EP1755942A1 - Marine engine assembly including a pod mountable under a ship's hull - Google Patents

Marine engine assembly including a pod mountable under a ship's hull

Info

Publication number
EP1755942A1
EP1755942A1 EP05746629A EP05746629A EP1755942A1 EP 1755942 A1 EP1755942 A1 EP 1755942A1 EP 05746629 A EP05746629 A EP 05746629A EP 05746629 A EP05746629 A EP 05746629A EP 1755942 A1 EP1755942 A1 EP 1755942A1
Authority
EP
European Patent Office
Prior art keywords
propeller
ship
nacelle
nozzle
propulsion assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05746629A
Other languages
German (de)
French (fr)
Other versions
EP1755942B1 (en
Inventor
Christian Gaudin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom SA
Original Assignee
Alstom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom SA filed Critical Alstom SA
Priority to SI200530097T priority Critical patent/SI1755942T1/en
Priority to PL05746629T priority patent/PL1755942T3/en
Publication of EP1755942A1 publication Critical patent/EP1755942A1/en
Application granted granted Critical
Publication of EP1755942B1 publication Critical patent/EP1755942B1/en
Priority to CY071101492T priority patent/CY1107016T1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/14Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in non-rotating ducts or rings, e.g. adjustable for steering purpose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/125Arrangements on vessels of propulsion elements directly acting on water of propellers movably mounted with respect to hull, e.g. adjustable in direction, e.g. podded azimuthing thrusters
    • B63H2005/1254Podded azimuthing thrusters, i.e. podded thruster units arranged inboard for rotation about vertical axis
    • B63H2005/1258Podded azimuthing thrusters, i.e. podded thruster units arranged inboard for rotation about vertical axis with electric power transmission to propellers, i.e. with integrated electric propeller motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/125Arrangements on vessels of propulsion elements directly acting on water of propellers movably mounted with respect to hull, e.g. adjustable in direction, e.g. podded azimuthing thrusters

Definitions

  • Ship propulsion unit including a nacelle for installation under the hull of the ship.
  • the invention relates to a propulsion system for a ship, comprising: - a nacelle mechanically connected to a support leg intended to be mounted under the hull of a ship, - a propeller located at the rear of the nacelle, comprising minus two blades and rotatably connected to a transmission shaft connected to a motor, - an arrangement of at least three flow orienting fins which are fixed to the nacelle, said arrangement forming a ring substantially perpendicular to the longitudinal axis of Platform.
  • the invention relates to a compact propulsion oriented drive (POD) type propulsion assembly, wherein the support leg is intended to be pivotally mounted under the hull of the vessel.
  • the parts respectively called front and rear of the nacelle are defined relative to the bow and stern of the ship, that is to say that the front part of the nacelle points to the bow of the ship at least when the propulsion assembly ensures the forward march of the ship.
  • POD propulsion units such as that described in patent document WO9914113
  • the propeller is located at the front of the nacelle, unlike a propulsion assembly according to the invention.
  • conventional POD propulsion sets for ships are not intended to work in the wake of the ship and instead have a leg
  • the main propeller is intended to provide most of the propulsion power, for example, through a diesel engine installed in the ship, while the POD propeller auxiliary propeller is provided to provide either additional propulsion power or directive power if this thruster is rotated for the guidance of the ship.
  • this arrangement is located either in front of the nacelle, or further back but only up to the level of the central part of the support leg. Indeed, the function of these fins is to improve the propulsive efficiency by recovering the axial component of the rotational energy of the swirling flow created by the main propeller, and they must therefore be relatively close to the main propeller.
  • the invention aims to reduce the draft under the hull of a ship having at least one propeller with a propeller mounted on a nacelle, compared to conventional solutions. For this, the invention aims to provide a propulsion unit that can be brought closer to the hull, and more particularly a set of compact POD type.
  • the invention aims to reduce the height of the support leg of the nacelle to bring the propeller as much as possible of the hull, while avoiding cavitation phenomena. Finally, the invention also aims to increase the efficiency of the drive assembly and to reduce the costs at least of the driving portion of this assembly.
  • the invention proposes a compact propulsion unit which operates on the principle of a propeller pump, that is to say which ensures the propulsion of the ship through the forced displacement of water in the nozzle.
  • the propeller pump technology is inspired by aircraft engines, particularly with respect to the control of the incoming flow, and uses a system that plays on the backflow of water to avoid cavitation phenomena.
  • a propeller pump works in liquid flow, while a conventional propeller works in liquid thrust. It should be noted that as such, the principle of propeller pump propulsion has long been applied to submarine propulsion systems, and that the positioning of a propeller pump in the wake of a submarine allows to obtain a good performance while reducing the acoustic disturbances. It is further known, particularly from US Patent 4,600,394, applications of propeller pump technology to outboard and inboard engines for boats. It is understood that it is not enough to surround a conventional propeller with a nozzle-shaped fairing to make a propeller pump. It is well known from the state of the art, such as from US Pat. No.
  • the diameter of the rotor propeller necessarily increases with the size of the engine and therefore with its power.
  • the resulting dimensioning for the rotor propeller involves a relatively large diameter for the nozzle to provide a sufficient section for the flow of water in the pump.
  • This architecture results in a relatively high hydrodynamic drag for the entire propulsion and therefore a very average propulsive efficiency, which is a major drawback.
  • the cooling of the electric motor, in particular for a high power engine is certainly more difficult to achieve than in the case of a conventional POD assembly for which the engine is installed in a nacelle remote from the propeller.
  • the subject of the invention is a propulsion assembly as defined in the preamble, characterized in that it comprises a nozzle which at least partially surrounds the propeller and said fin ring, in that the blades each having an end with an edge flush with the inner wall of the nozzle so that the helix constitutes the rotor of a propeller pump, and in that the fin ring is included in an area between the central portion of said nozzle; support leg and propeller.
  • the arrangement formed by the fins and the nozzle constitutes the stator of the propeller pump.
  • a propeller pump generally rotates 50 to 100% faster than a conventional propeller at equivalent power, which reduces the torque of the propeller drive motor by 50 to 100% and thus allows a reduction of 20 to 40%.
  • the elimination of the diameter of the engine makes it possible to reduce the diameter of the nacelle and the mass of the assembly for the embodiments where the engine is housed in the nacelle.
  • the nacelle makes it possible to reduce the hydrodynamic drag of the propulsion unit and thus to increase the propulsive efficiency, while the engine and most of the volume of the nacelle are located upstream of the propeller pump relative to the flow of the propulsion pump. This allows the propeller to have a relatively compact hub, and a sufficient section can thus be obtained for the propeller of the pump without having to compromise the hydrodynamic flow by exaggeratedly increasing the diameter of the pump.
  • a propulsion assembly according to the invention can be produced with a nozzle whose internal diameter is to say substantially the diameter of the propeller, is of the order of twice the diameter of the nacelle. This makes it possible to have a sufficient section of the propeller to ensure a good flow of water in the pump while having a relatively low hydrodynamic halftone for the propulsion assembly compared to the device of patent DE 101 58320. Finally, the possibility for the propeller pump to work in the wake of the ship without cavitation phenomenon reduces the height of the support leg, which also helps to make the whole more compact.
  • the propeller pump can be brought closer to the hull of the ship because it does not transmit pressure pulsations generating vibration aboard the ship.
  • This is explained first of all by the fact that the flow of water is organized by the stator of the propeller pump, which allows the speed of arrival of the water at the rotor is homogenized in the chamber which separates the rotor of the stator.
  • the remanent pressure pulsations generated by the propeller pump are therefore relatively small.
  • these remanent pulses are attenuated at the nozzle of the pump, and their impact on the hull of the ship is low enough not to generate vibration aboard the ship.
  • the draft below the hull can then be expected to be lower than with a conventional POD package, allowing more flexibility in the design of the ship's rear shapes.
  • the fact of placing the propeller pump inside the boundary layer of the wake of the ship offers the advantage of increasing the propulsive efficiency compared to a disposal outside this boundary layer. Indeed, inside this boundary layer, the speed of the water at the inlet of the propeller pump is decreased compared to an arrangement of the pump out of this layer, which increases the differential between the speeds respectively at the outlet of the nozzle and at the inlet of the pump and thus increases the thrust produced by the rotor of the pump. It should be known that the thickness of the boundary layer increases with the speed and size of the ship.
  • the fins constitute flow directioners for the propeller pump.
  • the arrangement of crown fins is included in an area located longitudinally behind the central portion of the support leg, so as to be close enough to the propeller.
  • the central part of a support leg is defined as the part comprising a cavity communicating with the interior of the hull of the ship.
  • a propulsion assembly according to the invention is particularly intended for a ship in which the support leg of the nacelle is intended to be pivotally mounted under the hull of the ship, so that the propulsion unit is POD type.
  • FIG. 1 schematically shows a sectional view of a propulsion assembly according to the invention and type POD, in a vertical plane containing the longitudinal axis of the nacelle.
  • FIG. 2 schematically represents a perspective view of the propulsion assembly of FIG. 1.
  • FIG. 3 schematically represents a view from above of another propulsion assembly according to the invention, in which the rear end of the leg support constitutes a flow orientator flap.
  • FIG. 4 schematically represents a front view of another propulsion assembly according to the invention and of the POD type, comprising two identical thrusters arranged side by side.
  • the propulsion unit 1 according to the invention is seen laterally in longitudinal section along the plane formed by the longitudinal axis X of the nacelle 2 and the pivot axis Y of the assembly 1.
  • This set 1 is installed under the hull 10 of a ship, the nacelle 2 being conventionally connected to a support leg 3 pivotally mounted on a sealed bearing 9 passing through the hull of the ship.
  • the nacelle 2 is dimensioned to contain an electric motor 8 whose rotor (not shown) is integral in rotation with the drive shaft 11 of the héhce 4.
  • L ' 11 is maintained along the axis X through bearings 12.
  • the nacelle and the support leg 3 are profiled so as to optimize the hydrodynamic flow of the water flow represented by the arrows F.
  • the engine is arranged to the interior of the hull of the ship, a mechanical transmission system with a bevel gear then being provided to transmit the rotation of the motor to the drive shaft of the propeller.
  • leg that supports the platform is pivotally mounted relative to the hull of the ship.
  • at least one other fixed link leg to directly connect the nozzle to the hull and strengthen the mechanical connection between the drive assembly and the hull.
  • This other leg may be of small size, since the nozzle is preferably very close to the hull.
  • the orientation of the ship can then be provided by specific directional means dissociated from the propulsion assembly, or according to the principle shown in patent EP 1 270 404 which implements a set of auxiliary propulsion propulsion type POD compact.
  • the sealed bearing 9 isprovided to allow the support leg 3 to rotate to provide the steering function of the ship.
  • the pivoting of the support leg 3 may be provided in particular up to 180 ° with respect to the normal propulsion position shown in the figure.to arrive at a propulsion position in "braking" mode with a thrust that opposes the advancement of the ship.
  • a "braking" mode can also be obtained in the case of a non-pivoting or slightly pivoting support leg 3, by a substantial backward thrust by reversing the direction of rotation of the propeller 4.
  • the propulsion assembly comprises an arrangement of flow orienting fins such as 52 and 53 which are fixed to the nacelle 2, this arrangement forming a ring 5 substantially perpendicular to the axis X of the nacelle and included in a zone Zx located longitudinally between the support leg 3 and the propeller 4.
  • this zone Zx is located between the central part of the support leg and the propeller, as explained more 3 with reference to FIG. 3.
  • the crown 5 is formed of at least five fins
  • the propeller 4 comprises at least three blades 14.
  • a nozzle 6 surrounds the helix 4 and the crown 5 of fins.
  • the inlet profile of the nozzle 6 as well as the orientation of each fin are preferably adapted to the ship's wake card at its cruising speed. It should be noted that the nozzle contributes to the total thrust by its own lift.
  • the propeller comprises a hub 13 integral in rotation with the shaft 11, hub on which are mounted blades 14. Each blade 14 has an end with an edge 7 flush with the inner wall of the nozzle.
  • the ring 5 and the nozzle 6 constitute the stator of the propeller pump, the propeller 4 constituting the rotor of the pump.
  • the nozzle has a section which decreases gradually towards the rear and has forms of convergence or divergence adapted according to the cruising speed provided for the ship, in order to increase the propulsive efficiency.
  • the fins have an inclined profile to reduce their hydrodynamic resistance. Therefore, as can be seen in FIG. 1, it is not necessary for the front part of the nozzle to extend over the entire longitudinal zone Zx for positioning the ring gear 5.
  • the front limit of this zone is represented by a dotted line at the same abscissa along the X axis as the front end of the fins, ⁇ is moreover quite feasible to use fins even more profiled and thus substantially increase the longitudinal depth of the zone Zx positioning of the fin crown 5.
  • At least three flow orienting fins are used to ensure a good attachment of the nozzle 6 to the nacelle 2.
  • the axis of symmetry of the nozzle coincides substantially with the longitudinal axis X of the nacelle, which allows a small clearance between the edges 7 of the ends of the blades 14 of the propeller and the inner wall of the nozzle.
  • the blades 14 are all identical, and the end edge 7 of a blade flush with the nozzle is defined by two sharp angles so as to maximize the curvilinear length flush with the nozzle relative to the total length of the periphery of the blade. It is known that such an angular shape of the blade end edges is advantageous for propeller pump technology.
  • the pump rotor constituted by the propeller 4 comprises at least two blades 14. Simulations by calculation show that it is not advantageous to have a rotor formed by a single blade twisted on the principle of embodiment disclosed by the No. 4,600,394.
  • the distance D ⁇ between the nozzle 6 of the propeller pump and the hull 10 of the ship is defined so that the propeller 4 works optimally in the wake of the ship.
  • preference will be given to positioning in the part of the wake which has an average reduction in the speed of the flow of the order of 15%.
  • the propulsion unit 1 is viewed in perspective in order to better visualize the respective structures of the crown 5 of flow orienting fins and of the helix 4.
  • the crown 5 here comprises six fins 50 to 55 to direct the flow of water entering the propeller pump so as to give this flow a rotation torque substantially equal to that of the rotor but rotating in the opposite direction, the flow of water then being free of energy of rotation at the output of the rotor which has the advantage of increasing the efficiency of the propeller pump.
  • the fin 55 is hidden by the rear of the nacelle 2 in this representation.
  • Each fin has an at least approximately planar surface which has an orientation determined with respect to the axis X of the nacelle.
  • the angle of orientation ⁇ n of a fin is defined as the angle formed between the plane of the fin and the X axis.
  • Each fin, such as 52 or 54, is attached to the rear of the gondola. with an orientation angle of its own, such as Cfe or ⁇ 4 .
  • each angle ⁇ n is determined from the ship's wake card at its cruising speed, and each angle ⁇ n is adapted as a function of the incoming water flow so as to orient the water inlet to rotor and avoid cavitation phenomena.
  • the influence of the support leg 3 on the streams of water entering the nozzle is taken into account, in particular for the angle of orientation Cfc of the fin 52 which is located behind the leg 3.
  • the profile of The nozzle inlet is also preferably determined from the ship wake map at its cruising speed.
  • the rotor of the propulsion unit according to the invention develops a reduced torque, and thus the deviation of the flow in the stator must remain moderate to be in agreement with this It follows that the orientation angles of the fins are relatively small, and therefore that a water passage in the opposite direction is possible.
  • Each angle of orientation ⁇ n can be determined between, for example, 3 ° and 15 °, which makes it possible to obtain a sufficient backward thrust by reversing the direction of rotation of the helix 4, the flow of water produced by the propeller then not noticeably disturbed by the fins.
  • a rotor whose blades are each of right generatrix can accept the full nominal torque in inverted rotation of the rotor, unlike a conventional propeller type "skew" as described for example in the patent document US 6,371,726, this thanks to the good distribution of mechanical stresses on the surface of the blades which has the effect of improving the braking thrust.
  • an object with a right generatrix is formed by the translation of a two-dimensional contour along a line that intersects the plane of the contour.
  • the blades 14 of the propeller 4 are shown with a slight twisting visible in the figure and are therefore generatrices slightly curvilinear, but it is understood that blades rigorously straight generators can be preferred to further improve the braking thrust. It is also visible that the end edge 7 of a blade 14 flush with the inner wall of the nozzle 6 is curvilinear. Moreover, as in Figure 1, it is visible that the shape of the nozzle is slightly converging towards the rear.
  • the pivot axis Y of the propulsion unit 1 does not necessarily correspond to the axis of symmetry of the support leg 3, and can for example be shifted forwardly as in the position represented by FIG. 'Y axis' in the figure.
  • the computational simulations carried out by the applicant made it possible to establish a comparison between a conventional POD propulsion unit on one side with a propeller located at the front of the platform and, on the other hand, a propulsion unit according to the invention and which is also POD type with an electric motor housed in the nacelle.
  • such a propulsion assembly has a nacelle 2 with a diameter of the order of two meters and a nozzle 6 of about four meters in diameter, for a motor power of the order 13 MW.
  • the crown 5 has seven orienting fins, and the rotor heel 4 has five blades 14.
  • the number of revolutions per minute of the rotor is greater than two hundred.
  • the invention reduces the motor mass by more than 50%, and reduce by more than 25% the diameter of the propeller and the diameter of the nacelle.
  • FIG 3 another set of propulsion 1 'according to the invention is shown schematically from above.
  • the nacelle 2 and the propeller pump are shown in section along a horizontal plane containing the longitudinal axis X of the nacelle, while the support leg 3 'is shown in section along another horizontal plane located above the nacelle.
  • the rear end portion 3 'A of the support leg 3' constitutes a flow orienting fin, this part having a substantially planar surface which has a determined orientation ⁇ 'with respect to the axis X of the nacelle.
  • the ring 5 comprises at least two orienting fins similar to fins 50 to 55 with respect to FIGS. 1 and 2, and therefore comprises a particular fin consisting of part 3 'A.
  • the zone Zx in which the crown of fins is comprised perpendicular to the longitudinal axis X of the nacelle lies between the central part of the support leg and the propeller. said central portion including a cavity in the leg communicating with the interior of the vessel.
  • the central portion C of the support leg 3 ' is substantially above the engine 8 installed in the nacelle, and a forced air flow between the nacelle and the inside of the vessel is provided in this central part with a flow rate sufficient for engine cooling.
  • the rear end portion 3 'A of the support leg can be arranged to go up to be flush with the hull of the vessel by passing the top of the nozzle 6, a recess then to be provided in this part 3' A so to allow the insertion of the top of the nozzle with its maintenance by the part 3 'A.
  • This embodiment makes it possible to a certain extent to reduce the hydrodynamic drag of the propulsion assembly with respect to the embodiment shown in FIGS. 1 and 2. In FIG.
  • another propulsion assembly 1 "according to the invention is schematically seen from the front looking towards the rear of the ship.
  • This set is POD type, and comprises two identical or almost identical thrusters arranged side by side.Every propeller here is identical to that of the propulsion unit 1 or The two thrusters are mechanically connected to a single pivoting support leg 3 "mounted under the hull 10 of the ship.
  • This support leg 3 has the shape of a star with three branches, and its pivot axis Y" corresponds to the axis of the widest branch.

Abstract

An engine assembly (1, 1', 1 ) including at least one pod (2) connected to a supporting leg (3, 3', 3 ), a propeller (4) with at least two blades (14) located at the back of the pod, and an arrangement of at least three flow-directing fins (50-55, 3'A) attached to the pod (2). The fin arrangement forms a ring (5) substantially perpendicular to the longitudinal axis (X) of the pod (2), which ring is within an area (Zx) located between the central portion of the supporting leg (3, 3', 3 ) and the propeller. The assembly further includes a nozzle (6) around all or part of the propeller and said ring (5). The blades (14) each have one end of which one edge (7) is flush with the inner wall of the nozzle (6) so that the propeller (4) acts as the impeller of an axial-flow pump.

Description

Ensemble de propulsion pour navire, comprenant une nacelle destinée à une installation sous la carène du navire. L'invention se rapporte à un ensemble de propulsion pour navire, comprenant : - une nacelle mécaniquement reliée à une jambe support prévue pour être montée sous la carène d'un navire, - une hélice située à l'arrière de la nacelle, comportant au moins deux pales et solidaire en rotation d'un arbre de transmission relié à un moteur, - un arrangement d'au moins trois ailerons orienteurs de flux qui sont fixés à la nacelle, ledit arrangement formant une couronne sensiblement perpendiculaire à l'axe longitudinal de la nacelle. Plus particulièrement, l'invention se rapporte à un ensemble de propulsion de type POD (propulsion oriented drive) compact, dans lequel la jambe support est prévue pour être montée pivotante sous la carène du navire. Les parties appelées respectivement avant et arrière de la nacelle sont définies par rapport à la proue et la poupe du navire, c'est à dire que la partie avant de la nacelle pointe vers la proue du navire au moins lorsque l'ensemble de propulsion assure la marche avant du navire. Dans la plupart des ensembles de propulsion de type POD, comme par exemple celui décrit dans le document de brevet WO9914113, l'hélice est située à l'avant de la nacelle, contrairement à un ensemble de propulsion selon l'invention. Généralement, les ensembles conventionnels de propulsion de type POD pour navire ne sont pas destinés à travailler dans le sillage du navire et présentent au contraire une jambe Ship propulsion unit, including a nacelle for installation under the hull of the ship. The invention relates to a propulsion system for a ship, comprising: - a nacelle mechanically connected to a support leg intended to be mounted under the hull of a ship, - a propeller located at the rear of the nacelle, comprising minus two blades and rotatably connected to a transmission shaft connected to a motor, - an arrangement of at least three flow orienting fins which are fixed to the nacelle, said arrangement forming a ring substantially perpendicular to the longitudinal axis of Platform. More particularly, the invention relates to a compact propulsion oriented drive (POD) type propulsion assembly, wherein the support leg is intended to be pivotally mounted under the hull of the vessel. The parts respectively called front and rear of the nacelle are defined relative to the bow and stern of the ship, that is to say that the front part of the nacelle points to the bow of the ship at least when the propulsion assembly ensures the forward march of the ship. In most types of POD propulsion units, such as that described in patent document WO9914113, the propeller is located at the front of the nacelle, unlike a propulsion assembly according to the invention. Generally, conventional POD propulsion sets for ships are not intended to work in the wake of the ship and instead have a leg
* support suffisamment haute de façon à ce que l'hélice soit située hors de la couche limite du sillage. Ces ensembles conventionnels de propulsion de type POD sont donc généralement encombrants au moins du fait de l'espace important nécessaire entre la coque du navire et l'hélice. Par ailleurs, de tels ensembles de propulsion sont généralement sujets à des phénomènes de vibration et de cavitation, la cavitation étant particulièrement présente lorsque l'ensemble de propulsion est en giration. La cavitation est un phénomène qui libère des bulles de vapeur d'eau crépitantes à l'extrémité des pales d'une hélice. En hydrodynamique navale, la cavitation altère les performances des systèmes propulsifs, induit des vibrations, provoque l'érosion des parties tournantes et rayonne du bruit qui pénalise la discrétion acoustique d'un bateau Il est connu de certaines réalisations de l'état de la technique, et en particulier du document de brevet EPI 270404, un ensemble de propulsion tel que défini ci-dessus dans lequel une hélice d'un propulseur auxiliaire de type POD compact est située à l'arrière de la nacelle. Cette hélice est en outre destinée à travailler dans le sillage d'une autre hélice dite hélice principale qui est montée sur un arbre fixe disposé sous la carène du navire. L'hélice principale est prévue pour fournir la plus grande partie de la puissance de propulsion, par exemple grâce à un moteur diesel installé dans le navire, tandis que l'hélice auxiliaire du propulseur POD est prévue pour fournir soit une puissance propulsive additionnelle soit une puissance directive si ce propulseur est pivoté pour la gouverne du navire. Selon les modes de réalisation avec un arrangement d'ailerons autour de la nacelle, cet arrangement est situé soit à l'avant de la nacelle, soit plus en arrière mais seulement jusqu'au niveau de la partie centrale de la jambe support. En effet, la fonction de ces ailerons est d'améliorer le rendement propulsif en récupérant la composante axiale de l'énergie de rotation du flux tourbillonnant créé par l'hélice principale, et ils doivent donc être relativement proches de l'hélice principale. Il peut être prévu une petite inclinaison des ailerons par rapport à l'axe de la nacelle afin d'augmenter la récupération d'énergie. Bien qu'un tel propulseur de type POD soit particulièrement compact, l'ensemble global de propulsion incluant l'hélice principale reste encombrant et nécessite un tirant d'eau relativement important sous la carène de même que pour les ensembles de propulsion de type POD conventionnels. L'invention vise à permettre de diminuer le tirant d'eau sous la carène d'un navire possédant au moins un propulseur avec une hélice montée sur une nacelle, par rapport aux solutions conventionnelles. Pour ceci, l'invention vise à procurer un ensemble de propulsion qui puisse être rapproché de la carène, et plus particulièrement un ensemble de type POD compact. Afin d'améliorer la compacité verticale de l'ensemble de propulsion, l'invention vise à diminuer la hauteur de la jambe support de la nacelle pour rapprocher l'hélice autant que possible de la carène, tout en évitant les phénomènes de cavitation. Enfin, l'invention vise aussi à augmenter le rendement de l'ensemble de propulsion et à diminuer les coûts au moins de la partie motrice de cet ensemble. Afin de pouvoir réaliser ces objectifs, l'invention propose un ensemble compact de propulsion qui fonctionne sur le principe d'une pompe hélice, c'est à dire qui assure la propulsion du navire grâce au déplacement forcé de l'eau dans la tuyère. La technologie de pompe hélice est inspirée des réacteurs d'avion, notamment en ce qui concerne le contrôle du flux entrant, et utilise un système jouant sur le reflux de l'eau pour éviter les phénomènes de cavitation. Une pompe hélice travaille en débit de liquide, alors qu'une hélice classique travaille en poussée de liquide. H est à noter qu'en tant que tel, le principe de propulsion par pompe hélice est appliqué depuis longtemps à des systèmes de propulsion de sous-marins, et que le positionnement d'une pompe hélice dans le sillage d'un sous-marin permet d'obtenir un bon rendement tout en réduisant les perturbations acoustiques. Il est en outre connu, notamment du document de brevet US 4 600 394, des applications de la technologie de pompe hélice à des moteurs hors-bord et in-bord pour embarcations. Il est entendu qu'il ne suffit pas d'entourer une hélice classique par un carénage en forme de tuyère pour réaliser une pompe hélice. H est bien connu de l'état de la technique, comme par exemple du document de brevet US 6 062 925, que la force de propulsion d'une hélice montée sur une nacelle peut être accrue à basse vitesse par l'installation d'un carénage en forme de tuyère autour de l'hélice. Une telle installation ne permet pas pour autant de réaliser une pompe hélice, puisque notamment la forme des pales dans une pompe hélice est spécifique à cette technologie et diffère notablement des formes utilisées pour des hélices classiques. Il est enfin connu du document de brevet DE 101 58320 un ensemble de propulsion de type POD pour navire, mettant en œuvre une pompe hélice dont l'hélice rotor est arrangée autour du stator du moteur électrique de la pompe. Le moteur est ainsi complètement entouré par la tuyère de la pompe, tuyère qui est attachée à la jambe support de l'ensemble POD. Avec une telle architecture, le diamètre de l'hélice rotor augmente nécessairement avec la taille du moteur et donc avec sa puissance. Pour un moteur électrique de forte puissance (par exemple de l'ordre de 10 MW), le dimensionnement qui en résulte pour l'hélice rotor implique un diamètre relativement élevé pour la tuyère afin de ménager une section suffisante pour le débit de l'eau dans la pompe. Il résulte de cette architecture une traînée hydrodynamique relativement élevée pour l'ensemble de propulsion et donc un rendement propulsif très moyen, ce qui constitue un inconvénient majeur. D'autre part, le refroidissement du moteur électrique, en particulier pour un moteur de forte puissance, est certainement plus difficile à réaliser que dans le cas d'un ensemble POD conventionnel pour lequel le moteur est installé dans une nacelle à distance de l'hélice. En effet, dans un ensemble POD conventionnel, il est connu de refroidir le moteur par une circulation d'air forcé amené dans la nacelle depuis le navire via l'intérieur de la jambe support. Ainsi, bien qu'un tel ensemble POD à pompe hélice permette de réaliser certains objectifs visés dans la présente invention comme notamment la suppression des phénomènes de cavitation, il ne permet pas d'obtenir un ensemble de propulsion et en particulier un ensemble de forte puissance qui soit relativement compact en diamètre et qui possède un rendement propulsif au moins égal à celui d'un ensemble POD conventionnel de même puissance. La présente invention vise aussi à remédier aux inconvénients d'une telle architecture d'ensemble POD à pompe hélice. A cet effet, l'invention a pour objet un ensemble de propulsion tel que défini en préambule, caractérisé en ce qu'il comprend une tuyère qui entoure au moins en partie l'hélice et ladite couronne d'ailerons, en ce que les pales présentent chacune une extrémité avec un bord affleurant à la paroi intérieure de la tuyère pour que l'hélice constitue le rotor d'une pompe hélice, et en ce que la couronne d'ailerons est comprise dans une zone située entre la partie centrale de ladite jambe support et l'hélice. L'arrangement formé par les ailerons et la tuyère constitue le stator de la pompe hélice. Une pompe hélice tourne généralement 50 à 100% plus vite qu'une hélice classique à puissance équivalente, ce qui permet de réduire de 50 à 100% le couple du moteur d'entraînement de l'hélice et autorise ainsi une diminution de 20 à 40% du diamètre du moteur (pour un moteur électrique) par rapport à un ensemble POD conventionnel. Dans un ensemble de propulsion selon l'invention, la (hminution du diamètre du moteur permet de diminuer le diamètre de la nacelle et la masse de l'ensemble pour les réalisations où le moteur est logé dans la nacelle. La diminution du diamètre de la nacelle permet de diminuer la traînée hydrodynamique de l'ensemble de propulsion et donc d'augmenter le rendement propulsif. D'autre part, le moteur et l'essentiel du volume de la nacelle sont situés en amont de la pompe hélice relativement au flux d'eau. Ceci permet à l'hélice d'avoir un moyeu relativement compact, et une section suffisante peut ainsi être obtenue pour l'hélice de la pompe sans qu'il soit nécessaire de compromettre l'écoulement hydrodynamique en augmentant exagérément le diamètre de la tuyère. Typiquement, avec un moteur électrique d'une puissance supérieure à 10MW logé dans la nacelle, un ensemble de propulsion selon l'invention peut être réalisé avec une tuyère dont le diamètre interne, c'est à dire sensiblement le diamètre de l'hélice, est de l'ordre de deux fois le diamètre de la nacelle. Ceci permet d'avoir une section suffisante de l'hélice pour assurer un bon débit d'eau dans la pompe tout en ayant une tramée hydrodynamique relativement faible pour l'ensemble de propulsion comparativement au dispositif du brevet DE 101 58320. Enfin, la possibilité pour la pompe hélice de travailler dans le sillage du navire sans phénomène de cavitation permet de diminuer la hauteur de la jambe support, ce qui contribue aussi à rendre l'ensemble plus compact. En effet, la pompe hélice peut être rapprochée de la carène du navire car elle ne transmet pas de pulsations de pression génératrices de vibration à bord du navire. Ceci s'explique tout d'abord du fait que le flux d'eau est organisé par le stator de la pompe hélice, ce qui permet que la vitesse d'arrivée de l'eau au niveau du rotor soit homogénéisée dans la chambre qui sépare le rotor du stator. Les pulsations rémanentes de pression générées par la pompe hélice sont par conséquent relativement faibles. D'autre part, ces pulsations rémanentes sont atténuées au niveau de la tuyère de la pompe, et leur répercussion sur la carène du navire est suffisamment faible pour ne pas générer de vibration à bord du navire. Le tirant d'eau sous la carène peut alors être prévu plus faible qu'avec un ensemble POD conventionnel, ce qui permet plus de flexibilité dans le dessin des formes arrières du navire. D'autre part, le fait de placer la pompe hélice à l'intérieur de la couche limite du sillage du navire offre l'avantage d'augmenter le rendement propulsif par rapport à une disposition hors de cette couche limite. En effet, à l'intérieur de cette couche limite, la vitesse de l'eau à l'entrée de la pompe hélice est diminuée par rapport à une disposition de la pompe hors de cette couche, ce qui augmente le différentiel entre les vitesses respectivement à la sortie de la tuyère et à l'entrée de la pompe et augmente ainsi la poussée produite par le rotor de la pompe. Il faut savoir que l'épaisseur de la couche limite augmente avec la vitesse et la taille du navire. A la vitesse de croisière du navire, le sillage est plus important, et le rendement propulsif est donc augmenté par rapport à des vitesses inférieures. Dans un ensemble compact de propulsion selon l'invention, les ailerons constituent des orienteurs de flux pour la pompe hélice. L'arrangement d'ailerons en couronne est compris dans une zone située longitudinalement derrière la partie centrale de la jambe support, afin d'être suffisamment proche de l'hélice. Dans la présente, on définit la partie centrale d'une jambe support comme la partie comprenant une cavité communicante avec l'intérieur de la carène du navire. Un ensemble de propulsion selon l'invention est particulièrement destiné à un navire dans lequel la jambe support de la nacelle est prévue pour être montée pivotante sous la carène du navire, afin que l'ensemble de propulsion soit de type POD. Dans un navire équipé de plusieurs ensembles de propulsion selon l'invention, il est possible d'avoir au moins un ensemble de type POD pivotant sur 360° et situé à l'arrière du navire dans son sillage, afin d'assurer la gouverne du navire et le cas échéant une poussée de freinage sans inverser le sens de rotation du rotor de cet ensemble. L'invention, ses caractéristiques et ses avantages sont précisés dans la description qui suit en rapport avec les figures ci dessous. La figure 1 représente schématiquement une vue en coupe d'un ensemble de propulsion selon l'invention et de type POD, selon un plan vertical contenant l'axe longitudinal de la nacelle. La figure 2 représente schématiquement une vue en perspective de l'ensemble de propulsion de la figure 1. La figure 3 représente schématiquement une vue de dessus d'un autre ensemble de propulsion selon l'invention, dans lequel l'extrémité arrière de la jambe support constitue un aileron orienteur de flux. La figure 4 représente schématiquement une vue de face d'un autre ensemble de propulsion selon l'invention et de type POD, comprenant deux propulseurs identiques disposés côte à côte. Sur la figure 1, l'ensemble de propulsion 1 selon l'invention est vu latéralement en coupe longitudinale selon le plan formé par l'axe longitudinal X de la nacelle 2 et l'axe Y de pivotement de l'ensemble 1. Cet ensemble 1 est installé sous la carène 10 d'un navire, la nacelle 2 étant classiquement reliée à une jambe support 3 montée pivotante sur un palier étanche 9 traversant la coque du navire. Dans le mode de réalisation préféré en rapport avec la figure, la nacelle 2 est dimensionnée pour contenir un moteur électrique 8 dont le rotor (non représenté) est solidaire en rotation de l'arbre 11 d'entraînement de l'héhce 4. L'arbre 11 est maintenu selon l'axe X grâce à des paliers 12. De façon connue, la nacelle ainsi que la jambe support 3 sont profilées de façon à optimiser l'écoulement hydrodynamique du flux d'eau représenté par les flèches F. Comme connu de l'état de la technique, un autre mode de réalisation peut aussi être envisagé dans lequel le moteur est disposé à l'intérieur de la coque du navire, un système de transmission mécanique à renvoi d'angle étant alors prévu pour transmettre la rotation du moteur à l'arbre d'entraînement de l'hélice. Par ailleurs, dans un ensemble de propulsion selon l'invention, il n'est pas indispensable que la jambe qui supporte la nacelle soit montée pivotante par rapport à la carène du navire. Dans le cas d'une réalisation avec une jambe support fixe, il est envisageable d'avoir au moins une autre jambe de liaison fixe pour relier directement la tuyère à la carène et renforcer la liaison mécanique entre l'ensemble de propulsion et la carène. Cette autre jambe peut être de faible dimension, puisque la tuyère est préférablement très proche de la carène. L'orientation du navire peut alors être assurée par des moyens directionnels spécifiques dissociés de l'ensemble de propulsion, ou encore selon le principe montré dans le brevet EP 1 270 404 qui met en œuvre un ensemble de propulsion auxiliaire orientable de type POD compact. Dans le mode de réalisation en rapport avec la figure 1, le palier étanche 9 estprévu pour permettre à la jambe support 3 de pivoter afin d'assurer la fonction de gouverne du navire. Le pivotement de la jambe support 3 peut être prévu notamment jusqu'à 180° par rapport à la position de propulsion normale représentée sur la figure.pour arriver à une position de propulsion en mode « freinage » avec une poussée qui s'oppose à l'avancement du navire. Toutefois, un tel mode « freinage » peut aussi être obtenu dans le cas d'une jambe support 3 non pivotante ou peu pivotante, par une poussée substantielle de marche arrière en inversant le sens de rotation de l'hélice 4.. Pour réaliser la pompe hélice, l'ensemble de propulsion comprend un arrangement d'ailerons orienteurs de flux tels que 52 et 53 qui sont fixés à la nacelle 2, cet arrangement formant une couronne 5 sensiblement perpendiculaire à l'axe X de la nacelle et comprise dans une zone Zx située longitudinalement entre la jambe support 3 et l'hélice 4. De manière générale, dans un ensemble de propulsion selon l'invention, cette zone Zx se situe entre la partie centrale de la jambe support et l'hélice, comme expliqué plus loin en référence à la figure 3. Préférablement, la couronne 5 est formée d'au moins cinq ailerons, et l'hélice 4 comporte au moins trois pales 14. Ces ailerons orienteurs de flux doivent être disposés suffisamment proches de l'héhce pour orienter dans des directions appropriées les lignes de flux d'eau arrivant sur l'hélice. Us ne sont pas nécessairement identiques. D'autre part, une tuyère 6 entoure l'hélice 4 et la couronne 5 d'ailerons. Comme décrit plus loin en rapport avec la figure 2, le profil d'entrée de la tuyère 6 ainsi que l'orientation de chaque aileron sont de préférence adaptés à la carte de sillage du navire à sa vitesse de croisière. Il est à noter que la tuyère participe à la poussée totale par sa portance propre. L'hélice comprend un moyeu 13 solidaire en rotation de l'arbre 11, moyeu sur lequel sont montées les pales 14. Chaque pale 14 présente une extrémité avec un bord 7 affleurant à la paroi intérieure de la tuyère. Ainsi, la couronne 5 et la tuyère 6 constituent le stator de la pompe hélice, l'hélice 4 constituant quant à elle le rotor de la pompe. Avantageusement, la tuyère présente une section qui diminue progressivement vers l'arrière et présente des formes de convergence ou de divergence adaptées en fonction de la vitesse de croisière prévue pour le navire, afin d'augmenter le rendement propulsif. D'autre part, de façon classique, les ailerons présentent un profil incliné pour diminuer leur résistance hydrodynamique. De ce fait, comme visible sur la figure 1, il n'est pas nécessaire que la partie avant de la tuyère se prolonge sur la totalité de la zone longitudinale Zx de positionnement de la couronne 5. La limite avant de cette zone est représentée par un trait en pointillés à la même abscisse selon l'axe X que l'extrémité avant des ailerons, π est d'ailleurs tout à fait envisageable d'utiliser des ailerons encore plus profilés et d'augmenter ainsi substantiellement la profondeur longitudinale de la zone Zx de positionnement de la couronne 5 d'ailerons. Au moins trois ailerons orienteurs de flux, et préférablement tous les ailerons de la couronne 5, sont utilisés pour assurer une bonne fixation de la tuyère 6 à la nacelle 2. L'axe de symétrie de la tuyère coïncide sensiblement avec l'axe longitudinal X de la nacelle, ce qui permet d'avoir un faible jeu entre les bords 7 des extrémités des pales 14 de l'hélice et la paroi intérieure de la tuyère. Dans le mode de réalisation en rapport avec la figure 1, les pales 14 sont toutes identiques, et le bord 7 d'extrémité d'une pale affleurant à la tuyère est délimité par deux angles vifs de façon à maximiser la longueur curviligne affleurante à la tuyère par rapport à la longueur totale du pourtour de la pale. Il est en effet connu qu'une telle forme anguleuse des bords d'extrémités des pales est avantageuse pour la technologie des pompes hélices. Le rotor de pompe constitué par l'hélice 4 comprend au moins deux pales 14. Des simulations par calcul montrent qu'il n'est pas intéressant d'avoir un rotor formé par une seule pale vrillée sur le principe de la réalisation divulguée par le brevet US 4 600 394. Avantageusement, la distance Dγ entre la tuyère 6 de la pompe hélice et la carène 10 du navire est définie pour que l'hélice 4 travaille de manière optimale dans le sillage du navire. En effet, il est avantageux de disposer l'ensemble de propulsion dans le sillage du navire tout en évitant de préférence le sillage dit visqueux qui présente une réduction trop importante de la vitesse d'écoulement de l'eau par rapport au navire. De manière avantageuse, on préférera un positionnement dans la partie du sillage qui présente une réduction moyenne de la vitesse de l'écoulement de l'ordre de 15%. Outre l'avantage de permettre une réduction de la hauteur de la jambe support 3, un tel positionnement de la pompe hélice permet ainsi d'augmenter de façon optimale le rendement propulsif par rapport à un positionnement hors de la couche limite du sillage. Sur la figure 2, l'ensemble de propulsion 1 selon l'invention est vu en perspective pour mieux visualiser les structures respectives de la couronne 5 d'ailerons orienteurs de flux et de l'hélice 4. La couronne 5 comprend ici six ailerons 50 à 55 pour orienter le flux d'eau entrant dans la pompe hélice de façon à donner à ce flux un couple de rotation sensiblement égal à celui du rotor mais tournant dans le sens inverse, le flux d'eau étant alors dépourvu d'énergie de rotation à la sortie du rotor ce qui a pour avantage d'augmenter le rendement de la pompe hélice. L'aileron 55 est caché par l'arrière de la nacelle 2 sur cette représentation. Chaque aileron présente une surface au moins approximativement plane qui possède une orientation déterminée par rapport à l'axe X de la nacelle. L'angle d'orientation αn d'un aileron est défini comme l'angle formé entre le plan de l'aileron et l'axe X. Chaque aileron, tel que 52 ou 54, est fixé à l'arrière de la nacelle avec un angle d'orientation qui lui est propre, tel que Cfe ou α4. De préférence, chaque angle αn est déteπniné à partir de la carte de sillage du navire à sa vitesse de croisière, ainsi chaque angle αn est adapté en fonction du flux d'eau entrant de façon à orienter l'arrivée d'eau au rotor et éviter les phénomènes de cavitation. L'influence de la jambe support 3 sur les filets d'eau entrant dans la tuyère est prise en compte, en particulier pour l'angle d'orientation Cfc de l'aileron 52 qui est situé derrière la jambe 3. Le profil d'entrée de la tuyère est aussi préférablement déterminé à partir de la carte de sillage du navire à sa vitesse de croisière. De plus, en tournant plus vite qu'une hélice classique, le rotor de l'ensemble de propulsion selon l'invention développe un couple réduit, et ainsi la déviation de l'écoulement dans le stator doit rester modérée pour être en accord avec ce couplβi II s'ensuit que les angles d'orientations des ailerons sont relativement faibles, et donc qu'un passage d'eau en sens inverse est possible. Chaque angle d'orientation αn peut être déterminé entre par exemple 3° et 15°, ce qui permet d'obtenir une poussée suffisante de marche arrière en inversant le sens de rotation de l'hélice 4, l'écoulement d'eau produit par l'hélice n'étant alors pas notablement perturbé par les ailerons. Par ailleurs, un rotor dont les pales sont chacune à génératrice droite peut accepter le plein couple nominal en rotation inversée du rotor, contrairement à une hélice classique de type « skew » telle que décrite par exemple dans le document de brevet US 6 371 726, ceci grâce à la bonne répartition des contraintes mécaniques sur la surface des pales qui a pour effet d'améliorer la poussée de freinage. Il est entendu qu'un objet à génératrice droite est formé par la translation d'un contour en deux dimensions selon une droite qui coupe le plan du contour. Les pales 14 de l'hélice 4 sont représentées avec un léger vrillage visible sur la figure et sont donc à génératrices légèrement curvilignes, mais il est entendu que des pales à génératrices rigoureusement droites peuvent être préférées pour améliorer encore la poussée de freinage . H est en outre visible que le bord 7 d'extrémité d'une pale 14 affleurant à la paroi intérieure de la tuyère 6 est curviligne. Par ailleurs, de même que sur la figure 1, il est visible que la forme de la tuyère est légèrement convergente vers l'arrière. On peut enfin noter que l'axe Y de pivotement de l'ensemble de propulsion 1 ne correspond pas nécessairement l'axe de symétrie de la jambe support 3, et peut par exemple être décalé vers l'avant comme dans la position représentée par l'axe Y' sur la figure. Les simulations par calcul effectuées par la demanderesse ont permis d'établir une comparaison entre d'un côté un ensemble de propulsion de type POD conventionnel avec une hélice située à l'avant de la nacelle et d'un autre côté un ensemble de propulsion selon l'invention et qui est aussi de type POD avec un moteur électrique logé dans la nacelle. A titre d'exemple, un tel ensemble de propulsion selon l'invention possède une nacelle 2 d'un diamètre de l'ordre de deux mètres et une tuyère 6 d'environ quatre mètres de diamètre, pour une puissance moteur de l'ordre de 13 MW. La couronne 5 comporte sept ailerons orienteurs, et l'héhce rotor 4 comporte cinq pales 14. Le nombre de tours par minutes du rotor est supérieur à deux cent. A puissance moteur égale, il s'avère que l'invention permet de diminuer la masse du moteur de plus de 50%, et de diminuer de plus de 25% le diamètre de l'hélice ainsi que le diamètre de la nacelle. Par ailleurs, la diminution obtenue pour le tirant d'eau est de l'ordre de 3 mètres, et le rendement de l'ensemble POD à pompe hélice est supérieur de plus de 5% au rendement de l'ensemble POD conventionnel, π apparaît donc que globalement, les avantages procurés par l'invention sur l'état de la technique connu des ensembles POD conventionnels et des propulseurs à pompe hélice pour navires sont considérables. Sur la figure 3, un autre ensemble de propulsion 1 ' selon l'invention est représenté schématiquement vu de dessus. La nacelle 2 et la pompe hélice sont représentées en coupe selon un plan horizontal contenant l'axe longitudinal X de la nacelle, tandis que la jambe support 3' est représentée en coupe selon un autre plan horizontal situé au dessus de la nacelle. La partie d'extrémité arrière 3 'A de la jambe support 3' constitue un aileron orienteur de flux, cette partie présentant une surface sensiblement plane qui possède une orientation déterminée α' par rapport à l'axe X de la nacelle. La couronne 5 comporte au moins deux ailerons orienteurs semblables aux ailerons 50 à 55 en rapport avec les figures 1 et 2, et comporte donc un aileron particulier constitué par la partie 3 'A. De manière générale, dans un ensemble de propulsion selon l'invention, la zone Zx dans laquelle est comprise la couronne d'ailerons perpendiculairement à l'axe longitudinal X de la nacelle se situe entre la partie centrale de la jambe support et l'hélice, ladite partie centrale comprenant une cavité ménagée dans la jambe et qui communique avec l'intérieur du navire. Dans le mode de réalisation correspondant à la figure 3, la partie centrale C de la jambe support 3' se situe sensiblement au dessus du moteur 8 installé dans la nacelle, et une circulation d'air forcé entre la nacelle et l'intérieur du navire est prévue dans cette partie centrale avec un débit suffisant pour le refroidissement du moteur. La partie d'extrémité arrière 3 'A de la jambe support peut être agencée pour remonter jusqu'à être affleurante à la coque du navire en dépassant le haut de la tuyère 6, un renfoncement devant alors être prévu dans cette partie 3 'A afin de permettre l'insertion du haut de la tuyère avec son maintien par la partie 3 'A. Ce mode de réalisation permet dans une certaine mesure de diminuer la traînée hydrodynamique de l'ensemble de propulsion par rapport à la réalisation visible sur les figures 1 et 2. Sur la figure 4, un autre ensemble de propulsion 1" selon l'invention est représenté très schématiquement vu de face en regardant vers l'arrière du navire. Cet ensemble est de type POD, et comprend deux propulseurs identiques ou quasi identiques disposés côte à côte. Chaque propulseur est ici identique à celui de l'ensemble de propulsion 1 ou l' décrit précédemment. Les deux propulseurs sont mécaniquement reliés à une seule jambe support 3" pivotante montée sous la carène 10 du navire. Cette jambe support 3" a la forme d'une étoile à trois branches, et son axe de pivotement Y" correspond à l'axe de la branche la plus large. La puissance d'un ensemble de propulsion 1 ou 1 ' tel que visible sur les figures 1 à 3 peut ainsi être quasiment doublée sans avoir à développer une pompe hélice plus puissante, sans devoir augmenter le tirant d'eau, et en conservant l'avantage de n'avoir qu'un seul palier étanche 9 pivotant traversant la coque du navire. * support sufficiently high so that the propeller is located outside the boundary layer of the wake. These conventional sets of POD type propulsion are therefore generally bulky at least because of the large space required between the hull of the ship and the propeller. Moreover, such propulsion assemblies are generally subject to phenomena of vibration and cavitation, cavitation being particularly present when the propulsion assembly is in gyration. Cavitation is a phenomenon that releases crackling water vapor bubbles at the end of the blades of a propeller. In naval hydrodynamics, cavitation alters the performance of propulsion systems, induces vibrations, causes the erosion of rotating parts and radiates noise that penalizes the acoustic discretion of a boat It is known from some achievements of the state of the art and in particular EPI Patent Document 270404, a propulsion assembly as defined above in which a propeller of a compact POD auxiliary propellant is located at the rear of the nacelle. This propeller is also intended to work in the wake of another so-called main propeller propeller which is mounted on a fixed shaft disposed under the hull of the ship. The main propeller is intended to provide most of the propulsion power, for example, through a diesel engine installed in the ship, while the POD propeller auxiliary propeller is provided to provide either additional propulsion power or directive power if this thruster is rotated for the guidance of the ship. According to the modes of realized with an arrangement of fins around the nacelle, this arrangement is located either in front of the nacelle, or further back but only up to the level of the central part of the support leg. Indeed, the function of these fins is to improve the propulsive efficiency by recovering the axial component of the rotational energy of the swirling flow created by the main propeller, and they must therefore be relatively close to the main propeller. It can be provided a small inclination of the fins relative to the axis of the nacelle to increase energy recovery. Although such a POD propellant is particularly compact, the overall propulsion package including the main propeller remains bulky and requires a relatively large draft under the hull as well as for conventional POD propulsion units. . The invention aims to reduce the draft under the hull of a ship having at least one propeller with a propeller mounted on a nacelle, compared to conventional solutions. For this, the invention aims to provide a propulsion unit that can be brought closer to the hull, and more particularly a set of compact POD type. To improve the vertical compactness of the propulsion assembly, the invention aims to reduce the height of the support leg of the nacelle to bring the propeller as much as possible of the hull, while avoiding cavitation phenomena. Finally, the invention also aims to increase the efficiency of the drive assembly and to reduce the costs at least of the driving portion of this assembly. In order to achieve these objectives, the invention proposes a compact propulsion unit which operates on the principle of a propeller pump, that is to say which ensures the propulsion of the ship through the forced displacement of water in the nozzle. The propeller pump technology is inspired by aircraft engines, particularly with respect to the control of the incoming flow, and uses a system that plays on the backflow of water to avoid cavitation phenomena. A propeller pump works in liquid flow, while a conventional propeller works in liquid thrust. It should be noted that as such, the principle of propeller pump propulsion has long been applied to submarine propulsion systems, and that the positioning of a propeller pump in the wake of a submarine allows to obtain a good performance while reducing the acoustic disturbances. It is further known, particularly from US Patent 4,600,394, applications of propeller pump technology to outboard and inboard engines for boats. It is understood that it is not enough to surround a conventional propeller with a nozzle-shaped fairing to make a propeller pump. It is well known from the state of the art, such as from US Pat. No. 6,062,925, that the propulsion force of a propeller mounted on a nacelle can be increased at low speed by installing a nozzle-shaped fairing around the propeller. Such an installation does not allow for realize a propeller pump, since in particular the shape of the blades in a propeller pump is specific to this technology and differs significantly from the forms used for conventional propellers. Finally, it is known from patent document DE 101 58320 a propulsion unit of the POD type for a ship, implementing a propeller pump whose rotor propeller is arranged around the stator of the electric motor of the pump. The motor is thus completely surrounded by the nozzle of the pump nozzle which is attached to the support leg of the POD assembly. With such an architecture, the diameter of the rotor propeller necessarily increases with the size of the engine and therefore with its power. For a high power electric motor (for example of the order of 10 MW), the resulting dimensioning for the rotor propeller involves a relatively large diameter for the nozzle to provide a sufficient section for the flow of water in the pump. This architecture results in a relatively high hydrodynamic drag for the entire propulsion and therefore a very average propulsive efficiency, which is a major drawback. On the other hand, the cooling of the electric motor, in particular for a high power engine, is certainly more difficult to achieve than in the case of a conventional POD assembly for which the engine is installed in a nacelle remote from the propeller. Indeed, in a conventional POD assembly, it is known to cool the engine by a forced air flow brought into the nacelle from the ship via the inside of the support leg. Thus, although such a POD assembly with a propeller pump makes it possible to achieve certain objectives referred to in the present invention such as in particular the suppression of cavitation phenomena, it does not make it possible to obtain a propulsion assembly and in particular a set of high power. which is relatively compact in diameter and which has a propulsive efficiency at least equal to that of a conventional POD assembly of the same power. The present invention also aims to overcome the disadvantages of such an architecture POD pump assembly. For this purpose, the subject of the invention is a propulsion assembly as defined in the preamble, characterized in that it comprises a nozzle which at least partially surrounds the propeller and said fin ring, in that the blades each having an end with an edge flush with the inner wall of the nozzle so that the helix constitutes the rotor of a propeller pump, and in that the fin ring is included in an area between the central portion of said nozzle; support leg and propeller. The arrangement formed by the fins and the nozzle constitutes the stator of the propeller pump. A propeller pump generally rotates 50 to 100% faster than a conventional propeller at equivalent power, which reduces the torque of the propeller drive motor by 50 to 100% and thus allows a reduction of 20 to 40%. % of the diameter of the motor (for an electric motor) compared to a conventional POD assembly. In a propulsion assembly according to the invention, the elimination of the diameter of the engine makes it possible to reduce the diameter of the nacelle and the mass of the assembly for the embodiments where the engine is housed in the nacelle. The nacelle makes it possible to reduce the hydrodynamic drag of the propulsion unit and thus to increase the propulsive efficiency, while the engine and most of the volume of the nacelle are located upstream of the propeller pump relative to the flow of the propulsion pump. This allows the propeller to have a relatively compact hub, and a sufficient section can thus be obtained for the propeller of the pump without having to compromise the hydrodynamic flow by exaggeratedly increasing the diameter of the pump. Typically, with an electric motor with a power greater than 10MW housed in the nacelle, a propulsion assembly according to the invention can be produced with a nozzle whose internal diameter is to say substantially the diameter of the propeller, is of the order of twice the diameter of the nacelle. This makes it possible to have a sufficient section of the propeller to ensure a good flow of water in the pump while having a relatively low hydrodynamic halftone for the propulsion assembly compared to the device of patent DE 101 58320. Finally, the possibility for the propeller pump to work in the wake of the ship without cavitation phenomenon reduces the height of the support leg, which also helps to make the whole more compact. Indeed, the propeller pump can be brought closer to the hull of the ship because it does not transmit pressure pulsations generating vibration aboard the ship. This is explained first of all by the fact that the flow of water is organized by the stator of the propeller pump, which allows the speed of arrival of the water at the rotor is homogenized in the chamber which separates the rotor of the stator. The remanent pressure pulsations generated by the propeller pump are therefore relatively small. On the other hand, these remanent pulses are attenuated at the nozzle of the pump, and their impact on the hull of the ship is low enough not to generate vibration aboard the ship. The draft below the hull can then be expected to be lower than with a conventional POD package, allowing more flexibility in the design of the ship's rear shapes. On the other hand, the fact of placing the propeller pump inside the boundary layer of the wake of the ship offers the advantage of increasing the propulsive efficiency compared to a disposal outside this boundary layer. Indeed, inside this boundary layer, the speed of the water at the inlet of the propeller pump is decreased compared to an arrangement of the pump out of this layer, which increases the differential between the speeds respectively at the outlet of the nozzle and at the inlet of the pump and thus increases the thrust produced by the rotor of the pump. It should be known that the thickness of the boundary layer increases with the speed and size of the ship. At the cruising speed of the ship, the wake is greater, and the propulsive efficiency is thus increased compared to lower speeds. In a compact propulsion unit according to the invention, the fins constitute flow directioners for the propeller pump. The arrangement of crown fins is included in an area located longitudinally behind the central portion of the support leg, so as to be close enough to the propeller. In the present, the central part of a support leg is defined as the part comprising a cavity communicating with the interior of the hull of the ship. A propulsion assembly according to the invention is particularly intended for a ship in which the support leg of the nacelle is intended to be pivotally mounted under the hull of the ship, so that the propulsion unit is POD type. In a ship equipped with several sets of propulsion according to the invention, it is possible to have at least one set of POD type pivoting 360 ° and located at the rear of the ship in its wake, to ensure the control of the ship and if necessary a braking thrust without reversing the direction of rotation of the rotor of this set. The invention, its characteristics and its advantages are specified in the description which follows in connection with the figures below. Figure 1 schematically shows a sectional view of a propulsion assembly according to the invention and type POD, in a vertical plane containing the longitudinal axis of the nacelle. FIG. 2 schematically represents a perspective view of the propulsion assembly of FIG. 1. FIG. 3 schematically represents a view from above of another propulsion assembly according to the invention, in which the rear end of the leg support constitutes a flow orientator flap. FIG. 4 schematically represents a front view of another propulsion assembly according to the invention and of the POD type, comprising two identical thrusters arranged side by side. In FIG. 1, the propulsion unit 1 according to the invention is seen laterally in longitudinal section along the plane formed by the longitudinal axis X of the nacelle 2 and the pivot axis Y of the assembly 1. This set 1 is installed under the hull 10 of a ship, the nacelle 2 being conventionally connected to a support leg 3 pivotally mounted on a sealed bearing 9 passing through the hull of the ship. In the preferred embodiment in connection with the figure, the nacelle 2 is dimensioned to contain an electric motor 8 whose rotor (not shown) is integral in rotation with the drive shaft 11 of the héhce 4. L ' 11 is maintained along the axis X through bearings 12. In known manner, the nacelle and the support leg 3 are profiled so as to optimize the hydrodynamic flow of the water flow represented by the arrows F. As known from the state of the art, another embodiment may also be envisaged in which the engine is arranged to the interior of the hull of the ship, a mechanical transmission system with a bevel gear then being provided to transmit the rotation of the motor to the drive shaft of the propeller. Furthermore, in a propulsion assembly according to the invention, it is not essential that the leg that supports the platform is pivotally mounted relative to the hull of the ship. In the case of an embodiment with a fixed support leg, it is conceivable to have at least one other fixed link leg to directly connect the nozzle to the hull and strengthen the mechanical connection between the drive assembly and the hull. This other leg may be of small size, since the nozzle is preferably very close to the hull. The orientation of the ship can then be provided by specific directional means dissociated from the propulsion assembly, or according to the principle shown in patent EP 1 270 404 which implements a set of auxiliary propulsion propulsion type POD compact. In the embodiment in connection with Figure 1, the sealed bearing 9 isprovided to allow the support leg 3 to rotate to provide the steering function of the ship. The pivoting of the support leg 3 may be provided in particular up to 180 ° with respect to the normal propulsion position shown in the figure.to arrive at a propulsion position in "braking" mode with a thrust that opposes the advancement of the ship. However, such a "braking" mode can also be obtained in the case of a non-pivoting or slightly pivoting support leg 3, by a substantial backward thrust by reversing the direction of rotation of the propeller 4. propeller pump, the propulsion assembly comprises an arrangement of flow orienting fins such as 52 and 53 which are fixed to the nacelle 2, this arrangement forming a ring 5 substantially perpendicular to the axis X of the nacelle and included in a zone Zx located longitudinally between the support leg 3 and the propeller 4. Generally, in a propulsion assembly according to the invention, this zone Zx is located between the central part of the support leg and the propeller, as explained more 3 with reference to FIG. 3. Preferably, the crown 5 is formed of at least five fins, and the propeller 4 comprises at least three blades 14. These flow orienting fins must be arranged sufficiently close to the héhce to orient in appropriate directions the water flow lines arriving on the propeller. They are not necessarily identical. On the other hand, a nozzle 6 surrounds the helix 4 and the crown 5 of fins. As will be described below with reference to FIG. 2, the inlet profile of the nozzle 6 as well as the orientation of each fin are preferably adapted to the ship's wake card at its cruising speed. It should be noted that the nozzle contributes to the total thrust by its own lift. The propeller comprises a hub 13 integral in rotation with the shaft 11, hub on which are mounted blades 14. Each blade 14 has an end with an edge 7 flush with the inner wall of the nozzle. Thus, the ring 5 and the nozzle 6 constitute the stator of the propeller pump, the propeller 4 constituting the rotor of the pump. Advantageously, the nozzle has a section which decreases gradually towards the rear and has forms of convergence or divergence adapted according to the cruising speed provided for the ship, in order to increase the propulsive efficiency. On the other hand, conventionally, the fins have an inclined profile to reduce their hydrodynamic resistance. Therefore, as can be seen in FIG. 1, it is not necessary for the front part of the nozzle to extend over the entire longitudinal zone Zx for positioning the ring gear 5. The front limit of this zone is represented by a dotted line at the same abscissa along the X axis as the front end of the fins, π is moreover quite feasible to use fins even more profiled and thus substantially increase the longitudinal depth of the zone Zx positioning of the fin crown 5. At least three flow orienting fins, and preferably all the fins of the crown 5, are used to ensure a good attachment of the nozzle 6 to the nacelle 2. The axis of symmetry of the nozzle coincides substantially with the longitudinal axis X of the nacelle, which allows a small clearance between the edges 7 of the ends of the blades 14 of the propeller and the inner wall of the nozzle. In the embodiment in connection with FIG. 1, the blades 14 are all identical, and the end edge 7 of a blade flush with the nozzle is defined by two sharp angles so as to maximize the curvilinear length flush with the nozzle relative to the total length of the periphery of the blade. It is known that such an angular shape of the blade end edges is advantageous for propeller pump technology. The pump rotor constituted by the propeller 4 comprises at least two blades 14. Simulations by calculation show that it is not advantageous to have a rotor formed by a single blade twisted on the principle of embodiment disclosed by the No. 4,600,394. Advantageously, the distance D γ between the nozzle 6 of the propeller pump and the hull 10 of the ship is defined so that the propeller 4 works optimally in the wake of the ship. Indeed, it is advantageous to have the propulsion assembly in the wake of the vessel while preferably avoiding so-called viscous wake which has a too significant reduction in the speed of flow of water relative to the ship. Advantageously, preference will be given to positioning in the part of the wake which has an average reduction in the speed of the flow of the order of 15%. In addition to the advantage of allowing a reduction in the height of the support leg 3, such positioning of the propeller pump thus optimally increases the propulsive efficiency with respect to positioning out of the boundary layer of the wake. In FIG. 2, the propulsion unit 1 according to the invention is viewed in perspective in order to better visualize the respective structures of the crown 5 of flow orienting fins and of the helix 4. The crown 5 here comprises six fins 50 to 55 to direct the flow of water entering the propeller pump so as to give this flow a rotation torque substantially equal to that of the rotor but rotating in the opposite direction, the flow of water then being free of energy of rotation at the output of the rotor which has the advantage of increasing the efficiency of the propeller pump. The fin 55 is hidden by the rear of the nacelle 2 in this representation. Each fin has an at least approximately planar surface which has an orientation determined with respect to the axis X of the nacelle. The angle of orientation α n of a fin is defined as the angle formed between the plane of the fin and the X axis. Each fin, such as 52 or 54, is attached to the rear of the gondola. with an orientation angle of its own, such as Cfe or α 4 . Preferably, each angle α n is determined from the ship's wake card at its cruising speed, and each angle α n is adapted as a function of the incoming water flow so as to orient the water inlet to rotor and avoid cavitation phenomena. The influence of the support leg 3 on the streams of water entering the nozzle is taken into account, in particular for the angle of orientation Cfc of the fin 52 which is located behind the leg 3. The profile of The nozzle inlet is also preferably determined from the ship wake map at its cruising speed. Moreover, by turning faster than a conventional propeller, the rotor of the propulsion unit according to the invention develops a reduced torque, and thus the deviation of the flow in the stator must remain moderate to be in agreement with this It follows that the orientation angles of the fins are relatively small, and therefore that a water passage in the opposite direction is possible. Each angle of orientation α n can be determined between, for example, 3 ° and 15 °, which makes it possible to obtain a sufficient backward thrust by reversing the direction of rotation of the helix 4, the flow of water produced by the propeller then not noticeably disturbed by the fins. Moreover, a rotor whose blades are each of right generatrix can accept the full nominal torque in inverted rotation of the rotor, unlike a conventional propeller type "skew" as described for example in the patent document US 6,371,726, this thanks to the good distribution of mechanical stresses on the surface of the blades which has the effect of improving the braking thrust. It is understood that an object with a right generatrix is formed by the translation of a two-dimensional contour along a line that intersects the plane of the contour. The blades 14 of the propeller 4 are shown with a slight twisting visible in the figure and are therefore generatrices slightly curvilinear, but it is understood that blades rigorously straight generators can be preferred to further improve the braking thrust. It is also visible that the end edge 7 of a blade 14 flush with the inner wall of the nozzle 6 is curvilinear. Moreover, as in Figure 1, it is visible that the shape of the nozzle is slightly converging towards the rear. Finally, it can be noted that the pivot axis Y of the propulsion unit 1 does not necessarily correspond to the axis of symmetry of the support leg 3, and can for example be shifted forwardly as in the position represented by FIG. 'Y axis' in the figure. The computational simulations carried out by the applicant made it possible to establish a comparison between a conventional POD propulsion unit on one side with a propeller located at the front of the platform and, on the other hand, a propulsion unit according to the invention and which is also POD type with an electric motor housed in the nacelle. For example, such a propulsion assembly according to the invention has a nacelle 2 with a diameter of the order of two meters and a nozzle 6 of about four meters in diameter, for a motor power of the order 13 MW. The crown 5 has seven orienting fins, and the rotor heel 4 has five blades 14. The number of revolutions per minute of the rotor is greater than two hundred. At equal motor power, it turns out that the invention reduces the motor mass by more than 50%, and reduce by more than 25% the diameter of the propeller and the diameter of the nacelle. On the other hand, the decrease obtained for the draft is of the order of 3 meters, and the efficiency of the POD set with the propeller pump is more than 5% higher than the yield of the conventional POD set, π appears therefore, overall, the advantages provided by the invention over the known state of the art of conventional POD assemblies and propeller pump propellers for ships are considerable. In Figure 3, another set of propulsion 1 'according to the invention is shown schematically from above. The nacelle 2 and the propeller pump are shown in section along a horizontal plane containing the longitudinal axis X of the nacelle, while the support leg 3 'is shown in section along another horizontal plane located above the nacelle. The rear end portion 3 'A of the support leg 3' constitutes a flow orienting fin, this part having a substantially planar surface which has a determined orientation α 'with respect to the axis X of the nacelle. The ring 5 comprises at least two orienting fins similar to fins 50 to 55 with respect to FIGS. 1 and 2, and therefore comprises a particular fin consisting of part 3 'A. Generally speaking, in a propulsion assembly according to the invention, the zone Zx in which the crown of fins is comprised perpendicular to the longitudinal axis X of the nacelle lies between the central part of the support leg and the propeller. said central portion including a cavity in the leg communicating with the interior of the vessel. In the embodiment corresponding to Figure 3, the central portion C of the support leg 3 'is substantially above the engine 8 installed in the nacelle, and a forced air flow between the nacelle and the inside of the vessel is provided in this central part with a flow rate sufficient for engine cooling. The rear end portion 3 'A of the support leg can be arranged to go up to be flush with the hull of the vessel by passing the top of the nozzle 6, a recess then to be provided in this part 3' A so to allow the insertion of the top of the nozzle with its maintenance by the part 3 'A. This embodiment makes it possible to a certain extent to reduce the hydrodynamic drag of the propulsion assembly with respect to the embodiment shown in FIGS. 1 and 2. In FIG. 4, another propulsion assembly 1 "according to the invention is schematically seen from the front looking towards the rear of the ship.This set is POD type, and comprises two identical or almost identical thrusters arranged side by side.Every propeller here is identical to that of the propulsion unit 1 or The two thrusters are mechanically connected to a single pivoting support leg 3 "mounted under the hull 10 of the ship. This support leg 3 "has the shape of a star with three branches, and its pivot axis Y" corresponds to the axis of the widest branch. The power of a propulsion assembly 1 or 1 'as visible in Figures 1 to 3 can be almost doubled without having to develop a more powerful propeller pump, without having to increase the draft, and retaining the advantage of having only one pivoting waterproof bearing 9 crossing the hull of the ship.

Claims

REVENDICATIONS
1/ Ensemble de propulsion (1, l', 1") pour navire, comprenant :1 / Provision kit (1, 1 ', 1 ") for ship, comprising:
- au moins une nacelle (2) mécaniquement reliée à une jambe support (3, 3', 3") prévue pour être montée sous la carène (10) d'un navire, - une hélice (4) située à l'arrière de la nacelle, comportant au moins deux pales (14) et solidaire en rotation d'un arbre (11) de transmission relié à un moteur (8),- at least one nacelle (2) mechanically connected to a support leg (3, 3 ', 3 ") intended to be mounted under the hull (10) of a ship, - a propeller (4) located at the rear of the nacelle, comprising at least two blades (14) and integral in rotation with a transmission shaft (11) connected to a motor (8),
- un arrangement d'au moins trois ailerons orienteurs de flux (50 à 55, 3' A) qui sont fixés à la nacelle (2), ledit arrangement formant une couronne (5) sensiblement perpendiculaire à l'axe (X) longitudinal de la nacelle (2), caractérisé en ce qu'il comprend une tuyère (6) qui entoure au moins en partie l'hélice (4) et ladite couronne (5) d'ailerons, en ce que lesdites pales (14) présentent chacune une extrémité avec un bord (7) affleurant à la paroi intérieure de la tuyère (6) pour que l'hélice (4) constitue le rotor d'une pompe hélice, et en ce que ladite couronne (5) est comprise dans une zone (Zx) située entre la partie centrale de ladite jambe support (3, 3', 3") et l'héhce. 2/ Ensemble de propulsion selon la revendication 1, dans lequel ladite tuyère (6) est fixée à la nacelle (2) par Fintermédiaire d'au moins cinq ailerons (50 à 55, 3'A), et ladite hélice (4) comporte au moins trois pales (14) .an arrangement of at least three flow orienting fins (50 to 55, 3 'A) which are fixed to the nacelle (2), said arrangement forming a ring (5) substantially perpendicular to the longitudinal axis (X) of the nacelle (2), characterized in that it comprises a nozzle (6) which at least partly surrounds the propeller (4) and said fin ring (5), in that said blades (14) each have an end with an edge (7) flush with the inner wall of the nozzle (6) so that the helix (4) constitutes the rotor of a propeller pump, and in that said ring (5) is included in a zone (Zx) located between the central portion of said support leg (3, 3 ', 3 ") and the home. 2 / propulsion assembly according to claim 1, wherein said nozzle (6) is attached to the nacelle (2 ) via at least five fins (50 to 55, 3'A), and said propeller (4) comprises at least three blades (14).
3/ Ensemble de propulsion selon l'une quelconque des revendications précédentes, dans lequel chaque aileron (50 à 55, 3'A) de ladite couronne (5) présente une surface au moins approximativement plane qui possède une orientation déterminée (cto,..., as, a') par rapport à l'axe (X) de ladite nacelle (2).3 / propulsion assembly according to any one of the preceding claims, wherein each fin (50 to 55, 3'A) of said ring (5) has a surface at least approximately plane which has a determined orientation (cto, .. ., as, a ') with respect to the axis (X) of said nacelle (2).
4/ Ensemble de propulsion selon la revendication 3, dans lequel le profil d'entrée de ladite tuyère (6) et l'orientation (do,..., Os, α') de chaque aileron sont adaptés à la carte de sillage du navire. 5/ Ensemble de propulsion selon la revendication 3 ou 4, dans lequel l'orientation déterminée (cto,..., as, α') de chaque aileron est comprise entre 3° et 15°.4 / propulsion assembly according to claim 3, wherein the inlet profile of said nozzle (6) and the orientation (do, ..., Os, α ') of each fin are adapted to the wake map of the ship. 5 / propulsion assembly according to claim 3 or 4, wherein the determined orientation (cto, ..., as, α ') of each fin is between 3 ° and 15 °.
6/ Ensemble de propulsion selon l'une quelconque des revendications précédentes, dans lequel le sens de rotation de l'héhce (4) est inversable pour produire une poussée de freinage du navire. 7/ Ensemble de propulsion selon l'une quelconque des revendications précédentes, dans lequel les pales (14) du rotor de la pompe hélice sont chacune à génératrice droite.6 / propulsion assembly according to any one of the preceding claims, wherein the direction of rotation of the héhce (4) is reversible to produce a braking thrust of the ship. 7 / propulsion assembly according to any one of the preceding claims, wherein the blades (14) of the rotor of the propeller pump are each right-handed generator.
8/ Ensemble de propulsion selon l'une quelconque des revendications précédentes, dans lequel l'extrémité arrière (3'A) de ladite jambe support (3') constitue un desdits ailerons de ladite couronne (5). 91 Navire équipé d'au moins un ensemble de propulsion (1, l', 1") selon l'une quelconque des revendications précédentes, dans lequel la jambe support (3, 3', 3") dudit ensemble est prévue pour être montée fixe sous la carène (10) du navire.8 / propulsion assembly according to any one of the preceding claims, wherein the rear end (3'A) of said support leg (3 ') constitutes one of said fins of said ring (5). A vessel equipped with at least one propulsion assembly (1, 1 ', 1 ") according to any one of the preceding claims, wherein the support leg (3, 3', 3") of said assembly is intended to be mounted fixed under the hull (10) of the ship.
10/ Navire selon la revendication précédente, équipé d'au moins un ensemble de propulsion (1, l', 1") selon l'une quelconque des revendications précédentes, dans lequel la jambe support (3, 3', 3") dudit ensemble est prévue pour être montée pivotante sous la carène (10) du navire pour que ledit ensemble de propulsion soit de type POD.10 / ship according to the preceding claim, equipped with at least one propulsion assembly (1, 1 ', 1 ") according to any one of the preceding claims, wherein the support leg (3, 3', 3") of said The assembly is intended to be pivotally mounted under the hull (10) of the vessel for said propulsion assembly to be of the POD type.
11/ Navire selon la revendication 8 ou 9, dans lequel la distance (Dy) entre ladite tuyère (6) et la carène (10) du navire est définie pour que l'hélice (4) travaille de manière optimale dans le sillage du navire. 11 / Vessel according to claim 8 or 9, wherein the distance (Dy) between said nozzle (6) and the hull (10) of the ship is defined so that the propeller (4) works optimally in the wake of the ship .
EP05746629A 2004-04-30 2005-04-26 Marine engine assembly including a pod mountable under a ship's hull Active EP1755942B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SI200530097T SI1755942T1 (en) 2004-04-30 2005-04-26 Marine engine assembly including a pod mountable under a ship's hull
PL05746629T PL1755942T3 (en) 2004-04-30 2005-04-26 Marine engine assembly including a pod mountable under a ship's hull
CY071101492T CY1107016T1 (en) 2004-04-30 2007-11-21 PROFESSIONAL SYSTEM FOR SHIP, INCLUDING A LAMB INTENDED TO BE INSTALLED FROM THE SHIP STEEL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0450842A FR2869586B1 (en) 2004-04-30 2004-04-30 PROPULSION ASSEMBLY FOR SHIP, COMPRISING A NACELLE FOR AN INSTALLATION UNDER THE CARINE OF THE VESSEL
PCT/FR2005/050280 WO2005110840A1 (en) 2004-04-30 2005-04-26 Marine engine assembly including a pod mountable under a ship's hull

Publications (2)

Publication Number Publication Date
EP1755942A1 true EP1755942A1 (en) 2007-02-28
EP1755942B1 EP1755942B1 (en) 2007-08-22

Family

ID=34946560

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05746629A Active EP1755942B1 (en) 2004-04-30 2005-04-26 Marine engine assembly including a pod mountable under a ship's hull

Country Status (18)

Country Link
US (1) US8435089B2 (en)
EP (1) EP1755942B1 (en)
JP (1) JP4753936B2 (en)
KR (1) KR101205683B1 (en)
CN (1) CN100471755C (en)
AT (1) ATE370884T1 (en)
CY (1) CY1107016T1 (en)
DE (1) DE602005002143T2 (en)
DK (1) DK1755942T3 (en)
ES (1) ES2292138T3 (en)
FR (1) FR2869586B1 (en)
HR (1) HRP20070491T3 (en)
NO (1) NO337466B1 (en)
PL (1) PL1755942T3 (en)
PT (1) PT1755942E (en)
RU (1) RU2372246C2 (en)
SI (1) SI1755942T1 (en)
WO (1) WO2005110840A1 (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070027905A1 (en) * 2005-07-29 2007-02-01 Microsoft Corporation Intelligent SQL generation for persistent object retrieval
FR2902403B1 (en) * 2006-06-20 2008-09-19 Aker Yards Sa SHIP ELECTRICAL PROPULSION SYSTEM AND SHIP THUS EQUIPPED
FR2921632A1 (en) 2007-10-01 2009-04-03 Converteam Sas Soc Par Actions PLATFORM THRUSTER FOR SHIP
GB0800075D0 (en) * 2008-01-04 2008-02-13 Rolls Royce Plc Propulsor
SE531903C2 (en) * 2008-01-11 2009-09-08 Itt Mfg Enterprises Inc Stirrer composition and method of flow control in a stirrer composition
JP4531828B2 (en) * 2008-06-20 2010-08-25 川崎重工業株式会社 Ship thruster with duct
US20110109090A1 (en) * 2009-11-09 2011-05-12 Bolin William D Fin-Ring Propeller For A Water Current Power Generation System
CH699473A2 (en) * 2008-08-27 2010-03-15 Drs Drag Reduction Systems Sa Device for channeling the water flow around the hub of a ship's propeller.
AT507419B1 (en) 2008-11-17 2010-05-15 Marinno Maritime Innovations CROSS-RADIATOR FOR A WATER VEHICLE
SE533520C2 (en) * 2009-02-13 2010-10-12 Echandia Marine Sweden Ab Propulsion device for a surface watercraft
US8042483B2 (en) * 2009-09-18 2011-10-25 The United States Of America As Represented By The Secretary Of The Navy Apparatus for control of stator wakes
FR2951433A1 (en) * 2009-10-20 2011-04-22 Ship Studio Pre-rotation device for boat i.e. trawl boat, has two parts fixed to stern post on sides of longitudinal plane of boat passing through center of propeller, and blades fixed to parts, where end of each blade is fixed on nozzle leading edge
KR101457910B1 (en) * 2013-01-17 2014-11-04 삼성중공업 주식회사 Ship having slipstream fixed wing
US20140273673A1 (en) * 2013-03-18 2014-09-18 Ship And Ocean Industries R&D Center All-speed-range propeller having stern fins
EP2808247B1 (en) * 2013-05-29 2019-01-02 ABB Schweiz AG A propulsion unit with electric motor, whereby the stator is arranged in a ring around the propeller
EP2824028B2 (en) * 2013-07-09 2021-10-27 ABB Oy Ship's propulsion unit
KR101524429B1 (en) * 2013-09-11 2015-05-28 삼성중공업 주식회사 Ship
DK2851280T3 (en) 2013-09-24 2017-09-25 Rolls-Royce Marine As Modular azimuth thruster
CN103661801B (en) * 2013-11-29 2016-03-09 大连船舶重工集团有限公司 The installation ancillary system of ocean engineering underwater propeller and installation method
EP2944560A1 (en) 2014-05-14 2015-11-18 ABB Oy Propulsion unit
DE102015012485A1 (en) 2015-09-24 2017-03-30 Hochschule Flensburg Method and device for transporting persons and / or goods on the water
ITUB20154612A1 (en) * 2015-10-13 2017-04-13 Calzoni Srl AZIMUTAL NAVAL PROPULSION SYSTEM
CN105818951B (en) * 2016-01-12 2019-09-24 中国人民解放军海军工程大学 Novel preposition skew back guide-vane pump-jet propulsor and its design method
EP3458355B1 (en) * 2016-05-18 2023-07-05 ABB Oy A method and a control arrangement for controlling vibrations of a propulsion unit of a vessel
WO2018193149A1 (en) * 2017-04-18 2018-10-25 Abb Oy A propulsion unit
FR3068330B1 (en) * 2017-06-29 2020-12-04 Maarten Mostert HYDRAULIC PROPULSION DEVICE FORMING PROPELLER PUMP AND SHIP EQUIPPED WITH SUCH A DEVICE
CN109301973B (en) * 2017-07-24 2021-07-30 西门子公司 Motor and ship propulsion device
CN107472491B (en) * 2017-08-07 2023-06-02 西安工业大学 Propelling component for underwater robot
CN107662693A (en) * 2017-09-06 2018-02-06 哈尔滨工程大学 A kind of PODDED PROPULSOR with conduit
CN108313249A (en) * 2017-12-20 2018-07-24 中国船舶重工集团公司第七0研究所 Pump-jet propulsor lightweight combined-stator conduit and its forming method
CN110789698A (en) * 2018-08-01 2020-02-14 西门子股份公司 Cavitation monitoring system and pod drive
EP3670316A1 (en) * 2018-12-17 2020-06-24 Elomatic Oy Grid for a tunnel thruster
CN111114728A (en) * 2020-01-20 2020-05-08 江苏科技大学 Ship propeller back-saving vortex-eliminating boosting impeller device
US11485457B1 (en) * 2021-06-14 2022-11-01 Kai Concepts, LLC Hydrojet propulsion system
IT202100017762A1 (en) * 2021-07-06 2023-01-06 Nablawave S R L PROPULSION DEVICE FOR BOATS

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US803671A (en) * 1903-01-29 1905-11-07 Charles G Curtis Marine propeller.
US3044556A (en) * 1958-05-09 1962-07-17 Clipper Propeller Inc Screw propellers
US5597245A (en) * 1962-08-13 1997-01-28 The United States Of America As Represented By The Secretary Of The Navy Cavitation suppressing ducted propeller system
US3179081A (en) * 1963-11-08 1965-04-20 Ingenieur Buro Kort Combined propulsion and steering apparatus for vessels
US3389558A (en) * 1966-12-15 1968-06-25 Hall Marine Corp Jet propulsion apparatus
CA1176919A (en) 1980-10-24 1984-10-30 Eric R. May Propulsion of ships
US4600394A (en) * 1983-05-10 1986-07-15 Dritz Theodore D Marine propulsion unit
US4637801A (en) * 1984-07-12 1987-01-20 William H. Flood Thrust enhancing propeller duct assembly for water craft
WO1989012572A1 (en) * 1988-06-24 1989-12-28 Hiroshi Sugano Propulsion efficiency improving apparatus for ships
US5101128A (en) * 1990-08-23 1992-03-31 Westinghouse Electric Corp. System and method for cooling a submersible electric propulsor
EP0686115A1 (en) * 1993-03-02 1995-12-13 BRANDT, Lennart Propulsion arrangement for a marine vessel
SE509770C2 (en) * 1995-11-28 1999-03-08 Volvo Penta Ab Propeller
JPH1081299A (en) * 1996-09-11 1998-03-31 Kawasaki Heavy Ind Ltd Marine rotary thruster
FI107040B (en) * 1997-07-31 2001-05-31 Kvaerner Masa Yards Oy Method of operation of the work vessel
RU2126762C1 (en) * 1997-09-15 1999-02-27 Центральный научно-исследовательский институт им.акад.А.Н.Крылова Shipboard screw-rudder
US6059618A (en) * 1998-12-09 2000-05-09 The United States Of America As Represented By The Secretary Of The Navy Ventilated outboard motor-mounted pumpjet assembly
US20020127925A1 (en) * 1999-08-16 2002-09-12 Burg Donald E. Augmented thrust waterjet propulsor
US6244912B1 (en) * 2000-03-20 2001-06-12 Electric Boat Corporation Strut-mounted marine propulsion unit
JP4301748B2 (en) 2001-06-29 2009-07-22 三菱重工業株式会社 Ship propulsion device
DE10158320A1 (en) * 2001-11-28 2003-06-18 Siemens Ag Drive system for ship has pod outside hull with central body held on flow straightening vanes and containing electric motor driving ducted propeller to produce water jet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005110840A1 *

Also Published As

Publication number Publication date
DE602005002143D1 (en) 2007-10-04
CN1960909A (en) 2007-05-09
NO337466B1 (en) 2016-04-18
KR20070005015A (en) 2007-01-09
ES2292138T3 (en) 2008-03-01
RU2006141597A (en) 2008-06-10
PT1755942E (en) 2007-11-06
ATE370884T1 (en) 2007-09-15
US8435089B2 (en) 2013-05-07
JP4753936B2 (en) 2011-08-24
CN100471755C (en) 2009-03-25
WO2005110840A1 (en) 2005-11-24
NO20065467L (en) 2007-01-30
DK1755942T3 (en) 2007-12-17
RU2372246C2 (en) 2009-11-10
FR2869586B1 (en) 2006-06-16
EP1755942B1 (en) 2007-08-22
SI1755942T1 (en) 2008-04-30
DE602005002143T2 (en) 2008-05-15
KR101205683B1 (en) 2012-11-27
CY1107016T1 (en) 2012-09-26
JP2007535440A (en) 2007-12-06
PL1755942T3 (en) 2008-02-29
HRP20070491T3 (en) 2007-12-31
US20080194155A1 (en) 2008-08-14
FR2869586A1 (en) 2005-11-04

Similar Documents

Publication Publication Date Title
EP1755942B1 (en) Marine engine assembly including a pod mountable under a ship's hull
EP1870330B1 (en) Electric propulsion system for a ship and ship equipped with same
FR2927605A1 (en) HYDRAULIC PROPELLER WITH IMPROVED PERIPHERAL ROTOR.
CA3117485A1 (en) Turbomachine with unducted twin propellers
FR3049575B1 (en) PROPULSIVE DEVICE WITH ACTIVE PORTABILITY
FR3102139A1 (en) HYDRAULIC PROPULSION DEVICE FORMING PROPELLER PUMP AND SHIP EQUIPPED WITH SUCH A DEVICE
EP1826117B1 (en) Electric propulsion system for a ship with three transmission shafts
EP1401705B1 (en) Ship pod-mounted hydrojet propeller unit driven by a hollow electric motor
EP4021793A1 (en) Electric drive system for craft, such as a surfboard or paddleboard, with cooling means
FR2619352A1 (en) PROPELLANT PROPELLER HUB HAT WITH FINS
FR2869068A1 (en) Turbomachine for use in e.g. wind turbine, has fluid deflecting unit with deflector that is delimited by lateral deflecting surface presenting concavity turned towards upstream of fluid flow
EP2669171B1 (en) Vessel provided with at least one propeller shaft with a propeller screw pump
EP0265335A1 (en) Propellers, in particular for aircraft propulsion units
FR2589423A1 (en) Propeller operating in a liquid medium
WO2012140227A1 (en) Underwater vehicle comprising an electrolytically activated electrochemical battery
FR3070368B1 (en) VARIABLE TIMING PROPELLER
FR3026716A1 (en) INTEGRATED HYDROGENERATOR GOVERNAIL AND VESSEL COMPRISING SUCH A GOUVERNAIL
FR2485106A1 (en) Small diameter wind turbine - uses stator which channels wind onto rotor blades tangentially to rotor to compensate loss of efficiency
EP2729356B1 (en) Propeller comprising a plate joining its hub and each of its blades
CH717097B1 (en) Hotel cruise ship for use in a lake environment.
EP2697848A1 (en) Submersible including an electrochemical battery
WO2018229352A1 (en) High stability foil watercraft
FR2639604A1 (en) Drive device for propelling a sailing boat equipped with a keel, in particular a multi-hulled racing craft
BE386875A (en)
FR2586645A1 (en) Propulsion device using conditioned inertia of the fluid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: HR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAX Requested extension states of the european patent have changed

Extension state: HR

Payment date: 20061122

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: HR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602005002143

Country of ref document: DE

Date of ref document: 20071004

Kind code of ref document: P

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20070491

Country of ref document: HR

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENTANWAELTE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20071008

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20071024

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20070491

Country of ref document: HR

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20070403316

Country of ref document: GR

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2292138

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E002608

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070822

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070822

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: ALSTOM

Free format text: ALSTOM#3, AVENUE ANDRE MALRAUX,#92300 LEVALLOIS-PERRET (FR) -TRANSFER TO- ALSTOM#3, AVENUE ANDRE MALRAUX,#92300 LEVALLOIS-PERRET (FR)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005002143

Country of ref document: DE

Representative=s name: DE ANNA, PIER LUIGI, DR.-ING., DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20070491

Country of ref document: HR

Payment date: 20190408

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005002143

Country of ref document: DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20070491

Country of ref document: HR

Payment date: 20200415

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LT

Payment date: 20210322

Year of fee payment: 17

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20070491

Country of ref document: HR

Payment date: 20210419

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20210420

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CY

Payment date: 20210421

Year of fee payment: 17

Ref country code: DE

Payment date: 20210420

Year of fee payment: 17

Ref country code: FR

Payment date: 20210423

Year of fee payment: 17

Ref country code: FI

Payment date: 20210421

Year of fee payment: 17

Ref country code: RO

Payment date: 20210415

Year of fee payment: 17

Ref country code: SK

Payment date: 20210423

Year of fee payment: 17

Ref country code: PT

Payment date: 20210423

Year of fee payment: 17

Ref country code: MC

Payment date: 20210422

Year of fee payment: 17

Ref country code: IT

Payment date: 20210427

Year of fee payment: 17

Ref country code: GR

Payment date: 20210413

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20210421

Year of fee payment: 17

Ref country code: BE

Payment date: 20210420

Year of fee payment: 17

Ref country code: TR

Payment date: 20210422

Year of fee payment: 17

Ref country code: SI

Payment date: 20210416

Year of fee payment: 17

Ref country code: IE

Payment date: 20210427

Year of fee payment: 17

Ref country code: PL

Payment date: 20210416

Year of fee payment: 17

Ref country code: SE

Payment date: 20210420

Year of fee payment: 17

Ref country code: HU

Payment date: 20210516

Year of fee payment: 17

Ref country code: DK

Payment date: 20210422

Year of fee payment: 17

Ref country code: ES

Payment date: 20210621

Year of fee payment: 17

Ref country code: CH

Payment date: 20210420

Year of fee payment: 17

Ref country code: GB

Payment date: 20210421

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IS

Payment date: 20210412

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20210420

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005002143

Country of ref document: DE

REG Reference to a national code

Ref country code: HR

Ref legal event code: PBON

Ref document number: P20070491

Country of ref document: HR

Effective date: 20220426

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20220430

REG Reference to a national code

Ref country code: LT

Ref legal event code: MM4D

Effective date: 20220426

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20220501

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 2796

Country of ref document: SK

Effective date: 20220426

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 370884

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220426

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220426

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220426

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220427

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220426

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221026

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220501

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220502

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220426

Ref country code: LT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220426

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220427

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220426

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220426

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221103

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220426

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220426

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20221213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220427

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221107

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220426

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220426