EP1807542A1 - Höherfestes, twip-eigenschaften aufweisendes stahlband oder -blech und verfahren zu dessen herstellung mittels "direct strip casting " - Google Patents

Höherfestes, twip-eigenschaften aufweisendes stahlband oder -blech und verfahren zu dessen herstellung mittels "direct strip casting "

Info

Publication number
EP1807542A1
EP1807542A1 EP04797547A EP04797547A EP1807542A1 EP 1807542 A1 EP1807542 A1 EP 1807542A1 EP 04797547 A EP04797547 A EP 04797547A EP 04797547 A EP04797547 A EP 04797547A EP 1807542 A1 EP1807542 A1 EP 1807542A1
Authority
EP
European Patent Office
Prior art keywords
strip
hot
contents
cold
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP04797547A
Other languages
German (de)
English (en)
French (fr)
Inventor
Jens-Ulrik Becker
Harald Hofmann
Manfred Menne
Jochen Wans
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel AG filed Critical ThyssenKrupp Steel AG
Publication of EP1807542A1 publication Critical patent/EP1807542A1/de
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • C21D8/0215Rapid solidification; Thin strip casting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49988Metal casting
    • Y10T29/49991Combined with rolling

Definitions

  • the invention relates to a method for producing high-strength, good cold-workable and TWIP properties steel strip or sheet of a Fe-C-Mn lightweight steel, a method for producing components and a high-strength steel strip or sheet having TWIP properties ,
  • Hadfield steels containing 11 to 14 wt .-% Mn and 1.1 to 1.4 wt .-% C in addition to iron as essential alloying elements.
  • Steels with such a high manganese content are characterized by a very high tensile strength and solidification when subjected to repeated impacts or friction.
  • TWIP "Twinning Induced jPlasticity”
  • the steels in question have a low ductility and good strength, a high ductility under mechanical stress as a result of a twinning of the grains of the microstructure occurring in the course of the mechanical stress.
  • This twin formation facilitates the deformation of the steel immediate.
  • the twins also contribute to increasing the yield stress of the steel in the case of mechanical stress by restricting the mobility of dislocations.
  • the ductility of TWIP steels is additionally supported by a martensitic ⁇ / oc transformation associated with the formation of twins.
  • a process for producing steel strips of Fe-C-Mn alloys of the type described above is known from EP 1 067 203 B1.
  • a molten steel containing 0.001-1.6 wt% C, 6-30 wt% Mn, up to 10 wt% Ni, the sum of the contents of Mn and Ni being 16 wt.
  • cast strip can also be produced by so-called “direct strip casting” method, for which usually the Short name “DSC method” is used.
  • DSC method Short name
  • the melt to be poured from the ladle is placed in a distribution vessel, from which it is placed on a continuously rotating conveyor belt.
  • the melt is intensively cooled, so that it solidifies upon reaching the end of the conveyor line of the conveyor belt to a solid pre-band.
  • the pre-band usually passes through a second cooling section, before it is also hot-rolled without interruption to this cooling section. Hot rolling can be done in one or more stands. After hot rolling, another controlled cooling then takes place before the finished hot rolled strip is wound into a coil.
  • TRIP Transformation ⁇ nduced Plasticity
  • TWIP Transformation ⁇ nduced Plasticity
  • steels with high Mn contents can only be hot-rolled and cold-rolled due to their inherently high strength. This is particularly critical in the case of high-strength TWIP steels of the type in question. In such steels, instabilities or cracks often appear at the strip edges, which is the reason for the large-scale production and processing of. Making strips or sheets of such steels difficult in practice. Also, due to the great hardness, the Steels with Mn contents of 18 wt .-% and more already in the as-cast condition prior to hot rolling own, a great manufacturing effort required to produce from such steels thin hot strip, from which subsequently at low cost, a cold strip of small thickness are produced can. On such thin cold-rolled sheets, which have a low weight with high strength and good deformation and Festiglceits in the event of an accident, however, there is an increased demand, especially in the field of automobile body construction.
  • the object of the invention was, on the basis of the above-described prior art, to provide a method for the production of TWAN steel strip and sheets with high manganese content, which makes it possible, with reduced effort, to produce products of optimized combination of properties and also optimum utility value To make available.
  • a process for the production of high-strength components of a steel of the type specified should be specified.
  • a steel strip or sheet should be created, which has a particularly good deformation behavior.
  • the remainder contains iron and impurities caused by melting, the contents of Sn, Sb, Zr, Ta and As, the sum of which does not exceed 0.30%, being attributed to these impurities, being applied to a conveyor belt and cooled there until it solidifies to a pre-band .
  • the stripped stock is, if necessary, subjected to a heat treatment, the hot strip is hot rolled at a temperature of at least 700 ° C. to a hot strip having a completely recrystallized structure,
  • the hot strip is reeled at a coiler temperature of up to 750 0 C.
  • the invention achieves the above-mentioned object by producing a hot or cold strip by applying the method according to the invention, from which then optionally a precursor is produced, which subsequently to the component finished cold forming.
  • the present invention produced steel strip or is -Sheet metal characterized in that its brittle / Duktil_ticiansübergangs- temperature T ue at below -40 0 C. D ⁇ e relevant transition temperature T ue is usually determined in the bucket impact test or in the impact test.
  • the invention is based on the finding that steels with Mn contents of 18% by weight and more can be processed in a particularly advantageous manner by using the DSC process known per se, if the hot rolling and coiling temperatures are set in accordance with the invention become. Since the hot rolling end temperature is at least 700 ° C., typically at least 850 ° C., after hot rolling there is a completely recrystallized hot strip, which is outstandingly suitable for a subsequent cold deformation. In addition, since the coiling temperature of at most 750 ° C., typically at most 550 ° C., is selected so that grain boundary oxidation of the hot strip obtained is largely avoided, surface defects occur only to a minimal extent in the hot strip obtained after coiling. Therefore, hot rolled strip produced according to the invention or cold strip produced therefrom can be coated particularly well with metallic coatings in order, for example, to improve its corrosion resistance.
  • a further advantage of the procedure according to the invention is that it is possible to cast pre-tapes with a thickness which is far higher than that which can be achieved in conventional strip casting.
  • pre-bands whose thickness is typically more than 10 mm, in particular more than 12 mm.
  • more than 15 mm or more than 20 mm thick pre-strip is deformed during subsequent hot rolling using high degrees of deformation to a thin hot strip whose thickness is typically less than 3 mm, in particular less than 2 mm.
  • the hot deformation of the cast pre-strip in the procedure according to the invention is preferably carried out so that high degrees of deformation of preferably more than 60%, in particular up to 95%, are achieved.
  • Another essential advantage of the method according to the invention is that it is significantly more tolerant of the presence of alloying elements in the processed melt which disturb the conventional process. Thus, even those melts shed with good success, in addition to noteworthy levels of phosphorus, sulfur and copper impurities in the form of relatively high levels of Sn, Sb, Zr, Ta and As of a total of up to 0.30 wt .-% can have. This makes it possible to tolerate higher levels of accompanying elements, without affecting the manufacturability of a correspondingly alloyed steel strip according to the invention.
  • the invention thus enables the cost-effective production of the melt via the electric arc furnace route with the use of inexpensive inferior scrap.
  • a replacement of a high C0 2 emissions causing blast furnaces is so feasible.
  • the possible processing of Metallschmel zen by the invention whose composition can be varied to high tolerances, allows the use of non-optimal alloying agent with corresponding impurities and thus additionally reduces the expenditure for alloying agent.
  • the high cost of blast furnace coke can be eliminated.
  • the method according to the invention can be carried out on production lines which require significantly less expenditure on equipment than conventional continuous casting systems.
  • the investment costs are correspondingly lower than those of a conventional continuous hot-rolled strip machine.
  • the method according to the invention also allows a width adjustment in coils.
  • the throughput achievable with a production line operating according to the invention is comparable to conventional continuous casting plants.
  • the C content of the alloy processed according to the invention can be 0.0000 wt. -% to 1, 6 wt. -%. Preferably it is in the range of from 0.2% to 0.8% by weight. At C contents of at least 0.2% by weight, the risk of decarburization of the melt is minimized. Carbon contents of more than 0.8% by weight may make it difficult to optimize the content of other alloying elements with a view to attaining favorable mechanical properties.
  • the preferably selected carbon content of 0.2 to 0.8% ensures improved manufacturability of steel sheets and strips produced according to the invention. Cracks and instabilities in the band edge area are significantly reduced, with increasing carbon content, the instabilities decrease in particular.
  • inventively provided carbon contents open up a wide range of
  • the manganese content of the alloy processed according to the invention is at least 18% by weight, in particular at least 20% by weight.
  • Such high Mn-containing steels of the erfind ⁇ ngswash processed type certainly have TWIP Eigenticiane ⁇ on. Since the sum of the contents of Mn and Ni in steels of the type in question should not exceed 30% by weight, the nickel content is limited to up to 10% by weight.
  • the silicon content of a melt processed according to the invention can be up to 8% by weight, which element is then added if steels of very low weight are to be produced.
  • higher levels of Si may be provided to substitute correspondingly reduced levels of C and Mn while retaining the TWIP properties.
  • the molten aluminum alloyed according to the invention may optionally be added in amounts of up to 10% by weight.
  • Chromium may be added to the steel alloy processed according to the present invention to improve the corrosion resistance.
  • a limitation of the Cr content to max. LO wt .-% is useful from a cost point of view, since above this limit, only slight property improvements are observed.
  • an advantageous embodiment of the invention that the sum of the melt at Te and Se at least 0.01 wt ⁇ ⁇ .-% by weight.
  • melt cast to the preliminary strip contains in total at least 0.01% by weight of V, Ti, Nb and / or REM.
  • the property-improving effect of B already sets in when B is present in contents of at least 0.001% by weight.
  • the total content of molybdenum, tungsten and cobalt can be up to 1.5% by weight to take advantage of the known property-improving effects of these elements. It is also possible to provide contents of Ca and Mg of up to 0.5% by weight in total, if the effects of these elements, which are also known per se, are to be utilized in steels of the type processed according to the invention.
  • Nitrogen levels up to 0.6% by weight can be added to utilize the strength-increasing and corrosion-inhibiting effect of nitrogen in steels of the type in question.
  • the steel sheet according to the invention for the production of wheels for vehicles, in particular power tools, for the production hydroformed or extruded parts, for use in the manufacture of high-strength engine parts, such as camshafts or piston rods, for the production of impulse-resistant loads, such as shelling, certain components, such as armor plating, and protective elements designed to protect persons, especially against shelling.
  • steel sheets according to the invention are particularly suitable for the production of non-magnetic components in the case of a purely austenitic microstructure.
  • steel strips or sheets produced according to the invention maintain their toughness even at particularly low temperatures.
  • steel products produced according to the invention are particularly suitable for the production of components used in cryotechnology, such as containers or pipes for refrigeration.
  • Deformation behavior according to the invention produced steel strips and sheets.
  • steel strips and sheets can be made available without problems whose mean r value r m is 1.0 +/- 0.15 and whose ⁇ r value is -0.2 to 0.2.
  • the hot strip according to the invention is hot rolled at a hot rolling end temperature amounting to at least 700 0 C, in addition to the already mentioned avoiding grain boundary oxidation, the positive effect of the carbon is fully utilized.
  • carbon causes higher tensile strength and yield strength values, while the elongation values which are still acceptable are still acceptable.
  • the hot rolling end temperature increases, the tensile strength and yield strength decrease while the elongation values increase.
  • Hot rolling temperatures in the frame given by the invention can be so targeted and easily influence the desired properties of the resulting steel strip.
  • the heat treatment performed between the solidification of the sliver on the conveyor belt and the hot rolling serves to raise the temperature of the sliver to a level from which optimum hot rolling results are achieved.
  • the heat treatment in a conventional manner include a supplementary targeted cooling, with which the pre-strip is brought to an optimal for hot rolling hot rolling start temperature.
  • it is also conceivable to carry out the heat treatment as heating of the pre-strip if the structure of the pre-strip is to be influenced by such a heat treatment or an increase in the temperature of the pre-strip to the optimum hot-rolling start temperature is required.
  • hot strip is characterized by good performance characteristics. If thinner sheets or strips are to be produced, then the hot strip can be cold rolled after being rolled into cold strip, wherein the cold rolling is advantageously carried out with a degree of cold rolling of 10% to 90%, preferably 30% to 75%.
  • the hot strip may be pickled prior to cold rolling.
  • the cold strip obtained after the one or more stages of cold rolling annealing-subjected, wherein the annealing temperatures between 600 0 C to 1IL00 0 C should be.
  • the annealing may be performed in the hood 0 C in the temperature range of 600 0 C to 750 0 C or in the pass at "temperatures" by TOO "C bi ⁇ f HOO" - are.
  • a first advantageous use of steel strips or sheets produced according to the invention consists in the production of cold-formed components by spin forming. For this purpose, blanks are made from the steel, which are then formed by the Drückwal zen finished. Due to its special property profile, steel strip or strip produced according to the invention is suitable. Sheet metal or sheet metal blanks produced therefrom in a special way for this purpose.
  • Good deformable steels with higher strengths of the inventively produced type can be used for the manufacture of components that are seen ver with gears or similar form elements. These components are typically gear units provided with internal or external gears. These can be produced inexpensively and with high dimensional accuracy by spin forming.
  • a method for producing gear parts by spin forming is known from DE 197 24 661. According to this known method, a blank is formed from a microalloyed high strength structural steel having a lower yield strength of at least 500 N / mm 2 from a sheet. This blank is then cold worked by spin forming to the gearbox. In the course of the Forming the toothing, the sheet material is transformed to the limit of its formability. Finally, a surface of the workpiece provided with the toothing is hardened substantially free of heat distortion while maintaining the temperature.
  • a purely austenitic or a microstructure consisting of a mixture of ferrite and austenite with proportions of martensite can be set in steel strip or sheet produced according to the invention.
  • the steels according to the invention can therefore be shaped much better. In the course of cold working, they solidify much more strongly than the high-strength microalloyed or multiphase steels known for the manufacture by spin forming.
  • component strengths in the range from 1400 N / mm 2 to 2200 N / mm 2 can be achieved. An additional hardening of the components produced after the cold deformation can therefore be omitted.
  • the procedure according to the invention enables the cost-effective production of lightweight, heavy-duty steel strips and sheets, which form the starting material for the production of dimensionally stable components by cold forming, which is possible with little production outlay.
  • all variants of steel sheets according to the invention are particularly suitable for the production of body components, especially for the outer panels of an automobile body or load-bearing components for bodies, of wheels for vehicles, especially motor vehicles, of non-magnetic components, of containers used in cryotechnology, of internal high-pressure or extruded parts, of pipes intended in particular for the manufacture of high-strength engine parts, such as camshafts or piston rods, for impulse-type protection, such as bombardment, certain components or protective elements, such as armor plating, or body armor for the human or animal body.
  • Table 1 shows the compositions of steels A, B, C, D, E and VI, of which the steels AE belong to the steels processed in accordance with the invention, while the steel VI is indicated for comparative purposes only.
  • the steels are each melted and cast in the DSC process to Vorb skilledn.
  • the melt has been passed through a distribution channel on a circulating, strongly cooled conveyor on which it has been additionally intensively cooled by an acting from above liquid cooling.
  • the thus solidifying on the conveyor belt to the pre-band melt is then removed from the conveyor belt and have been subjected in the immediately subsequent passage still a second cooling.
  • the steel strips emerging from the second cooling and still having a sufficiently high temperature are in turn immediately thereafter, taking advantage of the inherent heat with a thickness of 2 mm hot rolled, the hot rolling end temperature was 900 0 C.
  • the hot strips thus obtained were then coiled at a reel temperature of 500 0 C to form a coil.
  • cold rolling was carried out, in which the hot strips with a degree of deformation of about 62.5% were formed into a cold strip whose thickness was 0.75 mm.
  • the cold strips were then recrystallized annealed at temperatures of 950 0 C.
  • the steel strips A - E produced from the steels A - E in the manner according to the invention have an excellent cold workability coupled with a high degree of cold workability Have strength and high elongation at break. At the same time they each have a pronounced isotropic behavior. As such, they are particularly suitable for being cold-forged into components that are subjected to high forces in practical use.
  • the property profile of KC given in Tab. 2 is worse than that of KVl, which is due to the weakly formed TWIP effect.
  • the advantage of KC over KVl lies in the high density reduction due to the high Al content.
  • the comparable steel Vl with TRIP properties has high strengths with comparatively low A80 and Ag values, which represent a significantly lower formability. This significantly poorer deformation behavior is also reflected in the significantly lower r and ⁇ r values compared to steels A - E.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)
EP04797547A 2004-11-03 2004-11-03 Höherfestes, twip-eigenschaften aufweisendes stahlband oder -blech und verfahren zu dessen herstellung mittels "direct strip casting " Ceased EP1807542A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2004/012407 WO2006048034A1 (de) 2004-11-03 2004-11-03 Höherfestes, twip-eigenschaften aufweisendes stahlband oder -blech und verfahren zu dessen herstellung mittels “direct strip casting '

Publications (1)

Publication Number Publication Date
EP1807542A1 true EP1807542A1 (de) 2007-07-18

Family

ID=34959180

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04797547A Ceased EP1807542A1 (de) 2004-11-03 2004-11-03 Höherfestes, twip-eigenschaften aufweisendes stahlband oder -blech und verfahren zu dessen herstellung mittels "direct strip casting "

Country Status (6)

Country Link
US (1) US20090010793A1 (zh)
EP (1) EP1807542A1 (zh)
JP (1) JP2008519160A (zh)
CN (1) CN101065503A (zh)
BR (1) BRPI0419185A (zh)
WO (1) WO2006048034A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10450624B2 (en) 2013-07-10 2019-10-22 Thyssenkrupp Steel Europe Ag Method for producing a flat product from an iron-based shape memory alloy

Families Citing this family (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100742823B1 (ko) * 2005-12-26 2007-07-25 주식회사 포스코 표면품질 및 도금성이 우수한 고망간 강판 및 이를 이용한도금강판 및 그 제조방법
DE102006030699B4 (de) * 2006-06-30 2014-10-02 Daimler Ag Gegossener Stahlkolben für Verbrennungsmotoren
DE102008005806A1 (de) * 2008-01-17 2009-09-10 Technische Universität Bergakademie Freiberg Bauteile aus hochmanganhaltigem, festem und zähem Stahlformguss, Verfahren zu deren Herstellung sowie deren Verwendung
CN101543837B (zh) * 2008-03-24 2012-02-29 宝山钢铁股份有限公司 一种Fe-Mn-C系高锰钢薄带连铸连轧制造方法
CN101550515B (zh) * 2008-03-31 2012-05-30 宝山钢铁股份有限公司 一种含铜高强韧高锰钢
KR101020546B1 (ko) 2008-07-18 2011-03-09 현대자동차주식회사 초고강도 twip 강판 및 그 제조방법
KR101113666B1 (ko) * 2008-08-13 2012-02-14 기아자동차주식회사 초고강도 트윕 강판 및 그 제조방법
DE102008056844A1 (de) * 2008-11-12 2010-06-02 Voestalpine Stahl Gmbh Manganstahlband und Verfahren zur Herstellung desselben
CN101429590B (zh) * 2008-12-19 2010-06-02 北京科技大学 一种高碳含量的孪晶诱导塑性钢铁材料的制备方法
DE102009003598A1 (de) * 2009-03-10 2010-09-16 Max-Planck-Institut Für Eisenforschung GmbH Korrosionsbeständiger austenitischer Stahl
KR101090822B1 (ko) * 2009-04-14 2011-12-08 기아자동차주식회사 고강도 트윕 강판 및 그 제조방법
JP5437482B2 (ja) * 2009-04-28 2014-03-12 ヒュンダイ スチール カンパニー 高強度及び高軟性を有する高マンガン窒素含有鋼板及びその製造方法
CN101928876B (zh) * 2009-06-22 2013-07-31 鞍钢股份有限公司 加工性优良的trip/twip高强塑性汽车钢及其制备方法
WO2011068328A2 (ko) * 2009-12-04 2011-06-09 주식회사 포스코 내열성이 우수한 가공용 냉연강판 및 그 제조방법
DE102010000292B4 (de) * 2010-02-03 2014-02-13 Thyssenkrupp Steel Europe Ag Metallband hergestellt aus Stahl mit unterschiedlichen mechanischen Eigenschaften
DE102010034161B4 (de) * 2010-03-16 2014-01-02 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung von Werkstücken aus Leichtbaustahl mit über die Wanddicke einstellbaren Werkstoffeigenschaften
BRPI1002010A2 (pt) * 2010-06-30 2012-03-06 Universidade Federal De Minas Gerais Chapa de aço laminada a frio e recozida com efeito twip e processo de obtenção
ES2455222T5 (es) 2010-07-02 2018-03-05 Thyssenkrupp Steel Europe Ag Acero de resistencia superior, conformable en frío y producto plano de acero compuesto de un acero de este tipo
CN101892420B (zh) * 2010-07-29 2012-09-19 中国计量学院 一种制备高强高韧FeMnC合金钢的再结晶退火工艺
CN102400036B (zh) * 2010-09-07 2014-07-09 鞍钢股份有限公司 一种高延伸率和高扩孔率的孪晶诱发塑性钢及其制造方法
WO2012052626A1 (fr) 2010-10-21 2012-04-26 Arcelormittal Investigacion Y Desarrollo, S.L. Tole d'acier laminee a chaud ou a froid, don procede de fabrication et son utilisation dans l'industrie automobile
CN101956134B (zh) * 2010-11-01 2012-08-08 福州大学 一种高强度、高塑性含铜高碳twip钢及其制备工艺
ES2433425T3 (es) * 2010-12-02 2013-12-11 Siemens Vai Metals Technologies Gmbh Procedimiento para producir acero de resistencia elevada, de baja aleación, con cobre
CN102560045B (zh) * 2010-12-22 2014-10-01 中国科学院金属研究所 块体纳米结构低碳钢及其制备方法
DE102011000089A1 (de) * 2011-01-11 2012-07-12 Thyssenkrupp Steel Europe Ag Verfahren zum Herstellen eines warmgewalzten Stahlflachprodukts
RU2460823C1 (ru) * 2011-02-08 2012-09-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли (Минпромторг России) Динамически стойкая сталь и способ производства листов из нее
KR101329925B1 (ko) * 2011-08-26 2013-11-14 주식회사 포스코 도금밀착성이 우수한 고망간강 및 이로부터 용융아연도금강판을 제조하는 방법
ES2503566T3 (es) * 2011-09-29 2014-10-07 Sandvik Intellectual Property Ab Acero inoxidable austenítico TWIP y nano-duplicado y método para producirlo
WO2013064202A1 (en) 2011-11-03 2013-05-10 Tata Steel Nederland Technology B.V. Method of manufacturing a duplex steel sheet having enhanced formability
CN102418032A (zh) * 2011-12-09 2012-04-18 北京科技大学 一种增强孪晶诱导塑性高锰钢板强塑积的退火制备工艺
US9650703B2 (en) 2011-12-28 2017-05-16 Posco Wear resistant austenitic steel having superior machinability and toughness in weld heat affected zones thereof and method for producing same
JP5994356B2 (ja) * 2012-04-24 2016-09-21 Jfeスチール株式会社 形状凍結性に優れた高強度薄鋼板およびその製造方法
KR101374825B1 (ko) 2012-05-14 2014-03-13 포항공과대학교 산학협력단 극저온에서 기계적 성능이 우수한 Fe-Mn-C계 TWIP 강 및 그 제조 방법
RU2514901C2 (ru) * 2012-08-22 2014-05-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" Сталь
TWI544976B (zh) * 2012-12-27 2016-08-11 Metal Ind Res & Dev Ct Method for manufacturing advanced high strength steel rim and its fixture
DE102013000636A1 (de) * 2013-01-16 2014-07-17 Sitech Sitztechnik Gmbh Hochtragfähige Verstelleinrichtung, insbesondere Sitzversteller auf FeMn-Basis
CN103464307B (zh) * 2013-01-31 2015-09-16 宜昌三峡中润纳米材料有限公司 一种可高效分离纳米材料的卧式离心机
EP2994548B1 (de) * 2013-05-06 2022-10-26 Salzgitter Flachstahl GmbH Verfahren zur herstellung von bauteilen aus leichtbaustahl
DE102013108163B4 (de) * 2013-07-30 2017-02-23 Benteler Defense Gmbh & Co. Kg Verfahren zur Herstellung eines Panzerungsbauteils für ein Kraftfahrzeug
KR101518599B1 (ko) 2013-10-23 2015-05-07 주식회사 포스코 방진성이 우수한 고강도 고망간 강판 및 그 제조방법
CA2929097C (en) * 2013-10-28 2022-06-14 The Nanosteel Company, Inc. Metal steel production by slab casting
KR20150066372A (ko) * 2013-12-06 2015-06-16 주식회사 포스코 내충격성 및 내마모성이 우수한 서브머지드아크용접 및 가스금속아크용접용 용접재료
DE102014005662A1 (de) * 2014-04-17 2015-10-22 Salzgitter Flachstahl Gmbh Werkstoffkonzept für einen umformbaren Leichtbaustahl
MX2016015675A (es) * 2014-06-16 2017-07-04 Abb Schweiz Ag Estructura de acero no magnetica para un proceso de fabricacion de acero o aluminio.
CN104148900A (zh) * 2014-08-13 2014-11-19 权明勇 一种环形钢带的加工工艺
CN105441796B (zh) * 2014-09-26 2017-02-22 鞍钢股份有限公司 具有高强塑积twip钢及其制备方法
AR101904A1 (es) * 2014-09-29 2017-01-18 Nippon Steel & Sumitomo Metal Corp Material de acero y tuberías expansibles para la industria del petróleo
KR20160064345A (ko) * 2014-11-27 2016-06-08 한국기계연구원 용접부 물성이 우수한 오스테나이트계 경량 고강도 강재 제조 방법
CN104532137B (zh) * 2014-12-23 2016-06-22 福建工程学院 钼铬合金化的高强度高塑性高碳twip钢及其制备方法
DE102015204112B4 (de) * 2015-03-06 2021-07-29 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Verwendung eines biologisch abbaubaren Eisenbasiswerkstoffs
CN104846269A (zh) * 2015-05-05 2015-08-19 柳州金特新型耐磨材料股份有限公司 一种挖掘机用耐磨钢主刀板
EP3095889A1 (en) * 2015-05-22 2016-11-23 Outokumpu Oyj Method for manufacturing a component made of austenitic steel
DE102015111680A1 (de) * 2015-07-17 2017-01-19 Benteler Steel/Tube Gmbh Gasgenerator
WO2017026125A1 (ja) 2015-08-11 2017-02-16 Jfeスチール株式会社 高強度鋼板用素材、高強度鋼板用熱延材、高強度鋼板用熱延焼鈍材、高強度鋼板、高強度溶融めっき鋼板および高強度電気めっき鋼板と、これらの製造方法
DE102015116517A1 (de) 2015-09-29 2017-03-30 Thyssenkrupp Ag Vorrichtung und Verfahren zur kontinuierlichen Herstellung eines bandförmigen, metallischen Werkstücks
DE102015117956A1 (de) * 2015-10-21 2017-04-27 Salzgitter Flachstahl Gmbh Verbundrohr bestehend aus einem Trägerrohr und mindestens einem Schutzrohr und Verfahren zur Herstellung hierfür
CN105463345A (zh) * 2015-12-11 2016-04-06 滁州市品诚金属制品有限公司 一种铝锰铁合金
CN105401076A (zh) * 2015-12-15 2016-03-16 安徽楚江特钢有限公司 一种复合锰钢合金及其制备方法
EP3395979B1 (en) 2015-12-24 2020-06-03 Posco Austenite-based molten aluminum-plated steel sheet having excellent properties of plating and weldability, and method for manufacturing same
CN105665576B (zh) * 2016-01-25 2018-02-02 重庆哈工易成形钢铁科技有限公司 一种钢材成形方法及其成形构件
CN105543670A (zh) * 2016-01-26 2016-05-04 安徽同盛环件股份有限公司 一种高硬度高强度合金钢及制备方法
DE102016104800A1 (de) * 2016-03-15 2017-09-21 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines warmumgeformten Stahlbauteils und ein warmumgeformtes Stahlbauteil
RU2687328C1 (ru) * 2016-03-30 2019-05-13 Ниппон Стил Энд Сумитомо Метал Корпорейшн Высокопрочный стальной материал и способ его производства
WO2017203315A1 (en) * 2016-05-24 2017-11-30 Arcelormittal Cold rolled and annealed steel sheet, method of production thereof and use of such steel to produce vehicle parts
WO2017203310A1 (en) 2016-05-24 2017-11-30 Arcelormittal Method for producing a twip steel sheet having an austenitic microstructure
WO2017203309A1 (en) * 2016-05-24 2017-11-30 Arcelormittal Twip steel sheet having an austenitic matrix
CN106119493B (zh) * 2016-07-25 2019-01-18 钢铁研究总院 具有优良塑性的超高强度中锰汽车钢板及制备方法
CN106191404B (zh) * 2016-08-03 2018-03-02 中国科学院力学研究所 一种高强度高塑性twip钢的制备方法
KR101836714B1 (ko) 2016-10-12 2018-03-09 현대자동차주식회사 고망간강
CN106435380A (zh) * 2016-10-26 2017-02-22 昆明理工大学 一种微合金化高铝高塑性钢板及其制备方法
HUE053057T2 (hu) * 2016-11-23 2021-06-28 Outokumpu Oy Eljárás komplex-kialakítású komponens elõállítására
KR101917473B1 (ko) 2016-12-23 2018-11-09 주식회사 포스코 내마모성과 인성이 우수한 오스테나이트계 강재 및 그 제조방법
DE102017201697A1 (de) 2017-02-02 2018-08-02 Thyssenkrupp Ag Halbzeug, Verwendung und Verfahren zur Herstellung einer stoffschlüssigen Verbindung
RU2643772C1 (ru) * 2017-06-01 2018-02-05 Юлия Алексеевна Щепочкина Износостойкий сплав на основе железа
CN107034419A (zh) * 2017-06-21 2017-08-11 合肥博创机械制造有限公司 一种耐腐蚀金属材料及其生产工艺
DE102017119076A1 (de) * 2017-08-21 2019-02-21 Benteler Steel/Tube Gmbh Hydraulik- oder Pneumatikleitungsrohrelement und Verwendung einer Stahllegierung zur Herstellung
RU2677426C1 (ru) * 2018-01-16 2019-01-16 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства горячекатаного проката из конструкционной стали
RU2669256C1 (ru) * 2018-03-30 2018-10-09 Юлия Алексеевна Щепочкина Сталь
CN109865806A (zh) * 2018-06-08 2019-06-11 江苏沙钢集团有限公司 一种薄带连铸345MPa级耐候钢及其生产方法
CN109536852A (zh) * 2018-12-13 2019-03-29 河北工业大学 一种膨胀管用trip钢的钢管制备方法
KR20240034893A (ko) * 2019-01-22 2024-03-14 아뻬랑 용접성이 향상된 철-망가니즈 합금
CN112522595B (zh) * 2019-09-19 2022-10-21 宝山钢铁股份有限公司 高强薄规格耐火耐候钢板/钢带及其生产方法
CN112662932B (zh) * 2019-10-15 2022-03-04 中国石油化工股份有限公司 一种twip钢及其制备方法
CN112359267B (zh) * 2020-10-27 2021-09-24 中国科学院合肥物质科学研究院 一种基于抗疲劳孪生诱发塑性钢的减震结构及制备方法
CN112877612A (zh) * 2021-01-07 2021-06-01 浙江工业大学 一种高锰twip钢的制备方法
CN114606430B (zh) * 2022-03-01 2023-05-12 兴机电器有限公司 一种低碳Fe-Mn-Al-Si系TWIP钢及其制备方法
CN114959485A (zh) * 2022-06-07 2022-08-30 江阴市龙润法兰有限公司 压力容器法兰及其生产工艺
CN115537673A (zh) * 2022-08-08 2022-12-30 上海大学 一种高强高塑轻质钢及其制备方法
CN116288026A (zh) * 2023-03-24 2023-06-23 安徽中科高韧新材料有限公司 高强韧twip钢及缓冲吸能薄壁圆管及制作方法和应用
CN116623089B (zh) * 2023-06-12 2024-08-13 重庆三航新材料技术研究院有限公司 基于汽车统一用钢策略的高锰Fe-Mn-Al-Si-Ni钢及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04259325A (ja) * 1991-02-13 1992-09-14 Sumitomo Metal Ind Ltd 加工性に優れた高強度熱延鋼板の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252604A (ja) * 1987-04-08 1988-10-19 Hitachi Ltd 連鋳直結圧延方法及び装置
JPH0483852A (ja) * 1990-07-26 1992-03-17 High Frequency Heattreat Co Ltd 高マンガン鋼材および該高マンガン鋼材の製造方法
JPH07110398B2 (ja) * 1991-05-09 1995-11-29 新日本製鐵株式会社 薄鋼帯製造装置
JPH09225598A (ja) * 1996-02-27 1997-09-02 Nippon Steel Corp 熱延薄鋼板の製造方法
DE19727759C2 (de) * 1997-07-01 2000-05-18 Max Planck Inst Eisenforschung Verwendung eines Leichtbaustahls
FR2796083B1 (fr) * 1999-07-07 2001-08-31 Usinor Procede de fabrication de bandes en alliage fer-carbone-manganese, et bandes ainsi produites
DE10060948C2 (de) * 2000-12-06 2003-07-31 Thyssenkrupp Stahl Ag Verfahren zum Erzeugen eines Warmbandes aus einem einen hohen Mangan-Gehalt aufweisenden Stahl
DE10128544C2 (de) * 2001-06-13 2003-06-05 Thyssenkrupp Stahl Ag Höherfestes, kaltumformbares Stahlblech, Verfahren zu seiner Herstellung und Verwendung eines solchen Blechs
EP1430161B1 (de) * 2001-09-28 2005-06-15 DaimlerChrysler AG Hochfester duplex-/triplex-leichtbaustahl und seine verwendung
FR2857980B1 (fr) * 2003-07-22 2006-01-13 Usinor Procede de fabrication de toles d'acier austenitique fer-carbone-manganese, a haute resistance, excellente tenacite et aptitude a la mise en forme a froid, et toles ainsi produites

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04259325A (ja) * 1991-02-13 1992-09-14 Sumitomo Metal Ind Ltd 加工性に優れた高強度熱延鋼板の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 199243, Derwent World Patents Index; Class M21, AN 1992-355135 *
See also references of WO2006048034A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10450624B2 (en) 2013-07-10 2019-10-22 Thyssenkrupp Steel Europe Ag Method for producing a flat product from an iron-based shape memory alloy

Also Published As

Publication number Publication date
CN101065503A (zh) 2007-10-31
BRPI0419185A (pt) 2007-12-18
US20090010793A1 (en) 2009-01-08
JP2008519160A (ja) 2008-06-05
WO2006048034A1 (de) 2006-05-11

Similar Documents

Publication Publication Date Title
EP1807542A1 (de) Höherfestes, twip-eigenschaften aufweisendes stahlband oder -blech und verfahren zu dessen herstellung mittels "direct strip casting "
DE60116477T2 (de) Warm-, kaltgewalzte und schmelz-galvanisierte stahlplatte mit exzellentem reckalterungsverhalten
EP1309734B1 (de) Höherfester, kaltumformbarer stahl und stahlband oder -blech, verfahren zur herstellung von stahlband und verwendungen eines solchen stahls
EP1573075B8 (de) Verfahren zum herstellen eines stahlprodukts
EP2663411B1 (de) Verfahren zum herstellen eines warmgewalzten stahlflachprodukts
EP3504349B1 (de) Verfahren zur herstellung eines höchstfesten stahlbandes mit verbesserten eigenschaften bei der weiterverarbeitung und ein derartiges stahlband
EP1918406B1 (de) Verfahren zum Herstellen von Stahl-Flachprodukten aus einem mit Bor mikrolegierten Mehrphasenstahl
EP1918402B1 (de) Verfahren zum Herstellen von Stahl-Flachprodukten aus einem ein Komplexphasen-Gefüge bildenden Stahl
WO2001009396A1 (de) Höherfestes stahlband oder -blech und verfahren zu seiner herstellung
EP2767601B1 (de) Kaltgewalztes Stahlflachprodukt für Tiefziehanwendungen und Verfahren zu seiner Herstellung
DE60207591T2 (de) Verfahren zur herstellung von geschweissten röhren und dadurch hergestelltes rohr
WO2008052918A1 (de) Verfahren zum herstellen von stahl-flachprodukten aus einem ein martensitisches gefüge bildenden stahl
WO2015117934A1 (de) Hochfestes stahlflachprodukt mit bainitisch-martensitischem gefüge und verfahren zur herstellung eines solchen stahlflachprodukts
EP3512968B1 (de) Verfahren zur herstellung eines stahlflachprodukts aus einem manganhaltigen stahl und ein derartiges stahlflachprodukt
EP1918405B1 (de) Verfahren zum Herstellen von Stahl-Flachprodukten aus einem mit Silizium legierten Mehrphasenstahl
EP3551776A1 (de) Verfahren zur herstellung eines warm- oder kaltbandes und/oder eines flexibel gewalzten stahlflachprodukts aus einem hochfesten manganhaltigen stahl und stahlflachprodukt hiernach
EP3847284B1 (de) Warmgewalztes stahlflachprodukt und verfahren zu seiner herstellung
WO2019020169A1 (de) Blechbauteil, hergestellt durch warmumformen eines stahlflachprodukts und verfahren zu dessen herstellung
DE102016115618A1 (de) Verfahren zur Herstellung eines höchstfesten Stahlbandes mit verbesserten Eigenschaften bei der Weiterverarbeitung und ein derartiges Stahlband
EP1918404B1 (de) Verfahren zum Herstellen von Stahl-Flachprodukten aus einem mit Aluminium legierten Mehrphasenstahl
EP3469108B1 (de) Verfahren zur herstellung eines kaltgewalzten stahlbandes mit trip-eigenschften aus einem hochfesten, manganhaltigen stahl
EP3771746A1 (de) Stahl, stahlflachprodukt, verfahren zur herstellung eines stahlflachprodukts und verwendung
WO2024046913A1 (de) Verfahren zur herstellung eines kaltgewalzten stahlflachprodukts

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070405

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BECKER, JENS-ULRIK

Inventor name: MENNE, MANFRED

Inventor name: HOFMANN, HARALD

Inventor name: WANS, JOCHEN

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20081030

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP STEEL EUROPE AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20100204