EP1719135A1 - Magnetic memory with a magnetic tunnel junction written in a thermally assisted manner, and method for writing the same - Google Patents

Magnetic memory with a magnetic tunnel junction written in a thermally assisted manner, and method for writing the same

Info

Publication number
EP1719135A1
EP1719135A1 EP05728082A EP05728082A EP1719135A1 EP 1719135 A1 EP1719135 A1 EP 1719135A1 EP 05728082 A EP05728082 A EP 05728082A EP 05728082 A EP05728082 A EP 05728082A EP 1719135 A1 EP1719135 A1 EP 1719135A1
Authority
EP
European Patent Office
Prior art keywords
magnetic
layer
memory
writing
memory point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP05728082A
Other languages
German (de)
French (fr)
Inventor
Jean-Pierre Nozieres
Bernard Dieny
Olivier Redon
Ricardo Sousa
Ioan-Lucian Prejbeanu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Centre National de la Recherche Scientifique CNRS
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Commissariat a lEnergie Atomique CEA filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1719135A1 publication Critical patent/EP1719135A1/en
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5607Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using magnetic storage elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details

Definitions

  • the present invention relates to the field of magnetic memories, and in particular non-volatile random access magnetic memories allowing the storage and the reading of data in electronic systems. More specifically, it relates to magnetic random access memories, called M-RAM (Magnetic Random Access Memory), consisting of a magnetic tunnel junction. The invention also relates to a thermomagnetic writing process within such a memory. .
  • M-RAM Magnetic Random Access Memory
  • M-RAM magnetic memories have seen a renewed interest with the development of magnetic tunnel junction (MTJ, for "Magnetic Tunnel Junction”) having a strong magneto-resistance at room temperature.
  • MTJ Magnetic Tunnel Junction
  • These magnetic random access memories have many advantages: - speed (a few nanoseconds of writing and reading time), 0 - non-volatility, absence of fatigue in reading and writing, - insensitivity to ionizing radiation.
  • the memory point consisted of an element known as "with giant magneto-resistance", consisting of a stack of several metallic layers alternately magnetic and non-magnetic.
  • This type of structure can, for example, be found in documents US-A-4,949,039 and US-A-5,159,513 for the basic structure, and in document US-A-5,343,422 for the creation of a RAM memory from these basic structures.5
  • This technology by its architecture, allows the realization of non-volatile memories with a simple technology, but of limited capacity. Indeed, the fact that the memory elements are connected in series along each line limits the possibility of integration, since the signal is increasingly weak when the number of elements increases.
  • magnetic tunnel junction MTJ
  • These magnetic memories with magnetic tunnel junction have, for example, been described in document US-A-5 640343. In their simplest forms, they are composed of two magnetic layers of different coercivity, separated by a thin insulating layer.
  • each memory element (10) consists of the association of a CMOS transistor (12) and a junction MTJ tunnel (11).
  • Said tunnel junction (11) comprises at least one magnetic layer (20) called “storage layer”, a thin insulating layer (21) and a magnetic layer (22) called “reference layer”.
  • the two magnetic layers are made from 3d metals (Fe, Co, Ni) and their alloys, and the insulating layer is traditionally made of alumina (Al 2 O 3 ).
  • the magnetic layer (22) is coupled to an anti-ferromagnetic layer (23), the function of which is to trap the layer (22), so that its magnetization does not tilt, or tilts reversibly under the effect of '' an external magnetic field.
  • the reference layer (22) can itself be made up of several layers, as for example described in the document TJS-A-5,583,725, in order to form a synthetic anti-ferromagnetic layer.
  • the junction (11) is placed between a switching transistor (12) and a current supply line (14) (Word Line) forming an upper conductive line.
  • a switching transistor (12) and a current supply line (14) (Word Line) forming an upper conductive line.
  • An electric current passing through it produces a first magnetic field.
  • a lower conductive line (15) (Bit Line), generally disposed orthogonal to the line (14) (Word Line) allows, when an electric current flows there, to produce a second magnetic field.
  • the transistor (12) In the write mode, the transistor (12) is blocked, and no current therefore flows through the transistor. Current pulses are circulated in the current supply line (14) and in the line (15).
  • the junction (11) is therefore subject to two orthogonal magnetic fields. One is applied along the difficult magnetization axis of the storage layer, also called “free layer” (22), in order to reduce its reversal field, while the other is applied along its axis of easy magnetization, in order to provoke the reversal of the magnetization and therefore the writing of the memory point.
  • the transistor (12) In the read mode, the transistor (12) is placed in saturated mode, that is to say that the electric current passing through this transistor is maximum, by sending a positive current pulse in the gate of said transistor.
  • the electric current sent in the line (14) passes only through the memory point, the transistor of which is placed in saturated mode. This electric current makes it possible to measure the resistance of the junction of this memory point.
  • By comparison with a reference memory point it is then known whether the magnetization of the storage layer (22) is parallel or anti-parallel to that of the reference layer (20). The state of the memory point considered (“0” or “1”) can thus be determined.
  • the magnetic field pulses generated by the two lines (14, 15) allow, as will be understood, the switching of the magnetization of the storage layer (20) during the writing process.
  • These magnetic field pulses are produced by sending short current pulses (typically 2-5 nanoseconds) and low intensity (typically less than 10 milliamps) along the current lines (14, 15).
  • the intensity of these pulses and their synchronization are adjusted so that only the magnetization of the memory point located at the intersection of these two current lines (selected point) can switch under the effect of the magnetic field generated by the two conductors.
  • the other memory points, located on the same line or on the same column (semi-selected points) are, in fact, only subject to the magnetic field of one of the conductors (14, 15), and consequently do not return.
  • the writing being constituted by an external magnetic field, it is subject to the value of the individual reversal field of each memory point. If the function of distribution of the turning fields for all the memory points is large (indeed, it is not uniform due to manufacturing constraints and intrinsic statistical fluctuations), it is necessary that the magnetic field on the memory point selected is greater than the highest reversal field of the distribution, at the risk of accidentally reversing certain memory points located on the row or on the corresponding column, whose reversal field, located in the lower part of the distribution, is weaker than the magnetic field generated by the row or column alone.
  • the aspect ratio of the memory point can be reduced by using the intrinsic anisotropy of the material constituting the storage layer (known to those skilled in the art under the name of magnetocrystalline anisotropy) to define the two stable states of the system.
  • the temporal or thermal stability of the system is however no longer guaranteed because it is the same physical parameter that governs the writing process and thermal stability: if the magnetocrystalline anisotropy is important, the system is stable (in time and in temperature) and the two states of the memory point are well defined.
  • the magnetic field required to reverse the magnetization of said memory point from one stable state to another (the writing field) is important, therefore the power consumed during the writing process is large.
  • a current pulse is sent through the memory point during the writing process, by opening the transistor (12), in order to induce a significant heating of said memory point.
  • the heating of the memory point produces a lowering of the required magnetic writing field.
  • current pulses are sent in the lines (14, 15) to create two orthogonal magnetic fields, allowing the switching of the magnetization of the storage layer of the considered junction.
  • This writing thermally assisted, improves writing selection, since only the selected memory point is heated, the other half-selected memory points on the same line or on the same column remaining at room temperature.
  • the improvement described in this document aims to increase the selectivity for writing by heating the addressed junction while keeping the basic concept of writing by sending two pulses of orthogonal magnetic fields.
  • the objective of the present invention is to further optimize the advantages previously mentioned by lowering the field of reversal of the magnetization of the memory point by the selection of a particular geometry of said memory point, and in particular by implementing a circular geometry. Indeed, it has been possible to show, and this is the heart of the present invention, that within the framework of such a circular geometry of the memory point, the shape anisotropy of the memory point which is responsible for an increase of the magnetization reversal field is zero. Consequently, the electrical power required to write a memory point can be considerably reduced in the thermally assisted writing approach. This result constitutes a decisive advantage, in particular for portable applications and for applications in technology on SOI (Silicon on Insulator).
  • the invention relates to a magnetic memory with thermally assisted writing, each memory point of which consists of a magnetic tunnel junction, and the section of which, parallel to the plane of the layers making up the tunnel junction, is circular or substantially circular, said tunnel junction comprising at least: - a magnetic reference layer, called “trapped layer”, whose magnetization is of fixed direction, a magnetic storage layer, called “free layer”, whose magnetization direction is variable, - a layer insulating, interposed between the free layer and the trapped layer, and in which the storage layer is formed of at least one soft magnetic layer, that is to say of reduced magnetic anisotropy, preferably less than 10 Oersted, and typically between 1 and 3 Oersted, and a trapping layer, the two layers being magnetically coupled by contact, and in which the temperature of memory operation in reading or at rest is chosen below the blocking temperature of the free and trapped layers respectively, that is to say the temperature at which the magnetic trapping disappears.
  • a magnetic reference layer called "trapped layer”
  • free layer whose magnetization direction is
  • the soft magnetic layer of the storage layer consists of an alloy based on nickel, cobalt and iron and the trapping layer consists of an alloy based on iron and cobalt, or an anti-ferromagnetic alloy based on manganese, or amorphous alloys based on rare earth and transition metal.
  • the reference layer of the trapped layer preferably consists of an artificial anti-ferromagnetic synthetic layer, consisting of two ferro-magnetic layers of alloys based on nickel, cobalt and iron, separated by a non-magnetic layer, so that the magnetizations of the two ferromagnetic layers are anti-parallel.
  • the storage and reference layers may further comprise near the interface with the tunnel barrier an additional layer of cobalt or of alloy rich in cobalt and intended to increase the polarization of tunnel electrons and therefore the magnitude of magnetoresistance.
  • the memory points are organized in a network, each memory point being connected at its top to a conductive line and at its base, to a selection transistor, the writing being carried out at a memory point considered by the simultaneous sending of electric current pulses in said conductor and a heating current by the opening of said transistor.
  • the control transistor and its corresponding control line are placed under the memory point considered.
  • FIG. 1 is a schematic representation of the architecture of a magnetic memory of the prior art, the memory points of which consist of a magnetic tunnel junction.
  • FIG. 2 also already described, is a schematic representation of the shapes of the memory points of the prior art.
  • FIG. 3 is a schematic representation illustrating the state of magnetization of the constituent layers of the memory points, respectively in state "1" and in state "0".
  • FIG. 4A is a schematic representation of a memory point according to a first embodiment of the invention, of which FIG. 4B is a schematic view from above.
  • FIG. 5A is a schematic representation of a memory point according to a variant of the invention, of which FIG. 5B is a schematic view from above.
  • FIG. 5A is a schematic representation of a memory point according to a variant of the invention, of which FIG. 5B is a schematic view from above.
  • FIG. 6A is a schematic representation of another variant of a memory point in accordance with the present invention, of which FIG. 6B is a schematic view from above.
  • FIG. 3 shows the orientations of the magnetization of the various layers constituting a memory point, in particular of the prior art.
  • the storage layer (30) consists of a stack comprising at least one ferro-magnetic layer (32) and an anti-ferromagnetic layer (31). These two layers are deposited so that a magnetic exchange coupling is established between the two layers.
  • the stack of the complete memory point also comprises at least one insulating layer (33) and a reference layer (34), advantageously associated with a trapping layer (35).
  • This architecture is described under the name of trapped storage layer. The advantages provided by this architecture are multiple: - limit of stability of memory points pushed back, - insensitivity to external magnetic fields, - possibility of carrying out multi-level storage.
  • the memory point using a trapped storage layer is no longer elongated, but circular, and more precisely, its cross section parallel to the plane of the constituent layers is circular.
  • the memory point has a cylindrical or conical profile, and therefore a symmetry of revolution.
  • the memory point can also be of non-circular geometry as long as its aspect ratio remains less than 1.2 (20% difference between the length and the width). In doing so, and as already indicated above, the shape anisotropy of the memory point is minimized, significantly reducing the field of reversal of the magnetization of the memory point during the writing process, and consequently, decreasing the power. electrical required.
  • An example of the dependence of the writing field for the different form factors is given in figure 7.
  • the storage layer (30) or free layer is formed of a soft material, that is to say of which the inversion field (coercive field) is very small.
  • this material is an alloy containing nickel, iron or cobalt, in particular permalloy Ni 8 oFe 2 o, NiFeCo or FeCoB.
  • the trapping layers (31) and (35) are made of an anti-ferromagnetic material and in particular of an alloy based on manganese of the PtsoMnso, t 2 oMn8o or NisoMnso type. It is important to specify that the thicknesses, the chemical nature or the microstructure of the trapping layers (31) and (35) differ so that their blocking temperatures (temperature at which the exchange coupling with the adjacent ferromagnetic layer, respectively the storage layer (30) and the reference layer (34)) are well differentiated.
  • the blocking temperature of the layer (31) must be lower than that of the layer (35) in order to allow, during writing, to unlock the magnetization of the storage layer (30) to be written, without altering the direction of the magnetization of the reference layer (34) of the same memory point.
  • the reference layer (34) is a synthetic structure consisting of a synthetic anti-ferromagnetic layer and two ferromagnetic layers of alloys based on nickel, cobalt and iron, separated by a non-magnetic layer, such so that the magnetizations of the two ferromagnetic layers are coupled with anti-parallel orientations of their magnetizations, in order to minimize the magneto-static field acting on the storage layer (30).
  • the storage and reference layers may further comprise near the interface with the tunnel barrier an additional layer of cobalt or of alloy rich in cobalt, and intended to increase the polarization of the tunnel electrons and therefore the amplitude of magnetoresistance.
  • the memory point comprises the actual magnetic tunnel junction, of cylindrical shape as already mentioned, an addressing transistor (46) provided with its control line (47) and a conductor (48), making it possible to generate the magnetic field in parallel to the easy axis of the magnetization of the storage layer (41).
  • the magnetization of the magnetic layers is substantially in the plane of the layers.
  • this structure with a single tunnel barrier could advantageously be replaced by a structure with a double tunnel barrier.
  • the storage layer (41) consists of a three-layer antiferromagnetic (for example Ir 2 oMn 8 o) sandwiched between two ferromagnetic layers, simple or complex (for example NisoFe 0 / Co 9 oFe ⁇ o).
  • This storage “three-layer” is inserted between two tunnel barriers, on the opposite side of which are located the two reference layers similar to those described in the state of the art.
  • the operation of these structures can be described as follows.
  • the blocking temperatures of the storage and reference layers must be higher than the operating temperature of the memory excluding heating, and even significantly higher than this operating temperature, as soon as one wishes to store the information in a stable manner.
  • the blocking temperature of the storage layer must be lower than that of the reference layer.
  • the transistor (46) associated with the memory point (40) is switched to blocked mode by a voltage pulse in the line (47).
  • a voltage pulse is applied to the memory point (40) via the line (48), so that an electric current flows through the tunnel junction (40) via the transistor (46).
  • the voltage level is defined so that the power density produced at the junction allows the temperature of the tunnel junction (40) to rise to a temperature higher than the temperature blocking the anti-ferromagnetic layer (42), and lower than the blocking temperature of the trapping layer (45). At this temperature, the magnetization of the storage layer (41) is no longer trapped by the layer (42) and can therefore turn over under the effect of a writing magnetic field.
  • the current pulse in the excitation conductor (48), which no longer passes through the tunnel junction (40), is maintained with a sign and an amplitude such that the magnetic field produced allows the magnetization to reverse. the storage layer (41) in the desired direction.
  • the synchronization and the duration of the pulse must be adjusted so that the magnetization of the storage layer (41) is oriented in the desired direction during the cooling of the memory point (40), up to a point temperature. memory lower than the blocking temperature of the antiferromagnetic layer (42). ⁇ is then possible to cut the current in the line (48).
  • the memory point (40) finishes falling back to the operating temperature without writing and the magnetization of the storage layer (41) stops freezing in the desired direction.
  • the memory point is then written.
  • the thermal stability of the memory is ensured by the shape anisotropy of the memory point, directly related to the aspect ratio between length and width of the memory point.
  • the energy of the barrier per unit of volume is then written as:
  • E fc * + ⁇ 2
  • the first term (K) is the magneto-crystalline anisotropy and the second term is the shape anisotropy.
  • the second term now corresponds to the exchange energy between the storage layer (41) and the trapping layer (42).
  • the energy of the barrier is adapted by the choice of materials (42) (through the exchange constant J ex ) and (41) (through the thickness t and the magnetization Ms ) to be sufficient to allow thermal and temporal stability
  • the current flowing through the memory point causes a rise in temperature up to or above the blocking temperature T B of the layer (42) , so that the storage layer (41) is removed.
  • the conductive line used to generate the heating pulse can be distinct from the conductive line used to generate the magnetic field pulse, this in order to optimize the respective current densities for the two operations.
  • this additional current line (69), implemented for the generation of the magnetic field pulse, and electrically isolated from the memory point (60) and from the conductor (67), is placed above the memory point (60), so as to allow the superimposition of the control transistor (66) and its control line (67) with the memory point (60), thus preserving the compact memory.
  • the current pulses in lines (68) and (69) can be controlled independently, both from the point of view of the amplitude of the current, the duration of the current draw and their synchronization. Furthermore, by using a storage layer trapped by an anti-ferromagnetic layer, this writing technique allows the realization of more than two magnetic states in the memory point (40). For this, it is no longer necessary to have a single conductive line to generate the writing field, but two perpendicular lines as shown in FIG. 5A, the lines (48) and (49). The combination of these two perpendicular fields makes it possible to create any direction of magnetic field in the plane of the sample.
  • This principle consists in passing a tunnel current through the junction. If the electrons pass through the tunnel from the reference layer to the storage layer, i.e. if the current flows from the storage layer to the reference layer, the magnetization of the storage layer will s '' orient parallel to the direction of the injected spins, provided that the current is sufficiently intense, which again assumes that the barrier has low electrical resistance. If, on the contrary, the electrons pass by tunnel effect from the storage layer towards the reference layer, the magnetization of the storage layer will be oriented anti-parallel to the magnetization of the reference layer.
  • the reading process is identical to that described in the prior art.
  • the resistance of the memory point (40) is read by a current of low amplitude controlled by the opening of the control transistor (46).
  • the resistance is generally compared to that of a reference cell not shown in FIGS. 4 to 6.
  • the reversal field of the storage layer (41) can be extremely weak, since it is no longer defined except by intrinsic properties of said storage layer (41),
  • the write selectivity is preserved, since the other memory points located on the same row or the same column not being heated during the writing process, the corresponding storage layers (41) of said memory points not selected remain coupled to the corresponding anti-ferromagnetic layers (42), therefore being insensitive to the applied magnetic field.
  • multi-level storage is facilitated since the magnetostatic energy is the same in all directions of space. Consequently, the writing field is identical whatever the direction given to the magnetization with respect to the reference direction.
  • the heating can be obtained by an external heating element not shown in FIGS. 4 and 5. This heating element can be a layer of high electrical resistivity situated above or below layers (42 or 45) respectively.
  • the reference layer (44) is of the synthetic anti-ferromagnetic type in order to improve the discrimination in writing by reducing the magneto-static field.
  • the storage layer of the memory point can consist of one or more ferro-magnetic layers of the amorphous fenimagnetic alloy (AAF) type.
  • AAF amorphous fenimagnetic alloy
  • the temperature reached during the writing process is no longer a blocking temperature of the antiferromagnetic layer (42), but the Curie temperature of the trapping layer (42) produced in AAF.
  • Such layers in AAF are precisely cobalt alloys and rare earth, such as samarium (Sm), terbium (Tb) or, but not limited to, gadolinium (Gd).
  • the addressing technique according to the invention allows simultaneous writing of several memory points by selecting the simultaneous heating of several memory points. This approach increases the overall writing speed of the memory.

Abstract

The invention relates to a magnetic memory written in a thermally assisted manner, each memory point (40) consisting of a magnetic tunnel junction, and the cross-section of the memory parallel to the plane of the layers forming the tunnel junction being circular or essentially circular. Said tunnel junction comprises at least one trapped layer (44) with a fixed magnetisation direction, a free layer (42) with a variable magnetisation direction, and an insulating layer (43) arranged between the free layer (42) and the trapped layer (44). According to the invention, the free layer (42) is formed from at least one soft magnetic layer and a trapped layer (41), said two layers being magnetically coupled by contact, and the operating temperature of the reading memory or resting memory is selected in such a way that it is lower than the blocking temperature of the respectively free and trapped layers.

Description

MEMOIRE MAGNETIQUE A JONCTION TUNNEL MAGNETIQUE A ECRITURE ASSISTEE THERMIQUΞMENT ET PROCEDE POUR SON ECRITUREMAGNETIC MEMORY WITH MAGNETIC TUNNEL JUNCTION WITH THERMALLY ASSISTED WRITING AND METHOD FOR WRITING SAME
Domaine technique La présente invention se rattache au domaine des mémoires magnétiques, et notamment des mémoires magnétiques à accès aléatoire non volatiles permettant le stockage et la lecture de données dans des systèmes électroniques. Plus précisément, elle concerne les mémoires à accès aléatoire magnétique, appelées M-RAM (Magnetic Random Access Memory), constituées d'une jonction tunnel magnétique.0 L'invention concerne également un procédé d'écriture thermomagnétique au sein d'une telle mémoire.Technical Field The present invention relates to the field of magnetic memories, and in particular non-volatile random access magnetic memories allowing the storage and the reading of data in electronic systems. More specifically, it relates to magnetic random access memories, called M-RAM (Magnetic Random Access Memory), consisting of a magnetic tunnel junction. The invention also relates to a thermomagnetic writing process within such a memory. .
Etat antérieur de la technique5 Les mémoires magnétiques M-RAM ont connu un regain d'intérêt avec la mise au point de jonction tunnel magnétique (MTJ, pour "Magnetic Tunnel Junction") présentant une forte magnéto-résistance à température ambiante. Ces mémoires magnétiques à accès aléatoire présentent de nombreux atouts : - rapidité (quelques nanosecondes de durée d'écriture et de lecture),0 - non volatilité, absence de fatigue à la lecture et à l'écriture, - insensibilité aux radiations ionisantes.PRIOR STATE OF THE ART5 M-RAM magnetic memories have seen a renewed interest with the development of magnetic tunnel junction (MTJ, for "Magnetic Tunnel Junction") having a strong magneto-resistance at room temperature. These magnetic random access memories have many advantages: - speed (a few nanoseconds of writing and reading time), 0 - non-volatility, absence of fatigue in reading and writing, - insensitivity to ionizing radiation.
Ce faisant, elles sont susceptibles de remplacer les mémoires de technologie5 plus traditionnelle, basées sur l'état de charge d'une capacité (DRAM, SRAM, FLASH) et ainsi devenir une mémoire universelle.In doing so, they are likely to replace the memories of more traditional technology5, based on the state of charge of a capacity (DRAM, SRAM, FLASH) and thus become a universal memory.
Dans les premières mémoires magnétiques réalisées, le point mémoire était constitué d'un élément dit "à magnéto-résistance géante", constitué d'un empilement0 de plusieurs couches métalliques alternativement magnétiques et non magnétiques. Une description détaillée de ce type de structure peut, par exemple, être trouvée dans les documents US-A-4 949 039 et US-A-5 159513 pour la structure de base, et dans le document US-A-5 343 422 pour la réalisation d'une mémoire RAM à partir de ces structures de base.5 Cette technologie, de par son architecture, permet la réalisation de mémoires non volatiles avec une technologie simple, mais de capacité limitée. En effet, le fait que les éléments mémoires soient connectés en série le long de chaque ligne limite la possibilité d'intégration, puisque le signal est de plus en plus faible lorsque le nombre d'éléments augmente.In the first magnetic memories produced, the memory point consisted of an element known as "with giant magneto-resistance", consisting of a stack of several metallic layers alternately magnetic and non-magnetic. A detailed description of this type of structure can, for example, be found in documents US-A-4,949,039 and US-A-5,159,513 for the basic structure, and in document US-A-5,343,422 for the creation of a RAM memory from these basic structures.5 This technology, by its architecture, allows the realization of non-volatile memories with a simple technology, but of limited capacity. Indeed, the fact that the memory elements are connected in series along each line limits the possibility of integration, since the signal is increasingly weak when the number of elements increases.
La mise au point des points mémoire à jonction tunnel magnétique (MTJ) a permis une augmentation significative des performances et du mode de fonctionnement de ces mémoires. Ces mémoires magnétiques à jonction tunnel magnétique ont, par exemple, été décrites dans le document US-A-5 640343. Dans leurs formes les plus simples, elles sont composées de deux couches magnétiques de coercitivité différente, séparées par une couche mince isolante.The development of memory points with magnetic tunnel junction (MTJ) has enabled a significant increase in the performance and operating mode of these memories. These magnetic memories with magnetic tunnel junction have, for example, been described in document US-A-5 640343. In their simplest forms, they are composed of two magnetic layers of different coercivity, separated by a thin insulating layer.
Ces MRAM à jonction tunnel magnétique ont fait l'objet de perfectionnements tels que par exemple décrits dans le document US-A-6021 065 et dans la publication "Journal of Applied Physics" - Vol. 81, 1997, page 3758 et représenté au sein de la figure 1. Ainsi que l'on peut l'observer, chaque élément mémoire (10) est constitué de l'association d'un transistor CMOS (12) et d'une jonction tunnel MTJ (11). Ladite jonction tunnel (11) comporte au moins une couche magnétique (20) dite "couche de stockage", une fine couche isolante (21) et une couche magnétique (22) dite "couche de référence".These MRAMs with magnetic tunnel junction have been the subject of improvements such as, for example, described in document US-A-6021 065 and in the publication "Journal of Applied Physics" - Vol. 81, 1997, page 3758 and represented in FIG. 1. As can be observed, each memory element (10) consists of the association of a CMOS transistor (12) and a junction MTJ tunnel (11). Said tunnel junction (11) comprises at least one magnetic layer (20) called "storage layer", a thin insulating layer (21) and a magnetic layer (22) called "reference layer".
Préférentiellement, mais de manière non limitative, les deux couches magnétiques sont réalisées à base des métaux 3d (Fe, Co, Ni) et leurs alliages, et la couche isolante est traditionnellement constituée d'alumine (Al2O3). Préférentiellement, la couche magnétique (22) est couplée à une couche anti-ferromagnétique (23), dont la fonction est de piéger la couche (22), afin que son aimantation ne bascule pas, ou bascule de façon réversible sous l'effet d'un champ magnétique extérieur. Préférentiellement, la couche de référence (22) peut être, elle- même, constituée de plusieurs couches, comme par exemple décrit dans le document TJS-A-5 583 725, afin de former une couche anti-ferromagnétique synthétique.Preferably, but not limited to, the two magnetic layers are made from 3d metals (Fe, Co, Ni) and their alloys, and the insulating layer is traditionally made of alumina (Al 2 O 3 ). Preferably, the magnetic layer (22) is coupled to an anti-ferromagnetic layer (23), the function of which is to trap the layer (22), so that its magnetization does not tilt, or tilts reversibly under the effect of '' an external magnetic field. Preferably, the reference layer (22) can itself be made up of several layers, as for example described in the document TJS-A-5,583,725, in order to form a synthetic anti-ferromagnetic layer.
Il est également possible de remplacer la simple jonction tunnel par une double jonction tunnel comme cela est décrit dans la publication Y.Saito et al., Journal of Magnetism and Magnetic Materials vol.223 (2001) page 293. Dans ce cas la couche de stockage est prise en sandwich entre deux couches fines isolantes, avec deux couches de référence situées du côté opposé desdites couches isolantes. Lorsque les aimantations des couches magnétiques de stockage et de référence sont anti-parallèles, la résistance de la jonction est élevée. En revanche, lorsque les aimantations sont parallèles, cette résistance devient faible. La variation relative de résistance entre ces deux états peut typiquement atteindre 40 % par un choix approprié des matériaux constitutifs des couches de l'empilement et/ou de traitement thermique de ces matériaux. Ainsi que déjà précisé, la jonction (11) est placée entre un transistor de commutation (12) et une ligne d'amenée de courant (14) (Word Line) formant une ligne conductrice supérieure. Un courant électrique passant dans celle-ci produit un premier champ magnétique. Une ligne conductrice (15) inférieure (Bit Line), généralement disposée de manière orthogonale par rapport à la ligne (14) (Word Line) permet, lorsqu'on y fait circuler un courant électrique, de produire un second champ magnétique.It is also possible to replace the single tunnel junction with a double tunnel junction as described in the publication Y.Saito et al., Journal of Magnetism and Magnetic Materials vol.223 (2001) page 293. In this case the layer of storage is sandwiched between two thin insulating layers, with two reference layers located on the opposite side of said insulating layers. When the magnetizations of the magnetic storage and reference layers are anti-parallel, the resistance of the junction is high. On the other hand, when the magnetizations are parallel, this resistance becomes weak. The relative variation in resistance between these two states can typically reach 40% by an appropriate choice of the materials constituting the layers of the stack and / or of heat treatment of these materials. As already specified, the junction (11) is placed between a switching transistor (12) and a current supply line (14) (Word Line) forming an upper conductive line. An electric current passing through it produces a first magnetic field. A lower conductive line (15) (Bit Line), generally disposed orthogonal to the line (14) (Word Line) allows, when an electric current flows there, to produce a second magnetic field.
Dans le mode écriture, le transistor (12) est bloqué, et aucun courant ne traverse donc le transistor. On fait circuler des impulsions de courant dans la ligne d'amenée de courant (14) et dans la ligne (15). La jonction (11) est donc soumise à deux champs magnétiques orthogonaux. L'un est appliqué selon l'axe d'aimantation difficile de la couche de stockage, également dénommée "couche libre" (22), afin d'y réduire son champ de retournement, tandis que l'autre est appliqué selon son axe de facile aimantation, afin de provoquer le retournement de l'aimantation et donc l'écriture du point mémoire.In the write mode, the transistor (12) is blocked, and no current therefore flows through the transistor. Current pulses are circulated in the current supply line (14) and in the line (15). The junction (11) is therefore subject to two orthogonal magnetic fields. One is applied along the difficult magnetization axis of the storage layer, also called "free layer" (22), in order to reduce its reversal field, while the other is applied along its axis of easy magnetization, in order to provoke the reversal of the magnetization and therefore the writing of the memory point.
Dans le mode lecture, le transistor (12) est placé en mode saturé, c'est-à-dire que le courant électrique traversant ce transistor est maximum, par l'envoi d'une impulsion de courant positif dans la grille dudit transistor. Le courant électrique envoyé dans la ligne (14) traverse uniquement le point mémoire, dont le transistor est placé en mode saturé. Ce courant électrique permet de mesurer la résistance de la jonction de ce point mémoire. Par comparaison avec un point mémoire de référence, on sait alors si l'aimantation de la couche de stockage (22) est parallèle ou anti- parallèle à celle de la couche de référence (20). L'état du point mémoire considéré (« 0 » ou « 1 ») peut ainsi être déterminé.In the read mode, the transistor (12) is placed in saturated mode, that is to say that the electric current passing through this transistor is maximum, by sending a positive current pulse in the gate of said transistor. The electric current sent in the line (14) passes only through the memory point, the transistor of which is placed in saturated mode. This electric current makes it possible to measure the resistance of the junction of this memory point. By comparison with a reference memory point, it is then known whether the magnetization of the storage layer (22) is parallel or anti-parallel to that of the reference layer (20). The state of the memory point considered (“0” or “1”) can thus be determined.
Les impulsions de champ magnétique générées par les deux lignes (14, 15) permettent, ainsi qu'on l'aura compris, la commutation de l'aimantation de la couche de stockage (20) lors du processus d'écriture. Ces impulsions de champ magnétique sont produites en envoyant des impulsions de courant courtes (typiquement 2 à 5 nanosecondes) et d'intensité faible (typiquement inférieure à 10 milliampères) le long des lignes de courant (14, 15). L'intensité de ces impulsions et leur synchronisation sont ajustées de sorte que seule l'aimantation du point mémoire se trouvant à l'intersection de ces deux lignes de courant (point sélectionné) peut commuter sous l'effet du champ magnétique généré par les deux conducteurs. Les autres points mémoires, situés sur la même ligne ou sur la même colonne (points demi- sélectionnés) ne sont, de fait, assujettis qu'au champ magnétique d'un seul des conducteurs (14, 15), et en conséquence ne se retournent pas.The magnetic field pulses generated by the two lines (14, 15) allow, as will be understood, the switching of the magnetization of the storage layer (20) during the writing process. These magnetic field pulses are produced by sending short current pulses (typically 2-5 nanoseconds) and low intensity (typically less than 10 milliamps) along the current lines (14, 15). The intensity of these pulses and their synchronization are adjusted so that only the magnetization of the memory point located at the intersection of these two current lines (selected point) can switch under the effect of the magnetic field generated by the two conductors. The other memory points, located on the same line or on the same column (semi-selected points) are, in fact, only subject to the magnetic field of one of the conductors (14, 15), and consequently do not not return.
Afin d'obtenir un fonctionnement satisfaisant de cette architecture lors du processus d'écriture, il est nécessaire d'utiliser des points mémoire de forme anisotrope, généralement des ellipses, croissants, demi-ellipses, diamants... avec des rapports longueur sur largeur élevés, typiquement 1.5 et plus, (voir figure 2). Cette géométrie est en effet requise pour obtenir : d'une part, un fonctionnement bi-stable, c'est-à-dire deux états bien définis du point mémoire correspondant à l'état « 1 » et à l'état « 0 », - et d'autre part, une bonne sélectivité à l'écriture entre les points mémoire sélectionnés et les points mémoire demi-sélectionnés situés sur une même ligne ou une même colonne, une bonne stabilité thermique et temporelle De par le mécanisme de structure de ces points mémoire, on comprend clairement les limites de cette architecture.In order to obtain a satisfactory functioning of this architecture during the writing process, it is necessary to use memory points of anisotropic shape, generally ellipses, crescents, half-ellipses, diamonds ... with length to width ratios high, typically 1.5 and above, (see Figure 2). This geometry is indeed required to obtain: on the one hand, a bi-stable operation, that is to say two well defined states of the memory point corresponding to the state "1" and to the state "0" , - and on the other hand, good write selectivity between the selected memory points and the semi-selected memory points located on the same line or the same column, good thermal and temporal stability By the structure mechanism of these memory points, we clearly understand the limits of this architecture.
L'écriture étant constituée par un champ magnétique extérieur, elle est assujettie à la valeur du champ de retournement individuel de chaque point mémoire. Si la fonction de distribution des champs de retournement pour l'ensemble des points mémoire est large (en effet, elle n'est pas uniforme en raison des contraintes de fabrication et des fluctuations statistiques intrinsèques), il est nécessaire que le champ magnétique sur le point mémoire sélectionné soit supérieur au champ de retournement le plus élevé de la distribution, au risque de renverser accidentellement certains points mémoire situés sur la ligne ou sur la colonne correspondante, dont le champ de retournement, situé dans la partie basse de la distribution, est plus faible que le champ magnétique généré par la ligne ou la colonne seule. Inversement, si l'on souhaite s'assurer qu'aucun point mémoire ne soit écrit par une ligne ou une colonne, il faut limiter le courant d'écriture de telle sorte à ne jamais dépasser, pour ces points mémoire, le champ magnétique correspondant à la partie basse de la distribution, au risque de ne pas écrire le point mémoire sélectionné à l'intersection desdites ligne et colonne, si son champ de retournement est situé dans la partie haute de la distribution. En d'autres termes, cette architecture à sélection par champ magnétique à l'aide de lignes et de colonnes ou conducteurs, peut facilement conduire à des erreurs d'adressage à l'écriture. Compte-tenu de ce qu'il est attendu que la fonction de distribution des champs de retournement des points mémoire soit d'autant plus large que leur dimension est faible, puisque c'est la géométrie des points mémoire (forme, irrégularité, défaut) qui domine le mécanisme de renversement de l'aimantation, cet effet ne peut qu'empirer dans les générations de produits futurs.The writing being constituted by an external magnetic field, it is subject to the value of the individual reversal field of each memory point. If the function of distribution of the turning fields for all the memory points is large (indeed, it is not uniform due to manufacturing constraints and intrinsic statistical fluctuations), it is necessary that the magnetic field on the memory point selected is greater than the highest reversal field of the distribution, at the risk of accidentally reversing certain memory points located on the row or on the corresponding column, whose reversal field, located in the lower part of the distribution, is weaker than the magnetic field generated by the row or column alone. Conversely, if one wishes to ensure that no memory point is written by a row or a column, the writing current must be limited so as never to exceed, for these memory points, the corresponding magnetic field at the lower part of the distribution, at the risk of not writing the memory point selected at the intersection of said row and column, if its reversal field is located in the upper part of the distribution. In other words, this architecture with selection by magnetic field using rows and columns or conductors, can easily lead to writing addressing errors. Given that it is expected that the distribution function of the turning points fields of the memory points will be all the larger the smaller their dimension, since it is the geometry of the memory points (shape, irregularity, defect) which dominates the magnetization reversal mechanism, this effect can only worsen in future generations of products.
Selon un perfectionnement décrit dans le document US-A-5 959 880, le rapport d'aspect du point mémoire peut être diminué en utilisant l'anisotropie intrinsèque du matériau constitutif de la couche de stockage (connue par l'homme de l'art sous le nom de l'anisotropie magnétocristalliαe) pour définir les deux états stables du système. Avec cette approche, cependant, la stabilité temporelle ou thermique du système n'est cependant plus garantie car c'est le même paramètre physique qui gouverne le processus d'écriture et la stabilité thermique : si l'anisotropie magnétocristalline est importante, le système est stable (en temps et en température) et les deux états du point mémoire sont bien définis. En revanche, le champ magnétique requis pour renverser l'aimantation dudit point mémoire d'un état stable à l'autre (le champ d'écriture) est important, donc la puissance consommée lors du processus d'écriture est grande. - Inversement, si l'anisotropie magnétocristalline est faible, la puissance consommée à l'écriture est faible, mais la stabilité thermique et temporelle n'est plus assurée. De plus, les deux états au repos du point mémoire sont mal définis car les structures magnétiques à l'intérieur du point mémoire sont complexes et multiples selon le cyclage en champ.According to an improvement described in document US-A-5 959 880, the aspect ratio of the memory point can be reduced by using the intrinsic anisotropy of the material constituting the storage layer (known to those skilled in the art under the name of magnetocrystalline anisotropy) to define the two stable states of the system. With this approach, however, the temporal or thermal stability of the system is however no longer guaranteed because it is the same physical parameter that governs the writing process and thermal stability: if the magnetocrystalline anisotropy is important, the system is stable (in time and in temperature) and the two states of the memory point are well defined. On the other hand, the magnetic field required to reverse the magnetization of said memory point from one stable state to another (the writing field) is important, therefore the power consumed during the writing process is large. - Conversely, if the magnetocrystalline anisotropy is low, the power consumed in writing is low, but the thermal and temporal stability is no longer ensured. In addition, the two resting states of the memory point are poorly defined because the magnetic structures inside the memory point are complex and multiple depending on the field cycling.
En d'autres termes, il est impossible d'assurer simultanément une faible puissance consommée et la stabilité thermique et temporelle.In other words, it is impossible to simultaneously ensure low power consumption and thermal and temporal stability.
Selon un perfectionnement décrit par exemple dans le brevet US-A-6385 082, une impulsion de courant est envoyée à travers le point mémoire lors du processus d'écriture, en ouvrant le transistor (12), dans l'objectif d'induire un échauffement significatif dudit point mémoire. L'échauffement du point mémoire produit un abaissement du champ magnétique d'écriture requis. Pendant cette phase où la température du point adressé est significativement supérieure à celle des autres points mémoire, des impulsions de courant sont envoyées dans les lignes (14, 15) pour créer deux champs magnétiques orthogonaux, permettant la commutation de l'aimantation de la couche de stockage de la jonction considérée. Cette écriture, assistée thermiquement, permet d'améliorer la sélection à l'écriture, puisque seul le point mémoire sélectionné est échauffé, les autres points mémoire demi-sélectionnés sur la même ligne ou sur la même colonne restant à température ambiante. En d'autres termes, le perfectionnement décrit dans ce document vise à augmenter la sélectivité à l'écriture en échauffant la jonction adressée tout en gardant le concept de base d'écriture par envoi de deux impulsions de champs magnétiques orthogonaux.According to an improvement described for example in patent US-A-6385 082, a current pulse is sent through the memory point during the writing process, by opening the transistor (12), in order to induce a significant heating of said memory point. The heating of the memory point produces a lowering of the required magnetic writing field. During this phase where the temperature of the addressed point is significantly higher than that of the other memory points, current pulses are sent in the lines (14, 15) to create two orthogonal magnetic fields, allowing the switching of the magnetization of the storage layer of the considered junction. This writing, thermally assisted, improves writing selection, since only the selected memory point is heated, the other half-selected memory points on the same line or on the same column remaining at room temperature. In other words, the improvement described in this document aims to increase the selectivity for writing by heating the addressed junction while keeping the basic concept of writing by sending two pulses of orthogonal magnetic fields.
D'autres méthodes d'adressage, également basées sur une élévation de température du point mémoire, mais utilisant un seul champ magnétique ou une commutation magnétique par injection de courant polarisé en spin dans la couche de stockage ont été décrites dans les documents FR 2 829 867 et FR 2 829 868.Other addressing methods, also based on an increase in temperature of the memory point, but using a single magnetic field or a magnetic switching by injection of spin-polarized current into the storage layer have been described in the documents FR 2 829 867 and FR 2 829 868.
La mise en œuvre d'un tel chauffage du point mémoire sélectionné offre différents avantages, parmi lesquels on peut citer : - une amélioration importante de la sélectivité à récriture, puisque seul le point mémoire à écrire est chauffé, - une amélioration importante de la sélectivité à l'écriture, en utilisant des matériaux à fort champ d'écriture à température ambiante, - une amélioration de la stabilité en champ magnétique nul (rétention) en utilisant des matériaux à forte anisotropie magnétique (intrinsèque ou liée à la forme du point mémoire) à température ambiante, - la possibilité de diminuer fortement la taille du point mémoire sans affecter la limite de stabilité, en utilisant des matériaux à forte anisotropie magnétique à température ambiante.The implementation of such a heating of the selected memory point offers various advantages, among which we can cite: - a significant improvement in write selectivity, since only the memory point to be written is heated, - a significant improvement in selectivity in writing, using materials with a strong writing field at room temperature, - an improvement in stability in zero magnetic field (retention) by using materials with strong magnetic anisotropy (intrinsic or linked to the shape of the memory point ) at room temperature, - the possibility of greatly reducing the size of the memory point without affecting the stability limit, by using materials with strong magnetic anisotropy at room temperature.
Descriptif sommaire de l'inventionBrief description of the invention
L'objectif de la présente invention est d'optimiser de manière supplémentaire les avantages précédemment évoqués en abaissant le champ de retournement de l'aimantation du point mémoire par la sélection d'une géométrie particulière dudit point mémoire, et notamment en mettant en œuvre une géométrie circulaire. En effet, il a pu être montré, et c'est là le cœur de la présente invention, que dans le cadre d'une telle géométrie circulaire du point mémoire, l'anisotropie de forme du point mémoire qui est responsable d'une augmentation du champ de retournement de l'aimantation est nulle. Par voie de conséquence, la puissance électrique requise pour réaliser l'écriture d'un point mémoire peut être considérablement abaissée dans l'approche écriture assistée thermiquement. Ce résultat constitue un avantage décisif, en particulier pour les applications portables et pour les applications en technologie sur SOI (Silicium sur Isolant).The objective of the present invention is to further optimize the advantages previously mentioned by lowering the field of reversal of the magnetization of the memory point by the selection of a particular geometry of said memory point, and in particular by implementing a circular geometry. Indeed, it has been possible to show, and this is the heart of the present invention, that within the framework of such a circular geometry of the memory point, the shape anisotropy of the memory point which is responsible for an increase of the magnetization reversal field is zero. Consequently, the electrical power required to write a memory point can be considerably reduced in the thermally assisted writing approach. This result constitutes a decisive advantage, in particular for portable applications and for applications in technology on SOI (Silicon on Insulator).
A cet égard, il convient de souligner que l'utilisation simple d'une géométrie circulaire, telle que décrite dans le document précité US-A-5 959 880, sans utiliser ni l'approche d'écriture assistée thermiquement ni l'optimisation telle que décrite dans la présente invention, ne permet pas d'assurer la fonctionnalité recherchée car il est alors impossible, pour la raison décrite ci-dessus, d'assurer simultanément une faible puissance consommée et la stabilité thermique et temporelle.In this regard, it should be emphasized that the simple use of a circular geometry, as described in the aforementioned document US-A-5,959,880, without using either the thermally assisted writing approach or the optimization such as described in the present invention, does not ensure the desired functionality because it is then impossible, for the reason described above, to simultaneously ensure low power consumption and thermal and temporal stability.
Ainsi, l'invention concerne une mémoire magnétique à écriture assistée thermiquement, dont chaque point mémoire est constitué d'une jonction tunnel magnétique, et dont la section parallèlement au plan des couches constitutives de la jonction tunnel est circulaire ou sensiblement circulaire, ladite jonction tunnel comprenant au moins : - une couche magnétique de référence, dite "couche piégée", dont l'aimantation est de direction fixe, une couche magnétique de stockage, dite "couche libre", dont la direction d'aimantation est variable, - une couche isolante, interposée entre la couche libre et la couche piégée, et dans laquelle la couche de stockage est formée d'au moins une couche magnétique douce, c'est-à-dire d'anisotropie magnétique réduite, préférentiellement inférieure à 10 Oersted, et typiquement comprise entre 1 et 3 Oersted, et d'une couche de piégeage, les deux couches étant couplées magnétiquement par contact, et dans laquelle la température de fonctionnement de la mémoire en lecture ou au repos est choisie en dessous de la température de blocage des couches respectivement libre et piégée, c'est à dire la température à laquelle le piégeage magnétique disparaît.Thus, the invention relates to a magnetic memory with thermally assisted writing, each memory point of which consists of a magnetic tunnel junction, and the section of which, parallel to the plane of the layers making up the tunnel junction, is circular or substantially circular, said tunnel junction comprising at least: - a magnetic reference layer, called "trapped layer", whose magnetization is of fixed direction, a magnetic storage layer, called "free layer", whose magnetization direction is variable, - a layer insulating, interposed between the free layer and the trapped layer, and in which the storage layer is formed of at least one soft magnetic layer, that is to say of reduced magnetic anisotropy, preferably less than 10 Oersted, and typically between 1 and 3 Oersted, and a trapping layer, the two layers being magnetically coupled by contact, and in which the temperature of memory operation in reading or at rest is chosen below the blocking temperature of the free and trapped layers respectively, that is to say the temperature at which the magnetic trapping disappears.
Selon un aspect avantageux de l'invention, la couche magnétique douce de la couche de stockage est constituée d'un alliage à base de nickel, de cobalt et de fer et la couche de piégeage est constituée d'un alliage à base de fer et de cobalt, ou d'un alliage anti-ferromagnétique à base de manganèse, ou d'alliages amorphes à base de terre rare et de métal de transition. Toujours selon l'invention, la couche de référence du couche piégée est préférentiellement constituée d'une couche synthétique anti-ferromagnétique artificielle, constituée de deux couches ferro-magnétiques en alliages à base de nickel, de cobalt et de fer, séparées d'une couche non magnétique, de telle sorte que les aimantations des deux couches ferromagnétiques soient anti-parallèles.According to an advantageous aspect of the invention, the soft magnetic layer of the storage layer consists of an alloy based on nickel, cobalt and iron and the trapping layer consists of an alloy based on iron and cobalt, or an anti-ferromagnetic alloy based on manganese, or amorphous alloys based on rare earth and transition metal. Still according to the invention, the reference layer of the trapped layer preferably consists of an artificial anti-ferromagnetic synthetic layer, consisting of two ferro-magnetic layers of alloys based on nickel, cobalt and iron, separated by a non-magnetic layer, so that the magnetizations of the two ferromagnetic layers are anti-parallel.
Comme il est connu de l'homme de l'art, les couches de stockage et de référence peuvent en outre comporter près de l'interface avec la barrière tunnel une couche additionnelle de cobalt ou d'alliage riche en cobalt et destinée à augmenter la polarisation des électrons tunnel et donc l'amplitude de magnétorésistance.As is known to those skilled in the art, the storage and reference layers may further comprise near the interface with the tunnel barrier an additional layer of cobalt or of alloy rich in cobalt and intended to increase the polarization of tunnel electrons and therefore the magnitude of magnetoresistance.
Selon l'invention, les points mémoire sont organisés en réseau, chaque point mémoire étant connecté en son sommet à une ligne conductrice et à sa base, à un transistor de sélection, l'écriture étant réalisée au niveau d'un point mémoire considéré par l'envoi simultané d'impulsions de courant électrique dans ledit conducteur et d'un courant de chauffage par l'ouverture dudit transistor. Selon une caractéristique avantageuse de l'invention, le transistor de commande et sa ligne de commande correspondante sont placés sous le point mémoire considéré.According to the invention, the memory points are organized in a network, each memory point being connected at its top to a conductive line and at its base, to a selection transistor, the writing being carried out at a memory point considered by the simultaneous sending of electric current pulses in said conductor and a heating current by the opening of said transistor. According to an advantageous characteristic of the invention, the control transistor and its corresponding control line are placed under the memory point considered.
La manière dont l'invention peut être réalisée et les avantages qui en découlent ressortiront mieux des exemples de réalisation qui suivent, donnés à titre indicatif et non limitatif, à l'appui des figures annexées.The manner in which the invention can be implemented and the advantages which result therefrom will emerge more clearly from the following exemplary embodiments, given by way of non-limiting example, in support of the appended figures.
Description sommaire des figures La figure 1, déjà décrite, est une représentation schématique de l'architecture d'une mémoire magnétique de l'état antérieur de la technique, dont les points mémoire sont constitués par une jonction tunnel magnétique. La figure 2, également déjà décrite, est une représentation schématique des formes des points mémoire de l'art antérieur. La figure 3 est une représentation schématique illustrant l'état d'aimantation des couches constitutives des points mémoire, respectivement à l'état « 1 » et à l'état « 0 ». La figure 4A est une représentation schématique d'un point mémoire conforme à une première forme de réalisation de l'invention, dont la figure 4B est une vue schématique du dessus. La figure 5A est une représentation schématique d'un point mémoire selon une variante de l'invention, dont la figure 5B est une vue schématique du dessus. La figure 6 A est une représentation schématique d'une autre variante d'un point mémoire conforme à la présente invention, dont la figure 6B est une vue schématique du dessus. La figure 7 décrit la variation calculée du champ d'écriture requis dans un point mémoire elliptique à base de Ni8oFe2o/Co9oFeιo (épaisseurs respectives 30 et 15 Angstrom) en fonction de la longueur du point mémoire pour différents facteurs de forme AR=longueur/largeur.Brief description of the figures Figure 1, already described, is a schematic representation of the architecture of a magnetic memory of the prior art, the memory points of which consist of a magnetic tunnel junction. FIG. 2, also already described, is a schematic representation of the shapes of the memory points of the prior art. FIG. 3 is a schematic representation illustrating the state of magnetization of the constituent layers of the memory points, respectively in state "1" and in state "0". FIG. 4A is a schematic representation of a memory point according to a first embodiment of the invention, of which FIG. 4B is a schematic view from above. FIG. 5A is a schematic representation of a memory point according to a variant of the invention, of which FIG. 5B is a schematic view from above. FIG. 6A is a schematic representation of another variant of a memory point in accordance with the present invention, of which FIG. 6B is a schematic view from above. FIG. 7 describes the calculated variation of the writing field required in an elliptical memory point based on Ni 8 oFe 2 o / Co 9 oFeιo (respective thicknesses 30 and 15 Angstrom) as a function of the length of the memory point for different factors of AR shape = length / width.
Description détaillée de l'inventionDetailed description of the invention
On a représenté au sein de la figure 3 les orientations de l'aimantation des différentes couches constitutives d'un point mémoire, notamment de l'art antérieur. Selon celui-ci, la couche de stockage (30) est constituée d'un empilement comprenant au moins une couche ferro-magnétique (32) et une couche anti-ferromagnétique (31). Ces deux couches sont déposées de telle sorte qu'un couplage d'échange magnétique s'établisse entre les deux couches. L'empilement du point mémoire complet comporte également au moins une couche isolante (33) et une couche de référence (34), avantageusement associées à une couche de piégeage (35). Cette architecture est décrite sous la dénomination de couche de stockage piégée. Les avantages procurés par cette architecture sont multiples : - limite de stabilité des points mémoires repoussée, - insensibilité aux champs magnétiques externes, - possibilité de réaliser des stockages multi-niveaux. Selon l'invention, le point mémoire utilisant une couche de stockage piégée n'est plus de forme allongée, mais de forme circulaire et plus précisément, sa section transversale parallèlement au plan des couches le constituant est circulaire. En d'autres termes, le point mémoire présente un profil cylindrique ou conique, et donc une symétrie de révolution.FIG. 3 shows the orientations of the magnetization of the various layers constituting a memory point, in particular of the prior art. According to this, the storage layer (30) consists of a stack comprising at least one ferro-magnetic layer (32) and an anti-ferromagnetic layer (31). These two layers are deposited so that a magnetic exchange coupling is established between the two layers. The stack of the complete memory point also comprises at least one insulating layer (33) and a reference layer (34), advantageously associated with a trapping layer (35). This architecture is described under the name of trapped storage layer. The advantages provided by this architecture are multiple: - limit of stability of memory points pushed back, - insensitivity to external magnetic fields, - possibility of carrying out multi-level storage. According to the invention, the memory point using a trapped storage layer is no longer elongated, but circular, and more precisely, its cross section parallel to the plane of the constituent layers is circular. In other words, the memory point has a cylindrical or conical profile, and therefore a symmetry of revolution.
Selon l'invention, le point mémoire peut également être de géométrie non circulaire tant que son rapport d'aspect reste inférieur à 1.2 (20% de différence entre la longueur et la largeur). Ce faisant, et comme déjà indiqué précédemment, l'anisotropie de forme du point mémoire est minimisée, diminuant de manière significative le champ de retournement de l'aimantation du point mémoire en processus d'écriture, et par voie de conséquence, diminuant la puissance électrique requise. Un exemple de la dépendance du champ d'écriture pour les différents facteurs de forme est donné dans la figure 7. On observe sur cette figure que le lorsque le point mémoire n'est pas de géométrie circulaire, le champ d'écriture (exprimé ici en courant dans les conducteurs utilisé pour générer le champ magnétique) croît fortement lorsque la dimension du point mémoire est réduite en dessous de 200nm, et d'autant plus abruptement que le rapport d'aspect (quotient de la longueur sur la largeur) est important Au contraire, lorsque le point mémoire est de géométrie circulaire (rapport d'aspect = 1), le champ d'écriture décroît de manière monotone avec la dimension du point mémoire, même en dessous de 200 nm.According to the invention, the memory point can also be of non-circular geometry as long as its aspect ratio remains less than 1.2 (20% difference between the length and the width). In doing so, and as already indicated above, the shape anisotropy of the memory point is minimized, significantly reducing the field of reversal of the magnetization of the memory point during the writing process, and consequently, decreasing the power. electrical required. An example of the dependence of the writing field for the different form factors is given in figure 7. We observe on this figure that when the memory point is not of circular geometry, the writing field (expressed here in current in the conductors used to generate the magnetic field) increases strongly when the size of the memory point is reduced below 200nm, and all the more abruptly when the aspect ratio (quotient of the length over the width) is important On the contrary, when the memory point is of circular geometry (aspect ratio = 1), the writing field decreases monotonically with the dimension of the memory point, even below 200 nm.
Avantageusement, la couche de stockage (30) ou couche libre est formée d'un matériau doux, c'est-à-dire dont le champ de renversement (champ coercitif) est très faible. Préférentiellement, ce matériau est un alliage contenant du nickel, du fer ou du cobalt, en particulier du permalloy Ni8oFe2o ,NiFeCo ou FeCoB. En effet, l'utilisation d'un matériau très doux permet de diminuer le champ magnétique requis à l'écriture, donc la puissance consommée.Advantageously, the storage layer (30) or free layer is formed of a soft material, that is to say of which the inversion field (coercive field) is very small. Preferably, this material is an alloy containing nickel, iron or cobalt, in particular permalloy Ni 8 oFe 2 o, NiFeCo or FeCoB. Indeed, the use of a very soft material makes it possible to reduce the magnetic field required for writing, therefore the power consumed.
Avantageusement, les couches de piégeage (31) et (35) sont constituées d'un matériau anti-ferromagnétique et notamment d'un alliage à base de manganèse de type PtsoMnso, t 2oMn8o ou NisoMnso. Il est important de préciser que les épaisseurs, la nature chimique ou la microstructure des couches de piégeage (31) et (35) diffèrent afin que leurs températures de blocage (température à laquelle le couplage d'échange avec la couche ferromagnétique adjacente, respectivement la couche de stockage (30) et la couche de référence (34)) soient bien différenciées. Plus précisément, la température de blocage de la couche (31) doit être inférieure à celle de la couche (35) afin de permettre, lors de l'écriture, de débloquer l'aimantation de la couche de stockage (30) à écrire, sans altérer la direction de l'aimantation de la couche de référence (34) du même point mémoire. Avantageusement, la couche de référence (34) est une structure synthétique constituée d'une couche synthétique anti-ferromagnétique et de deux couches ferromagnétiques en alliages à base de nickel, de cobalt et de fer, séparées d'une couche non magnétique, de telle sorte que les aimantations des deux couches ferromagnétiques soient couplées avec des orientations anti-parallèles de leurs aimantations, afin de minimiser le champ magnéto-statique agissant sur la couche de stockage (30). Avantageusement, les couches de stockage et de référence peuvent en outre comporter près de l'interface avec la barrière tunnel une couche additionnelle de cobalt ou d'alliage riche en cobalt, et destinée à augmenter la polarisation des électrons tunnel et donc l'amplitude de magnétorésistance.Advantageously, the trapping layers (31) and (35) are made of an anti-ferromagnetic material and in particular of an alloy based on manganese of the PtsoMnso, t 2 oMn8o or NisoMnso type. It is important to specify that the thicknesses, the chemical nature or the microstructure of the trapping layers (31) and (35) differ so that their blocking temperatures (temperature at which the exchange coupling with the adjacent ferromagnetic layer, respectively the storage layer (30) and the reference layer (34)) are well differentiated. More precisely, the blocking temperature of the layer (31) must be lower than that of the layer (35) in order to allow, during writing, to unlock the magnetization of the storage layer (30) to be written, without altering the direction of the magnetization of the reference layer (34) of the same memory point. Advantageously, the reference layer (34) is a synthetic structure consisting of a synthetic anti-ferromagnetic layer and two ferromagnetic layers of alloys based on nickel, cobalt and iron, separated by a non-magnetic layer, such so that the magnetizations of the two ferromagnetic layers are coupled with anti-parallel orientations of their magnetizations, in order to minimize the magneto-static field acting on the storage layer (30). Advantageously, the storage and reference layers may further comprise near the interface with the tunnel barrier an additional layer of cobalt or of alloy rich in cobalt, and intended to increase the polarization of the tunnel electrons and therefore the amplitude of magnetoresistance.
On a représenté schématiquement en relation avec les figures 4A et 4B, la structure d'un point mémoire conforme à l'invention. Le point mémoire comporte la jonction tunnel magnétique proprement dite, de forme cylindrique ainsi que déjà dit, un transistor d'adressage (46) muni de sa ligne de commande (47) et un conducteur (48), permettant de générer le champ magnétique parallèlement à l'axe facile de l'aimantation de la couche de stockage (41). L'aimantation des couches magnétiques est sensiblement dans le plan des couches.There is shown schematically in relation to FIGS. 4A and 4B, the structure of a memory point according to the invention. The memory point comprises the actual magnetic tunnel junction, of cylindrical shape as already mentioned, an addressing transistor (46) provided with its control line (47) and a conductor (48), making it possible to generate the magnetic field in parallel to the easy axis of the magnetization of the storage layer (41). The magnetization of the magnetic layers is substantially in the plane of the layers.
Avantageusement et comme expliqué précédemment, cette structure à simple barrière tunnel pourrait avantageusement être remplacée par une structure à double barrière tunnel. Dans ce cas, la couche de stockage (41) est constituée d'une tricouche antiferromagnétique (par exemple Ir2oMn8o) en sandwich entre deux couches ferromagnétiques, simple ou complexes, (par exemple NisoFe 0/Co9oFeιo). Cette « tricouche » de stockage est insérée entre deux barrières tunnels,, du côté opposé desquelles se situent les deux couches de référence similaires à celles décrite dans l'état de l'art.Advantageously and as explained above, this structure with a single tunnel barrier could advantageously be replaced by a structure with a double tunnel barrier. In this case, the storage layer (41) consists of a three-layer antiferromagnetic (for example Ir 2 oMn 8 o) sandwiched between two ferromagnetic layers, simple or complex (for example NisoFe 0 / Co 9 oFeιo). This storage “three-layer” is inserted between two tunnel barriers, on the opposite side of which are located the two reference layers similar to those described in the state of the art.
Le fonctionnement de ces structures peut être décrit de la manière suivante. Les températures de blocage des couches de stockage et de référence doivent être supérieures à la température de fonctionnement de la mémoire hors échauffement, et même nettement supérieure à cette température de fonctionnement, dès lors que l'on souhaite stocker l'information de manière stable. La température de blocage de la couche de stockage doit être inférieure à celle de la couche de référence.The operation of these structures can be described as follows. The blocking temperatures of the storage and reference layers must be higher than the operating temperature of the memory excluding heating, and even significantly higher than this operating temperature, as soon as one wishes to store the information in a stable manner. The blocking temperature of the storage layer must be lower than that of the reference layer.
Ainsi, en phase d'écriture, le transistor (46) associé au point mémoire (40) est commuté en mode bloqué par une impulsion de tension dans la ligne (47). En même temps, une impulsion de tension est appliquée au point mémoire (40) par le biais de la ligne (48), de telle sorte qu'un courant électrique circule à travers la jonction tunnel (40) via le transistor (46). Le niveau de tension est défini de telle sorte que la densité de puissance produite au niveau de la jonction permette une élévation la température de la jonction tunnel (40) à une température supérieure à la température de blocage de la couche anti-ferromagnétique (42), et inférieure à la température de blocage de la couche de piégeage (45). A cette température, l'aimantation de la couche de stockage (41) n'est plus piégée par la couche (42) et peut donc se retourner sous l'effet d'un champ magnétique d'écriture. En revanche, l'aimantation de la couche de référence (44), constituée d'un matériau à forte anisotropie magnétocristalline, et séparée de la couche de stockage (41) par la barrière isolante (43), reste piégée par la couche (45), dont la température de blocage est supérieure à celle de la couche (42), de sorte qu'elle ne commute pas sous l'effet du champ magnétique d'écriture.Thus, in the writing phase, the transistor (46) associated with the memory point (40) is switched to blocked mode by a voltage pulse in the line (47). At the same time, a voltage pulse is applied to the memory point (40) via the line (48), so that an electric current flows through the tunnel junction (40) via the transistor (46). The voltage level is defined so that the power density produced at the junction allows the temperature of the tunnel junction (40) to rise to a temperature higher than the temperature blocking the anti-ferromagnetic layer (42), and lower than the blocking temperature of the trapping layer (45). At this temperature, the magnetization of the storage layer (41) is no longer trapped by the layer (42) and can therefore turn over under the effect of a writing magnetic field. On the other hand, the magnetization of the reference layer (44), made of a material with strong magnetocrystalline anisotropy, and separated from the storage layer (41) by the insulating barrier (43), remains trapped by the layer (45 ), whose blocking temperature is higher than that of the layer (42), so that it does not switch under the effect of the writing magnetic field.
Il est à noter qu'en considérant une densité de courant maximum de 10 mA/μm2 afin de limiter la taille du transistor de commande (46), et un produit RxA (résistance x surface) de la jonction tunnel (40) de 100 et 200 Ohmsμm2 (valeurs accessibles dans l'état de l'art) pour des jonctions à simple et double barrière, respectivement, les tensions à appliquer sont de l'ordre de 1 à 2 volts. Ces valeurs sont tout à fais admissibles en régime dynamique (impulsions électriques de courte durée).It should be noted that when considering a maximum current density of 10 mA / μm 2 in order to limit the size of the control transistor (46), and an RxA product (resistance x area) of the tunnel junction (40) of 100 and 200 Ohmsμm 2 (values accessible in the state of the art) for single and double barrier junctions, respectively, the voltages to be applied are of the order of 1 to 2 volts. These values are perfectly admissible in dynamic mode (short-term electrical pulses).
Une fois le point mémoire échauffé au dessus de la température de blocage de la couche antiferromagnetique (42), le chauffage est stoppé en fermant le transistorOnce the memory point has warmed up above the blocking temperature of the antiferromagnetic layer (42), the heating is stopped by closing the transistor
(46) de manière à couper le courant de chauffage circulant au travers de la jonction tunnel (40). L'impulsion de courant dans le conducteur d'excitation (48), qui ne passe plus à travers la jonction tunnel (40), est maintenue avec un signe et une amplitude tels que le champ magnétique produit permette le renversement de l'aimantation de la couche de stockage (41) dans la direction désirée. La synchronisation et la durée de l'impulsion doivent être ajustées de telle sorte que l'aimantation de la couche de stockage (41) soit orientée dans la direction désirée pendant le refroidissement du point mémoire (40), jusqu'à une température du point mémoire inférieure à la température de blocage de la couche antiferromagnétique (42). π est alors possible de couper les courant dans la ligne (48). Le point mémoire (40) finit alors de redescendre à la température de fonctionnement hors écriture et l'aimantation de la couche de stockage (41) finit de se figer dans la direction désirée. Le point mémoire est alors écrit. Afin de mieux saisir l'avantage inhérent à la mise en œuvre d'un point mémoire cylindrique, tel que décrit dans la présente invention, il convient d'exprimer l'énergie de la hauteur de barrière de potentiel qu'il faut franchir pour passer d'un état « 0 » à un état « 1 » du point mémoire, ladite hauteur de barrière de potentiel étant directement liée d'une part, à la valeur du champ magnétique qu'il faut appliquer pour écrire le point mémoire, donc à la puissance consommée, et d'autre part à la stabilité thermique et temporelle des données écrites.(46) so as to cut off the heating current flowing through the tunnel junction (40). The current pulse in the excitation conductor (48), which no longer passes through the tunnel junction (40), is maintained with a sign and an amplitude such that the magnetic field produced allows the magnetization to reverse. the storage layer (41) in the desired direction. The synchronization and the duration of the pulse must be adjusted so that the magnetization of the storage layer (41) is oriented in the desired direction during the cooling of the memory point (40), up to a point temperature. memory lower than the blocking temperature of the antiferromagnetic layer (42). π is then possible to cut the current in the line (48). The memory point (40) then finishes falling back to the operating temperature without writing and the magnetization of the storage layer (41) stops freezing in the desired direction. The memory point is then written. In order to better grasp the advantage inherent in the implementation of a cylindrical memory point, as described in the present invention, it is necessary to express the energy of the height of the potential barrier which must be crossed to pass from a state “0” to a state “1” of the memory point, said potential barrier height being directly linked on the one hand, to the value of the magnetic field which it is necessary to apply to write the memory point, therefore to the power consumed, and on the other hand to the thermal and temporal stability of the written data.
Dans le cas de l'état antérieur de la technique où la couche de stockage n'est pas piégée par interaction d'échange à la couche de piégeage (42), la stabilité thermique de la mémoire est assurée par l' anisotropie de forme du point mémoire, directement reliée au rapport d'aspect entre longueur et largeur du point mémoire. L'énergie de la barrière par unité de volume s'écrit alors comme :In the case of the prior art where the storage layer is not trapped by exchange interaction with the trapping layer (42), the thermal stability of the memory is ensured by the shape anisotropy of the memory point, directly related to the aspect ratio between length and width of the memory point. The energy of the barrier per unit of volume is then written as:
Efc =*+^ 2 où le premier terme (K) est l'anisotropie magnéto-cristalline et le second terme est l'anisotropie de forme. Dans ce second terme, AR est le rapport d'aspect (longueur/largeur) du point mémoire, L sa longueur, t l'épaisseur de la couche de stockage (41) et Ms son aimantation à saturation. Pour une valeur de AR=1.5 (valeur typique de l'état antérieur de la technique), Eb s'écrit :E fc = * + ^ 2 where the first term (K) is the magneto-crystalline anisotropy and the second term is the shape anisotropy. In this second term, AR is the aspect ratio (length / width) of the memory point, L its length, t the thickness of the storage layer (41) and Ms its magnetization at saturation. For a value of AR = 1.5 (typical value of the prior art), Eb is written:
Eb = K+^tMÏE b = K + ^ tMÏ
Les limitations de l'état antérieur de la technique sont immédiatement décelables. En effet : - Plus le point mémoire diminue en taille (L diminue, AR constant) plus l'énergie de la barrière augmente, d'où une augmentation importante de la puissance consommée ; - Plus le rapport d'aspect est faible (AR diminue, L constant), plus l'énergie de la barrière diminue, d'où une perte de la stabilité thermique et temporelle des données, d'autant plus importante que le point mémoire diminue en taille. La seule parade est ici d'augmenter l'anisotropie magnéto-cristalline K en adaptant le matériau du point mémoire, mais alors au prix d'une augmentation importante de la puissance consommée.The limitations of the prior art are immediately detectable. Indeed: - The more the memory point decreases in size (L decreases, constant AR) the more the energy of the barrier increases, hence a significant increase in the power consumed; - The lower the aspect ratio (AR decreases, L constant), the more the energy of the barrier decreases, resulting in a loss of thermal and temporal stability of the data, all the more important as the memory point decreases in size. The only solution here is to increase the magneto-crystalline anisotropy K by adapting the material of the memory point, but then at the cost of a significant increase in the power consumed.
Dans le cas de la présente invention, où la couche de stockage (41) est piégée par échange avec la couche (42), il n'est plus nécessaire d'utiliser l'anisotropie de forme pour assurer la stabilité thermique et temporelle du point mémoire. En choisissant une géométrie circulaire ou presque circulaire (AR~1), on annule le terme d' anisotropie de forme, et l'énergie de la barrière s'écrit alors :In the case of the present invention, where the storage layer (41) is trapped by exchange with the layer (42), it is no longer necessary to use the shape anisotropy to ensure the thermal and temporal stability of the point memory. In choosing a circular or almost circular geometry (AR ~ 1), we cancel the term anisotropy of shape, and the energy of the barrier is then written:
où le second terme correspond maintenant à l'énergie d'échange entre la couche de stockage (41) et la couche de piégeage (42). On conçoit alors l'intérêt de l'invention par rapport à l'état antérieur de la technique. En effet : - Au repos, l'énergie de la barrière est adaptée par le choix des matériaux (42) (à travers la constante d'échange Jex) et (41) (à travers l'épaisseur t et l'aimantation Ms) pour être suffisante pour permettre la stabilité thermique et temporelle - A l'écriture, le courant circulant à travers le point mémoire provoque une élévation de température jusqu'à ou au-dessus de la température de blocage TB de la couche (42), de sorte que la couche de stockage (41) soit dépiégée. En d'autres termes, le second terme de l'équation ci-dessus est annulé et l'énergie de la barrière devient simplement Eb=K, plus petite valeur possible pour un point mémoire magnétique. En choisissant avantageusement le matériau de la couche de stockage (41), il est possible d'abaisser suffisamment la barrière (K = 0) pour minimiser le champ magnétique requis lors du processus d'écriture et donc la puissance consommée.where the second term now corresponds to the exchange energy between the storage layer (41) and the trapping layer (42). We can then understand the advantage of the invention compared to the prior art. Indeed: - At rest, the energy of the barrier is adapted by the choice of materials (42) (through the exchange constant J ex ) and (41) (through the thickness t and the magnetization Ms ) to be sufficient to allow thermal and temporal stability - On writing, the current flowing through the memory point causes a rise in temperature up to or above the blocking temperature T B of the layer (42) , so that the storage layer (41) is removed. In other words, the second term of the above equation is canceled and the energy of the barrier simply becomes E b = K, the smallest possible value for a magnetic memory point. By advantageously choosing the material of the storage layer (41), it is possible to lower the barrier sufficiently (K = 0) to minimize the magnetic field required during the writing process and therefore the power consumed.
On conçoit à la lumière de cette description l'intérêt de la présente invention, qui permet d'optimiser séparément la fonction de stockage (stabilité thermique et temporelle) et la fonction d'écriture (minimisation de la puissance consommée).It is conceivable in the light of this description the advantage of the present invention, which makes it possible to separately optimize the storage function (thermal and temporal stability) and the writing function (minimization of the power consumed).
C'est une amélioration majeure par rapport à l'état antérieur de la technique, dans lequel les deux fonctions sont mélangées, forçant à des compromis difficiles. On observe donc que, conformément à la présente invention, il n'y a qu'une seule ligne de génération de champ magnétique d'écriture contrairement aux dispositifs de l'art antérieur. Celle-ci permet ainsi de superposer le transistor de commande (46) et sa ligne de commande correspondante (47) avec le point mémoire (40), ce qui aboutit à une minimisation de la dimension de la cellule mémoire élémentaire, augmentant par là même les possibilités d'intégration. Par ailleurs, le réseau carré de points mémoire présente une structure beaucoup plus simple, puisque la mémoire est formée de simples lignes de points mémoire rationalisant d'autant les procédés de fabrication.This is a major improvement over the prior art, in which the two functions are mixed, forcing difficult compromises. It is therefore observed that, in accordance with the present invention, there is only one line for generating a writing magnetic field, unlike the devices of the prior art. This thus makes it possible to superimpose the control transistor (46) and its corresponding control line (47) with the memory point (40), which results in a minimization of the dimension of the elementary memory cell, thereby increasing integration possibilities. Furthermore, the square array of memory points has a much simpler structure, since the memory is formed by simple lines of memory points rationalizing the manufacturing processes accordingly.
Avantageusement, la ligne conductrice servant à générer l'impulsion de chauffage peut être distincte de la ligne conductrice servant à générer l'impulsion du champ magnétique, cela afin d'optimiser les densités de courants respectifs pour les deux opérations.Advantageously, the conductive line used to generate the heating pulse can be distinct from the conductive line used to generate the magnetic field pulse, this in order to optimize the respective current densities for the two operations.
Avantageusement ainsi que l'on peut l'observer sur la figure 6A, cette ligne de courant additionnelle (69), mise en oeuvre pour la génération de l'impulsion de champ magnétique, et isolée électriquement du point mémoire (60) et du conducteur (67), est placée au-dessus du point mémoire (60), de telle sorte à permettre la superposition du transistor de commande (66) et de sa ligne de commande (67) avec le point mémoire (60), préservant ainsi la compacité de la mémoire.Advantageously as can be seen in FIG. 6A, this additional current line (69), implemented for the generation of the magnetic field pulse, and electrically isolated from the memory point (60) and from the conductor (67), is placed above the memory point (60), so as to allow the superimposition of the control transistor (66) and its control line (67) with the memory point (60), thus preserving the compact memory.
Les impulsions de courant dans les lignes (68) et (69) peuvent être contrôlées indépendamment, tant du point de vue de l'amplitude du courant, que de la durée de puise du courant et de leur synchronisation. Par ailleurs, en utilisant une couche de stockage piégée par une couche anti- ferromagnétique, cette technique d'écriture permet la réalisation de plus de deux états magnétiques dans le point mémoire (40). Pour cela, il faut avoir non plus une seule ligne conductrice pour générer le champ d'écriture, mais deux lignes perpendiculaires ainsi que représentées sur la figure 5A, les lignes (48) et (49). La combinaison de ces deux champs perpendiculaires permet de créer n'importe quelle direction de champ magnétique dans le plan de l'échantillon. En appliquant ce champ dans la direction désirée pendant le refroidissement de la couche de stockage au travers de sa température de blocage, on peut ainsi stabiliser d'autres configurations magnétiques intermédiaires entre alignement parallèle et anti-parallèle, correspondant à des niveaux de résistance intermédiaires. Ainsi est-il possible simultanément d'obtenir plusieurs états magnétiques dans le point mémoire, donc un stockage dit «multi- niveaux », tout en conservant l'avantage de l'invention de la puissance consommée très faible. Selon une alternative de l'invention, il est possible de faire commuter l'aimantation de la couche de stockage au cours du refroidissement du point mémoire en utilisant le phénomène de commutation magnétique par injection de courant polarisé en spin. L'origine physique de ce phénomène a été décrite par J. SLONCZEWSKI, Journal of Magnetism and Magnetic Materials Vol.159 (1996), page Ll et par L. BERGER, Physical Review vol.B54 (1996) , page 9353.The current pulses in lines (68) and (69) can be controlled independently, both from the point of view of the amplitude of the current, the duration of the current draw and their synchronization. Furthermore, by using a storage layer trapped by an anti-ferromagnetic layer, this writing technique allows the realization of more than two magnetic states in the memory point (40). For this, it is no longer necessary to have a single conductive line to generate the writing field, but two perpendicular lines as shown in FIG. 5A, the lines (48) and (49). The combination of these two perpendicular fields makes it possible to create any direction of magnetic field in the plane of the sample. By applying this field in the desired direction during the cooling of the storage layer through its blocking temperature, one can thus stabilize other intermediate magnetic configurations between parallel and anti-parallel alignment, corresponding to intermediate resistance levels. Thus it is possible simultaneously to obtain several magnetic states in the memory point, therefore a so-called “multi-level” storage, while retaining the advantage of the invention of the very low power consumption. According to an alternative of the invention, it is possible to switch the magnetization of the storage layer during the cooling of the memory point by using the magnetic switching phenomenon by injection of current polarized in spin. The physical origin of this phenomenon has been described by J. SLONCZEWSKI, Journal of Magnetism and Magnetic Materials Vol. 159 (1996), page Ll and by L. BERGER, Physical Review vol. B54 (1996), page 9353.
Ce principe consiste à faire passer un courant tunnel au travers de la jonction. Si les électrons passent par effet tunnel de la couche de référence vers la couche de stockage, c'est-à-dire si le courant circule de la couche de stockage vers la couche de référence, l'aimantation de la couche de stockage va s'orienter parallèlement à la direction des spins injectés, à condition que le courant soit suffisamment intense, ce qui suppose de nouveau que la barrière ait une faible résistance électrique. Si au contraire, les électrons passent par effet tunnel de la couche de stockage vers la couche de référence, l'aimantation de la couche de stockage va s'orienter anti- parallèlement à l'aimantation de la couche de référence.This principle consists in passing a tunnel current through the junction. If the electrons pass through the tunnel from the reference layer to the storage layer, i.e. if the current flows from the storage layer to the reference layer, the magnetization of the storage layer will s '' orient parallel to the direction of the injected spins, provided that the current is sufficiently intense, which again assumes that the barrier has low electrical resistance. If, on the contrary, the electrons pass by tunnel effect from the storage layer towards the reference layer, the magnetization of the storage layer will be oriented anti-parallel to the magnetization of the reference layer.
Quel que soit le mode de commutation magnétique employé, le procédé de lecture est identique à celui décrit dans l'état antérieur de la technique. On procède en effet à une lecture de la résistance du point mémoire (40) par un courant de faible amplitude commandé par l'ouverture du transistor de commande (46). La résistance est généralement comparée à celle d'une cellule de référence non représentée au sein des figures 4 à 6.Whatever the magnetic switching mode used, the reading process is identical to that described in the prior art. In fact, the resistance of the memory point (40) is read by a current of low amplitude controlled by the opening of the control transistor (46). The resistance is generally compared to that of a reference cell not shown in FIGS. 4 to 6.
On conçoit tout l'intérêt de cette architecture dans la mesure où :We understand all the interest of this architecture insofar as:
- L'aimantation de la couche de stockage n'étant plus piégée par la couche anti- ferromagnétique (42) lors du processus d'écriture, le champ de retournement de la couche de stockage (41) peut être extrêmement faible, puisqu'il n'est plus défini que par des propriétés intrinsèques de ladite couche de stockage (41),- As the magnetization of the storage layer is no longer trapped by the anti-ferromagnetic layer (42) during the writing process, the reversal field of the storage layer (41) can be extremely weak, since it is no longer defined except by intrinsic properties of said storage layer (41),
- de par l'utilisation d'un matériau de très faible anisotropie magnétique (très doux magnétiquement) pour ladite couche de stockage (41), d'une part, et la géométrie cylindrique du point mémoire (40) (absence de champ démagnétisant) d'autre part, conduisant à une anisotropie magnétique très faible, le renversement de la couche de stockage (41) peut donc être effectué dans un champ magnétique très faible.- By the use of a material of very weak magnetic anisotropy (very soft magnetically) for said storage layer (41), on the one hand, and the cylindrical geometry of the memory point (40) (absence of demagnetizing field) on the other hand, leading to a very weak magnetic anisotropy, the inversion of the storage layer (41) can therefore be carried out in a very weak magnetic field.
- de par le couplage entre la couche de stockage (41) et la couche de piégeage (42), la stabilité thermique et temporelle des données écrites dans le point mémoire est excellente ;- Due to the coupling between the storage layer (41) and the trapping layer (42), the thermal and temporal stability of the data written in the memory point is excellent;
- de par la géométrie circulaire du point mémoire, l'influence des variations de taille sur la valeur du champ de retournement des points mémoires individuels est éliminée. En conséquence les erreurs d'adressage lors du processus d'écriture sont grandement réduites et les procédés de fabrication sont simplifiés. Il résulte de ces considérations qu'il est possible d'abaisser le courant d'écriture du point mémoire (40) sélectionné à des valeurs très inférieures à celles requises par les dispositifs de l'état antérieur de la technique sans obérer la stabilité thermique et temporelle des données écrites.- Due to the circular geometry of the memory point, the influence of size variations on the value of the reversal field of the individual memory points is eliminated. As a result, addressing errors during the writing process are greatly reduced and the manufacturing processes are simplified. It follows from these considerations that it is possible to lower the write current of the selected memory point (40) to values much lower than those required by the devices of the prior art without impairing thermal stability and of the written data.
Cette diminution de la puissance consommée est d'autant plus importante que les dimensions du point mémoire sont réduites. En effet, alors que l'état de l'art conduit à des puissances consommées lors de l'écriture d'autant plus grandes que la taille des points mémoire est réduite, la présente invention permet au contraire de diminuer la puissance consommée lorsque la taille du point mémoire est réduite. En d'autres termes, l'avantage concurrentiel de la présente invention ne fera que s'accroître au fur et à mesure de la réduction de la dimension des points mémoire.This reduction in the power consumed is all the more significant as the dimensions of the memory point are reduced. Indeed, while the state of the art leads to powers consumed during writing the greater the size of the memory points is reduced, the present invention on the contrary makes it possible to reduce the power consumed when the size of the memory point is reduced. In other words, the competitive advantage of the present invention will only increase as the size of the memory points is reduced.
En outre, la sélectivité à l'écriture est préservée, puisque les autres points mémoire situés sur une même ligne ou une même colonne n'étant pas chauffés lors du processus d'écriture, les couches de stockage (41) correspondantes desdits points mémoire non sélectionnés restent couplées aux couches anti-ferromagnétiques (42) correspondantes, étant donc insensibles au champ magnétique appliqué. D'autre part, le stockage multi-niveaux est facilité puisque l'énergie magnéto- statique est la même dans toutes les directions de l'espace. En conséquence, le champ d'écriture est identique quelle que soit la direction donnée à l'aimantation par rapport à la direction de référence. Il convient également de préciser qu'au moyen de cette architecture, le chauffage peut être obtenu par un élément chauffant extérieur non représenté sur les figures 4 et 5. Cet élément chauffant peut être une couche de forte résistivité électrique située au-dessus ou en dessous des couches (42 ou 45) respectivement.In addition, the write selectivity is preserved, since the other memory points located on the same row or the same column not being heated during the writing process, the corresponding storage layers (41) of said memory points not selected remain coupled to the corresponding anti-ferromagnetic layers (42), therefore being insensitive to the applied magnetic field. On the other hand, multi-level storage is facilitated since the magnetostatic energy is the same in all directions of space. Consequently, the writing field is identical whatever the direction given to the magnetization with respect to the reference direction. It should also be specified that by means of this architecture, the heating can be obtained by an external heating element not shown in FIGS. 4 and 5. This heating element can be a layer of high electrical resistivity situated above or below layers (42 or 45) respectively.
Selon une caractéristique avantageuse de l'invention, la couche de référence (44) est de type anti-ferromagnétique synthétique afin d'améliorer la discrimination à l'écriture en diminuant le champ magnéto-statique.According to an advantageous characteristic of the invention, the reference layer (44) is of the synthetic anti-ferromagnetic type in order to improve the discrimination in writing by reducing the magneto-static field.
Selon une caractéristique avantageuse, la couche de stockage du point mémoire peut être constituée d'une ou plusieurs couches ferro-magnétiques de type alliage amorphe fenimagnétique (AAF). Dans ce cas, la température atteinte lors du processus d'écriture n'est plus une température de blocage de la couche antiferromagnétique (42), mais la température de Curie de la couche de piégeage (42) réalisée en AAF. De telles couches en AAF sont précisément des alliages de cobalt et de terre rare, comme le samarium (Sm), le terbium (Tb) ou encore, mais de façon non limitative, le gadolinium (Gd).According to an advantageous characteristic, the storage layer of the memory point can consist of one or more ferro-magnetic layers of the amorphous fenimagnetic alloy (AAF) type. In this case, the temperature reached during the writing process is no longer a blocking temperature of the antiferromagnetic layer (42), but the Curie temperature of the trapping layer (42) produced in AAF. Such layers in AAF are precisely cobalt alloys and rare earth, such as samarium (Sm), terbium (Tb) or, but not limited to, gadolinium (Gd).
En outre, la technique d'adressage conforme à l'invention permet une écriture simultanée de plusieurs points mémoire en sélectionnant le chauffage simultané de plusieurs points mémoire. Cette approche permet d'augmenter la vitesse d'écriture globale de la mémoire. In addition, the addressing technique according to the invention allows simultaneous writing of several memory points by selecting the simultaneous heating of several memory points. This approach increases the overall writing speed of the memory.

Claims

REVENDICATIONS
1. Mémoire magnétique à écriture assistée thermiquement, dont chaque point mémoire (40, 60) est constitué d'une jonction tunnel magnétique, et dont la section parallèlement au plan des couches constitutives de la jonction tunnel est circulaire ou sensiblement circulaire, ladite jonction tunnel comprenant au moins : - une couche magnétique de référence (44, 64), dite "couche piégée", dont l'aimantation est de direction fixe, - une couche magnétique de stockage (42, 62), dite "couche libre", dont la direction d'aimantation est variable, - une couche isolante (43, 63), interposée entre la couche libre (42, 62) et la couche piégée (44, 64), dans laquelle la couche de stockage (42, 62) est formée d'au moins une couche magnétique douce, c'est-à-dire d'anisotropie magnétique réduite, et d'une couche de piégeage (41, 61), les deux couches étant couplées magnétiquement par contact, et dans laquelle la température de fonctionnement de la mémoire en lecture ou au repos est choisie en dessous de la température de blocage des couches respectivement libre et piégée.1. Magnetic memory with thermally assisted writing, each memory point (40, 60) of which consists of a magnetic tunnel junction, and the cross section of which, parallel to the plane of the constituent layers of the tunnel junction, is circular or substantially circular, said tunnel junction comprising at least: - a magnetic reference layer (44, 64), called "trapped layer", whose magnetization is of fixed direction, - a magnetic storage layer (42, 62), called "free layer", of which the direction of magnetization is variable, - an insulating layer (43, 63), interposed between the free layer (42, 62) and the trapped layer (44, 64), in which the storage layer (42, 62) is formed from at least one soft magnetic layer, i.e. reduced magnetic anisotropy, and a trapping layer (41, 61), the two layers being magnetically coupled by contact, and in which the temperature operating memory read or repo s is chosen below the blocking temperature of the free and trapped layers respectively.
2. Mémoire magnétique selon la revendication 1, caractérisée en ce que l'anisotropie magnétique de la couche magnétique douce est inférieure à 10 Oersted, et préférentiellement comprise entre 1 et 3 Oersted.2. Magnetic memory according to claim 1, characterized in that the magnetic anisotropy of the soft magnetic layer is less than 10 Oersted, and preferably between 1 and 3 Oersted.
3. Mémoire magnétique selon l'une des revendications 1 et 2, caractérisée en ce que la couche magnétique douce de la couche de stockage (42, 62) est constituée d'un alliage à base de nickel, de cobalt et de fer.3. Magnetic memory according to one of claims 1 and 2, characterized in that the soft magnetic layer of the storage layer (42, 62) consists of an alloy based on nickel, cobalt and iron.
4. Mémoire magnétique selon l'une des revendications 1 à 3, caractérisée en ce que la couche de piégeage (41, 61) est constituée d'un matériau choisi dans le groupe comprenant les alliages à base de fer et de cobalt, les alliages anti- ferromagnétiques à base de manganèse, et les alliages amorphes à base de terre rare et de métal de transition. 4. Magnetic memory according to one of claims 1 to 3, characterized in that the trapping layer (41, 61) consists of a material chosen from the group comprising alloys based on iron and cobalt, the alloys manganese-based anti-ferromagnetics, and rare earth and transition metal amorphous alloys.
5. Mémoire magnétique selon l'une des revendications 1 à 4, caractérisée en ce que la couche de référence ou couche piégée (44, 64) est constituée d'une couche synthétique anti-ferromagnétique artificielle, constituée de deux couches ferro-magnétiques séparées d'une couche non magnétique de telle sorte que les aimantations des deux couches ferromagnétiques soient anti-parallèles.5. Magnetic memory according to one of claims 1 to 4, characterized in that the reference layer or trapped layer (44, 64) consists of an artificial anti-ferromagnetic synthetic layer, consisting of two separate ferro-magnetic layers a non-magnetic layer so that the magnetizations of the two ferromagnetic layers are anti-parallel.
6. Mémoire magnétique selon la revendication 5, caractérisée en ce que la couche de référence ou couche piégée (44, 64) est constituée d'un matériau à forte anisotropie magnéto-cristalline.6. Magnetic memory according to claim 5, characterized in that the reference layer or trapped layer (44, 64) consists of a material with strong magneto-crystalline anisotropy.
7. Mémoire magnétique selon l'une des revendications 1 à 6, caractérisée en ce que les points mémoire (40, 60) sont organisés en réseau, chaque point mémoire étant connecté en son sommet à une ligne conductrice (48, 68, 69), destinée à générer un champ magnétique de retournement et à induire un échauffement dudit point mémoire, et à sa base, à un transistor de sélection (46, 66), l'écriture étant réalisée au niveau d'un point mémoire considéré en deux étapes : - l'envoi simultané d'impulsions de courant électrique dans ladite ligne conductrice (48, 68, 69) et d'un courant d'ouverture dudit transistor (46, 66), - l'envoi d'une commande de fermeture du transistor (46, 66) afin que le courant circulant dans la ligne (48, 68, 69) ne circule plus dans le point mémoire (40, 60) mais serve à produire le champ magnétique d'écriture lors du refroidissement dudit point mémoire.7. Magnetic memory according to one of claims 1 to 6, characterized in that the memory points (40, 60) are organized in a network, each memory point being connected at its top to a conductive line (48, 68, 69) , intended to generate a magnetic reversal field and to induce a heating of said memory point, and at its base, to a selection transistor (46, 66), the writing being carried out at a memory point considered in two stages : - the simultaneous sending of electric current pulses in said conductive line (48, 68, 69) and of an opening current of said transistor (46, 66), - the sending of a command to close the transistor (46, 66) so that the current flowing in the line (48, 68, 69) no longer flows in the memory point (40, 60) but is used to produce the writing magnetic field during the cooling of said memory point.
8. Mémoire magnétique selon la revendication 7, caractérisée en ce que le transistor de commande (46, 66) et sa ligne de commande correspondante (47, 67) sont placés sous le point mémoire considéré.8. Magnetic memory according to claim 7, characterized in that the control transistor (46, 66) and its corresponding control line (47, 67) are placed under the considered memory point.
9. Mémoire magnétique selon la revendication 7, caractérisée en ce que la ligne conductrice (68) est dédoublée en un conducteur (68) dédié au chauffage du point mémoire (60) et en un conducteur (69) indépendant du conducteur (68) et isolé électriquement de celui-ci, dédié à la production du champ de retournement.9. Magnetic memory according to claim 7, characterized in that the conductive line (68) is split into a conductor (68) dedicated to heating the memory point (60) and into a conductor (69) independent of the conductor (68) and electrically isolated from it, dedicated to the production of the turning field.
10. Mémoire magnétique selon la revendication 9, caractérisée en ce que les impulsions de courant dans les lignes (68) et (69) sont contrôlées indépendamment. 10. Magnetic memory according to claim 9, characterized in that the current pulses in the lines (68) and (69) are independently controlled.
11. Mémoire magnétique selon la revendication 10, caractérisée en ce que les impulsions de courant dans les lignes (68) et (69) sont coïncidentes.11. Magnetic memory according to claim 10, characterized in that the current pulses in the lines (68) and (69) are coincident.
12. Mémoire magnétique selon la revendication 9, caractérisée en ce que le conducteur additionnel (69) est superposé au conducteur de chauffage (68).12. Magnetic memory according to claim 9, characterized in that the additional conductor (69) is superimposed on the heating conductor (68).
13. Mémoire magnétique selon l'une des revendications 9 à 12, caractérisée en ce que le point mémoire (60), le transistor de commande (66) et les conducteurs (68, 69) sont superposés.13. Magnetic memory according to one of claims 9 to 12, characterized in that the memory point (60), the control transistor (66) and the conductors (68, 69) are superimposed.
14. Mémoire magnétique à accès aléatoire caractérisée en ce qu'elle est réalisée conformément à l'une quelconque des revendications 1 à 13.14. Magnetic random access memory characterized in that it is produced in accordance with any one of claims 1 to 13.
15. Procédé pour écrire dans une mémoire magnétique à écriture thermiquement assistée constituée par un réseau de points mémoire constitué chacun par une jonction tunnel magnétique (40, 60), et dont la section parallèlement au plan des couches constitutives de la jonction tunnel est circulaire ou sensiblement circulaire, ladite jonction tunnel comprenant au moins : une couche magnétique de référence (44, 64), dite "couche piégée", dont l'aimantation est de direction fixe, une couche magnétique de stockage (42, 62), dite "couche libre", dont la direction d'aimantation est variable, une couche isolante (43, 63), interposée entre la couche libre (42, 62) et la couche piégée (44, 64), et dans laquelle la température de fonctionnement de la mémoire en lecture ou au repos est choisie en dessous de la température de blocage des couches respectivement libre et piégée, consistant : - tout d'abord à envoyer une impulsion électrique par le biais d'un conducteur (48, 68) au sein du point mémoire à écrire, destinée à induire un échauffement dudit point mémoire jusqu'à atteindre une température supérieure à la température de blocage de la couche de stockage (42, 62), mais inférieure à la température de blocage de la couche de référence (44, 64) ; - puis, lors du refroidissement dudit point mémoire intervenant après cet échauffement, à envoyer une impulsion électrique par le biais du conducteur (48, 68) ou d'un conducteur additionnel (69) indépendant et isolé électriquement du conducteur (68), destinée à générer un champ magnétique de retournement propre à modifier l'aimantation de la couche de stockage (42, 62). 15. Method for writing in a magnetic memory with thermally assisted writing constituted by a network of memory points each consisting of a magnetic tunnel junction (40, 60), and the section of which, parallel to the plane of the layers making up the tunnel junction, is circular or substantially circular, said tunnel junction comprising at least: a reference magnetic layer (44, 64), called "trapped layer", the magnetization of which is of fixed direction, a magnetic storage layer (42, 62), called "layer free ", whose direction of magnetization is variable, an insulating layer (43, 63), interposed between the free layer (42, 62) and the trapped layer (44, 64), and in which the operating temperature of the memory in reading or at rest is chosen below the blocking temperature of the free and trapped layers respectively, consisting: - first of all of sending an electrical pulse via a conductor (48, 68) within the memory point to be written, intended to induce heating of said memory point until reaching a temperature higher than the blocking temperature of the storage layer (42, 62), but lower than the blocking temperature of the reference layer (44, 64); - Then, during the cooling of said memory point occurring after this heating, to send an electrical pulse through the conductor (48, 68) or an additional conductor (69) independent and electrically isolated from the conductor (68), intended for generating a reversal magnetic field capable of modifying the magnetization of the storage layer (42, 62).
6. Procédé pour écrire dans une mémoire magnétique constituée par un réseau de points mémoire constitué chacun par une jonction tunnel magnétique (40, 60) selon la revendication 15, caractérisé en ce que plusieurs points mémoire sont écrits simultanément en sélectionnant lesdits points mémoire à écrire par le chauffage des points mémoire considérés. 6. Method for writing to a magnetic memory constituted by a network of memory points each consisting of a magnetic tunnel junction (40, 60) according to claim 15, characterized in that several memory points are written simultaneously by selecting said memory points to be written by heating the memory points considered.
EP05728082A 2004-02-23 2005-02-17 Magnetic memory with a magnetic tunnel junction written in a thermally assisted manner, and method for writing the same Ceased EP1719135A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0401762A FR2866750B1 (en) 2004-02-23 2004-02-23 MAGNETIC MEMORY MEMORY WITH MAGNETIC TUNNEL JUNCTION AND METHOD FOR ITS WRITING
PCT/FR2005/050103 WO2005086171A1 (en) 2004-02-23 2005-02-17 Magnetic memory with a magnetic tunnel junction written in a thermally assisted manner, and method for writing the same

Publications (1)

Publication Number Publication Date
EP1719135A1 true EP1719135A1 (en) 2006-11-08

Family

ID=34833965

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05728082A Ceased EP1719135A1 (en) 2004-02-23 2005-02-17 Magnetic memory with a magnetic tunnel junction written in a thermally assisted manner, and method for writing the same

Country Status (8)

Country Link
US (1) US7411817B2 (en)
EP (1) EP1719135A1 (en)
JP (1) JP2007525840A (en)
KR (1) KR101085246B1 (en)
CN (1) CN1922694A (en)
CA (1) CA2553577A1 (en)
FR (1) FR2866750B1 (en)
WO (1) WO2005086171A1 (en)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100541558B1 (en) 2004-04-19 2006-01-11 삼성전자주식회사 Magnetic tunnel junction structures having bended tips at both ends thereof, magnetic random access memory cells employing the same and photo masks used in formation thereof
JP5193419B2 (en) * 2005-10-28 2013-05-08 株式会社東芝 Spin injection magnetic random access memory and writing method thereof
JP5034317B2 (en) * 2006-05-23 2012-09-26 ソニー株式会社 Memory element and memory
TWI449040B (en) 2006-10-06 2014-08-11 Crocus Technology Sa System and method for providing content-addressable magnetoresistive random access memory cells
US8100228B2 (en) * 2007-10-12 2012-01-24 D B Industries, Inc. Portable anchorage assembly
EP2232495B1 (en) * 2007-12-13 2013-01-23 Crocus Technology Magnetic memory with a thermally assisted writing procedure
FR2925747B1 (en) * 2007-12-21 2010-04-09 Commissariat Energie Atomique MAGNETIC MEMORY WITH THERMALLY ASSISTED WRITING
FR2929041B1 (en) * 2008-03-18 2012-11-30 Crocus Technology MAGNETIC ELEMENT WITH THERMALLY ASSISTED WRITING
KR101586271B1 (en) * 2008-04-03 2016-01-20 삼성전자주식회사 Magnetic random access memory device and Data writing and reading method of the Same
ATE538474T1 (en) 2008-04-07 2012-01-15 Crocus Technology Sa SYSTEM AND METHOD FOR WRITING DATA TO MAGNETORRESISTIVE RANDOM ACCESS MEMORY CELLS
EP2124228B1 (en) * 2008-05-20 2014-03-05 Crocus Technology Magnetic random access memory with an elliptical junction
KR100952919B1 (en) * 2008-05-26 2010-04-16 부산대학교 산학협력단 High-capacity mram using perpendicular magnetic tunnel junction
US8031519B2 (en) 2008-06-18 2011-10-04 Crocus Technology S.A. Shared line magnetic random access memory cells
US7804709B2 (en) * 2008-07-18 2010-09-28 Seagate Technology Llc Diode assisted switching spin-transfer torque memory unit
US8223532B2 (en) * 2008-08-07 2012-07-17 Seagate Technology Llc Magnetic field assisted STRAM cells
US8054677B2 (en) 2008-08-07 2011-11-08 Seagate Technology Llc Magnetic memory with strain-assisted exchange coupling switch
US7746687B2 (en) * 2008-09-30 2010-06-29 Seagate Technology, Llc Thermally assisted multi-bit MRAM
US8487390B2 (en) * 2008-10-08 2013-07-16 Seagate Technology Llc Memory cell with stress-induced anisotropy
JP2010093091A (en) * 2008-10-09 2010-04-22 Hitachi Ltd Magnetic memory, magnetic memory array and method of writing information in magnetic memory array
US20100091564A1 (en) * 2008-10-10 2010-04-15 Seagate Technology Llc Magnetic stack having reduced switching current
US8217478B2 (en) 2008-10-10 2012-07-10 Seagate Technology Llc Magnetic stack with oxide to reduce switching current
US8228703B2 (en) * 2008-11-04 2012-07-24 Crocus Technology Sa Ternary Content Addressable Magnetoresistive random access memory cell
EP2375464B1 (en) * 2008-12-22 2014-09-10 Fuji Electric Co., Ltd. Magnetoresistive element and memory device using same
US7978505B2 (en) * 2009-01-29 2011-07-12 Headway Technologies, Inc. Heat assisted switching and separated read-write MRAM
US8289765B2 (en) * 2009-02-19 2012-10-16 Crocus Technology Sa Active strap magnetic random access memory cells configured to perform thermally-assisted writing
US8053255B2 (en) 2009-03-03 2011-11-08 Seagate Technology Llc STRAM with compensation element and method of making the same
EP2249350B1 (en) 2009-05-08 2012-02-01 Crocus Technology Magnetic memory with a thermally assisted spin transfer torque writing procedure using a low writing current
ATE545133T1 (en) * 2009-05-08 2012-02-15 Crocus Technology MAGNETIC MEMORY WITH HEAT-ASSISTED WRITING METHOD AND RESTRICTED WRITING FIELD
US20100320550A1 (en) * 2009-06-23 2010-12-23 International Business Machines Corporation Spin-Torque Magnetoresistive Structures with Bilayer Free Layer
US8406041B2 (en) * 2009-07-08 2013-03-26 Alexander Mikhailovich Shukh Scalable magnetic memory cell with reduced write current
EP2276034B1 (en) * 2009-07-13 2016-04-27 Crocus Technology S.A. Self-referenced magnetic random access memory cell
US8609262B2 (en) 2009-07-17 2013-12-17 Magic Technologies, Inc. Structure and method to fabricate high performance MTJ devices for spin-transfer torque (STT)-RAM application
EP2325846B1 (en) * 2009-11-12 2015-10-28 Crocus Technology S.A. A magnetic tunnel junction memory with thermally assisted writing
US8064246B2 (en) 2009-12-10 2011-11-22 John Casimir Slonczewski Creating spin-transfer torque in oscillators and memories
US8482967B2 (en) 2010-11-03 2013-07-09 Seagate Technology Llc Magnetic memory element with multi-domain storage layer
CN102478546B (en) * 2010-11-30 2015-11-18 北京德锐磁星科技有限公司 Micro-electro-mechanical magnetic biosensor
US9070456B2 (en) 2011-04-07 2015-06-30 Tom A. Agan High density magnetic random access memory
US8976577B2 (en) 2011-04-07 2015-03-10 Tom A. Agan High density magnetic random access memory
US8472240B2 (en) 2011-05-16 2013-06-25 Micron Technology, Inc. Spin torque transfer memory cell structures and methods
US8587079B2 (en) * 2011-08-12 2013-11-19 Crocus Technology Inc. Memory array including magnetic random access memory cells and oblique field lines
US8698259B2 (en) 2011-12-20 2014-04-15 Samsung Electronics Co., Ltd. Method and system for providing a magnetic tunneling junction using thermally assisted switching
US9093639B2 (en) * 2012-02-21 2015-07-28 Western Digital (Fremont), Llc Methods for manufacturing a magnetoresistive structure utilizing heating and cooling
KR101967352B1 (en) * 2012-10-31 2019-04-10 삼성전자주식회사 Magnetic memory devices and Method of fabricating the same
CN104347795A (en) * 2013-08-05 2015-02-11 中芯国际集成电路制造(上海)有限公司 MTJ (Magnetic Tunnel Junction), forming method thereof, magnetic random access memory and forming method thereof
US9214625B2 (en) 2014-03-18 2015-12-15 International Business Machines Corporation Thermally assisted MRAM with increased breakdown voltage using a double tunnel barrier
US9524765B2 (en) 2014-08-15 2016-12-20 Qualcomm Incorporated Differential magnetic tunnel junction pair including a sense layer with a high coercivity portion
FR3031622B1 (en) * 2015-01-14 2018-02-16 Centre National De La Recherche Scientifique MAGNETIC MEMORY POINT
CN110660435B (en) * 2018-06-28 2021-09-21 中电海康集团有限公司 MRAM memory cell, array and memory
US10891999B1 (en) * 2019-06-19 2021-01-12 Western Digital Technologies, Inc. Perpendicular SOT MRAM
US11004489B2 (en) * 2019-06-19 2021-05-11 Western Digital Technologies, Inc. Perpendicular spin transfer torque MRAM memory cell with in-stack thermal barriers
US11038097B2 (en) 2019-09-19 2021-06-15 International Business Machines Corporation Magnetic structures with tapered edges
CN114335329B (en) * 2022-03-16 2022-06-17 波平方科技(杭州)有限公司 Magnetic random access memory with high magnetic field interference resistance

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3820475C1 (en) 1988-06-16 1989-12-21 Kernforschungsanlage Juelich Gmbh, 5170 Juelich, De
US5159513A (en) 1991-02-08 1992-10-27 International Business Machines Corporation Magnetoresistive sensor based on the spin valve effect
US5343422A (en) 1993-02-23 1994-08-30 International Business Machines Corporation Nonvolatile magnetoresistive storage device using spin valve effect
US6021065A (en) 1996-09-06 2000-02-01 Nonvolatile Electronics Incorporated Spin dependent tunneling memory
US5583725A (en) 1994-06-15 1996-12-10 International Business Machines Corporation Spin valve magnetoresistive sensor with self-pinned laminated layer and magnetic recording system using the sensor
US5640343A (en) 1996-03-18 1997-06-17 International Business Machines Corporation Magnetic memory array using magnetic tunnel junction devices in the memory cells
US5959880A (en) 1997-12-18 1999-09-28 Motorola, Inc. Low aspect ratio magnetoresistive tunneling junction
US5966323A (en) * 1997-12-18 1999-10-12 Motorola, Inc. Low switching field magnetoresistive tunneling junction for high density arrays
WO2000079540A1 (en) * 1999-06-18 2000-12-28 Nve Corporation Magnetic memory coincident thermal pulse data storage
US6385082B1 (en) 2000-11-08 2002-05-07 International Business Machines Corp. Thermally-assisted magnetic random access memory (MRAM)
US6603678B2 (en) * 2001-01-11 2003-08-05 Hewlett-Packard Development Company, L.P. Thermally-assisted switching of magnetic memory elements
JP4798895B2 (en) * 2001-08-21 2011-10-19 キヤノン株式会社 Ferromagnetic memory and its heat-assisted drive method
FR2829867B1 (en) 2001-09-20 2003-12-19 Centre Nat Rech Scient MAGNETIC MEMORY HAVING SELECTION BY WRITING BY INHIBITION AND METHOD FOR WRITING SAME
FR2829868A1 (en) 2001-09-20 2003-03-21 Centre Nat Rech Scient Magnetic memory with spin-polarized current writing for storage and reading of data in electronic systems includes a free magnetic layer made from an amorphous or nanocrystalline alloy of a rare earth and a transition metal
FR2832542B1 (en) 2001-11-16 2005-05-06 Commissariat Energie Atomique MAGNETIC DEVICE WITH MAGNETIC TUNNEL JUNCTION, MEMORY AND METHODS OF WRITING AND READING USING THE DEVICE
JP2003196973A (en) * 2001-12-21 2003-07-11 Mitsubishi Electric Corp Thin film magnetic material storage device
SG115462A1 (en) * 2002-03-12 2005-10-28 Inst Data Storage Multi-stage per cell magnetoresistive random access memory
US6704220B2 (en) * 2002-05-03 2004-03-09 Infineon Technologies Ag Layout for thermally selected cross-point MRAM cell
JP3959335B2 (en) * 2002-07-30 2007-08-15 株式会社東芝 Magnetic storage device and manufacturing method thereof
US6654278B1 (en) * 2002-07-31 2003-11-25 Motorola, Inc. Magnetoresistance random access memory
JP2004200245A (en) * 2002-12-16 2004-07-15 Nec Corp Magnetoresistive element and manufacturing method therefor
US7006375B2 (en) * 2003-06-06 2006-02-28 Seagate Technology Llc Hybrid write mechanism for high speed and high density magnetic random access memory

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005086171A1 *

Also Published As

Publication number Publication date
KR101085246B1 (en) 2011-11-22
WO2005086171A1 (en) 2005-09-15
KR20070027520A (en) 2007-03-09
CN1922694A (en) 2007-02-28
FR2866750B1 (en) 2006-04-21
FR2866750A1 (en) 2005-08-26
US7411817B2 (en) 2008-08-12
CA2553577A1 (en) 2005-09-15
US20060291276A1 (en) 2006-12-28
JP2007525840A (en) 2007-09-06

Similar Documents

Publication Publication Date Title
WO2005086171A1 (en) Magnetic memory with a magnetic tunnel junction written in a thermally assisted manner, and method for writing the same
EP2073210B1 (en) Magnetic memory with heat-assisted writing
EP1808862B1 (en) Magnetic device with magnetic tunnel junction, memory and read and write methods using this device
EP3028279B1 (en) Memory with magnetic skyrmions and method related thereto
EP1430484B1 (en) Magnetic memory with spin-polarized current writing, using amorphous ferromagnetic alloys, writing method for same
EP2140455B1 (en) Magnetic memory with magnetic tunnel junction
EP2436035B1 (en) Magnetic memory device using spin polarisation and method of using the same
EP2633525B1 (en) Writable magnetic element
EP1438722B1 (en) Magnetic memory with write inhibit selection and the writing method for same
FR2931011A1 (en) MAGNETIC ELEMENT WITH THERMALLY ASSISTED WRITING
EP2255362B1 (en) Magnetic member with thermally assisted writing
FR2963153A1 (en) INDEXABLE MAGNETIC ELEMENT
FR2892231A1 (en) MAGNETIC DEVICE WITH MAGNETORESISTIVE TUNNEL JUNCTION AND MAGNETIC MEMORY WITH RANDOM ACCESS
EP3026721B1 (en) Magnetic device with spin polarisation
EP3531432B1 (en) Magnetic tunnel junction with perpendicular anisotropy and minimised temperature variation, memory point and logic element comprising the magnetic tunnel junction, method for manufacturing the magnetic tunnel junction
EP3531420B1 (en) Magnetic tunnel junction with perpendicular anisotropy and minimised variability, memory point and logic element comprising the magnetic tunnel junction, method for manufacturing the magnetic tunnel junction
FR2944910A1 (en) VORTEX MAGNETIC MEMORIZATION DEVICE
EP2681739B1 (en) Magnetic device and method for writing and reading an item of information stored in such a magnetic device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060712

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20071115

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE- CNRS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20100604