-frequency RF signals is possible. To be able to produce such RF transitions to some extent with low losses, very high demands are placed on the production in such an MCM.
Der Erfindung liegt die Aufgabe zugrunde, einen derartigen komplexen Aufbau des MCM und dessen Bestückung auf einem speziellen Board zur Gewährleistung der HF- Übergänge zu vermeiden und einen Radar-Transceiver zu vermitteln, der nicht nur einen einfach herzustellenden Aufbau und kleine Baumaße aufweist, sondern der insbesondere auch zur Bestückung auf an sich bekannten Schaltungsträgern, beispielsweise gewöhnlichen Leiterplatten und dergleichen auf einfachste Weise geeignet ist. Diese Aufgabe wird bei einem Radar-Transceiver der eingangs beschriebenen Art erfindungsgemäß dadurch gelöst, daß der wenigstens eine Oszillator, der wenigstens eine Mischer und zudem die wenigstens eine Antenne auf einem einzigen Chip in einer Ebene nebeneinanderliegend angeordnet sind. Durch diesen Aufbau sind sämtliche Radarfunktionen auf einem einzigen Chip angeordnet. Durch die Vermeidung aufwendiger HF-Übergänge beschränkt sich hierdurch die Fertigung auf ein simples Aufkleben des Chips (MMICs) auf eine beliebige Niederfrequenz-Leiterplatte, wobei eine elektrische Verbindung zwischen Schaltelementen der Leiterplatte und dem Chip nur im Niederfrequenz- oder Gleichspannungs-Bereich erforderlich ist.The invention has for its object to avoid such a complex structure of the MCM and its placement on a special board to ensure the RF transitions and to provide a radar transceiver, which not only has a simple to manufacture structure and small dimensions, but the especially suitable for mounting on known circuit carriers, for example, ordinary circuit boards and the like in the simplest way. This object is achieved in a radar transceiver of the type described above according to the invention that the at least one oscillator, the at least one mixer and in addition the at least one antenna on a single chip in a plane are arranged side by side. Due to this structure, all radar functions are arranged on a single chip. By avoiding expensive RF transitions, this limits the production to a simple sticking of the chip (MMICs) on any low-frequency printed circuit board, wherein an electrical connection between circuit elements of the circuit board and the chip is required only in the low-frequency or DC range.
In der Ebene, in der der Oszillator, der Mischer und die Antenne angeordnet sind, kann darüber hinaus auch eine Phasenregelkreis-Schaltung zur Regelung des Oszillators in einer Phasenregelschleife angeordnet sein.In addition, in the plane in which the oscillator, the mixer and the antenna are arranged, a phase locked loop circuit for controlling the oscillator may be arranged in a phase locked loop.
Bevorzugt ist in der Ebene auch wenigstens ein Verstärker, beispielsweise ein Zwischenfrequenzverstärker oder ein Antennenverstärker zum Verstärken der gesendeten und/oder der empfangenen Signale angeordnet.At least one amplifier, for example an intermediate frequency amplifier or an antenna amplifier for amplifying the transmitted and / or the received signals, is preferably also arranged in the plane.
Die Antenne ist vorzugsweise eine Patch- Antenne, so daß hier ebenfalls keine HF- Verbindung notwendig ist. Eine Ankopplung an größere Antennen kann berührungslos durch elektromagnetische Strahlungsankopplung erfolgen. - A -The antenna is preferably a patch antenna, so that here also no RF connection is necessary. A coupling to larger antennas can be done without contact by electromagnetic radiation coupling. - A -
Zur Kontaktierung von Gleichspannungsanschlüssen und Niederfrequenzverbindungen sind in der Ebene des Chips des weiteren vorteilhafterweise Bond-Pads angeordnet, die der Kontaktierung des Radar-Transceivers nach dessen Anordnung auf beispielsweise einer Leiterplatte dienen.For contacting DC voltage connections and low-frequency connections, further advantageous bonding pads are arranged in the plane of the chip, which serve for contacting the radar transceiver after it has been arranged on, for example, a printed circuit board.
Die vorbeschriebene Ausbildung als Ein-Chip-Frontend-System hat den großen Vorteil, daß der Herstellungs- und Verarbeitungsaufwand gegenüber aus dem Stand der Technik bekannten MMICs erheblich reduziert und vereinfacht wird. Sämtliche in der Multichip- Modulfertigung kritischen Prozesse werden hierdurch auf den Waver-Herstellungsprozeß ausgelagert, der eine sehr große Reproduzierbarkeit aufweist.The above-described design as a one-chip front-end system has the great advantage that the manufacturing and processing costs compared to known from the prior art MMICs is considerably reduced and simplified. All processes critical in multichip module production are thereby outsourced to the wafer production process, which has a very high reproducibility.
Zeichnungdrawing
Weitere Vorteile und Merkmale der Erfindung sind Gegenstand der nachfolgenden Beschreibung sowie der zeichnerischen Darstellung von Ausführungsbeispielen.Further advantages and features of the invention are the subject of the following description and the drawings of exemplary embodiments.
In der Zeichnung zeigen:In the drawing show:
Fig. 1 ein erstes Ausführungsbeispiel eines erfindungsgemäßen Radar-Transceivers; Fig. 2 ein zweites Ausführungsbeispiel eines erfindungsgemäßen Radar-Transceivers und1 shows a first embodiment of a radar transceiver according to the invention; Fig. 2 shows a second embodiment of a radar transceiver according to the invention and
Fig. 3 schematisch die Anordnung von Polyrods über Patch- Antennen erfindungsgemäßer Radar-Transceiver.Fig. 3 shows schematically the arrangement of polyrods via patch antennas according to the invention radar transceiver.
Beschreibung der AusführungsbeispieleDescription of the embodiments
Ein als Ein-Chip-Frontend (ECF) ausgebildeter Radar-Transceiver ist, wie in Fig. 1 dargestellt, als ein einziger Silizium-Germanium-Chip realisiert. In der Ebene des Chips sind nebeneinanderliegend angeordnet ein Fundamental-Oszillator 110, der eine Frequenz von 77 GHz erzeugt, ein Mischer 120 sowie ein Zwischenfrequenzverstärker 130 und wenigstens eine Patch-Antenne 140.A radar transceiver designed as a single-chip front end (ECF) is realized as a single silicon germanium chip, as shown in FIG. In the plane of the chip are juxtaposed a fundamental oscillator 110 which generates a frequency of 77 GHz, a mixer 120 and an intermediate frequency amplifier 130 and at least one patch antenna 140.
Das von dem Fundamental-Oszillator 110 erzeugte Signal wird dem Mischer 120 zugeführt. Dem Mischer 120 wird ferner das Antennensignal der Patch-Antenne 140 zugeführt. In dem Mischer 120 wird dieses Empfangssignal der Patch-Antenne 140 mit dem Signal des Oszillators 110 gemischt und ein demoduliertes Signal ausgegeben, das nach Verstärkung in dem Zwischenfrequenzverstärker 130 an entsprechenden Bond-Pads 135 anliegt und von dort über an sich bekannte Bonddrähte niederfrequent an Bauteile auf einer Leiterplatte 400, auf der der Chip angeordnet ist (vergl. Fig. 3), weitergeleitet wird.The signal generated by the fundamental oscillator 110 is supplied to the mixer 120. The mixer 120 is further supplied with the antenna signal of the patch antenna 140. In the mixer 120, this received signal of the patch antenna 140 is mixed with the signal of the oscillator 110, and a demodulated signal is output after amplification in the intermediate frequency amplifier 130 is applied to corresponding bond pads 135 and from there via low-frequency known bonding wires to components on a circuit board 400, on which the chip is arranged (see Fig .. 3), is forwarded.
Zur Spannungsversorgung des Oszillators 110 sind weitere Bond-Pads 112 vorgesehen, ferner sind zur Frquenzabstimmung Bond-Pads 115 vorgesehen, die alle in der Ebene des Chips 100 angeordnet sind. Der Oszillator 110 wird über einen internen LC-Schwingkreis stabilisiert. Seine Frequenz kann auf an sich bekannte Weise über einen dafür vorgesehenen Tuning-Eingang, der mit den Bond-Pads 115 elektrisch leitend verbunden ist, verstimmt werden.For the voltage supply of the oscillator 110 further bond pads 112 are provided, further provided for frquency tuning bond pads 115, which are all arranged in the plane of the chip 100. The oscillator 110 is stabilized via an internal LC resonant circuit. Its frequency can be detuned in a known manner via a dedicated tuning input, which is electrically connected to the bond pads 115.
Der in Fig. 2 dargestellte Radar-Transceiver unterscheidet sich von dem in Fig. 1 dargestellten dadurch, daß neben dem Oszillator 110, dem Mischer 120, dem Verstärker 130 und der Antenne 140 auch noch eine Phasenregelkreis-Schaltung (PLL-Schaltung) 150 in der Ebene des Chips 100 angeordnet ist, die zur Regelung des Oszillators in einer an sich bekannten Phasenregelschleife vorgesehen ist. In diesem Falle weist der Oszillator 110 einen Ausgang 111 auf, an dem z.B. ein Viertel der Frequenz ausgegeben wird. Dieser Ausgang wird der in der Ebene des Chips 100 integrierten PLL-Schaltung 150 zugeführt. Neben Bond-Pads 152 für die Spannungsversorgung sind hier Bond-Pads 155 zur Abstimmung des Oszillators 110 über die PLL-Schaltung 150 auf dem Chip 100 vorgesehen.The radar transceiver shown in Fig. 2 differs from that shown in Fig. 1 in that in addition to the oscillator 110, the mixer 120, the amplifier 130 and the antenna 140 is also a phase locked loop circuit (PLL circuit) 150 in the level of the chip 100 is arranged, which is provided for controlling the oscillator in a known phase locked loop. In this case, the oscillator 110 has an output 111 at which e.g. a quarter of the frequency is spent. This output is supplied to the PLL circuit 150 integrated in the plane of the chip 100. In addition to bond pads 152 for the voltage supply, there are provided bonding pads 155 for tuning the oscillator 110 via the PLL circuit 150 on the chip 100.
In den in Fig. 1 und Fig. 2 dargestellten Ausführungsbeispielen sind keine Antennenverstärker gezeigt. Antennenverstärker zum Verstärken mittels der Antenne 140 gesendeten Signale und/oder zum Verstärken der von dieser Antenne empfangenenIn the exemplary embodiments illustrated in FIGS. 1 and 2, no antenna amplifiers are shown. Antenna amplifier for amplifying signals transmitted by the antenna 140 and / or for amplifying the received from this antenna
Signale können ebenfalls in der Ebene des Chips 100 vorgesehen sein.Signals may also be provided in the plane of the chip 100.
Die Antenne 140 ist eine Patch- Antenne, die unter einem sogenannten Polyrod 200 (siehe Fig. 3), wie es aus der DE 199 39 834 Al sowie der EP 1 121 726 Bl, auf die zum Zwecke der Offenbarung vorliegend Bezug genommen wird, hervorgeht. Das PolyrodThe antenna 140 is a patch antenna which is referred to as a polyrod 200 (see FIG. 3), as is known from DE 199 39 834 A1 and EP 1 121 726 B1, to which reference is made for the purposes of disclosure. evident. The polyrod
200 hat die Aufgabe, die elektromagnetische Energie des Antennenpatches 140 zu bündeln und abzustrahlen. Durch ein derartiges Polyrod 200 findet insbesondere eine Vofokussierung auf eine dielektrische Linse 220 statt. Es existiert kein physikalischer Kontakt des Polyrods 200 zum Chip 100 selbst, vielmehr kann das Polyrod 200 auf einer Leiterplatte, auf der auch der Chip 100 angeordnet ist, befestigt sein. Das Zentrum des Polyrods 200 ist dabei genau über dem Zentrum der Patch- Antenne 140 angeordnet, wie es schematisch aus Fig. 3 hervorgeht.200 has the task of bundling and emitting the electromagnetic energy of the antenna patch 140. Through such a polyrod 200, in particular, a vofocusing on a dielectric lens 220 takes place. There is no physical contact of the Polyrods 200 to the chip 100 itself, but the Polyrod 200 can be on a Printed circuit board, on which the chip 100 is disposed, be attached. The center of the polyrod 200 is arranged exactly above the center of the patch antenna 140, as is apparent from Fig. 3.
Der Vorteil vorbeschriebenen Radar-Transceiver ist darin zu sehen, daß sämtliche Bauelemente des Transceivers auf einem einzigen Chip 100 angeordnet sind. Dies erlaubt nicht nur eine einfache Herstellung, sondern auch eine hohe Integration. Außerdem werden die Funktion störende HF-Leitungsverbindungen so weitgehend überflüssig. The advantage of the above-described radar transceiver is the fact that all components of the transceiver are arranged on a single chip 100. This not only allows easy production, but also high integration. In addition, the function disruptive RF line connections are so largely unnecessary.

Claims

Patentansprüche claims
1. Radar-Transceiver, umfassend wenigstens einen mit einer Steuerspannung verstimmbaren Oszillator (110), wenigstens einen Mischer (120) und wenigstens eine Antenne (140) zum Senden und Empfangen höchstfrequenter Signale, wobei der Mischer (120) das Empfangssignal mit dem Signal des Oszillators (110) mischt und ein demoduliertes Signal ausgibt, dadurch gekennzeichnet, daß der wenigstens eine Oszillator (110), der wenigstens eine Mischer (120) und die wenigstens eine Antenne (140) auf einem einzigen Chip (100) in einer Ebene nebeneinanderliegend angeordnet sind.A radar transceiver comprising at least one oscillator (110) tunable with a control voltage, at least one mixer (120), and at least one antenna (140) for transmitting and receiving high frequency signals, wherein the mixer (120) outputs the received signal with the signal of Oscillator (110) and outputs a demodulated signal, characterized in that the at least one oscillator (110), the at least one mixer (120) and the at least one antenna (140) arranged on a single chip (100) in a plane side by side are.
2. Radar-Transceiver nach Anspruch 1, dadurch gekennzeichnet, daß in der Ebene eine Phasenregelkreis-Schaltung (150) zur Regelung des Oszillators (110) in einer Phasenregelschleife angeordnet ist.2. radar transceiver according to claim 1, characterized in that in the plane of a phase-locked loop circuit (150) for controlling the oscillator (110) is arranged in a phase locked loop.
3. Radar-Transceiver nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß in der Ebene wenigstens ein Verstärker (130) angeordnet ist.3. radar transceiver according to claim 1 or 2, characterized in that in the plane at least one amplifier (130) is arranged.
4. Radar-Transceiver nach Anspruch 1, dadurch gekennzeichnet, daß die wenigstens eine Antenne eine Patch- Antenne (140) ist.4. radar transceiver according to claim 1, characterized in that the at least one antenna is a patch antenna (140).
5. Radar-Transceiver nach Anspruch 4, dadurch gekennzeichnet, daß die Patch-5. Radar transceiver according to claim 4, characterized in that the patch
Antenne (140) unter einem Polyrod (200) angeordnet ist.Antenna (140) under a polyrod (200) is arranged.
6. Radar-Transceiver nach enem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Chip (100) eine Silizium-Germanium-Halbleiterelement ist. 6. radar transceiver according to any one of the preceding claims, characterized in that the chip (100) is a silicon-germanium semiconductor element.
7. Radar-Transceiver nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß in der Ebene Bond-Pads (112, 115, 135, 152, 155) angeordnet sind.7. Radar transceiver according to one of the preceding claims, characterized in that in the plane of bonding pads (112, 115, 135, 152, 155) are arranged.
8. Radar-Transceiver nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der wenigstens eine Oszillator (110) eine Frequenz von 77 GHz erzeugt. 8. Radar transceiver according to one of the preceding claims, characterized in that the at least one oscillator (110) generates a frequency of 77 GHz.
EP05815809A 2004-12-09 2005-11-15 Single-chip radar for motor vehicle applications Withdrawn EP1825292A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004059332A DE102004059332A1 (en) 2004-12-09 2004-12-09 Radar transceiver
PCT/EP2005/055980 WO2006061310A1 (en) 2004-12-09 2005-11-15 Single-chip radar for motor vehicle applications

Publications (1)

Publication Number Publication Date
EP1825292A1 true EP1825292A1 (en) 2007-08-29

Family

ID=35636734

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05815809A Withdrawn EP1825292A1 (en) 2004-12-09 2005-11-15 Single-chip radar for motor vehicle applications

Country Status (5)

Country Link
US (1) US20080117097A1 (en)
EP (1) EP1825292A1 (en)
CN (1) CN101076740A (en)
DE (1) DE102004059332A1 (en)
WO (1) WO2006061310A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005037960A1 (en) * 2005-08-11 2007-02-15 Robert Bosch Gmbh Radar sensor in compact design
DE102005046044A1 (en) * 2005-09-27 2007-03-29 Robert Bosch Gmbh Radar sensor comprises primary and secondary circuit sections located on a chip, with oscillators, mixers, and an aerial for sending and receiving
US7492313B1 (en) * 2006-10-31 2009-02-17 Lockheed Martin Corporation Digital processing radar system
DE102006062492A1 (en) * 2006-12-28 2008-07-03 Robert Bosch Gmbh High frequency sensor for use in auxiliary element, has multiple antennae e.g. patch antennae, for sending and/or receiving high frequency signals, where antennae are arranged on low temperature cofired ceramics substrate
US8013780B2 (en) 2007-01-25 2011-09-06 Magna Electronics Inc. Radar sensing system for vehicle
US8345716B1 (en) 2007-06-26 2013-01-01 Lockheed Martin Corporation Polarization diverse antenna array arrangement
DE102007039834A1 (en) 2007-08-23 2009-02-26 Robert Bosch Gmbh Radar sensor device
CN102255627A (en) * 2011-03-25 2011-11-23 苏州奥奎拉电子科技有限公司 Method for realizing UBox high-speed wireless transmission of data acquisition device
DE102011075552A1 (en) * 2011-05-10 2012-11-15 Robert Bosch Gmbh Circuit arrangement for radar applications
DE102012201990B4 (en) * 2012-02-10 2023-02-16 Robert Bosch Gmbh Radar sensor with monitoring circuit
KR101442475B1 (en) * 2012-03-08 2014-09-23 주식회사 한라홀딩스 Radar apparatus
DE102013113806A1 (en) * 2013-12-11 2015-06-11 Hella Kgaa Hueck & Co. Radar device and method therefor
US20210263131A1 (en) * 2018-06-26 2021-08-26 Positec Power Tools (Suzhou) Co., Ltd Electric device which applies radar

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4082725B2 (en) * 1995-07-01 2008-04-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Monostatic FMCW radar sensor
DE69621081T2 (en) * 1995-07-17 2002-12-12 Dynex Semiconductor Ltd antenna arrays
WO1998035403A1 (en) * 1997-02-06 1998-08-13 Robert Bosch Gmbh Microwave antenna array for a motor vehicle radar system
DE19939834A1 (en) * 1999-08-21 2001-02-22 Bosch Gmbh Robert Multi-beam radar sensor e.g. automobile obstacle sensor, has focusing body supported by holder relative to each transmission/reception element and common dielectric lens in path of each beam
DE19939832A1 (en) * 1999-08-21 2001-02-22 Bosch Gmbh Robert Multi-beam radar sensor e.g. automobile obstacle sensor, has polyrods supported by holder with spring sections and spacer for maintaining required spacing of polyrods from microwave structure
DE19948025A1 (en) * 1999-10-06 2001-04-12 Bosch Gmbh Robert Asymmetric, multi-beam radar sensor
DE10008269C2 (en) * 2000-02-23 2002-01-31 Bosch Gmbh Robert Holder for a focusing component and housing for a radar sensor
US6587072B1 (en) * 2002-03-22 2003-07-01 M/A-Com, Inc. Pulse radar detection system
DE10300955B4 (en) * 2003-01-13 2005-10-27 Epcos Ag Radar transceiver for microwave and millimeter wave applications
US6756936B1 (en) * 2003-02-05 2004-06-29 Honeywell International Inc. Microwave planar motion sensor
DE102004051276A1 (en) * 2004-06-22 2006-01-12 Robert Bosch Gmbh Radar sensor for determining the distance and the relative speed of objects

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006061310A1 *

Also Published As

Publication number Publication date
DE102004059332A1 (en) 2006-06-14
CN101076740A (en) 2007-11-21
US20080117097A1 (en) 2008-05-22
WO2006061310A1 (en) 2006-06-15

Similar Documents

Publication Publication Date Title
EP1825292A1 (en) Single-chip radar for motor vehicle applications
DE10300955B4 (en) Radar transceiver for microwave and millimeter wave applications
EP1825561B1 (en) Antenna assembly for a radar transceiver
DE60119335T2 (en) HIGH-INTEGRATED MULTI-RAY MILLIMETER SHAFT SENSOR ON A SINGLE SUPPORT
DE112010001453B4 (en) Circuit board, waveguide structure, high frequency module and radar device
DE102017217805B4 (en) Radar level gauge with synchronization signal on different line types
DE112015007212T5 (en) Microelectronic devices with efficient partitioning of radio frequency communication devices integrated on a housing fabric
DE112008000985T5 (en) High-frequency circuit board, high-frequency switching module and radar device
WO2012152474A1 (en) Circuit configuration for radar applications
DE102011005145A1 (en) Circuit board assembly for millimeter wave scanner
DE10355796A1 (en) Integrated circuit for distance and / or speed measurement of objects
DE102007046471B4 (en) Encapsulated antenna and method for its manufacture
DE102007046566B4 (en) HF frontend for a radar system
DE10300956B3 (en) Device with high frequency connections in a substrate
DE102004032928B4 (en) RF module with improved integration
EP2438459B1 (en) Radar sensor with interference signal compensation
WO2011000600A1 (en) Mixer assembly and radar sensor for motor vehicles
DE102007021730B4 (en) RF transmitting and receiving unit for a radar system
DE102007046480A1 (en) Radar system i.e. multi-range radar system, for use in vehicle i.e. automobile, has oscillator that is tunable into frequency range containing one of frequencies of two frequency spectrums, with control voltage
EP3467446B1 (en) Radar fill level measuring device with synchronization signal on different layers of a board
WO2005091437A1 (en) Antenna assembly and method for producing said assembly
DE202004019199U1 (en) Fully integrated miniaturized radar sensor in low temperature cofired ceramic multiple layer technology for short range radar monitoring where the entire high frequency part is realized in a monoblock
DE10041770A1 (en) Microwave module comprising substrate with HF and LF layers forming distribution network structures, includes intervening insulating layer
WO2023165750A1 (en) Radar device and method for producing a radar device
Mobley et al. A novel front end module for 77 GHz automotive radar implemented on low temperature co-fired ceramic technology

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070709

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

17Q First examination report despatched

Effective date: 20071018

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080429