EP1713523B1 - Adhesive composition comprising hydrophilic and hydrophobic silicone elastomers - Google Patents
Adhesive composition comprising hydrophilic and hydrophobic silicone elastomers Download PDFInfo
- Publication number
- EP1713523B1 EP1713523B1 EP04762804.5A EP04762804A EP1713523B1 EP 1713523 B1 EP1713523 B1 EP 1713523B1 EP 04762804 A EP04762804 A EP 04762804A EP 1713523 B1 EP1713523 B1 EP 1713523B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- silicone
- adhesive
- hydrophilic
- adhesive composition
- hydrophobic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000853 adhesive Substances 0.000 title claims description 65
- 230000001070 adhesive effect Effects 0.000 title claims description 65
- 239000000203 mixture Substances 0.000 title claims description 52
- 230000002209 hydrophobic effect Effects 0.000 title claims description 37
- 229920002379 silicone rubber Polymers 0.000 title claims description 30
- 229920001296 polysiloxane Polymers 0.000 claims description 61
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 27
- 239000002250 absorbent Substances 0.000 claims description 15
- 230000002745 absorbent Effects 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 15
- 229920001971 elastomer Polymers 0.000 claims description 7
- 239000000806 elastomer Substances 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 7
- 150000001252 acrylic acid derivatives Chemical class 0.000 claims description 4
- 229920001661 Chitosan Polymers 0.000 claims description 3
- 206010021639 Incontinence Diseases 0.000 claims description 3
- 229920000615 alginic acid Polymers 0.000 claims description 3
- 235000010443 alginic acid Nutrition 0.000 claims description 3
- 150000004676 glycans Chemical class 0.000 claims description 3
- 229920001282 polysaccharide Polymers 0.000 claims description 3
- 239000005017 polysaccharide Substances 0.000 claims description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N hexane Substances CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 21
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 12
- 239000013464 silicone adhesive Substances 0.000 description 12
- 239000001768 carboxy methyl cellulose Substances 0.000 description 11
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 11
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 11
- 229940105329 carboxymethylcellulose Drugs 0.000 description 11
- -1 polyethylene Polymers 0.000 description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 10
- 206010052428 Wound Diseases 0.000 description 9
- 208000027418 Wounds and injury Diseases 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 9
- 238000000576 coating method Methods 0.000 description 9
- 238000010521 absorption reaction Methods 0.000 description 8
- 239000011324 bead Substances 0.000 description 6
- 239000012530 fluid Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 239000003431 cross linking reagent Substances 0.000 description 4
- 239000006260 foam Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 239000002318 adhesion promoter Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 229920006264 polyurethane film Polymers 0.000 description 3
- 229920002050 silicone resin Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- 239000004604 Blowing Agent Substances 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 229920001477 hydrophilic polymer Polymers 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 229910003849 O-Si Inorganic materials 0.000 description 1
- 229910003872 O—Si Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000011865 Pt-based catalyst Substances 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 206010040880 Skin irritation Diseases 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000012963 UV stabilizer Substances 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 125000005376 alkyl siloxane group Chemical group 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000012867 bioactive agent Substances 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 229910002026 crystalline silica Inorganic materials 0.000 description 1
- SCKHCCSZFPSHGR-UHFFFAOYSA-N cyanophos Chemical compound COP(=S)(OC)OC1=CC=C(C#N)C=C1 SCKHCCSZFPSHGR-UHFFFAOYSA-N 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 1
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000000416 hydrocolloid Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 210000000260 male genitalia Anatomy 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 125000005704 oxymethylene group Chemical group [H]C([H])([*:2])O[*:1] 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229940057847 polyethylene glycol 600 Drugs 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000012763 reinforcing filler Substances 0.000 description 1
- 229920002631 room-temperature vulcanizate silicone Polymers 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229920005573 silicon-containing polymer Polymers 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 230000036556 skin irritation Effects 0.000 description 1
- 231100000475 skin irritation Toxicity 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- UKBCQQRSSYMKJI-UHFFFAOYSA-N trimethyl(oxan-2-yl)silane Chemical compound C[Si](C)(C)C1CCCCO1 UKBCQQRSSYMKJI-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/58—Adhesives
- A61L15/585—Mixtures of macromolecular compounds
Definitions
- the invention relates to an adhesive composition and a medical device comprising an adhesive composition.
- Medical devices such as wound care devices and ostomy appliances may comprise adhesives for direct contact with the skin. It is important that the adhesive is skin-friendly, as the skin often is damaged or just extremely fragile, especially when handling chronic wounds. Different suitable adhesives are known in the art. Hydrocolloid adhesives are often used, due to their permeability and good absorption properties. Acrylic adhesives may also be used, especially for thin applications, as the permeability is low.
- Silicone adhesives are very skin-friendly and very suitable for donating active agents, such as in medicated patches, but they are also rather occlusive and hydrophobic, which is a mayor disadvantage for a product being worn for prolonged period, such as wound dressings, ostomy appliances or incontinence devices.
- WO 02/087642 discloses an adhesive comprising a hydrophilic phase and a hydrophobic phase.
- the hydrophobic phase may be a silicone elastomer and the hydrophilic phase may be a water absorbing mixture of hydrophilic polymers of non-silicone origin.
- WO 02/076519 a silicone-based moisture absorbing matrix for wound care products.
- the sticky matrix comprises silicone, gelling agent and optionally a silicone resin. Both silicone compounds are hydrophobic and the reference is silent with respect to the use of hydrophilic silicone.
- EP 0312 265 discloses adhesive compositions comprising blends of polyethylene oxide-grafted silicone polymers with resinous copolymers.
- the adhesive compositions enhance release, in a controlled fashion, of bioactive or chemical agents blended or otherwise dispersed through the compositions.
- the object of the present invention is to provide an adhesive composition, being skin-friendly and at the same time having good permeability properties.
- Another object of the invention is to provide a silicone adhesive with absorption properties.
- Yet another object of the invention is to provide a skin-friendly adhesive with a good cohesion to the skin and yet easy to remove.
- Still another object of the invention is to provide a skin-friendly adhesive that reduces cell-stripping when removed from the skin.
- Still another object of the invention is to provide an adhesive with good cohesion.
- the invention relates to an adhesive composition
- an adhesive composition comprising hydrophilic silicone elastomers and hydrophobic silicone elastomers and optionally water absorbent material, wherein the ratio between the hydrophilic silicone elastomers and the hydrophobic silicone elastomers is from 5:95 to 95:5.
- the ratio between the hydrophilic silicone elastomers and the hydrophobic silicone elastomers may be from 10:90 to 90:10, preferably 20:80 to 80:20, more preferred 30:70 to 70:30 and most preferred 40:60 to 60:40.
- the ratio between the hydrophilic silicone and the hydrophobic silicone is from 10:90 to 40:60, more preferably from 20:80 to 30:70.
- the ratio between the hydrophilic silicone and the hydrophobic silicone is from 5:95 to 50:50. In another embodiment of the invention ratio between the hydrophilic silicone and the hydrophobic silicone is from 95:5 to 50:50.
- the ratio may in one embodiment of the invention be 25:75.
- the ratio between the hydrophilic silicone and the hydrophobic silicone is from 90:10 to 60:40, more preferably from 80:20 to 70:30.
- the ratio is 75:25.
- hydrophobic silicone and hydrophilic silicone By mixing hydrophobic silicone and hydrophilic silicone into an adhesive composition the interaction between the two groups of polymers are optimal, due to their related nature, compared to mixtures of hydrophobic silicone and other hydrophilic polymers than silicones.
- Silicones such as trimethylsilyloxane terminated polydimetylsiloxane, are hydrophobic. These have an advantage of being inert to hydrophilic substances, which means that these substances are not dissolved in silicone and therefore are able to migrate out of the silicone. This explains why silicone is a good as drug release matrix.
- silicone that is relatively less hydrophobic than trimethylsilyloxy-terminated polydimetylsiloxane but still can be used as a PSA (pressure sensitive adhesive) adhesive.
- Hydrophobic silicones can be made hydrophilic by replacing some of the methyl groups along the chain or the chain ends with hydrophilic moieties well-known to those skilled in the art, such moieties may be oxymethylene and/or oxypropylene, acrylate amide, amines imines etc.
- the hydrophilicity or hydrophobicity may also be adjusted to the desired value by radio frequency or electrical current phase plasma treatment or corona treatment of the silicone fluid stream that passes into a chamber where plasma or corona is generated., and that or these monomer moieties that renders hydrophobic silicone hydrophilic is/are introduced.
- Hydrophilic silicones capable of absorbing small amounts of water are known.
- An example may be Silicone 4000 series produced by DOW Corning.
- the water absorption may be further increased by incorporating water-absorbing material such as CMC or cross-linked acrylates.
- water-absorbing material such as CMC or cross-linked acrylates.
- such silicone adhesive has low cohesiveness and is thus unsuitable in use for medical devices.
- the cohesiveness of the silicone adhesive may be increased by combining hydrophobic and hydrophilic silicone.
- the surface energy of the composition according to the present invention measured in terms of water-in-air contact angle for a fully cured silicone mixture against a glass plate, without the absorbing agent and other ingredients mentioned in examples below, is preferably between 65 and 105 degree, more preferred between 75 and 100 degree and most preferred between 80 and 95 degree.
- the surface energy can be measured by the water-in-air contact angle method known in the art, where the angle between a drop of distilled water and the surface of the substrate is measured.
- surface energy is also determined from the chemical structure of the silicone mixtures using the surface and interfacial tension of polymers, oligomers, plasticizers, and additives involved in the composition.
- the cohesiveness of the adhesive of the present invention is important when the adhesive has to be removed from a skin or wound site. Low cohesiveness may result in adhesive residues left on the skin or wound site or in the areas surrounding the wound site, and/or trauma while removing the adhesive due to a high peel force.
- the ratio that suits both water absorption and gel cohesiveness may also influence the peel force of the PSA to be achieved.
- the actual peel span of silicone elastomers lies between over 70 N for a 100% hydrophilic elastomer to around 0,5 N for 100% hydrophobic elastomer.
- the peel force of the adhesive of the present invention may be from 1 N to 20 N measured according to 180 degree method DS/EN/28510-2.
- the peel force between 1 N and 10 N, more preferably the peel force is from 1 N to 5 N.
- Peel force and gel cohesiveness can be influenced by varying the ratio between the hydrophilic and the hydrophobic silicone. Furthermore, the peel force may be further adjusted by incorporating some other ingredients such as kaolin, crystalline silica magnesium oxide, calcium carbonate or other reinforcing fillers, plasticisers, such as a low molecular silicone oil, e.g. hexamethylene disiloxane, soya bean oil or the derivative thereof, castor oil or the derivative thereof, or other additives known to persons skilled in the art.
- plasticisers such as a low molecular silicone oil, e.g. hexamethylene disiloxane, soya bean oil or the derivative thereof, castor oil or the derivative thereof, or other additives known to persons skilled in the art.
- additives may be UV stabilizers such as those known under trade name "Irganox, Cyanox, Hostanox", antioxidants, and cross-linking agents such as peroxides, divinylbenzene.
- Other suitable compounds may be acrylic or vinyl ended silicone moieties having an average molecular weight ranging 100 to 10.000. These moieties are also referred to as cross-linking agents.
- Adhesion promoters may also be added to the silicone mixtures in order to improve the affinity of the silicone adhesive for the substrate onto which the adhesive is to be applied.
- the adhesion promoters may be silicone based, such as those commercialized by Dow Corning under the name "Silane Z-603". Titan based such those commercialized by Du Pont under the name “Tyzor AA 105" may also be used.
- Adhesion promoters can be mixed into the silicone composition prior to coating and curing, or simply used as a primer onto the substrate carrier prior to coating.
- Silicone adhesives are typically composed of two main components, a siloxane polymer and a silicate resin. Silicone adhesives are either supplied pre-cross linked, supplied in a hydrocarbon solvent or in a silane solvent. Or as a two-part system where the first part comprises a cross-linking agent and the other part comprises a catalyst that in most cases is an organometallic catalyst, typically an organoplatinum catalyst.
- Suitable silicones for the present invention may be polydimethylsiloxane, polymetylphenylsiloxane, alkylsiloxane, alkyoxysiloxane.
- An example of a suitable silicate resin may be trimetylsiloxy silicate, also known as tetrakis silicate.
- Preferred silicones may be polyorganesiloxane such as polydimethylsiloxane, poly(oxymethylsilylene), poly(oxyethylsilylene) or mixtures thereof, and/or silicones corresponding to general formula shown below: R-[Si(2R)-O-Si(2R)-] where R can generally be a methyl and/or ethyl group or can be substituted by one or several of the following groups -NH2, epoxy, acrylate, metacrylate, acrylamide, ethylene glycol, propylene glycol, halide (Cl, Br, F), maleic anhydride. The degree of substitution can vary from 0 to 90% preferably from 5 to 50% and more preferably from 5 to 20%.
- the hydrophilic and the hydrophobic silicone may be based on the same silicone elastomer, or they may be based on different silicone elastomers. By using the same type of elastomers the mixing of the two elastomers may be facilitated.
- the hydrophilic silicones may be silicones sold by Dow Corning under the name BIO-PSA, the series 7-4000 are most preferred.
- Other silicones such as those known as RTV (room temperature vulcanisable) may also be used when rendered less hydrophobic using the grafting techniques known in the art.
- the hydrophobic silicone may preferably be RTV silicones, such as those sold by Dow Corning, in a preferred embodiment of the invention the series 7-9000. Other silicones may be suitable.
- the molecular weight of the silicone elastomers should be in the range of 50,000 to 1,000,000, preferably from 100,000 to 500,000, and more preferably from 50,000 to 250,000.
- the molecular weight of the hydrophobic and the hydrophilic elastomers may be essentially the same.
- the molecular weight of the hydrophilic silicone elastomer is considerably smaller than the molecular weight of the hydrophobic silicone elastomer.
- the adhesive may be in the form of a foam.
- the foam may be obtained by promptly releasing the pressure of pressurized cured silicone adhesive while it is still hot. Pressurization and nitrogen, and carbon dioxide may also be used to control the structure of the foam. Other blowing agents well known in the art may also be used in order to control the foaming time as well as the foam structure.
- foaming the adhesive of the present invention a silicone adhesive with a better MVTR (moisture and vapor transmission rate)is achieved ,and furthermore, the adhesive obtains cushioning effect too.
- MVTR moisture and vapor transmission rate
- Another way of increasing the MVTR is mixing a fluid into the silicone composition; the fluid has a low boiling point and is not immiscible with silicone. After coating and curing, the immiscible fluid lies within the coating as a micro droplets. The micro droplets of low boiling points fluid are evacuated by vacuum. The resulting adhesive will be in the form of a microporous mass with improved MVTR.
- composition of the present invention may optionally comprise water absorbent material.
- the incorporation of absorbent material may increase the absorbency and the MVTR of the adhesive.
- the initial absorbency of the adhesive of the present invention may be increased by the addition of water absorbent material.
- the water absorbent material may be in the form of particles or fibers.
- the water absorbent material is preferably selected from the group of carboxy methyl cellulose (CMC) such as those sold by Hercules under the trade name Aquasorb® or cross-linked polyoxyethelenes, polyoxpropylenes, polyoxy (ethylene-propylene), such as those commercialized by Veramatrix A/S, under the generic name Versabeads ®, or crosslinked polyacrylates, known as super absorbing particles (SAP), such as those sold by Atofina under the trade name Norsocryl®., acrylates, alginates, chitosans, polysaccharides and derivatives or mixtures thereof.
- CMC carboxy methyl cellulose
- Aquasorb® cross-linked polyoxyethelenes
- polyoxpropylenes polyoxy (ethylene-propylene)
- polyoxy (ethylene-propylene) such as those commercialized by Veramatrix A/S
- Versabeads ® Versabeads ®
- SAP super absorbing particles
- the adhesive of the present invention is especially suitable for adhering to the skin or mucous of a living being, such as a human.
- the adhesive is skin-friendly, provides a good tack, high flexibility, softness, permeability and is easy to remove.
- the adhesive may be suitable as a medical adhesive in medical devices, such as wound dressings, ostomy appliances, incontinence devices and other situations where a highly skin-friendly adhesive is desired.
- the invention further relates to a wound care device comprising an adhesive composition comprising hydrophilic silicone elastomers and hydrophobic silicone elastomers and optionally water absorbent material, wherein the ratio between the hydrophilic silicone elastomers and the hydrophobic silicone elastomers is from 5:95 to 95:5.
- an ostomy device comprising an adhesive composition comprising hydrophilic silicone elastomers and hydrophobic silicone elastomers and optionally water absorbent material, wherein the ratio between the hydrophilic silicone elastomers and the hydrophobic silicone elastomers is from 5:95 to 95:5.
- Hydrophilic silicone resin from Dow Corning sold under the trade name BIO-PSA 7-4300.
- Silicone 7-9800 is a two parts system with a component A comprising a catalyst and a component B comprising a cross-linking agent.
- BIO-PSA 7-4300 100 parts were dissolved in 40 parts of n-hexane under stirring at room temperature for 20 minutes. 50 parts of silicone 7-9800 (component A and B in a one to one ratio) were added and the mixture was stirred for another 5 minutes, 20 parts of CMC were then added. The mixture was stirred for 3 minutes. From the mixture a 500 microns film was coated on a polyurethane film having 350 microns in thickness. After the n-hexane has evaporated, strips of 10 cm in length and 2 cm in width were cut and peel force test at 180 deg. was performed and an average peel force of 2,5 N was measured. Test of water uptake was also performed and an absorption of 800 gsm. (gram per square meter) after 24 hours was determined.
- the adhesive was applied on to human skin and showed no cell stripping after removal, compared to a conventional adhesive.
- Example 2 Same as Example 1, except that CMC was replaced by 20 parts of Norsocryl XFS. n-hexane was replaced by 40 parts of HMDS (hexamethylene disiloxane). A peel force of 1,8 N was determined according to the method described in Example 1, and a water uptake of 3400 gsm. after 24 hours was measured.
- the adhesive was used for attaching an ostomy device directly to the skin. After removing of the device no traces of skin irritation or cell stripping was noticed.
- An urine collecting device An urine collecting device
- Example 2 Same as Example 1 except that more Pt based catalyst was added, by using silicone 7-9800 where component A and B were in a ratio 60:40.. 7.6 N in peel force were obtained when the composition was cured for at least 24 hours at 40 °C, and 7 N when the composition was cured for at least 24 hours at 80 °C.
- the adhesive was used for attaching a urine collector to male genital organ, the adhesive provided a tight and leakage proof fit and the patient suffered no pain while removing the device.
- BIO-PSA 7-4300 100 parts was dissolved in 40 parts of n-hexane under stirring at room temperature for 20 minutes. 20 parts of CMC were then added. The mixture was stirred for 3 minutes. From the mixture a 500 microns film was coated on a polyurethane film having 35 microns in thickness. After the n-hexane had evaporated, strips of 10 cm in length and 2 cm in width were cut and peel force was determined at 180 deg. A peel force of 14,8 N was obtained. Water uptake was also measured by immersion in water and an absorption of 1162 gsm per 24 hours (gram per square meter) was found. After 24 hours the adhesive began to decompose due to the lack of cohesiveness of the adhesive.
- BIO-PSA 7-4300 70 parts was dissolved in 40 parts of n-hexane under stirring at room temperature for 20 minutes, and mixed with 30 parts of silicone 7-9800.
- silicone 7-9800 90 parts were mixed with 5 parts of silicone 7-4300 dissolved in n-hexane, then 25 part of CMC were added and the mixture was stirred for 3 minutes.
- the mixture was then coated on a PU film, small beads of 1 mm in diameter of NaCl were spread on the surface of the coating (NaCl beads covered 25% of the total area), When the coating was cured the film was immersed in water for three hours, thus dissolving the beads.
- the MVTR was increased from 900 gr/m 2 /24h (without NaCl treatment) to 1200 gr/m 2 /24h (after NaCl treatment).
- silicone 7-9800 90 parts were mixed with 10 parts of silicone 7-4300 dissolved in n-hexane, 25 part of CMC were added and stirred for 3 minutes.
- the mixture was coated on a PU film, small beads of 1 mm in diameter made of a mixture of citric acid and backing soda were spread on the surface of the coating (the beads covered 25% of the total area.
- the coating was cured the film was immersed in water for 30 min, and the beads were dissolved.
- the MVTR was increased from 900 gr/m2/24h to 1500 gr/m 2 /24h.
Landscapes
- Health & Medical Sciences (AREA)
- Hematology (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Materials For Medical Uses (AREA)
- Adhesives Or Adhesive Processes (AREA)
Description
- The invention relates to an adhesive composition and a medical device comprising an adhesive composition.
- Medical devices, such as wound care devices and ostomy appliances may comprise adhesives for direct contact with the skin. It is important that the adhesive is skin-friendly, as the skin often is damaged or just extremely fragile, especially when handling chronic wounds. Different suitable adhesives are known in the art. Hydrocolloid adhesives are often used, due to their permeability and good absorption properties. Acrylic adhesives may also be used, especially for thin applications, as the permeability is low.
- Silicone adhesives are very skin-friendly and very suitable for donating active agents, such as in medicated patches, but they are also rather occlusive and hydrophobic, which is a mayor disadvantage for a product being worn for prolonged period, such as wound dressings, ostomy appliances or incontinence devices.
- Attempts have been made for preparing a more hydrophilic silicone adhesive. However, these adhesives tend to be difficult to remove due to a higher tack and lower cohesion, and are thus not very useful for application to fragile or damaged skin.
- Another drawback connected to the use of silicone adhesives is the poor absorption properties. This problem may be solved by incorporating absorbent material e.g. in the form of super absorbent particles.
- International patent application No.
WO 02/087642 - In International patent application No.
WO 02/076519 -
EP 0312 265 discloses adhesive compositions comprising blends of polyethylene oxide-grafted silicone polymers with resinous copolymers. The adhesive compositions enhance release, in a controlled fashion, of bioactive or chemical agents blended or otherwise dispersed through the compositions. - The object of the present invention is to provide an adhesive composition, being skin-friendly and at the same time having good permeability properties.
- Another object of the invention is to provide a silicone adhesive with absorption properties.
- Yet another object of the invention is to provide a skin-friendly adhesive with a good cohesion to the skin and yet easy to remove.
- Still another object of the invention is to provide a skin-friendly adhesive that reduces cell-stripping when removed from the skin.
- Still another object of the invention is to provide an adhesive with good cohesion.
- The invention relates to an adhesive composition comprising hydrophilic silicone elastomers and hydrophobic silicone elastomers and optionally water absorbent material, wherein the ratio between the hydrophilic silicone elastomers and the hydrophobic silicone elastomers is from 5:95 to 95:5.
- The ratio between the hydrophilic silicone elastomers and the hydrophobic silicone elastomers may be from 10:90 to 90:10, preferably 20:80 to 80:20, more preferred 30:70 to 70:30 and most preferred 40:60 to 60:40.
- Preferably, the ratio between the hydrophilic silicone and the hydrophobic silicone is from 10:90 to 40:60, more preferably from 20:80 to 30:70.
- In one embodiment of the invention the ratio between the hydrophilic silicone and the hydrophobic silicone is from 5:95 to 50:50. In another embodiment of the invention ratio between the hydrophilic silicone and the hydrophobic silicone is from 95:5 to 50:50.
- The ratio may in one embodiment of the invention be 25:75.
- In another embodiment of the invention, the ratio between the hydrophilic silicone and the hydrophobic silicone is from 90:10 to 60:40, more preferably from 80:20 to 70:30.
- In a preferred embodiment of the invention the ratio is 75:25.
- By mixing hydrophobic silicone and hydrophilic silicone into an adhesive composition the interaction between the two groups of polymers are optimal, due to their related nature, compared to mixtures of hydrophobic silicone and other hydrophilic polymers than silicones.
- Silicones such as trimethylsilyloxane terminated polydimetylsiloxane, are hydrophobic. These have an advantage of being inert to hydrophilic substances, which means that these substances are not dissolved in silicone and therefore are able to migrate out of the silicone. This explains why silicone is a good as drug release matrix.
- For the purpose of this invention we need a silicone that is relatively less hydrophobic than trimethylsilyloxy-terminated polydimetylsiloxane but still can be used as a PSA (pressure sensitive adhesive) adhesive.
- Hydrophobic silicones can be made hydrophilic by replacing some of the methyl groups along the chain or the chain ends with hydrophilic moieties well-known to those skilled in the art, such moieties may be oxymethylene and/or oxypropylene, acrylate amide, amines imines etc. The hydrophilicity or hydrophobicity may also be adjusted to the desired value by radio frequency or electrical current phase plasma treatment or corona treatment of the silicone fluid stream that passes into a chamber where plasma or corona is generated., and that or these monomer moieties that renders hydrophobic silicone hydrophilic is/are introduced.
- Hydrophilic silicones capable of absorbing small amounts of water are known. An example may be Silicone 4000 series produced by DOW Corning. The water absorption may be further increased by incorporating water-absorbing material such as CMC or cross-linked acrylates. However, such silicone adhesive has low cohesiveness and is thus unsuitable in use for medical devices.
- It has surprisingly been shown that the cohesiveness of the silicone adhesive may be increased by combining hydrophobic and hydrophilic silicone.
- As a measure of the right combination of the amount of hydrophobic and hydrophilic silicone providing an adhesive composition with an optimal total hydrophilicity the surface energy can be used. The surface energy of the composition according to the present invention, measured in terms of water-in-air contact angle for a fully cured silicone mixture against a glass plate, without the absorbing agent and other ingredients mentioned in examples below, is preferably between 65 and 105 degree, more preferred between 75 and 100 degree and most preferred between 80 and 95 degree.
- The surface energy can be measured by the water-in-air contact angle method known in the art, where the angle between a drop of distilled water and the surface of the substrate is measured.
- To supplement contact angle findings, surface energy is also determined from the chemical structure of the silicone mixtures using the surface and interfacial tension of polymers, oligomers, plasticizers, and additives involved in the composition. These data are available in polymer handbooks.
- The cohesiveness of the adhesive of the present invention is important when the adhesive has to be removed from a skin or wound site. Low cohesiveness may result in adhesive residues left on the skin or wound site or in the areas surrounding the wound site, and/or trauma while removing the adhesive due to a high peel force.
- The ratio that suits both water absorption and gel cohesiveness may also influence the peel force of the PSA to be achieved.
- The actual peel span of silicone elastomers lies between over 70 N for a 100% hydrophilic elastomer to around 0,5 N for 100% hydrophobic elastomer.
- The peel force of the adhesive of the present invention may be from 1 N to 20 N measured according to 180 degree method DS/EN/28510-2.
- In order for an adhesive composition to be suitable for medical use it is preferred that the peel force between 1 N and 10 N, more preferably the peel force is from 1 N to 5 N.
- Peel force and gel cohesiveness can be influenced by varying the ratio between the hydrophilic and the hydrophobic silicone. Furthermore, the peel force may be further adjusted by incorporating some other ingredients such as kaolin, crystalline silica magnesium oxide, calcium carbonate or other reinforcing fillers, plasticisers, such as a low molecular silicone oil, e.g. hexamethylene disiloxane, soya bean oil or the derivative thereof, castor oil or the derivative thereof, or other additives known to persons skilled in the art.
- Examples of additives may be UV stabilizers such as those known under trade name "Irganox, Cyanox, Hostanox", antioxidants, and cross-linking agents such as peroxides, divinylbenzene. Other suitable compounds may be acrylic or vinyl ended silicone moieties having an average molecular weight ranging 100 to 10.000. These moieties are also referred to as cross-linking agents. Adhesion promoters may also be added to the silicone mixtures in order to improve the affinity of the silicone adhesive for the substrate onto which the adhesive is to be applied. The adhesion promoters may be silicone based, such as those commercialized by Dow Corning under the name "Silane Z-603". Titan based such those commercialized by Du Pont under the name "Tyzor AA 105" may also be used. Adhesion promoters can be mixed into the silicone composition prior to coating and curing, or simply used as a primer onto the substrate carrier prior to coating.
- Silicone adhesives are typically composed of two main components, a siloxane polymer and a silicate resin. Silicone adhesives are either supplied pre-cross linked, supplied in a hydrocarbon solvent or in a silane solvent. Or as a two-part system where the first part comprises a cross-linking agent and the other part comprises a catalyst that in most cases is an organometallic catalyst, typically an organoplatinum catalyst.
- Examples of suitable silicones for the present invention may be polydimethylsiloxane, polymetylphenylsiloxane, alkylsiloxane, alkyoxysiloxane. An example of a suitable silicate resin may be trimetylsiloxy silicate, also known as tetrakis silicate.
- Preferred silicones may be polyorganesiloxane such as polydimethylsiloxane, poly(oxymethylsilylene), poly(oxyethylsilylene) or mixtures thereof, and/or silicones corresponding to general formula shown below:
R-[Si(2R)-O-Si(2R)-]
where R can generally be a methyl and/or ethyl group or can be substituted by one or several of the following groups -NH2, epoxy, acrylate, metacrylate, acrylamide, ethylene glycol, propylene glycol, halide (Cl, Br, F), maleic anhydride. The degree of substitution can vary from 0 to 90% preferably from 5 to 50% and more preferably from 5 to 20%. - The hydrophilic and the hydrophobic silicone may be based on the same silicone elastomer, or they may be based on different silicone elastomers. By using the same type of elastomers the mixing of the two elastomers may be facilitated.
- In one embodiment of the invention the hydrophilic silicones may be silicones sold by Dow Corning under the name BIO-PSA, the series 7-4000 are most preferred. Other silicones such as those known as RTV (room temperature vulcanisable) may also be used when rendered less hydrophobic using the grafting techniques known in the art.
- The hydrophobic silicone may preferably be RTV silicones, such as those sold by Dow Corning, in a preferred embodiment of the invention the series 7-9000. Other silicones may be suitable.
- The molecular weight of the silicone elastomers should be in the range of 50,000 to 1,000,000, preferably from 100,000 to 500,000, and more preferably from 50,000 to 250,000. The molecular weight of the hydrophobic and the hydrophilic elastomers may be essentially the same.
- In one embodiment the molecular weight of the hydrophilic silicone elastomer is considerably smaller than the molecular weight of the hydrophobic silicone elastomer.
- In a further embodiment of the invention the adhesive may be in the form of a foam.
- The foam may be obtained by promptly releasing the pressure of pressurized cured silicone adhesive while it is still hot. Pressurization and nitrogen, and carbon dioxide may also be used to control the structure of the foam. Other blowing agents well known in the art may also be used in order to control the foaming time as well as the foam structure. By foaming the adhesive of the present invention a silicone adhesive with a better MVTR (moisture and vapor transmission rate)is achieved ,and furthermore, the adhesive obtains cushioning effect too. These two characteristics may also be obtained by mixing watersoluble particles into the silicone composition, after curing of the adhesive; these particles are leached in the water, leaving small craters, through which a better MVTR may be obtained. Another way of increasing the MVTR is mixing a fluid into the silicone composition; the fluid has a low boiling point and is not immiscible with silicone. After coating and curing, the immiscible fluid lies within the coating as a micro droplets. The micro droplets of low boiling points fluid are evacuated by vacuum. The resulting adhesive will be in the form of a microporous mass with improved MVTR.
- The composition of the present invention may optionally comprise water absorbent material. The incorporation of absorbent material may increase the absorbency and the MVTR of the adhesive.
- The initial absorbency of the adhesive of the present invention may be increased by the addition of water absorbent material.
- The water absorbent material may be in the form of particles or fibers.
- The water absorbent material is preferably selected from the group of carboxy methyl cellulose (CMC) such as those sold by Hercules under the trade name Aquasorb® or cross-linked polyoxyethelenes, polyoxpropylenes, polyoxy (ethylene-propylene), such as those commercialized by Veramatrix A/S, under the generic name Versabeads ®, or crosslinked polyacrylates, known as super absorbing particles (SAP), such as those sold by Atofina under the trade name Norsocryl®., acrylates, alginates, chitosans, polysaccharides and derivatives or mixtures thereof.
- The adhesive of the present invention is especially suitable for adhering to the skin or mucous of a living being, such as a human. The adhesive is skin-friendly, provides a good tack, high flexibility, softness, permeability and is easy to remove. The adhesive may be suitable as a medical adhesive in medical devices, such as wound dressings, ostomy appliances, incontinence devices and other situations where a highly skin-friendly adhesive is desired.
- The invention further relates to a wound care device comprising an adhesive composition comprising hydrophilic silicone elastomers and hydrophobic silicone elastomers and optionally water absorbent material, wherein the ratio between the hydrophilic silicone elastomers and the hydrophobic silicone elastomers is from 5:95 to 95:5.
- Still further, the invention relates to an ostomy device comprising an adhesive composition comprising hydrophilic silicone elastomers and hydrophobic silicone elastomers and optionally water absorbent material, wherein the ratio between the hydrophilic silicone elastomers and the hydrophobic silicone elastomers is from 5:95 to 95:5.
- Hydrophilic silicone resin from Dow Corning sold under the trade name BIO-PSA 7-4300.
- Hydrophobic silicone resin from Dow Corning sold under the trade name silicone 7-9800. Silicone 7-9800 is a two parts system with a component A comprising a catalyst and a component B comprising a cross-linking agent.
- Acrylate polymer from Atofina sold under the trade name Norsocryl XFS.
Versa-beads-O from Versamatrix
Versa-beads-A from Versamatrix
Versa-beads-E from Versamatrix
N-hexane
Hexamethyldisiloxane - 100 parts of BIO-PSA 7-4300 were dissolved in 40 parts of n-hexane under stirring at room temperature for 20 minutes. 50 parts of silicone 7-9800 (component A and B in a one to one ratio) were added and the mixture was stirred for another 5 minutes, 20 parts of CMC were then added. The mixture was stirred for 3 minutes. From the mixture a 500 microns film was coated on a polyurethane film having 350 microns in thickness. After the n-hexane has evaporated, strips of 10 cm in length and 2 cm in width were cut and peel force test at 180 deg. was performed and an average peel force of 2,5 N was measured. Test of water uptake was also performed and an absorption of 800 gsm. (gram per square meter) after 24 hours was determined.
- The adhesive was applied on to human skin and showed no cell stripping after removal, compared to a conventional adhesive.
- Same as Example 1, except that CMC was replaced by 20 parts of Norsocryl XFS. n-hexane was replaced by 40 parts of HMDS (hexamethylene disiloxane). A peel force of 1,8 N was determined according to the method described in Example 1, and a water uptake of 3400 gsm. after 24 hours was measured.
- The adhesive was used for attaching an ostomy device directly to the skin. After removing of the device no traces of skin irritation or cell stripping was noticed.
- Same as Example 1 except that more Pt based catalyst was added, by using silicone 7-9800 where component A and B were in a ratio 60:40.. 7.6 N in peel force were obtained when the composition was cured for at least 24 hours at 40 °C, and 7 N when the composition was cured for at least 24 hours at 80 °C.
- The adhesive was used for attaching a urine collector to male genital organ, the adhesive provided a tight and leakage proof fit and the patient suffered no pain while removing the device.
- 100 parts of BIO-PSA 7-4300 was dissolved in 40 parts of n-hexane under stirring at room temperature for 20 minutes. 20 parts of CMC were then added. The mixture was stirred for 3 minutes. From the mixture a 500 microns film was coated on a polyurethane film having 35 microns in thickness. After the n-hexane had evaporated, strips of 10 cm in length and 2 cm in width were cut and peel force was determined at 180 deg. A peel force of 14,8 N was obtained. Water uptake was also measured by immersion in water and an absorption of 1162 gsm per 24 hours (gram per square meter) was found. After 24 hours the adhesive began to decompose due to the lack of cohesiveness of the adhesive.
- 70 parts of BIO-PSA 7-4300 was dissolved in 40 parts of n-hexane under stirring at room temperature for 20 minutes, and mixed with 30 parts of silicone 7-9800.
- 20 parts of CMC were then added. The mixture was stirred for 3 minutes. From the mixture a 500 microns film was coated on a polyurethane film having 35 microns in thickness. After the n-hexane had evaporated, strips of 10 cm in length and 2 cm in width were cut and peel force was determined at 180 deg. A peel force of 12,0 N was obtained. Water uptake was also measured by immersion in water and an absorption of 1062 gsm per 24 hours (gram per square meter) was found. After 24 hours the adhesive was still cohesive and did not dissolve or disintegrate in the water.
- 90 parts of silicone 7-9800 were mixed with 5 parts of silicone 7-4300 dissolved in n-hexane, then 25 part of CMC were added and the mixture was stirred for 3 minutes. The mixture was then coated on a PU film, small beads of 1 mm in diameter of NaCl were spread on the surface of the coating (NaCl beads covered 25% of the total area), When the coating was cured the film was immersed in water for three hours, thus dissolving the beads. The MVTR was increased from 900 gr/m2/24h (without NaCl treatment) to 1200 gr/m2/24h (after NaCl treatment).
- 90 parts of silicone 7-9800 were mixed with 10 parts of silicone 7-4300 dissolved in n-hexane, 25 part of CMC were added and stirred for 3 minutes. The mixture was coated on a PU film, small beads of 1 mm in diameter made of a mixture of citric acid and backing soda were spread on the surface of the coating (the beads covered 25% of the total area. When the coating was cured the film was immersed in water for 30 min, and the beads were dissolved. The MVTR was increased from 900 gr/m2/24h to 1500 gr/m2/24h.
- 95 parts of silicone 7-9800 and 5 parts of silicone 7-4300 dissolved in n-hexane were mixed with 25 part of CMC, and 25 parts of polyethylene glycol 600 were added and gently stirred to favor the formation of microdroplets, after 3 minutes of stirring. The mixture was coated on a PU film, and cured. When the coating was cured the film was exposed to vacuum for 30 min. The MVTR was increased from 900 gr/m2/24h to 1100 gr/m2/24h.
Claims (12)
- An adhesive composition comprising hydrophilic silicone elastomers and hydrophobic silicone elastomers in a ratio between the hydrophilic silicone elastomers and the hydrophobic silicone elastomers from 5:95 to 95:5 and further comprising water absorbent material, the water absorbent material either selected from the group of CMC, acrylates, alginates, chitosans, polysaccharides or mixtures thereof, and/or the water absorbent material is in the form of particles.
- An adhesive composition according to claim 1 wherein the water-in-air contact angle is between 65 and 105 degree.
- An adhesive composition according to claim 1 or 2, wherein the peel force is from 1 to 20 N.
- An adhesive composition according to any of claims 1-3 wherein the hydrophilic silicone elastomer is polyorganosiloxane elastomers.
- An adhesive composition according to any of claims 1-4 wherein the hydrophobic silicone elastomer is polyorganosiloxane elastomers.
- An adhesive composition according to any of claims 1-5 wherein the hydrophilic and the hydrophobic silicone are based on the same silicone elastomer.
- An adhesive composition according to any of claims 1-6 wherein the molecular weight of the silicone elastomers is between 50,000 and 1,000,000.
- An adhesive composition according to any of claims 1-7 wherein the water absorbent material is in the form of particles.
- An adhesive composition according to any of claims 1-8 wherein the water absorbent material is selected from the group of CMC, acrylates, alginates, chitosans, polysaccharides or mixtures thereof.
- A wound care device comprising an adhesive according to any of claims 1-9.
- An ostomy device comprising an adhesive according to any of claims 1-9.
- An incontinence device comprising an adhesive according to any of claims 1-9.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DKPA200301256 | 2003-09-02 | ||
DKPA200301871 | 2003-12-17 | ||
PCT/DK2004/000584 WO2005021058A2 (en) | 2003-09-02 | 2004-09-02 | Adhesive composition comprising hydrophilic and hydrophobic silicone elastomers |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1713523A2 EP1713523A2 (en) | 2006-10-25 |
EP1713523B1 true EP1713523B1 (en) | 2015-07-01 |
Family
ID=34276703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04762804.5A Expired - Lifetime EP1713523B1 (en) | 2003-09-02 | 2004-09-02 | Adhesive composition comprising hydrophilic and hydrophobic silicone elastomers |
Country Status (3)
Country | Link |
---|---|
US (3) | US7842752B2 (en) |
EP (1) | EP1713523B1 (en) |
WO (1) | WO2005021058A2 (en) |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0606661D0 (en) | 2006-04-03 | 2006-05-10 | Brightwake Ltd | Improvements relating to dressings |
RU2008147888A (en) * | 2006-05-05 | 2010-06-10 | Колопласт А/С (Dk) | COMPOSITION OF ADHESIVE SENSITIVE FOR PRESSURE CONTAINING A crosslinked POLYALKYLENEXIDE AND HYDROPHYLENE HYDROPHILIC AGENTS |
US9348167B2 (en) * | 2007-03-19 | 2016-05-24 | Via Optronics Gmbh | Enhanced liquid crystal display system and methods |
TWI444942B (en) * | 2007-04-20 | 2014-07-11 | Via Optronics Gmbh | Bezelless display system and method for construction thereof |
TW200912720A (en) * | 2007-04-24 | 2009-03-16 | White Electronics Designs Corp | Interactive display system |
JP2010531161A (en) | 2007-06-19 | 2010-09-24 | コロプラスト アクティーゼルスカブ | Multilayer adhesive orthosis |
ATE490749T1 (en) * | 2007-06-25 | 2010-12-15 | Coloplast As | STOMARY DEVICE WITH MULTIPLE PEEL FOILS |
EP2305187A3 (en) | 2007-07-06 | 2014-05-28 | Coloplast A/S | A collecting device for body fluids |
US20110137243A1 (en) * | 2007-09-06 | 2011-06-09 | Abbott Cardiovascular Systems Inc. | Coating On A Balloon Device |
JP2011528243A (en) | 2008-07-18 | 2011-11-17 | コロプラスト アクティーゼルスカブ | Body excreta collection equipment including layered adhesive structure |
WO2010066254A1 (en) | 2008-12-08 | 2010-06-17 | Coloplast A/S | A body waste collecting device comprising a layered adhesive construction with a film layer |
US9486553B2 (en) | 2009-07-16 | 2016-11-08 | Brightwake Limited | Method |
US9295663B2 (en) | 2010-07-14 | 2016-03-29 | Abbott Cardiovascular Systems Inc. | Drug coated balloon with in-situ formed drug containing microspheres |
EP2744868A1 (en) * | 2011-08-17 | 2014-06-25 | 3M Innovative Properties Company | A hydrophobic adhesive with absorbent fibers |
GB2493960B (en) | 2011-08-25 | 2013-09-18 | Brightwake Ltd | Non-adherent wound dressing |
CN104870567B (en) | 2012-10-22 | 2018-09-07 | 艾利丹尼森公司 | It is dispersed in the hybrid material of the crosslinked micro-gel particles in adhesive |
JP6053951B2 (en) | 2012-12-07 | 2016-12-27 | スリーエム イノベイティブ プロパティズ カンパニー | Silicone gel adhesive with hydrophilic and antibacterial properties |
CN106456828A (en) * | 2014-05-23 | 2017-02-22 | 3M创新有限公司 | A discontinuous silicone adhesive article |
JP6822949B2 (en) * | 2014-10-09 | 2021-01-27 | コロプラスト アクティーゼルスカブ | A composition comprising a polymer and a switching initiator |
AU2016211382B2 (en) * | 2015-01-28 | 2019-10-10 | Hollister Incorporated | Adhesive for moist tissue and peristomal device made using the same |
GB201520461D0 (en) * | 2015-11-20 | 2016-01-06 | Dow Corning | Water pick up sealant |
US11512237B2 (en) | 2015-11-20 | 2022-11-29 | Dow Silicones Corporation | Room temperature curable compositions |
FI3429644T3 (en) * | 2016-03-14 | 2023-03-14 | Trio Healthcare Ltd | Skin compatible adhesive composition |
EP3515960B1 (en) | 2016-09-19 | 2022-06-01 | Dow Silicones Corporation | Personal care compositions including a polyurethane-polyorganosiloxane copolymer |
WO2018052645A1 (en) | 2016-09-19 | 2018-03-22 | Dow Corning Corporation | Skin contact adhesive and methods for its preparation and use |
JP6816264B2 (en) | 2016-09-19 | 2021-01-20 | ダウ シリコーンズ コーポレーション | Polyurethane-polyorganosiloxane copolymer and its preparation method |
EP3727597A1 (en) | 2017-12-21 | 2020-10-28 | Dow Silicones Corporation | Cosmetic composition comprising silicone materials |
EP3728539A1 (en) | 2017-12-21 | 2020-10-28 | Dow Silicones Corporation | Fabric-care composition comprising silicone materials |
JP2021101750A (en) * | 2018-03-30 | 2021-07-15 | テルモ株式会社 | Medical tool |
CN112316216A (en) * | 2018-10-31 | 2021-02-05 | 湖南博隽生物医药有限公司 | Material for nephrostomy tube with high biological safety |
GB201904400D0 (en) | 2019-03-29 | 2019-05-15 | Trio Healthcare Ltd | Screen printing apparatus and method |
GB201904403D0 (en) | 2019-03-29 | 2019-05-15 | Trio Healthcare Ltd | Skin compatible silicone composition |
GB201904402D0 (en) | 2019-03-29 | 2019-05-15 | Trio Healthcare Ltd | Foamed skin compatible silicone composition |
US11320570B2 (en) * | 2020-04-08 | 2022-05-03 | Delta Electronics, Inc. | Wavelength converting device |
DE112021004258T5 (en) * | 2020-08-13 | 2023-06-15 | R.D. Abbott Company, Inc. | METHOD OF MAKING A COMPOSITE MATRIX USING INCORPORATION OF CARBON NANOTUBE |
CN115491168A (en) * | 2022-08-22 | 2022-12-20 | 振德医疗用品股份有限公司 | Ultramicro porous organic silicon gel and preparation method thereof |
EP4394009A1 (en) | 2022-12-27 | 2024-07-03 | Advanced Silicone Coating | Silicone layer having absorbent and desorbent properties |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63502986A (en) * | 1985-12-12 | 1988-11-02 | フレックスコン・カンパニ−・インコ−ポレ−テッド | Transdermal methods and adhesives |
US4898920A (en) * | 1987-10-15 | 1990-02-06 | Dow Corning Corporation | Adhesive compositions, controlled release compositions and transdermal delivery device |
JP2849937B2 (en) * | 1990-04-18 | 1999-01-27 | 日東電工株式会社 | Medical patch |
US5473026A (en) * | 1994-06-20 | 1995-12-05 | Dow Corning Corporation | Moisture-curable hot melt silicone pressure-sensitive adhesives |
SE9801899L (en) * | 1998-05-28 | 1999-07-05 | Moelnlycke Health Care Ab | Wound dressing or skin fixing tape comprising a plastic film laminate and an irregular surface structure material coated with a sticky elastomer |
DE10114382A1 (en) * | 2001-03-23 | 2002-09-26 | Beiersdorf Ag | Moisture-absorbing material used for plasters, medical fixings, wound coverings and bandages comprises adhesive matrix of silicon, gel former and optionally silicone resin |
DE60239528D1 (en) | 2001-05-01 | 2011-05-05 | Corium International Redwood City | TWO-PHASE, WATER-ABSORBING BIOADHESIVE COMPOSITION |
-
2004
- 2004-09-02 EP EP04762804.5A patent/EP1713523B1/en not_active Expired - Lifetime
- 2004-09-02 US US10/570,258 patent/US7842752B2/en active Active
- 2004-09-02 WO PCT/DK2004/000584 patent/WO2005021058A2/en active Application Filing
-
2010
- 2010-10-15 US US12/923,943 patent/US8124675B2/en active Active
-
2012
- 2012-02-22 US US13/402,726 patent/US8741990B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP1713523A2 (en) | 2006-10-25 |
WO2005021058A2 (en) | 2005-03-10 |
US20120149810A1 (en) | 2012-06-14 |
US20070020319A1 (en) | 2007-01-25 |
WO2005021058A3 (en) | 2005-06-09 |
US8741990B2 (en) | 2014-06-03 |
US20110034847A1 (en) | 2011-02-10 |
US8124675B2 (en) | 2012-02-28 |
US7842752B2 (en) | 2010-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1713523B1 (en) | Adhesive composition comprising hydrophilic and hydrophobic silicone elastomers | |
EP2018161B1 (en) | A pressure sensitive adhesive composition comprising cross-linked polyalkylene oxide and water absorbent hydrophilic agents | |
JP4551073B2 (en) | Adhesive sheet for skin application | |
CA2766116C (en) | Pressure sensitive silicone adhesives with amphiphilic copolymers | |
US11534523B2 (en) | Silicone absorbent adhesive layer | |
CA2949944A1 (en) | A discontinuous silicone adhesive article | |
MX2007001417A (en) | Hot-melt silicone based ostomy and wound care skin attachment adhesives. | |
JP2012532959A5 (en) | ||
CN102065801B (en) | An ostomy collecting device | |
JP6557881B2 (en) | Skin adhesive and patch and method for producing skin adhesive | |
EP3104903A1 (en) | Silicone adhesives to secure medical appliances to mammalian body | |
CN115666666A (en) | Novel antimicrobial topical skin closure compositions and systems | |
EP2745851A1 (en) | Silicone film | |
JP2015501346A (en) | High viscosity silicone adhesive | |
EP2314287A1 (en) | Pressure-sensitive adhesive sheet to be stuck to the skin | |
WO2021124200A1 (en) | Adhesive primers and articles including the same | |
EP4394009A1 (en) | Silicone layer having absorbent and desorbent properties | |
JP2009233316A (en) | Pressure-sensitive adhesive composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060403 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20070515 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20141223 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 733543 Country of ref document: AT Kind code of ref document: T Effective date: 20150715 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602004047443 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 733543 Country of ref document: AT Kind code of ref document: T Effective date: 20150701 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20150701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151002 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150701 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150701 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151102 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150701 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150701 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602004047443 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150701 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150902 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150701 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150701 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150701 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150701 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150701 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150701 |
|
26N | No opposition filed |
Effective date: 20160404 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150930 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150902 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150701 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20040902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150701 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150701 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150701 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20230927 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230925 Year of fee payment: 20 Ref country code: DE Payment date: 20230927 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 602004047443 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20240901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20240901 |