EP1797306A1 - Vorrichtung zum betreiben einer brennkraftmaschine - Google Patents

Vorrichtung zum betreiben einer brennkraftmaschine

Info

Publication number
EP1797306A1
EP1797306A1 EP06777779A EP06777779A EP1797306A1 EP 1797306 A1 EP1797306 A1 EP 1797306A1 EP 06777779 A EP06777779 A EP 06777779A EP 06777779 A EP06777779 A EP 06777779A EP 1797306 A1 EP1797306 A1 EP 1797306A1
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
lambda
cor
trim
diagnosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06777779A
Other languages
English (en)
French (fr)
Inventor
Wojciech Cianciara
Gerd RÖSEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Siemens AG
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG, Continental Automotive GmbH filed Critical Siemens AG
Publication of EP1797306A1 publication Critical patent/EP1797306A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment

Definitions

  • the invention relates to a device for operating an internal combustion engine.
  • exhaust gas aftertreatment systems are used in internal combustion engines, which convert pollutant emissions that are generated in the cylinders during the combustion process of the air / fuel mixture into harmless substances.
  • three-way catalysts are used as exhaust gas catalysts for this purpose.
  • a high efficiency in the conversion of the pollutant components which are carbon monoxide, hydrocarbons or nitrogen oxides, requires a precisely adjusted air / fuel ratio in the cylinders and further, the mixture upstream of the catalytic converter must have a predetermined variation, ie a targeted operation of the internal combustion engine Both in excess air and in air deficiency is necessary to ensure filling and emptying of the oxygen storage of the catalytic converter.
  • the nitrogen oxides are reduced during the storage of oxygen, while the oxidation is assisted during emptying and, furthermore, it is prevented that incorporated oxygen molecules deactivate subareas of the catalytic converter.
  • a lambda control for an internal combustion engine is known with an exhaust gas probe, which is a binary lambda Probe is formed and which is arranged upstream of an exhaust gas catalyst in an exhaust tract of an internal combustion engine. Furthermore, a further exhaust gas probe is provided downstream of the catalytic converter.
  • the lambda control includes a PI controller, with the P and I components stored in maps above the engine speed and load.
  • lambda fluctuation results from two-point control on the basis of the binary measuring signal of the upstream lambda probe.
  • the control is designed so that the amplitude of the lambda fluctuations are set to about 3%.
  • a superimposed trim control via a binary Nachkatsonde is provided.
  • the reason for providing a trim control is that exhaust probes, particularly those located upstream of the catalytic converter, change their response to changes in air / fuel ratio during their service life. As a result of the measurement signal of the exhaust gas probe, either changes in the air / fuel ratio can be detected sooner or later. In particular, the response of the exhaust gas probe in the jumps of its measurement signal from a rich value to a lean value and vice versa also change asymmetrically. The lean value takes the measurement signal of the binary lambda probe when the air / fuel ratio is greater than a stoichiometric air / fuel ratio.
  • the measurement signal of the binary lambda probe has a grease value when the air / fuel Ratio is greater than a stoichiometric air / fuel ratio, wherein the ratios are each based on the composition of the mixture before the oxidation of the fuel.
  • the lambda control is not adapted to the changed response of the exhaust gas probe, it can lead to increased pollutant emissions of the internal combustion engine due to a greatly reduced conversion of pollutant emissions into harmless substances.
  • the trim regulation intervenes.
  • diagnoses of components of the exhaust tract of the internal combustion engine are often regulated by statutory provisions. So z. B. to diagnose an oxygen storage capacity of the catalytic converter.
  • the monitor probe detects whether a constant lambda value is reached or whether the lambda value varies according to the control cycles. If the lambda value measured by the monitor probe varies, the catalyst under test does not have sufficient oxygen storage capability and a defective or aged catalyst is detected.
  • the object of the invention is to provide a device for operating an internal combustion engine, which allows operation with very low pollutant emissions.
  • the invention is characterized by an apparatus for operating an internal combustion engine having at least one cylinder and an exhaust tract in which an exhaust gas catalyst, a first exhaust gas probe upstream of the catalytic converter and a second exhaust gas probe downstream of the catalytic converter are arranged.
  • the device has a lambda controller which is designed to determine a lambda correction contribution as a function of a first measurement signal associated with the first exhaust gas probe.
  • a trim controller is provided, to which a setpoint value and an actual value of a second measurement signal are fed, which is assigned to the second exhaust gas probe and which is designed to determine a proportional correction contribution.
  • the first exhaust gas probe is preferably a binary exhaust gas probe, but in principle it can also be a linear exhaust gas probe. It is particularly simple if the second exhaust gas probe has a binary exhaust gas probe is, but it can in principle also be a linear exhaust gas probe.
  • an actuating signal unit is provided, which is designed to determine an actuating signal for metering fuel into the cylinder as a function of the lambda correction contribution and, in an operating state of a diagnosis of the component assigned to the exhaust tract, additionally depending on the proportional correction contribution the actuating signal for metering fuel to determine in the cylinder.
  • the component assigned to the exhaust gas tract may be, for example, the exhaust gas catalytic converter, the first or the second exhaust gas probe or else a further component. Characterized in that the control signal is additionally determined in the control signal unit in the operating state of the diagnosis depending on the proportional correction contribution, a temporally very fast penetration of the trim controller is guaranteed to the fuel to be metered.
  • the device comprises a low-pass filter for filtering the actual value of the second measurement signal and for supplying the filtered actual value of the second measurement signal to the trim controller for forming the control difference in the operating state of the diagnosis of a component associated with the exhaust tract.
  • a variable representative of the cut-off frequency of the low-pass filter can be a very good decoupling factor. be ensured by the implementation of the trim controller of the diagnosis to be performed. In this way, the diagnosis can then be carried out in a particularly precise manner and, on the other hand, the trim controller compensates for particularly precise changes in the response of the first exhaust gas probe.
  • the operating state of the diagnosis of a component assigned to the exhaust gas tract is an operating state of the diagnosis of the exhaust gas catalytic converter.
  • FIG. 2 is a block diagram of a part of the control device
  • Figure 3 shows a waveform
  • An internal combustion engine (FIG. 1) comprises an intake tract 1, an engine block 2, a cylinder head 3 and an exhaust tract 4.
  • the intake tract 1 preferably comprises a throttle valve 5, furthermore a collector 6 and an intake manifold 7, which leads to a cylinder Z1 via an intake passage is guided in the engine block 2.
  • the engine block 2 further includes a crankshaft 8, which is coupled via a connecting rod 10 with the piston 11 of the cylinder Zl.
  • the cylinder head 3 comprises a valve drive with a gas inlet valve 12 and a gas outlet valve 13.
  • the cylinder head 3 further comprises an injection valve 18 and an ignition valve. candle 19.
  • the injection valve 18 may be arranged in the suction pipe 7.
  • an exhaust gas catalyst 21 is arranged, which is designed as a three-way catalyst. Further, in the exhaust tract, a further exhaust gas catalyst can be arranged, which is designed as a NOx catalyst.
  • a control device 25 is provided which is associated with sensors which detect different measured variables and in each case determine the value of the measured variable.
  • the control device 25 determines dependent on at least one of the measured variables manipulated variables, which are then converted into one or more actuating signals for controlling the actuators by means of corresponding actuators.
  • the control device 25 may also be referred to as an apparatus for operating the internal combustion engine.
  • the sensors are a pedal position sensor 26 that detects an accelerator pedal position of an accelerator pedal 27, an air mass sensor 28 that detects an air mass flow upstream of the throttle 5, a temperature sensor 32 that detects an intake air temperature, an intake manifold pressure sensor 34 that detects an intake manifold pressure in the accumulator 6, a crankshaft angle sensor 36, which detects a crankshaft angle, which is then assigned a speed N.
  • a first exhaust gas probe 42 is provided which is arranged upstream of the catalytic converter 21 and which detects a residual oxygen content of the exhaust gas and whose measurement signal MS1 is characteristic for the air / fuel ratio in the combustion chamber of the cylinder Z1 and upstream of the first exhaust gas probe 42 before the oxidation of the fuel, hereinafter referred to as the air / fuel ratio in the Cylinders Zl - Z4.
  • a second exhaust gas probe 43 is provided, which is arranged downstream of the catalytic converter 21 and detects a residual oxygen content of the exhaust gas and whose measurement signal, namely the actual value MS2 of the measurement signal, is characteristic of the air / fuel ratio in the combustion chamber of the cylinder Zl and upstream of the second exhaust gas probe 43 before the oxidation of the fuel, hereinafter referred to as the air-fuel ratio downstream of the catalytic converter.
  • the first exhaust gas probe 42 is preferably a binary lambda probe.
  • the second exhaust gas probe 43 is preferably a binary lambda probe.
  • the first and / or the second exhaust gas probe may in principle also be a linear lambda probe.
  • any subset of said sensors may be present, or additional sensors may be present.
  • the actuators are, for example, the throttle valve 5, the gas inlet and gas outlet valves 12, 13, the injection valve 18 or the spark plug 19.
  • cylinders Z2 to Z4 are preferably also provided, which are then also assigned corresponding actuators and possibly sensors.
  • a block Bl includes a lambda controller.
  • the lambda controller is supplied with the first measurement signal MS1 as a controlled variable.
  • the measurement signal MS1 is preferably binary in nature, ie it assumes a lean value when the air / fuel ratio before the catalytic converter 21st is lean and a fat value when it's fat. Only in a very small intermediate range does it also take intermediate values between the lean and the fat value.
  • the lambda controller Due to the binary nature of the first measurement signal MS1, the lambda controller is designed as a two-point controller.
  • the lambda controller is preferably designed as a PI controller.
  • a P component is preferably supplied as a proportional jump PJ to the block Bl.
  • a block B2 is provided in which the proportional jump PJ is determined as a function of the rotational speed N and a load variable LOAD.
  • a map is preferably provided, which can be permanently stored.
  • An I component of the lambda controller is preferably determined as a function of an integral increment I_INC.
  • the Integralinkre- ment I INC is preferably determined in a block B3 also dependent on the speed and a load size. For this purpose, for example, a map can also be provided.
  • the load variable LOAD can be, for example, an air mass flow or also the intake manifold pressure.
  • a delay time T_D is provided as an input parameter for the block Bl, which is determined in a block B5, which is explained in more detail below.
  • the lambda correction contribution LAM_C0R has a neutral value, for example 1, and becomes dependent on the integral increment from the time t ⁇ until a time t1 I_INC increased. For example, this is done in a predetermined time grid, in each of which the current value of the lambda correction contribution LAM COR is increased by the integral increment I INC.
  • the time t1 is characterized in that the first measurement signal MS1 jumps from its lean value to its rich value.
  • the lambda correction contribution LAM_COR is no longer incremented with the integral increment I INC, but instead maintains its value for the delay time duration T_D. With expiration of the delay period TD, which is the case at a time t2, the lambda correction contribution is reduced in accordance with the proportional displacement PJ. After the lambda correction contribution LAM_COR has jumped at the time t2, the lambda correction contribution LAM COR is then reduced by the integral increment I_INC, preferably with a rate predetermined by the integral increment I INC until the first measurement signal MS1 makes a jump from the rich value the lean value, which is the case at a time t3.
  • the lambda correction contribution LAM COR remains at its value for the predetermined delay time period TD, before it is then increased again by the expiration period TD, at a time t4, by the proportional displacement P_J. Subsequently, the lambda correction contribution LAM COR is incremented again as a function of the integral increment I INC.
  • An actuating signal unit is formed by blocks B7, B9, BlI and a multiplication point Ml.
  • the actuating signal unit is designed to determine an actuating signal SG for metering fuel to the respective cylinder Z1 to Z4 as a function of the lambda correction contribution LAM_COR.
  • the injection valve 18 is preferably activated.
  • a lambda control factor LAM_FAC is determined as a function of the lambda correction contribution LAM_COR. For example, in an operating state outside the diagnosis of a component assigned to the exhaust tract, the lambda correction contribution LAM_COR is assigned directly to the lambda control factor LAM_FAC.
  • a corrected fuel quantity MFF COR to be metered is determined by multiplying the lambda control factor LAM_FAC by a fuel mass MFF to be metered.
  • the fuel mass to be metered is preferably determined in a block B9 as a function of the rotational speed N and the load size LOAD. This can be done for example with the aid of a map, which is preferably permanently stored.
  • the actuating signal SG is determined as a function of the corrected fuel mass MFF_COR to be metered.
  • an injection period can be determined and the control signal can be determined accordingly in order to meter fuel via the injection valve for the injection period.
  • a trim controller includes blocks B13 and B15.
  • a block B17 is provided, the input of which is supplied with an actual value MS2 of the second measuring signal.
  • Block B17 comprises a low-pass filter for filtering the actual value MS2 of the second measurement signal and thus generates a filtered actual value MS2_FIL of the second measurement signal.
  • a reference MS2_REF of the second measurement signal forms the desired value of the second measurement signal.
  • a control difference DMS2 of the trim controller is determined by forming the difference of the reference MS2_REF and the actual value MS2_FIL of the second measurement signal. The reference MS2_REF thus forms the desired value of the second measurement signal.
  • Filtering of the actual value MS2 of the second measurement signal preferably takes place by means of a moving averaging, wherein preferably for filtering, each new actual value MS2 of the second measurement signal is weighted approximately 10%, while the old filtered actual value MS2_FIL is weighted with approximately 90%.
  • the moving averaging makes it particularly easy to realize a low-pass filter.
  • the block B13 is adapted to determine a trim delay time duration contribution T_D_COR_TRIM.
  • the delay time duration T_D is then determined as a function of the trim delay time duration contribution T_D_COR_TRIM and optionally an adaptation delay time duration contribution T_D_AD and optionally a diagnostic delay time duration contribution TD DIAG, preferably by summing the corresponding contributions.
  • the adaptation delay time duration contribution T_D_AD is preferably determined as a function of the trim delay time duration contribution TD DIAG. This is preferably done outside the operating state of the catalyst diagnosis. In principle, however, it can also take place during the diagnosis of a component of the exhaust gas tract.
  • the diagnostic delay time duration contribution TD DIAG is determined in a block B15 configured to perform a diagnosis of a component associated with the exhaust tract.
  • the component may, for example, be the exhaust gas catalytic converter. be 21. However, it may also be, for example, the first exhaust gas probe 42 or the second exhaust gas probe 43.
  • the diagnosis delay time duration contribution T_D_DIAG and preferably a diagnosis proportional jump contribution DELTA P are determined. This is done so that it can be checked by pressurizing the lambda controller with the diagnostic delay time duration contribution TD DIAG and the diagnostic proportional contribution DELTA_P, whether the catalytic converter 21 has an oxygen storage capability that has an aged catalytic converter that is just within allowable limits.
  • the addition of the lambda controller additionally with the diagnostic delay time duration contribution T_D_DIAG in the context of the diagnosis has the consequence that the control cycles of the lambda controller are significantly prolonged, as can be seen with reference to FIG.
  • the first measuring signal MS1 jumps from its lean value to its rich value.
  • a time period between times t5 and t ⁇ corresponds to the delay period T_D outside the operating state of the diagnosis of the catalytic converter.
  • the delay time T_D is extended by the diagnostic delay time duration contribution T_D_DIAG. In this way, an increased fluctuation range of the degree of oxygen loading of the catalytic converter 21 is achieved.
  • a jump of the lambda correction contribution LAM COR can also take place in accordance with the diagnostic proportioning contribution DELTA_P. Also by this measure, the predetermined oxygen loading can be well adjusted during the diagnosis.
  • a characteristic profile of the second measuring signal specifically its actual value, is preferred as comparison profile stored by appropriate tests with a suitably aged catalytic converter, for example on an engine test bench.
  • the actual value MS2 of the second measurement signal is then determined during the diagnosis in the block B15 compared with the comparison curve and, depending on this comparison, a quality value which is then representative of the deviation between the actual value MS2 of the second measurement signal and the comparison profile.
  • a quality value which is then representative of the deviation between the actual value MS2 of the second measurement signal and the comparison profile.
  • the amount of the difference of the actual value MS2 and the reference curve can be integrated and optionally normalized.
  • a diagnostic value DIAG V is then determined in block B15. This can be done for example by repeatedly determining the quality value in different control cycles, such.
  • a predetermined threshold which is predetermined such that, for example, when the threshold value is exceeded, the oxygen storage capacity of the catalytic converter 21 no longer corresponds to that of the catalytic converter, d. H. this falls below.
  • a proportional correction contribution P COR TRIM is determined as a function of the control difference DMS2 of the trim controller.
  • the proportional correction contribution P_COR_TRIM is proportional to the control difference DMS2 of the trim controller.
  • the corresponding proportional parameter of the trim controller, as well as a corresponding integral parameter of the trim controller can also be predefined as a function of, for example, the rotational speed and / or the load variable LOAD.
  • the lambda control factor LAM_FAC is additionally determined as a function of the proportional correction contribution P COR TRIM.
  • P COR TRIM proportional correction contribution
  • the proportional correction contribution P COR TRIM may be added to the delay time T_D instead of being directly fed to the block B7.
  • the lambda correction contribution LAM COR and the proportional correction contribution P_COR_TRIM can be linked to each other in an additive or multiplicative manner and optionally weighted to the lambda control factor LAM_FAC.
  • the proportional correction contribution in the operating state of the diagnosis can also be used alternatively or additionally for determining the fuel mass MFF to be metered in the block B9 or also to determine the actuating signal in the block BlI.
  • an injection period of the respective injection valve 18 can be modified depending on the proportional correction contribution P_COR_TRIM.
  • the reference MS2 REF may be fixed, for example, but is preferably differently predetermined for the operating state of the diagnosis in comparison to operating states outside the diagnosis.
  • the reference MS2_REF is, for example, the corresponding fat or also lean value or, in particular in the operating state of the diagnosis, also a suitably predetermined intermediate value that can be determined, for example, by observing the actual value MS2 of the second measuring signal during previous diagnoses.
  • control difference DMS2 of the trim controller can also be formed, for example, without filtering the actual value MS2 of the second measured signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Eine Brennkraftmaschine hat mindestens einen Zylinder und einen Abgastrakt, in dem ein Abgaskatalysator, eine erste Abgassonde stromaufwärts des Abgaskatalysators und eine zweite Abgassonde stromabwärts des Abgaskatalysators angeordnet sind. Ein Lambdaregler ist vorgesehen, der ausgebildet ist, abhängig von einem ersten Messsignal (MSl) , das der ersten Abgassonde zugeordnet ist, einen Lambda-Korrekturbeitrag (LAM_COR) zu ermitteln. Ein Trimmregler ist vorgesehen, dem als Regeldifferenz (DMS2) ein Sollwert und ein Istwert eines zweiten Messsignals zugeführt ist, das der zweiten Abgassonde zugeordnet ist. Der Trimmregler ist ausgebildet, einen Proportional-Korrekturbeitrag (P_COR_TRIM) zu ermitteln. Eine Stellsignaleinheit ist ausgebildet, abhängig von dem Lambda-Korrekturbeitrag (LAM_COR) ein Stellsignal zum Zumessen von Kraftstoff in den Zylinder zu ermitteln und in einem Betriebszustand einer Diagnose einer dem Abgastrakt zugeordneten Komponente zusätzlich abhängig von dem Proportional- Korrekturbeitrag (P_COR_TRIM) das Stellsignal (SG) zum Zumessen von Kraftstoff in den Zylinder zu ermitteln.

Description

Vorrichtung zum Betreiben einer Brennkraftmaschine
Die Erfindung betrifft eine Vorrichtung zum Betreiben einer Brennkraftmaschine .
Immer strengere gesetzliche Vorschriften machen es bei Brennkraftmaschinen zum einen erforderlich, die Rohemissionen so stark wie möglich zu senken, d. h. die Schadstoffemissionen zu senken, die bei der Verbrennung des Luft/Kraftstoff- Gemisches in den Zylindern anfallen. Zum anderen sind in Brennkraftmaschinen Abgasnachbehandlungssysteme im Einsatz, die Schadstoffemissionen, die während des Verbrennungsprozesses des Luft/Kraftstoff-Gemisches in den Zylindern erzeugt werden, in unschädliche Stoffe umwandeln. Insbesondere bei Ottomotoren kommen hierzu als Abgaskatalysatoren Dreiwege- Katalysatoren in Einsatz . Ein hoher Wirkungsgrad bei der Umwandlung der Schadstoffkomponenten, die Kohlenmonoxid, Kohlenwasserstoffe oder auch Stickoxide sind, setzt ein präzise eingestelltes Luft/Kraftstoff-Verhältnis in den Zylindern voraus und ferner muss das Gemisch stromaufwärts des Abgaskatalysators eine vorgegebene Schwankung aufweisen, d. h. ein gezielter Betrieb der Brennkraftmaschine sowohl im Luftüber- schuss als auch im Luftmangel ist notwendig, um ein Befüllen und Leeren des SauerstoffSpeichers des Abgaskatalysators sicherzustellen. Bei der Einlagerung von Sauerstoff werden insbesondere die Stickoxide reduziert, während beim Entleeren die Oxidation unterstützt wird und ferner verhindert wird, dass eingelagerte Sauerstoffmoleküle Teilbereiche des Abgaskatalysators deaktivieren. Aus dem Fachbuch "Handbuch Verbrennungsmotor", Herausgeber Richard von Basshuysen/Fred Schäfer, zweite Auflage, Juni 2004, Friedrich Vieweg & Sohn Verlagsgesellschaft mbH Braunschweig/Wiesbaden, Seite 559, ist eine Lambdaregelung für eine Brennkraftmaschine bekannt mit einer Abgassonde, die als binäre Lambda-Sonde ausgebildet ist und die stromaufwärts eines Abgaskatalysators in einem Abgastrakt einer Brennkraftmaschine angeordnet ist. Ferner ist auch eine weitere Abgassonde stromabwärts des Abgaskatalysators vorgesehen. Die Lambdaregelung umfasst einen PI-Regler, wobei die P- und I-Anteile in Kennfeldern über der Motordrehzahl und Last abgelegt sind. Eine Anregung des Abgaskatalysators, Lambdaschwankung, ergibt sich durch Zweipunktregelung aufgrund des binären Messsignals der stromaufwärtigen Lambdasonde. Die Regelung ist so ausgebildet, dass die Amplitude der Lambdaschwankungen auf etwa 3% eingestellt werden. Zur besseren Einhaltung eines Lambda- fensters vor dem Abgaskatalysator ist eine überlagerte Trimmregelung über eine binäre Nachkatsonde vorgesehen.
Der Grund für das Vorsehen einer Trimmregelung ist, dass Ab- gassonden, insbesondere die stromaufwärts des Abgaskatalysators angeordnet sind, ihr Ansprechverhalten auf Änderungen des Luft/Kraftstoff-Verhältnisses ändern während ihrer Betriebsdauer. Dies führt dazu, dass anhand des Messsignals der Abgassonde entweder Änderungen des Luft/Kraftstoff- Verhältnisses früher oder später erkennbar sind. Insbesondere kann sich das Ansprechverhalten der Abgassonde bei den Sprüngen ihres Messsignals von einem Fettwert zu einem Magerwert und umgekehrt auch asymmetrisch ändern. Den Magerwert nimmt das Messsignal der binären Lambdasonde ein, wenn das Luft/Kraftstoff-Verhältnis größer ist als ein stöchiometri- sches Luft/Kraftstoff-Verhältnis. Das Messsignal der binären Lambdasonde hat einen Fettwert, wenn das Luft/Kraftstoff- Verhältnis größer ist als ein stöchiometrisches Luft/Kraftstoff-Verhältnis, wobei die Verhältnisse jeweils bezogen sind auf die Zusammensetzung des Gemisches vor der Oxidation des Kraftstoffs .
Wenn die Lambdaregelung nicht an das geänderte Ansprechverhalten der Abgassonde angepasst wird, so kann es zu erhöhten Schadstoffemissionen der Brennkraftmaschine kommen auf Grund einer stark verminderten Umwandlung der Schadstoffemissionen in unschädliche Stoffe. Zu diesem Zweck greift die Trimmregelung ein.
Zum Sicherstellen, dass entsprechend vorgegebenen maximalen Schadstoffemissionen nicht überschritten werden, sind Diagnosen von Komponenten des Abgastraktes der Brennkraftmaschine häufig durch gesetzliche Vorschriften geregelt. So ist z. B. eine SauerstoffSpeicherfähigkeit des Abgaskatalysators zu diagnostizieren .
Aus der DE 103 07 010 B3 ist es zum Diagnostizieren des Abgaskatalysators bekannt, sobald während einer Magerhalbperiode ein Wechsel von einem fetten zu einem mageren Brennstoffgemisch detektiert worden ist, zunächst den Lambdaregelfaktor für eine Verweilzeit konstant zu halten und nach der Verweilzeit ihn um einen Proportionalsprung weiter abzumagern. Der maximale Wert des Lambdaregelfaktors wird solange beibehalten, bis eine definierte Sauerstoffbeladung in diesem Regel- zyklus erreicht worden ist. Die bestimmte Sauerstoffbeladung, die zur Durchführung der Katalysator-Wirkungsgraddiagnose eingesetzt wird, entspricht der SauerstoffSpeicherfähigkeit, die ein gealterter Katalysator aufweist, der gerade noch den Anforderungen, die vorgeschrieben sind, gerecht wird. Die Wirkungsgraddiagnose erfolgt unter Zuhilfenahme einer Lambda- monitorsonde, die in dem Abgasstrom hinter dem Abgaskatalysator angebracht ist. Die Monitorsonde detektiert, ob ein konstanter Lambda-Wert erreicht wird oder ob der Lambda-Wert gemäß den Regelzyklen schwankt. Schwankt der durch die Monitorsonde gemessene Lambda-Wert, so weist der überprüfte Katalysator keine ausreichende SauerstoffSpeicherfähigkeit auf, und ein defekter oder gealterter Katalysator wird erkannt.
Aufgabe der Erfindung ist es, eine Vorrichtung zum Betreiben einer Brennkraftmaschine zu schaffen, die einen Betrieb mit sehr geringen Schadstoffemissionen ermöglicht.
Die Aufgabe wird gelöst durch die Merkmale des unabhängigen Patentanspruchs . Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen gekennzeichnet.
Die Erfindung zeichnet sich aus durch eine Vorrichtung zum Betreiben einer Brennkraftmaschine mit mindestens einem Zylinder und einem Abgastrakt, in dem ein Abgaskatalysator, eine erste Abgassonde stromaufwärts des Abgaskatalysators und eine zweite Abgassonde stromabwärts des Abgaskatalysators angeordnet sind. Die Vorrichtung weist einen Lambdaregler auf, der ausgebildet ist, abhängig von einem ersten Messsignal, das der ersten Abgassonde zugeordnet ist, einen Lambda- Korrekturbeitrag zu ermitteln. Ferner ist ein Trimmregler vorgesehen, dem als Regeldifferenz ein Sollwert und ein Istwert eines zweiten Messsignals zugeführt sind, das der zweiten Abgassonde zugeordnet ist und der ausgebildet ist, einen Proportional-Korrekturbeitrag zu ermitteln. Die erste Abgassonde ist bevorzugt eine binäre Abgassonde, sie kann jedoch grundsätzlich auch eine lineare Abgassonde sein. Besonders einfach ist es, wenn die zweite Abgassonde eine binäre Abgas- sonde ist, sie kann jedoch grundsätzlich auch eine lineare Abgassonde sein.
Ferner ist eine Stellsignaleinheit vorgesehen, die ausgebildet ist abhängig von dem Lambda-Korrekturbeitrag ein Stellsignal zum Zumessen von Kraftstoff in den Zylinder zu ermitteln und in einem Betriebszustand einer Diagnose einer dem Abgastrakt zugeordneten Komponente zusätzlich abhängig von dem Proportional-Korrekturbeitrag das Stellsignal zum Zumessen von Kraftstoff in den Zylinder zu ermitteln. Die dem Abgastrakt zugeordnete Komponente kann beispielsweise der Abgaskatalysator, die erste oder die zweite Abgassonde oder auch eine weitere Komponente sein. Dadurch, dass das Stellsignal in der Stellsignaleinheit in dem Betriebszustand der Diagnose zusätzlich abhängig von dem Proportional- Korrekturbeitrag ermittelt wird, ist ein zeitlich sehr schneller Durchgriff des Trimmreglers auf den zuzumessenden Kraftstoff gewährleistet. Dies führt insbesondere bei relativ langen Regelzyklen, wie sie insbesondere bei der Diagnose und hier insbesondere im Zusammenhang mit dem Einsatz einer binären ersten Abgassonde auftreten, zu deutlich verringerten Schadstoffemissionen auch während der Diagnose. Darüber hinaus hat es sich überraschend gezeigt, dass auch so das Durchführen der Diagnose deutlich präziser erfolgen kann.
Gemäß einer vorteilhaften Ausgestaltung umfasst die Vorrichtung einen Tiefpassfilter zum Filtern des Istwertes des zweiten Messsignals und zum Zuführen des gefilterten Istwertes des zweiten Messsignals zu dem Trimmregler zum Bilden der Regeldifferenz in dem Betriebszustand der Diagnose einer dem Abgastrakt zugeordneten Komponente. Auf diese Weise kann, insbesondere bei geeigneter Wahl eine für die Eckfrequenz des Tiefpassfilters repräsentativen Größe, eine sehr gute Entkop- pelung des Trimmreglers von der durchzuführenden Diagnose gewährleistet werden. Auf diese Weise kann die Diagnose dann besonders präzise durchgeführt werden und andererseits durch den Trimmregler besonders präzise Änderungen in dem Ansprechverhalten der ersten Abgassonde kompensiert werden.
Besonders vorteilhaft ist es, wenn der Betriebszustand der Diagnose einer dem Abgastrakt zugeordneten Komponente ein Betriebszustand der Diagnose des Abgaskatalysators ist.
Ausführungsbeispiele der Erfindung sind im Folgenden anhand der schematischen Zeichnungen näher erläutert. Es zeigen:
Figur 1 eine Brennkraftmaschine mit einer Steuervorrichtung,
Figur 2 ein Blockdiagramm eines Teils der Steuervorrichtung
und
Figur 3 einen Signalverlauf.
Eine Brennkraftmaschine (Figur 1) umfasst einen Ansaugtrakt 1, einen Motorblock 2, einen Zylinderkopf 3 und einen Abgastrakt 4. Der Ansaugtrakt 1 umfasst vorzugsweise eine Drosselklappe 5, ferner einen Sammler 6 und ein Saugrohr 7, das hin zu einem Zylinder Zl über einen Einlasskanal in den Motorblock 2 geführt ist. Der Motorblock 2 umfasst ferner eine Kurbelwelle 8, welche über eine Pleuelstange 10 mit dem Kolben 11 des Zylinders Zl gekoppelt ist.
Der Zylinderkopf 3 umfasst einen Ventiltrieb mit einem Gaseinlassventil 12 und einem Gasauslassventil 13. Der Zylinderkopf 3 umfasst ferner ein Einspritzventil 18 und eine Zünd- kerze 19. Alternativ kann das Einspritzventil 18 auch in dem Saugrohr 7 angeordnet sein.
In dem Abgastrakt ist ein Abgaskatalysator 21 angeordnet, der als Dreiwegekatalysator ausgebildet ist. Ferner kann in dem Abgastrakt auch ein weiterer Abgaskatalysator angeordnet sein, der als NOx-Katalysator ausgebildet ist.
Eine Steuervorrichtung 25 ist vorgesehen, der Sensoren zugeordnet sind, die verschiedene Messgrößen erfassen und jeweils den Wert der Messgröße ermitteln. Die Steuervorrichtung 25 ermittelt abhängig von mindestens einer der Messgrößen Stellgrößen, die dann in ein oder mehrere Stellsignale zum Steuern der Stellglieder mittels entsprechender Stellantriebe umgesetzt werden. Die Steuervorrichtung 25 kann auch als Vorrichtung zum Betreiben der Brennkraftmaschine bezeichnet werden.
Die Sensoren sind ein Pedalstellungsgeber 26, welcher eine Fahrpedalstellung eines Fahrpedals 27 erfasst, ein Luftmassensensor 28, welcher einen Luftmassenstrom stromaufwärts der Drosselklappe 5 erfasst, ein Temperatursensor 32, welcher eine Ansauglufttemperatur erfasst, ein Saugrohrdrucksensor 34, welcher einen Saugrohrdruck in dem Sammler 6 erfasst, ein Kurbelwellenwinkelsensor 36, welcher einen Kurbelwellenwinkel erfasst, dem dann eine Drehzahl N zugeordnet wird.
Ferner ist eine erste Abgassonde 42 vorgesehen, die stromaufwärts des Abgaskatalysators 21 angeordnet ist und die einen Restsauerstoffgehalt des Abgases erfasst und deren Messsignal MSl charakteristisch ist für das Luft/Kraftstoff-Verhältnis in dem Brennraum des Zylinders Zl und stromaufwärts der ersten Abgassonde 42 vor der Oxidation des Kraftstoffs, im folgenden bezeichnet als das Luft/Kraftstoff-Verhältnis in den Zylindern Zl - Z4. Ferner ist eine zweite Abgassonde 43 vorgesehen, die stromabwärts des Abgaskatalysators 21 angeordnet ist und die einen Restsauerstoffgehalt des Abgases erfasst und deren Messsignal, und zwar der Istwert MS2 des Messsignals, charakteristisch ist für das Luft/Kraftstoff-Verhältnis in dem Brennraum des Zylinders Zl und stromaufwärts der zweiten Abgassonde 43 vor der Oxidation des Kraftstoffs, im folgenden bezeichnet als das Luft/Kraftstoff-Verhältnis stromabwärts des Abgaskatalysators.
Die erste Abgassonde 42 ist bevorzugt eine binäre Lambdason- de . Die zweite Abgassonde 43 ist bevorzugt eine binäre Lamb- dasonde. Die erste und/oder die zweite Abgassonde können jedoch grundsätzlich auch eine lineare Lambdasonde sein.
Je nach Ausführungsform der Erfindung kann eine beliebige Untermenge der genannten Sensoren vorhanden sein oder es können auch zusätzliche Sensoren vorhanden sein.
Die Stellglieder sind beispielsweise die Drosselklappe 5, die Gaseinlass- und Gasauslassventile 12, 13, das Einspritzventil 18 oder die Zündkerze 19.
Neben dem Zylinder Zl sind bevorzugt auch noch weitere Zylinder Z2 bis Z4 vorgesehen, denen dann auch entsprechende Stellglieder und ggf. Sensoren zugeordnet sind.
Ein Teil der Steuervorrichtung 25 ist anhand des Blockschaltbilds der Figur 2 näher dargestellt. Ein Block Bl umfasst einen Lambdaregler . Dem Lambdaregler ist als Regelgröße das erste Messsignal MSl zugeführt. Das Messsignal MSl ist bevorzugt binärer Natur, d. h. es nimmt einen Magerwert an, wenn das Luft/Kraftstoff-Verhältnis vor dem Abgaskatalysator 21 mager ist und einen Fettwert, wenn es fett ist. Nur in einem sehr kleinen Zwischenbereich nimmt es auch Zwischenwerte zwischen dem Mager- und dem Fettwert ein. Durch die binäre Natur des ersten Messsignals MSl ist der Lambdaregler als Zweipunktregler ausgebildet. Der Lambdaregler ist bevorzugt als PI-Regler ausgeführt. Ein P-Anteil wird bevorzugt als Proportionalsprung P J dem Block Bl zugeführt. Ein Block B2 ist vorgesehen, in dem abhängig von der Drehzahl N und einer Lastgröße LOAD der Proportionalsprung P J ermittelt wird. Dazu ist bevorzugt ein Kennfeld vorgesehen, das fest abgespeichert sein kann.
Ein I-Anteil des Lambdareglers wird bevorzugt abhängig von einem Integralinkrement I_INC ermittelt. Das Integralinkre- ment I INC wird bevorzugt in einem Block B3 auch abhängig von der Drehzahl und einer Lastgröße ermittelt. Dazu kann ebenfalls beispielsweise ein Kennfeld vorgesehen sein. Die Lastgröße LOAD kann beispielsweise ein Luftmassenstrom oder auch der Saugrohrdruck sein.
Darüber hinaus ist als Eingangsparameter für den Block Bl ferner eine Verzögerungszeitdauer T_D vorgesehen, die in einem Block B5 ermittelt wird, was weiter unten noch näher erläutert ist.
Ausgangsseitig des Lambdareglers steht ein Lambda- Korrekturbeitrag LAM_C0R an.
Die Funktionsweise des Lambdareglers in Block Bl ist beispielhaft anhand der Figur 3 näher erläutert. Zu einem Zeitpunkt tθ hat der Lambda-Korrekturbeitrag LAM_C0R einen neutralen Wert, z.B. 1, und wird ausgehend von dem Zeitpunkt tθ bis zu einem Zeitpunkt tl abhängig von dem Integralinkrement I_INC erhöht. Beispielsweise erfolgt dies in einem vorgegebenen Zeitraster, in dem jeweils der aktuelle Wert des Lambda- Korrekturbeitrags LAM COR um das Integralinkrement I INC erhöht wird. Der Zeitpunkt tl ist dadurch charakterisiert, dass das erste Messsignal MSl von seinem Magerwert auf seinen Fettwert springt.
Ist erkannt, dass das erste Messsignal MSl von seinem Magerwert auf den Fettwert gesprungen ist, so wird der Lambda- Korrekturbeitrag LAM_COR nicht weiter mit dem Integralinkrement I INC inkrementiert, sondern sein Wert für die Verzögerungszeitdauer T_D beibehalten. Mit Ablauf der Verzögerungszeitdauer T D, was zu einem Zeitpunkt t2 der Fall ist, wird der Lambda-Korrekturbeitrag entsprechend des Proportionalsprungs P J verringert. Nach dem Sprung des Lambda- Korrekturbeitrags LAM_COR in dem Zeitpunkt t2 wird der Lambda-Korrekturbeitrag LAM COR dann mit dem Integralinkrement I_INC verringert und zwar bevorzugt mit einer durch das Integralinkrement I INC vorgegebenen Rate, bis das erste Messsignal MSl einen Sprung macht von dem Fettwert zu dem Magerwert, was in einem Zeitpunkt t3 der Fall ist. Von dem Zeitpunkt t3 ausgehend, bleibt der Lambda-Korrekturbeitrag LAM COR für die vorgegebene Verzögerungszeitdauer T D bei seinem Wert stehen, bevor er dann mit Ablauf der Verzögerungszeitdauer T D, zu einem Zeitpunkt t4, um den Proportionalsprung P_J wieder erhöht wird. Anschließend erfolgt wieder ein Inkrementieren des Lambda-Korrekturbeitrags LAM COR abhängig von dem Integralinkrement I INC. Diese grundsätzliche Funktionsweise des Lambdareglers ist unabhängig davon, ob ein Betriebszustand einer Diagnose einer dem Abgastrakt zugeordneten Komponente eingenommen wird oder nicht. Eine Stellsignaleinheit ist gebildet durch Blöcke B7, B9, BlI und eine Multiplikationssstelle Ml. Die Stellsignaleinheit ist ausgebildet abhängig von dem Lambda-Korrekturbeitrag LAM_COR ein Stellsignal SG zum Zumessen von Kraftstoff zu dem jeweiligen Zylinder Zl bis Z4 zu ermitteln. Mittels des Stellsignals SG wird bevorzugt das Einspritzventil 18 angesteuert .
In dem Block B7 wird abhängig von dem Lambda-Korrekturbeitrag LAM_COR ein Lambdaregelfaktor LAM_FAC ermittelt. Beispielsweise wird in einem Betriebszustand außerhalb der Diagnose einer dem Abgastrakt zugeordneten Komponente der Lambda- Korrekturbeitrag LAM_COR direkt dem Lambdaregelfaktor LAM_FAC zugeordnet. In einer Multiplikationsstelle Ml wird eine korrigierte zuzumessende Kraftstoffmasse MFF COR durch Multiplikation des Lambdaregelfaktors LAM_FAC mit einer zuzumessenden Kraftstoffmasse MFF ermittelt. Die zuzumessende Kraftstoffmasse wird bevorzugt in einem Block B9 abhängig von der Drehzahl N und der Lastgröße LOAD ermittelt. Dies kann beispielsweise unter Zuhilfenahme eines Kennfeldes erfolgen, das bevorzugt fest abgespeichert ist. In dem Block BlI wird abhängig von der korrigierten zuzumessenden Kraftstoffmasse MFF_COR das Stellsignal SG ermittelt. Dazu kann in dem Block BlI beispielsweise eine Einspritzzeitdauer ermittelt werden und das Stellsignal entsprechend ermittelt werden, um über das Einspritzventil für die Einspritzzeitdauer Kraftstoff zuzumessen .
Ein Trimmregler umfasst Blöcke B13 und B15. Ein Block B17 ist vorgesehen, dessen Eingang mit einem Istwert MS2 des zweiten Messsignals beaufschlagt ist. Der Block B17 umfasst einen Tiefpassfilter zum Filtern des Istwertes MS2 des zweiten Messsignals und erzeugt somit einen gefilterten Istwert MS2_FIL des zweiten Messsignals. Eine Referenz MS2_REF des zweiten Messsignals bildet den Sollwert des zweiten Messsignals. In einer Summationsstelle Sl wird durch Bilden der Differenz der Referenz MS2_REF und dem Istwert MS2_FIL des zweiten Messsignals eine Regeldifferenz DMS2 des Trimmreglers ermittelt. Die Referenz MS2_REF bildet somit den Sollwert des zweiten Messsignals. Bevorzugt erfolgt das Filtern des Istwertes MS2 des zweiten Messsignals durch eine gleitende Mittelwertbildung, wobei vorzugsweise zum Filtern jeder neue Istwert MS2 des zweiten Messsignals in etwa mit 10 % gewich- tet wird, während der alte gefilterte Istwert MS2_FIL mit etwa 90 % gewichtet wird. Durch die gleitende Mittelwertbildung lässt sich besonders einfach ein Tiefpassfilter realisieren. Abhängig von der Regeldifferenz D_MS2, insbesondere abhängig von einem Integral über die Regeldifferenz, ist der Block B13 dazu ausgebildet, einen Trimm-Verzögerungszeitdauerbeitrag T_D_COR_TRIM zu ermitteln. In dem Block B5 wird dann abhängig von dem Trimm-VerzögerungsZeitdauerbeitrag T_D_COR_TRIM und gegebenenfalls einem Adaptions-Verzögerungszeitdauerbeitrag T_D_AD und gegebenenfalls einem Diagnose- Verzögerungszeitdauerbeitrag T D DIAG die Verzögerungszeitdauer T_D, vorzugsweise durch Summation der entsprechenden Beiträge ermittelt. Bevorzugt ist der Adaptions- VerzögerungsZeitdauerbeitrag T_D_AD abhängig von dem Trimm- Verzögerungszeitdauerbeitrag T D DIAG ermittelt. Bevorzugt erfolgt dies außerhalb des Betriebszustands der Katalysatordiagnose. Es kann jedoch grundsätzlich auch während der Diagnose einer Komponente des Abgastrakts erfolgen.
Der Diagnose-Verzögerungszeitdauerbeitrag T D DIAG wird in einem Block B15 ermittelt, der ausgebildet ist zum Durchführen einer Diagnose einer dem Abgastrakt zugeordneten Komponente. Die Komponente kann beispielsweise der Abgaskatalysa- tor 21 sein. Sie kann jedoch auch beispielsweise die erste Abgassonde 42 oder die zweite Abgassonde 43 sein. Zur Diagnose des Abgaskatalysators 21 werden in dem Block B15 der Diagnose-Verzögerungszeitdauerbeitrag T_D_DIAG und bevorzugt ein Diagnose-Proportionalsprungbeitrag DELTA P ermittelt. Dies erfolgt derart, dass durch Beaufschlagen des Lambdareglers mit dem Diagnose-Verzögerungszeitdauerbeitrag T D DIAG und dem Diagnose-Proportionalsprungbeitrag DELTA_P überprüft werden kann, ob der Abgaskatalysator 21 eine SauerstoffSpeicherfähigkeit hat, die ein gealterter Abgaskatalysator aufweist, der gerade noch innerhalb zulässiger Grenzwerte liegt.
Das Beaufschlagen des Lambdareglers zusätzlich mit dem Diagnose-Verzögerungszeitdauerbeitrag T_D_DIAG im Rahmen der Diagnose hat zur Folge, dass die Regelzyklen des Lambdareglers deutlich verlängert werden, wie das anhand der Figur 3 ersichtlich ist. Zu einem Zeitpunkt t5 erfolgt ein Sprung des ersten Messsignals MSl von seinem Magerwert zu seinem Fettwert. Eine Zeitdauer zwischen Zeitpunkten t5 und tβ entspricht der Verzögerungszeitdauer T_D außerhalb des Betriebszustandes der Diagnose des Abgaskatalysators. Während des Betriebszustands der Diagnose ist die Verzögerungszeitdauer T_D verlängert um den Diagnose-Verzögerungszeitdauerbeitrag T_D_DIAG. Auf diese Weise wird eine erhöhte Schwankungsbreite des Sauerstoffbeladungsgrades des Abgaskatalysators 21 erreicht. Während der Verzögerungszeitdauer T_D kann in dem Betriebszustand der Diagnose auch ein Sprung des Lambda- Korrekturbeitrags LAM COR entsprechend dem Diagnose- Proportionalsprungbeitrag DELTA_P erfolgen. Auch durch diese Maßnahme kann die vorgegebene Sauerstoffbeladung gut während der Diagnose eingestellt werden. Bevorzugt ist in der Steuervorrichtung 25 ein charakteristischer Verlauf des zweiten Messsignals, und zwar dessen Istwertes, als Vergleichsverlauf abgespeichert durch entsprechende Versuche mit einem geeignet gealterten Abgaskatalysator, beispielsweise an einem Motorprüfstand.
Der Istwert MS2 des zweiten Messsignals wird dann während der Diagnose in dem Block B15 verglichen mit dem Vergleichsverlauf und abhängig von diesem Vergleich ein Gütewert ermittelt, der dann repräsentativ ist für die Abweichung zwischen dem Istwert MS2 des zweiten Messsignals und dem Vergleichsverlauf. Beispielsweise kann hierzu der Betrag der Differenz des Istwertes MS2 und des Referenzverlaufs integriert werden und gegebenenfalls noch normiert werden. Abhängig von diesem Gütewert wird dann in dem Block B15 ein Diagnosewert DIAG V ermittelt. Dies kann beispielsweise erfolgen durch mehrfaches Ermitteln des Gütewertes in verschiedenen Regelzyklen, so z. B. in 20, und Aufsummieren der Gütewerte und anschließendes Vergleichen mit einem vorgegebenen Schwellenwert, der so vorgegeben ist, dass beispielsweise bei Überschreiten des Schwellenwertes die SauerstoffSpeicherfähigkeit des Abgaskatalysators 21 nicht mehr derjenigen des Grenzkatalysators entspricht, d. h. diese unterschreitet.
In dem Block B16, der den P-Anteil des Trimmreglers bildet, wird abhängig von der Regeldifferenz DMS2 des Trimmreglers ein Proportional-Korrekturbeitrag P COR TRIM ermittelt. Der Proportional-Korrekturbeitrag P_COR_TRIM ist proportional zu der Regeldifferenz DMS2 des Trimmreglers. Der entsprechende Proportionalparameter des Trimmreglers kann ebenso wie ein entsprechender Integralparameter des Trimmreglers auch abhängig von beispielsweise der Drehzahl und/oder der Lastgröße LOAD vorgegeben sein. Während des Betriebszustands der Diagnose einer dem Abgastrakt zugeordneten Komponente ist der Block B7 beaufschlagt mit dem Proportional-Korrekturbeitrag P COR TRIM. Somit wird während der Diagnose der Lambdaregelfaktor LAM_FAC zusätzlich abhängig von dem Proportional-Korrekturbeitrag P COR TRIM ermittelt. Dies hat zur Folge, dass eine auftretende Regeldifferenz DMS2 des Trimmreglers äußerst zeitnah sich in einer Anpassung des Lambdaregelfaktors LAM_FAC und somit des Stellsignals zum Zumessen des Kraftstoffs auswirkt. Auf diese Weise können auch während der Diagnose erkannte Änderungen des Ansprechverhaltens der ersten Abgassonde 42 sehr zeitnah kompensiert werden. Dies ist besonders wichtig während der Diagnose, da durch die verlängerte Verzögerungszeitdauer T D im Vergleich zu einem Betriebszustand ohne Diagnose ansonsten der Eingriff des Trimmreglers erst zeitlich deutlich verzögert stattfinden kann und somit gegebenenfalls ein instabiles Regelverhalten auftreten kann aufgrund der hohen Totzeit. Dies wird umso mehr verstärkt, als während der Diagnose die Schwankung in der Sauerstoffbeladung des Abgaskatalysators besonders ausgeprägt ist.
Außerhalb des Betriebszustandes der Diagnose kann der Proportional-Korrekturbeitrag P COR TRIM der Verzögerungszeitdauer T_D hinzugefügt werden, anstatt direkt in den Block B7 eingespeist zu werden.
Während des Betriebszustands der Diagnose können der Lambda- Korrekturbeitrag LAM COR und der Proportional- Korrekturbeitrag P_COR_TRIM additiv oder multiplikativ und gegebenenfalls gewichtet miteinander verknüpft werden zu dem Lambdaregelfaktor LAM_FAC . Ferner kann der Proportional- Korrekturbeitrag in dem Betriebszustands der Diagnose auch alternativ oder zusätzlich herangezogen werden zum Ermitteln der zuzumessenden Kraftstoffmasse MFF in dem Block B9 oder auch zum Ermitteln des Stellsignals in dem Block BlI. So kann beispielsweise abhängig von dem Proportional-Korrekturbeitrag P_COR_TRIM eine Einspritzzeitdauer des jeweiligen Einspritzventils 18 modifiziert werden.
Die Referenz MS2 REF kann beispielsweise fest vorgegeben sein, ist jedoch bevorzugt unterschiedlich vorgegeben für den Betriebszustand der Diagnose im Vergleich zu Betriebszustän- den außerhalb der Diagnose. Die Referenz MS2_REF ist beispielsweise der entsprechende Fett- oder auch Magerwert oder insbesondere in dem Betriebszustand der Diagnose auch ein geeignet vorgegebener Zwischenwert, der beispielsweise durch Beobachten des Istwertes MS2 des zweiten Messsignals während vorangegangener Diagnosen ermittelt sein kann.
Darüber hinaus können die Verzögerungszeitdauer T D, der Proportionalsprung P_J, das Integralinkrement I_INC, der Diagnose-Proportionalsprungbeitrag DELTA P, der Diagnose- Verzögerungszeitdauerbeitrag T_D_DIAG, der Trimm- Verzögerungszeitdauerbeitrag T D COR TRIM, der Adaptions- Verzögerungszeitdauerbeitrag T_D_AD und gegebenenfalls auch der Proportional-Korrekturbeitrag P COR TRIM für die Magerbzw, die Fettperioden des Lambdareglers unterschiedlich ermittelt sein.
Außerhalb des Betriebszustands der Diagnose kann die Regeldifferenz DMS2 des Trimmreglers beispielsweise auch ohne Filtern des Istwertes MS2 des zweiten Messsignals gebildet werden.

Claims

Patentansprüche
1. Vorrichtung zum Betreiben einer Brennkraftmaschine mit mindestens einem Zylinder (Zl bis Z4) und einem Abgastrakt
(4), in dem ein Abgaskatalysator (21), eine erste Abgassonde (42) stromaufwärts des Abgaskatalysators und eine zweite Abgassonde (43) stromabwärts des Abgaskatalysators (21) angeordnet sind, wobei die Vorrichtung aufweist:
- einen Lambdaregler, der ausgebildet ist, abhängig von einem ersten Messsignal (MSl), das der ersten Abgassonde (42) zugeordnet ist, einen Lambda-Korrekturbeitrag (LAM COR) zu ermitteln,
- einen Trimmregler, dem als Regeldifferenz (DMS2) ein Sollwert und ein Istwert eines zweiten Messsignals zugeführt ist, das der zweiten Abgassonde zugeordnet ist, und der ausgebildet ist, einen Proportional-Korrekturbeitrag (P_COR_TRIM) zu ermitteln,
- eine Stellsignaleinheit, die ausgebildet ist, abhängig von dem Lambda-Korrekturbeitrag (LAM_COR) ein Stellsignal (SG) zum Zumessen von Kraftstoff in den Zylinder zu ermitteln und in einem Betriebszustand einer Diagnose einer dem Abgastrakt (4) zugeordneten Komponente zusätzlich abhängig von dem Proportional-Korrekturbeitrag (P COR TRIM) das Stellsignal zum Zumessen von Kraftstoff in den Zylinder zu ermitteln.
2. Vorrichtung nach Anspruch 1, bei der ein Tiefpassfilter vorgesehen ist zum Filtern des Istwerts (MS2) des zweiten Messsignals und zum Zuführen des gefilterten Istwertes
(MS2_FIL) des zweiten Messsignals zu dem Trimmregler zum Bilden der Regeldifferenz (DMS2) in dem Betriebszustand der Diagnose einer dem Abgastrakt (4) zugeordneten Komponente.
3. Vorrichtung nach einem der vorstehenden Ansprüche, bei der der Betriebszustand der Diagnose einer dem Abgastrakt (4) zugeordneten Komponente ein Betriebszustand der Diagnose des Abgaskatalysators (21) ist.
EP06777779A 2005-09-26 2006-07-14 Vorrichtung zum betreiben einer brennkraftmaschine Withdrawn EP1797306A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005045888A DE102005045888B3 (de) 2005-09-26 2005-09-26 Vorrichtung zum Betreiben einer Brennkraftmaschine
PCT/EP2006/064256 WO2007036375A1 (de) 2005-09-26 2006-07-14 Vorrichtung zum betreiben einer brennkraftmaschine

Publications (1)

Publication Number Publication Date
EP1797306A1 true EP1797306A1 (de) 2007-06-20

Family

ID=36889290

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06777779A Withdrawn EP1797306A1 (de) 2005-09-26 2006-07-14 Vorrichtung zum betreiben einer brennkraftmaschine

Country Status (6)

Country Link
US (1) US7431025B2 (de)
EP (1) EP1797306A1 (de)
JP (1) JP2008522070A (de)
KR (1) KR20070085566A (de)
DE (1) DE102005045888B3 (de)
WO (1) WO2007036375A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007021148A1 (en) * 2005-08-19 2007-02-22 Lg Chem, Ltd. Electrochemical device with high capacity and method for preparing the same
ATE434653T1 (de) * 2006-11-17 2009-07-15 Sika Technology Ag Polyaldimin enthaltende feuchtigkeitshärtende heissschmelzklebstoff-zusammensetzung
DE102007005684B3 (de) 2007-02-05 2008-04-10 Siemens Ag Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102007005682B3 (de) * 2007-02-05 2008-04-17 Siemens Ag Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102007005680B3 (de) 2007-02-05 2008-04-17 Siemens Ag Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102007022592A1 (de) * 2007-05-14 2008-11-27 Robert Bosch Gmbh Verfahren zur Bestimmung einer Kraftstoffzusammensetzung
DE102008002623B4 (de) * 2007-12-20 2019-06-27 Robert Bosch Gmbh Verfahren und Steuergerät zur Überwachung und Begrenzung des Drehmoments in einem Antriebsstrang eines Straßenkraftfahrzeugs
DE102008018013B3 (de) 2008-04-09 2009-07-09 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102009058780B3 (de) * 2009-12-18 2011-03-24 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3926096A1 (de) * 1989-08-08 1991-02-14 Bosch Gmbh Robert Gemischsteuersystem fuer eine brennkraftmaschine
DE4125154C2 (de) * 1991-07-30 2001-02-22 Bosch Gmbh Robert Verfahren und Einrichtung zur Lambdasonden-Überwachung bei einer Brennkraftmaschine
DE4140618A1 (de) * 1991-12-10 1993-06-17 Bosch Gmbh Robert Verfahren und vorrichtung zur ermittlung der konvertierungsfaehigkeit eines katalysators
US5265416A (en) * 1992-08-27 1993-11-30 Ford Motor Company On-board catalytic converter efficiency monitoring
IT1273045B (it) 1994-07-19 1997-07-01 Weber Srl Sistema elettronico di controllo titolo della miscela aria benzina alimentante un motore a combustione interna.
DE19606652B4 (de) * 1996-02-23 2004-02-12 Robert Bosch Gmbh Verfahren der Einstellung des Kraftstoff-Luftverhältnisses für eine Brennkraftmaschine mit nachgeschaltetem Katalysator
DE19610170B4 (de) * 1996-03-15 2004-04-22 Robert Bosch Gmbh Lambda-Regelungsverfahren
DE19719278B4 (de) * 1997-05-07 2005-03-17 Robert Bosch Gmbh Verfahren zur Diagnose eines Abgasrückführungs (AGR) -Systems einer Brennkraftmaschine
DE19722334B4 (de) * 1997-05-28 2011-01-05 Robert Bosch Gmbh Abgassondendiagnoseverfahren und -vorrichtung
DE19838334B4 (de) * 1998-08-24 2012-03-15 Robert Bosch Gmbh Diagnoseeinrichtung für eine potentiometrische, elektrisch beheizte Abgassonde zur Regelung von Verbrennungsprozessen
DE19844994C2 (de) * 1998-09-30 2002-01-17 Siemens Ag Verfahren zur Diagnose einer stetigen Lambdasonde
DE10008189C2 (de) * 2000-02-23 2002-02-14 Bayerische Motoren Werke Ag Vorrichtung und Verfahren zur Überprüfung eines Tankentlüftungssystems
DE10017931A1 (de) * 2000-04-11 2001-12-06 Siemens Ag Verfahren zur Diagnose einer Abgasreinigungsanlage einer lambdageregelten Brennkraftmaschine
DE10218015A1 (de) * 2002-04-23 2003-11-06 Bosch Gmbh Robert Verfahren und Vorrichtung zur Diagnose eines Katalysators
DE10223554C1 (de) * 2002-05-27 2003-08-14 Siemens Ag Verfahren zur Diagnose einer Lambdasonde
DE10307010B3 (de) * 2003-02-19 2004-05-27 Siemens Ag Verfahren zur Einstellung einer definierten Sauerstoffbeladung mit binärer Lambdaregelung zur Durchführung der Abgaskatalysatordiagnose
JP4459566B2 (ja) * 2003-07-10 2010-04-28 本田技研工業株式会社 排気ガスセンサの劣化故障診断装置
DE102004006992B4 (de) * 2004-02-12 2013-05-29 Volkswagen Ag Diagnoseverfahren zum Bestimmen eines Zustandes eines Katalysatorsystems
DE102006014916B4 (de) * 2006-03-30 2008-12-24 Continental Automotive Gmbh Diagnoseverfahren für eine Abgassonde und Diagnosevorrichtung für eine Abgassonde

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007036375A1 *

Also Published As

Publication number Publication date
KR20070085566A (ko) 2007-08-27
DE102005045888B3 (de) 2006-09-14
JP2008522070A (ja) 2008-06-26
US20080022987A1 (en) 2008-01-31
WO2007036375A1 (de) 2007-04-05
US7431025B2 (en) 2008-10-07

Similar Documents

Publication Publication Date Title
DE102006047190B3 (de) Verfahren und Vorrichtung zum Überwachen einer Abgassonde
DE102008024177B3 (de) Verfahren, Vorrichtung und System zur Diagnose eines NOx-Sensors für eine Brennkraftmaschine
EP1888897B1 (de) Verfahren und vorrichtung zum ermitteln einer sauerstoffspeicherkapazität des abgaskatalysators einer brennkraftmaschine und verfahren und vorrichtung zum ermitteln einer dynamik-zeitdauer für abgassonden einer brennkraftmaschine
DE102006014916B4 (de) Diagnoseverfahren für eine Abgassonde und Diagnosevorrichtung für eine Abgassonde
EP1797306A1 (de) Vorrichtung zum betreiben einer brennkraftmaschine
DE102007005680B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102006047188B4 (de) Verfahren und Vorrichtung zum Überwachen einer Abgassonde
DE102011083781B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
WO2008095906A1 (de) Diagnoseverfahren und -vorrichtung zum betreiben einer brennkraftmaschine
DE102005059794B3 (de) Verfahren und Vorrichtung zum Kalibrieren einer Abgassonde und Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
WO2006069845A2 (de) Verfahren und vorrichtung zum ermitteln einer sauerstoffspeicherkapazität des abgaskatalysators einer brennkraftmaschine und verfahren und vorrichtung zum ermitteln einer dynamik-zeitdauer für abgassonden einer brennkraftmaschine
DE102005004441B3 (de) Vorrichtung und Verfahren zum Ermitteln einer Stellgröße eines Reglers einer Brennkraftmaschine
DE10358988B3 (de) Vorrichtung zum Steuern einer Brennkraftmaschine
EP1730391B1 (de) Verfahren und vorrichtung zum steuern einer brennkraftmaschi­ne
WO2015049073A1 (de) Vorrichtung zum betreiben einer brennkraftmaschine
DE102012204332B4 (de) Vorrichtung zum Betreiben einer Brennkraftmaschine
WO2010089181A1 (de) Verfahren und vorrichtung zum betreiben einer brennkraftmaschine
DE102008009034B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102005046956B3 (de) Verfahren und Vorrichtung zum Erkennen eines Verbrennungsaussetzers
DE102005020139B4 (de) Verfahren und Vorrichtung zum Erkennen eines Verbrennungsaussetzers in einem Brennraum eines Zylinders einer Brennkraftmaschine
DE102008018013B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102008009033B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
WO2007087920A1 (de) Verfahren zum betreiben eines abgaskatalysators einer brennkraftmaschine
DE102005035747B3 (de) Verfahren und Vorrichtung zum Ermitteln einer ein Luft/Kraftstoff-Verhältnis beeinflussenden Stellgrösse eines Reglers einer Brennkraftmaschine
DE102008005881B4 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070419

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONTINENTAL AUTOMOTIVE GMBH

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091222