EP1806501B1 - Methode de transformation d'énergie thermique en énergie mécanique - Google Patents

Methode de transformation d'énergie thermique en énergie mécanique Download PDF

Info

Publication number
EP1806501B1
EP1806501B1 EP06027046A EP06027046A EP1806501B1 EP 1806501 B1 EP1806501 B1 EP 1806501B1 EP 06027046 A EP06027046 A EP 06027046A EP 06027046 A EP06027046 A EP 06027046A EP 1806501 B1 EP1806501 B1 EP 1806501B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
working
medium
working chamber
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06027046A
Other languages
German (de)
English (en)
Other versions
EP1806501A1 (fr
Inventor
Steve Hargreaves
Franz Peter Jegel
Bernd Pfeifer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Innovations Ltd
Original Assignee
International Innovations Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Innovations Ltd filed Critical International Innovations Ltd
Priority to AT06027046T priority Critical patent/ATE408062T1/de
Publication of EP1806501A1 publication Critical patent/EP1806501A1/fr
Application granted granted Critical
Publication of EP1806501B1 publication Critical patent/EP1806501B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/02Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for the fluid remaining in the liquid phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/02Devices for producing mechanical power from solar energy using a single state working fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the present invention relates to a method for converting thermal energy into mechanical work.
  • the DE 32 32 497 A discloses a method and apparatus for converting thermal energy into mechanical work by supplying hot heat transfer medium to a first working space of a heat exchanger, heating a first amount of working medium in a second working space of the heat exchanger by the heat transfer medium, and connecting the second working space the heat exchanger with a pneumatic-hydraulic converter and the ejection of a hydraulic medium from the converter by the pressure of the working medium.
  • the cylinder must be alternately heated and cooled, which takes corresponding time due to the available heat capacity. The performance of such a device is thus limited.
  • the US 4,617,801 A shows a free-piston machine for the conversion of thermal energy into mechanical work.
  • pneumatic-hydraulic transducers are used to transfer the pressure into the system.
  • the device has a complex structure and a modest efficiency.
  • Object of the present invention is to provide a method of the type described above in such a way that even under thermally unfavorable conditions, a high efficiency can be achieved, the apparatusive structure is minimized.
  • the heat transfer medium which has been heated to 100 °, for example, by an internal combustion engine, is introduced into a first working space of a first heat exchanger.
  • this first heat exchanger is a so-called bladder accumulator, which is a pressure vessel with two working spaces, which are separated by a flexible membrane.
  • the first heat exchanger could also be designed as a cylinder having two working spaces separated by a piston, as long as the piston is designed so that a heat exchange is easily possible.
  • the heat transfer medium is introduced in this first step so far in the first heat exchanger, that the first working space reaches about half of the total volume of the heat exchanger.
  • a working medium which is present in the second working space of the first heat exchanger, is heated by the first heat transfer medium. It is the main part of the heating, since of course a certain warming already takes place during the supply of the heat transfer medium in the first working space. This main part of the heating is isochoric, since all the valves that allow access to the second working space are closed. Due to the temperature increase in the second working space, the pressure of the working medium increases accordingly.
  • the second working space of the first heat exchanger is connected to the second working space of a second heat exchanger, so that the working medium flows over into this working space.
  • the overflowed working medium cools down, and at the same time, as a result of the volume increase of the second working space of the second heat exchanger, heat transfer medium is displaced from the first working space.
  • This process continues until about the first and the second working space of the second heat exchanger have an approximately equal volume. After closing the corresponding valves, in turn, isochore heating of the working medium in the second working space of the second heat exchanger, which is the fourth step.
  • two, three or more heat exchangers are connected in series.
  • a connection of the second working space of the second heat exchanger to a pneumatic-hydraulic converter which is preferably also designed as a bladder accumulator, now takes place in the fifth step. Due to the expanding working medium, the hydraulic medium is expelled at high pressure from the pneumatic-hydraulic converter, for example, to drive a work machine.
  • steps three and four of the method are repeated as often.
  • very high pressures of 200 bar to 300 bar can be achieved, so that very high efficiencies can be achieved.
  • the efficiency can be increased in particular by the fact that after establishing the pressure equalization between the second working space of the preceding heat exchanger and the second working space of the subsequent heat exchanger further heat transfer medium is pressed into the previous heat exchanger to transfer working fluid from the second working space of the first heat exchanger and the previous heat exchanger in a second working space of another subsequent heat exchanger.
  • the use of mechanical work is required to completely expel the working medium after the overflow from the second working space of the respective heat exchanger.
  • this additional expense is offset by a higher energy yield, which increases the efficiency accordingly. It is particularly advantageous to completely empty the second working spaces of the heat exchangers.
  • the first working spaces are completely emptied. This is done by introducing working fluid into the second working chambers of the respective heat exchanger, which can be done virtually without pressure.
  • the working medium is compressible, with both the possibility exists to use a gaseous working medium, as well as to provide a liquid / gas phase mixture. It is particularly preferred if the working medium has a boiling point at ambient pressure which is between -60 ° C and -20 ° C.
  • a particularly favorable embodiment variant of the method according to the invention provides that several cycle processes are carried out at regular intervals with a time offset. This means that, similar to a multi-cylinder internal combustion engine cyclic fluctuations can be compensated and in particular in the hydraulic system equalization of the pressure can be brought about.
  • the energy fed into the hydraulic system can be used in various ways.
  • a feed can be made in a hydraulic network to drive hydraulic machines.
  • the generation of electric power via a generator is provided which is driven by a hydraulic working machine.
  • the present invention also relates to a device for converting thermal energy into mechanical work, having at least two heat exchangers, each having a first and a second working space, wherein the first working space is connected to a source of hot heat transfer medium.
  • this device is characterized in that the heat exchangers have second working spaces which can be connected to one another and to a source of a working medium and that the second working space of a heat exchanger can be connected to a pneumatic-hydraulic converter.
  • the heat exchangers each have a smaller volume starting from the first heat exchanger. As a result, a particularly high overall efficiency can be achieved.
  • Fig. 1 shows a circuit diagram of an embodiment of the present invention.
  • the device according to the invention consists of three heat exchangers 1a, 1b, 1c, which are designed as bladder accumulators.
  • Each heat exchanger 1a, 1b, 1c has a first working space 2a, 2b, 2c and a second working space 3a, 3b, 3c, which are separated from each other by a flexible membrane 4. Due to the flexibility and the thin-walledness of the membrane 4 it is ensured that in the first and second working space 2a, 2b, 2c; 3a, 3b, 3c of each heat exchanger 1a, 1b, 1c always the same pressure and at least after a short transition phase also substantially the same temperature prevail.
  • the first working spaces 2a, 2b, 2c of the heat exchangers 1a, 1b, 1c are connected via valves 5 to a line 6, in which the heat transfer medium circulates.
  • This heat transfer medium is circulated by a pump 7 and comes from an internal combustion engine 9, which uses the heat transfer medium, for example, as cooling water.
  • a high-pressure pump may be provided to completely empty the second working chambers 3a, 3b, 3c of each heat exchanger 1a, 1b, 1c by injecting heat transfer medium into the first working chambers 2a, 2b, 2c of the heat exchangers 1a, 1b, 1c ,
  • a buffer 8 is used to set the respective desired pressure.
  • the second working spaces 3a, 3b, 3c of the heat exchangers 1a, 1b, 1c are connected via valves 10 to a line 11 for a working medium, more valves 12 being provided between the individual heat exchangers 1a, 1b, 1c.
  • the valves 10 are formed as multi-way valves.
  • the working medium is conveyed via a pump 14 from a reservoir 15.
  • Via further valves 13 and 16 is connected to the line 11, a pneumatic-hydraulic converter 17 in connection, which has a hydraulic chamber 18 and a working space 19, which are also separated by a flexible membrane 4 from each other.
  • the line 11 for the working medium is continued after the branch to the pneumatic-hydraulic converter 17 via a first radiator 20 and a second radiator 21, between which a throttle 22 is arranged. Following the second cooler 21, the working medium is led away to the reservoir 15.
  • the hydraulic circuit which starts from the pneumatic-hydraulic converter 17, consists of a first check valve 23, behind which a hydraulic motor 24 is provided, which is connected to a generator 25 for generating electrical power. Downstream of the hydraulic motor 24, the hydraulic medium is supplied to a reservoir 26, from which it is returned to the pneumatic-hydraulic converter 17 via a second check valve 27.
  • the system is designed for a maximum pressure of 250 bar and the first heat exchanger 1a has a total volume of 200 liters.
  • the second heat exchanger 1b has a total volume of 160 liters and the third heat exchanger 1c has a total volume of 120 liters.
  • the pneumatic-hydraulic converter 17 has a volume of 80 liters.
  • Fig. 1 shown devices arranged side by side in parallel and operated offset in time to each other, as is the case for example in a five-cylinder internal combustion engine.
  • the first working spaces 2a, 2b, 2c have a minimum volume, that is, the membranes 4 are practically completely located on the side of the heat transfer medium and the second working spaces 3a, 3b, 3c practically the entire inner volume of the heat exchangers 1a, 1b, 1c make up and filled with working medium.
  • the working medium in the first heat exchanger 1a essentially has ambient temperature and the pressure corresponds to a pre-pressure of, for example, 5 bar, which is maintained as the minimum pressure in the system.
  • the valve 5 belonging to the first heat exchanger 1 a is opened, and hot heat transfer medium having a temperature of, for example, 100 ° C. is allowed to flow into the first working space 2 a.
  • the supply is terminated as soon as the membrane 4 is in a middle position, that is to say that the first and the second working space 2a, 3a have approximately the same volume.
  • the first valve 10 associated with the first heat exchanger 1a the excess working fluid is returned to the reservoir 15.
  • the valves 5 and 10 are closed, so that the working fluid in the second working space 3 a isochorically heated by the hot heat transfer medium in the first working space 2 a.
  • the working medium in the second working space 3a After preparation of the temperature compensation after a few seconds, the working medium in the second working space 3a at a temperature of 80 ° C and a pressure of 80 bar before.
  • the valves 10 and 12 are opened between the first heat exchanger 1a and the second heat exchanger 1b, so that the working medium from the second working space 3a of the first heat exchanger 1a can flow into the second working space 3b of the second heat exchanger 1b.
  • heat transfer medium is returned to the line 6 until about the middle position of the membrane 4 is reached.
  • all the valves 5, 10, 12 are closed and again an isochronous heating of the working medium takes place in the second working space 3b of the second heat exchanger 1b.
  • the working medium Before the heating, the working medium has been cooled by the overflow to a temperature of 50 ° C and the pressure has dropped to 60 bar. After isochoric heating, the pressure is 120 ° C and the temperature is 85 ° C.
  • a particular advantage of the method and the device according to the invention is that a wide range of operating parameters can be set by different control and thereby a very high degree of flexibility with high efficiency can be achieved.

Claims (25)

  1. Procédé de conversion d'énergie thermique en énergie mécanique, comprenant les étapes suivantes :
    - amenée de fluide caloporteur chaud dans une première enceinte de travail (2a) d'un premier échangeur de chaleur (la) ;
    - chauffage isochore d'une première quantité de fluide de travail, dans une deuxième enceinte de travail (3a) du premier échangeur de chaleur (la), au moyen du fluide caloporteur ;
    - caractérisé par l'accomplissement des sous-étapes suivantes :
    • transfert d'au moins une quantité partielle de la première quantité de fluide de travail, de la deuxième enceinte de travail (3a ; 3b) du premier échangeur de chaleur (la) ou de l'échangeur de chaleur (1b) précédent, en une deuxième enceinte de travail (3b ; 3c) d'un autre échangeur de chaleur (1b; 1c), subséquent ;
    • chauffage isochore de la quantité partielle transférée de la première quantité d'un fluide de travail, dans une deuxième enceinte de travail (3b ; 3c) de l'autre échangeur de chaleur (1b ; 1c) subséquent, au moyen d'un fluide caloporteur présent dans une première enceinte de travail (2b : 2c) de l'autre échangeur de chaleur (1b ; 1c) subséquent ;
    - liaison de la deuxième enceinte de travail (3c) de l'autre et dernier échangeur de chaleur (1c) à un convertisseur pneumatique-hydraulique (17) et expulsion d'un fluide hydraulique hors du convertisseur (17), sous l'effet de la pression du fluide de travail.
  2. Procédé selon la revendication 1, caractérisé en ce que, après établissement de l'équilibre de pression, entre la deuxième enceinte de travail (3a ; 3b) de l'échangeur de chaleur (1a ; 1b) précédent et de la deuxième enceinte de travail (3b ; 3c) de l'autre échangeur de chaleur (1b ; 1c) subséquent, l'autre fluide caloporteur, présent dans l'échangeur de chaleur (1a ; 1b) précédent, est comprimé pour faire passer du fluide de travail, issu de la deuxième enceinte de travail (3a ; 3b) du premier échangeur de chaleur (la) ou de l'échangeur de chaleur (1b) précédent, en une deuxième enceinte de travail (3b ; 3c) d'un autre échangeur de chaleur (1b ; 1c) subséquent.
  3. Procédé selon la revendication 2, caractérisé en ce que, après établissement de l'équilibre de pression, entre la deuxième enceinte de travail (3a ; 3b) du premier échangeur de chaleur (1a) ou de l'échangeur de chaleur (1b) précédent et de la deuxième enceinte de travail (3b ; 3c) de l'échangeur de chaleur (1b ; 1c) subséquent, la deuxième enceinte de travail (3a ; 3b), du premier échangeur de chaleur (la), ou de l'échangeur de chaleur (1b) précédent, est complètement vidée.
  4. Procédé selon la revendication 1 à 3, caractérisé en ce que, après achèvement de l'expulsion de fluide hydraulique, les premières enceintes de travail (2a, 2b, 2c) de tous les échangeurs de chaleur (1a, 1b, 1c) sont vidées par introduction de fluide de travail dans les deuxièmes enceints de travail.
  5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce qu'entre deux et quatre, de préférence trois, étapes, du chauffage isochore du fluide de travail sont effectuées.
  6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que le fluide de travail se présente sous forme gazeuse.
  7. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que le fluide de travail se présente sous la forme de mélange de phases gaz/liquide.
  8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que la pression du fluide de travail dans le premier échangeur de chaleur, après le chauffage isochore, est d'une valeur comprise dans la fourchette entre 50 et 100 bar.
  9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que la pression du fluide de travail dans un deuxième échangeur de chaleur, après l'établissement de l'équilibre de pression, est d'une valeur comprise dans la fourchette entre 25 et 50 bar.
  10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que le fluide de travail présente un point d'ébullition, à la pression ambiante, compris dans la fourchette entre -60°C et -20°C.
  11. Procédé selon l'une des revendications 1 à 10, caractérisé en ce que plusieurs processus circuitaires sont effectués simultanément, en étant décalés temporellement selon des espacements réguliers.
  12. Procédé selon la revendication 11, caractérisé en ce que, entre trois et sept, de préférence cinq, processus circuitaires, sont effectués simultanément.
  13. Procédé selon l'une des revendications 1 à 12, caractérisé en ce que le fluide caloporteur est chauffé par la chaleur de dissipation d'une machine à combustible (9) à combustion interne, par l'énergie solaire, ou par de l'énergie géothermique.
  14. Procédé selon l'une des revendications 1 à 13, caractérisé en ce que le fluide hydraulique est travaillé dans une machine de travail (24), raccordée de préférence à un générateur (25), pour générer du courant électrique.
  15. Procédé selon l'une des revendications 1 à 14, caractérisé en ce que le fluide de travail, après expulsion du fluide hydraulique, est détendu dans un refroidisseur (20, 21), pour produire du froid, après être passé par un étranglement (22).
  16. Dispositif de conversion d'énergie thermique en énergie mécanique, comprenant au moins deux échangeurs de chaleur (1a, 1b, 1c), présentant chacun une première et une deuxième enceinte de travail (2a, 2b, 2c ; 3a, 3b, 3c), la première enceinte de travail (2a, 2b, 2c) étant reliée à une source de fluide caloporteur chaud, caractérisé en ce que les échangeurs de chaleur (1a, 1b, 1c) présentent des deuxièmes enceintes de travail (3a ; 3b ; 3c), susceptibles d'être reliées les unes les autres et à une source d'un fluide de travail, et en ce que la deuxième enceinte de travail (3a ; 3b ; 3c) d'un échangeur de chaleur (1a, 1b, 1c) est susceptible d'être reliée à un convertisseur pneumatique-hydraulique (17).
  17. Dispositif selon la revendication 16, caractérisé en ce que les échangeurs de chaleur (1a, 1b, 1c) sont réalisés sous la forme d'accumulateurs à bulles.
  18. Dispositif selon l'une des revendications 16 ou 17, caractérisé en ce qu'un compresseur (7) est prévu, pour l'apport de fluide caloporteur dans les premières enceintes de travail (2a, 2b, 2c) des échangeurs de chaleur (1a, 1b, 1c).
  19. Dispositif selon l'une des revendications 16 à 18, caractérisé en ce que le convertisseur pneumatique-hydraulique (17) est réalisé sous la forme d'accumulateurs à bulles.
  20. Dispositif selon l'une des revendications 16 à 19, caractérisé en ce que plusieurs groupes, composés d'échangeurs de chaleur (1a, 1b, 1c) et d'un convertisseur pneumatique-hydraulique (17), sont prévus, parallèlement les uns aux autres.
  21. Dispositif selon la revendication 20, caractérisé en ce que, entre trois et sept, de préférence cinq, groupes, composés d'échangeurs de chaleur (1a, 1b, 1c) et d'un convertisseur pneumatique-hydraulique (17), sont prévus, parallèlement les uns aux autres.
  22. Dispositif selon l'une des revendications 16 à 21, caractérisé en ce qu'un échangeur de chaleur (1c) est susceptible d'être relié, le cas échéant par un convertisseur pneumatique-hydraulique (17), à une machine de travail (24), raccordée, de préférence, à un générateur (25), pour la génération de courant électrique.
  23. Dispositif selon l'une des revendications 16 à 22, caractérisé en ce qu'un échangeur de chaleur (1c) est relié, par un convertisseur pneumatique-hydraulique (17), à une machine frigorifique.
  24. Dispositif selon l'une des revendications 16 à 23, caractérisé en ce que le circuit du fluide caloporteur est relié à une machine à combustible (9) à combustion interne, à une installation solaire, ou à une installation d'utilisation de l'énergie géothermique, chauffant le fluide caloporteur.
  25. Dispositif selon l'une des revendications 16 à 24, caractérisé en ce que le premier échangeur de chaleur (la) présente un plus grand volume que l'échangeur de chaleur (1b) subséquent, et chaque autre échangeur de chaleur (1b), de son côté, présente un plus gros volume que l'échangeur de chaleur (1c), chaque fois, subséquent.
EP06027046A 2006-01-10 2006-12-29 Methode de transformation d'énergie thermique en énergie mécanique Not-in-force EP1806501B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT06027046T ATE408062T1 (de) 2006-01-10 2006-12-29 Verfahren zur umwandlung thermischer energie in mechanische arbeit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT0003206A AT502402B1 (de) 2006-01-10 2006-01-10 Verfahren zur umwandlung thermischer energie in mechanische arbeit

Publications (2)

Publication Number Publication Date
EP1806501A1 EP1806501A1 (fr) 2007-07-11
EP1806501B1 true EP1806501B1 (fr) 2008-09-10

Family

ID=37776725

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06027046A Not-in-force EP1806501B1 (fr) 2006-01-10 2006-12-29 Methode de transformation d'énergie thermique en énergie mécanique

Country Status (12)

Country Link
US (1) US20070163260A1 (fr)
EP (1) EP1806501B1 (fr)
JP (1) JP2007187160A (fr)
KR (1) KR20070075321A (fr)
AT (2) AT502402B1 (fr)
AU (1) AU2007200019A1 (fr)
BR (1) BRPI0700019A (fr)
CA (1) CA2572840A1 (fr)
DE (1) DE502006001542D1 (fr)
MX (1) MX2007000322A (fr)
RU (1) RU2007100425A (fr)
ZA (1) ZA200700277B (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7656050B2 (en) 2007-09-27 2010-02-02 William Riley Hydroelectric pumped-storage
US20090211757A1 (en) * 2008-02-21 2009-08-27 William Riley Utilization of geothermal energy
EP2105610A1 (fr) * 2008-03-25 2009-09-30 International Innovations Limited Procede de conversion d'energie thermique en energie mecanique
EP2312131A3 (fr) * 2009-10-12 2011-06-29 Bernd Schlagregen Procédé de conversion d'énergie thermique en travail mécanique
US9915179B2 (en) 2009-12-21 2018-03-13 Ronald Kurt Christensen Transient liquid pressure power generation systems and associated devices and methods
US9739268B2 (en) * 2009-12-21 2017-08-22 Ronald Kurt Christensen Transient liquid pressure power generation systems and associated devices and methods
DE102010005232A1 (de) * 2010-01-21 2011-09-08 Gerhard Stock Anordnung zum Umwandeln von thermischer in motorische Energie
RU2434159C1 (ru) * 2010-03-17 2011-11-20 Александр Анатольевич Строганов Способ преобразования тепла в гидравлическую энергию и устройство для его осуществления
AT511077B1 (de) * 2011-08-16 2012-09-15 Seyfried Andrea Mag Hochdruck-gas-antriebseinheit
WO2013087600A2 (fr) * 2011-12-12 2013-06-20 Erich Kumpf Dispositif thermique destiné à la production d'énergie mécanique et/ou d'énergie électrique
US20140311700A1 (en) * 2012-04-02 2014-10-23 Ryszard Pakulski Method for processing of heat energy absorbed from the environment and a unit for processing of heat energy absorbed from the environment
CN103334899B (zh) * 2013-04-17 2015-10-21 华北电力大学 可变耐压级联式液体活塞装置
FR3029907B1 (fr) * 2014-12-10 2019-10-11 Centre National De La Recherche Scientifique Procede de purification de l'eau par osmose inverse et installation mettant en oeuvre un tel procede.
US20210222592A1 (en) * 2018-07-03 2021-07-22 21Tdmc Group Oy Method and apparatus for converting heat energy to mechanical energy
FR3084913B1 (fr) * 2018-08-09 2020-07-31 Faurecia Systemes Dechappement Systeme thermique a circuit rankine
KR102140666B1 (ko) * 2019-04-26 2020-08-03 국방과학연구소 다단 축압기를 포함하는 동력발생장치 및 이의 운전방법
CA3195902A1 (fr) * 2020-09-21 2022-03-24 Equilibrium Energy Pty Ltd Systeme d'energie solaire
CN112879203B (zh) * 2021-03-24 2022-10-11 丁亚南 一种外燃机动力系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3666038A (en) * 1970-10-08 1972-05-30 Fma Inc Air pulsing system
GB1536437A (en) * 1975-08-12 1978-12-20 American Solar King Corp Conversion of thermal energy into mechanical energy
US4283915A (en) * 1976-04-14 1981-08-18 David P. McConnell Hydraulic fluid generator
DE3232497A1 (de) * 1982-09-01 1983-02-03 Richard 8000 München Moritz Vorrichtung zur gewinnung mechanischer energie aus waermeenergie
US4617801A (en) * 1985-12-02 1986-10-21 Clark Robert W Jr Thermally powered engine
US5548957A (en) * 1995-04-10 1996-08-27 Salemie; Bernard Recovery of power from low level heat sources
US5916140A (en) * 1997-08-21 1999-06-29 Hydrotherm Power Corporation Hydraulic engine powered by introduction and removal of heat from a working fluid
AUPS138202A0 (en) * 2002-03-27 2002-05-09 Lewellin, Richard Laurance Engine

Also Published As

Publication number Publication date
EP1806501A1 (fr) 2007-07-11
KR20070075321A (ko) 2007-07-18
BRPI0700019A (pt) 2007-10-16
DE502006001542D1 (de) 2008-10-23
ZA200700277B (en) 2008-05-28
AT502402B1 (de) 2007-03-15
ATE408062T1 (de) 2008-09-15
MX2007000322A (es) 2008-11-26
RU2007100425A (ru) 2008-07-20
CA2572840A1 (fr) 2007-07-10
US20070163260A1 (en) 2007-07-19
AU2007200019A1 (en) 2007-07-26
JP2007187160A (ja) 2007-07-26
AT502402A4 (de) 2007-03-15

Similar Documents

Publication Publication Date Title
EP1806501B1 (fr) Methode de transformation d'énergie thermique en énergie mécanique
DE102013009351B3 (de) Anlage und Verfahren zur Rückgewinnung von Energie aus Wärme in einem thermodynamischen Kreisprozess
EP2029878B1 (fr) Procédé et dispositif pour convertir de l'énergie thermique en énergie mécanique
EP2067942B1 (fr) Procédé de transformation et de stockage d'énergie régénérative
EP1330592A1 (fr) Procede de fonctionnement d'un moteur thermique a vapeur, en particulier comme mecanisme d'entrainement de vehicule
DE102010005232A1 (de) Anordnung zum Umwandeln von thermischer in motorische Energie
EP1759116B1 (fr) Machine thermique
EP2333285A1 (fr) Installation de centrale thermique à condensateur Stirling
WO2021228330A1 (fr) Moteur thermique convertissant de l'énergie thermique en travail mécanique et/ou électrique et procédé de conversion d'énergie thermique en travail mécanique et/ou électrique
DE102015105878B3 (de) Überkritischer Kreisprozess mit isothermer Expansion und Freikolben-Wärmekraftmaschine mit hydraulischer Energieauskopplung für diesen Kreisprozess
EP1404948B1 (fr) Systeme d'elements d'expansion gazeuse et procede d'utilisation
EP1925892A2 (fr) Pompe à chaleur
DE2844742A1 (de) Verfahren zur gewinnung von elektrischer energie in einem gegendruckdampfsystem
DE102014100545A1 (de) Freikolbenmotorsystem und Verfahren zum Betreiben eines Freikolbenmotors
DE102011101665A1 (de) Wärmeeinheit zum Erzeugen elektrischer Energie
DE102018201619B4 (de) Wärmespeichervorrichtung, Arbeitsvorrichtung, Verfahren zum Betreiben einer Wärmespeichervorrichtung und Verfahren zum Betreiben einer Arbeitsvorrichtung
DE102013013104B4 (de) Wärmekraftmaschine
DE102007017663A1 (de) Anordnung zur Umwandlung von thermischer Energie in mechanische Energie
DE10247387A1 (de) Kraftstation und Verfahren zu ihrem Betrieb
WO2011026633A2 (fr) Procédé et dispositif de production d'énergie notamment à partir de biomasse ou de porteurs d'énergie de biomasse
EP2932179A2 (fr) Dispositif pour fournir de l'énergie électrique à partir d'énergie thermique
DE102019219066A1 (de) Anlage zur Kälteerzeugung
WO2015169965A1 (fr) Ensemble de plusieurs échangeurs de chaleur et procédé d'évaporation d'un fluide de travail
DE102022101440A1 (de) Wärmepumpe zur Erzeugung von Prozesswärme
WO2023011997A1 (fr) Moteur thermique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080108

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502006001542

Country of ref document: DE

Date of ref document: 20081023

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081221

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090110

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090210

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081231

Year of fee payment: 3

BERE Be: lapsed

Owner name: INTERNATIONAL INNOVATIONS LTD

Effective date: 20081231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

26N No opposition filed

Effective date: 20090611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081223

Year of fee payment: 3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081229

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081211

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101229