EP1703948A1 - Appareil et methode de traitement notamment par laser d un c ancer ou d un etat precancereux - Google Patents

Appareil et methode de traitement notamment par laser d un c ancer ou d un etat precancereux

Info

Publication number
EP1703948A1
EP1703948A1 EP05715180A EP05715180A EP1703948A1 EP 1703948 A1 EP1703948 A1 EP 1703948A1 EP 05715180 A EP05715180 A EP 05715180A EP 05715180 A EP05715180 A EP 05715180A EP 1703948 A1 EP1703948 A1 EP 1703948A1
Authority
EP
European Patent Office
Prior art keywords
treatment method
laser
light beam
pulses
therapeutic light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05715180A
Other languages
German (de)
English (en)
Inventor
Jaouad Zemmouri
Igor Razdobreev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universite Lille 1 Sciences et Technologies
Optical System and Research for Industry and Science OSYRIS SA
Original Assignee
Universite Lille 1 Sciences et Technologies
Optical System and Research for Industry and Science OSYRIS SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Lille 1 Sciences et Technologies, Optical System and Research for Industry and Science OSYRIS SA filed Critical Universite Lille 1 Sciences et Technologies
Publication of EP1703948A1 publication Critical patent/EP1703948A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/0616Skin treatment other than tanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/067Radiation therapy using light using laser light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/203Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser applying laser energy to the outside of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin

Definitions

  • the present invention relates to the field of oncology and relates to an apparatus and a method for treating cancer or a precancerous state by means of a therapeutic light beam, and in particular of a laser beam which is not necessarily thermal.
  • cancer is a cellular process which results in the appearance, from a normal cell, cells of generally abnormal morphology and behavior, called cancer cells. These cancer cells grow at the expense of normal cells and work together to form cancerous tumors. Cancerous tissue is thus formed: - of cancer cells proper arranged in more or less architectural formations and corresponding to the cancerous tumor, and - of the stroma, that is to say of a connective tissue providing support and nutrition of the cancerous tumor.
  • precancerous conditions which are clinical conditions associated with a significantly high risk of cancer
  • - precancerous lesions namely histopathological abnormalities, which if they persist long enough can lead to cancer.
  • These lesions precancerous are also called dysplasias.
  • PDT photodynamic therapy
  • This method consists firstly in marking the area to be treated (cancerous tissue or precancerous lesion) with a photosensitizing product, then in a second step to illuminate the area to be treated with a laser beam which has an appropriate wavelength preferably absorbed by the photosensitizing product, and which makes it possible to activate the photosensitizing product and to produce cytotoxic compounds ensuring the destruction in situ of cancer cells.
  • the photosensitizing product can be injected intravenously, be administered orally or applied directly to the surface of the area to be treated: for example treatment of skin cancer, treatment of actinic keratosis which are precancerous lesions of the skin induced by photoaging, ...
  • Photodynamic therapy lies in the possibility of using low power lasers ("non-thermal" lasers) which induce very little or no thermal effect in the treated area, and therefore not destructive.
  • Photodynamic therapy has several drawbacks, however.
  • the first drawback is linked to the photosensitization of the patient, which makes it necessary to avoid any sun exposure for a relatively long period, generally of the order of 48 hours.
  • a second drawback is linked to the use of a drug (photosensitizing product) which is expensive, which makes this treatment expensive, all the more so since generally the treatment must be repeated several times to be effective.
  • a third disadvantage lies in the appearance in certain patients of undesirable side effects linked to the injection. or the application of the photosensitizer.
  • the present invention aims to propose a new solution to the treatment of cancer or a precancerous condition, which has the advantages of PDT, in that it uses a “non-thermal” therapeutic light beam , but which does not require the use of a photosensitizing product.
  • the subject of the invention is therefore an apparatus for the treatment of cancer or of a precancerous state, which in a manner known per se, comprises a source of therapeutic light.
  • the light source is designed to emit a therapeutic light beam with a wavelength between 1.2 ⁇ m and 1.3 ⁇ m.
  • the subject of the invention is also a method of treating cancer or a precancerous condition according to which the site to be treated is illuminated with a therapeutic light beam of wavelength between 1.2 ⁇ m and 1.3 ⁇ m, preferably without prior administration of a photosensitizing drug as in the case of PDT.
  • the processing device is more particularly characterized by one and / or the other of the following additional characteristics, taken individually or in combination with each other: - the source is designed to emit a light beam impulse therapy; - the duration of each pulse is adjustable; - The duration of each pulse is adjustable to a value less than 0.5s, and preferably at least between 0.1s and 0.3s; - the time interval between two pulses is adjustable; - the time interval between two pulses is adjustable to a value greater than 0.5 s, and preferably to a greater value or equal to 0.9s; - the duration of emission of the therapeutic light beam is adjustable; - the number of pulses on each transmission is adjustable; - the number of pulses on each transmission is adjustable at least between 50 and 300; - the power of the therapeutic light beam is adjustable; - the power of the therapeutic light beam is adjustable at least between 1W and 5W; - the power density of the pulses is adjustable at least between 30W / cm 2 and 300W / cm 2 ; - the source is
  • the treatment method of the invention has one and / or the other of the following additional characteristics, taken individually or in combination with one another: - the therapeutic light beam is advantageously pulsed; -
  • the power density (d) of the laser beam at the site to be treated is preferably between 30W / cm 2 and 300W / cm 2 , and is more preferably still of the order of 100W / cm 2 ; .
  • the fluence per pulse is preferably between 1 J / cm 2 and 30J / cm 2 ; - The total fluence for each emission is between 6000J / cm 2 and 90,000 J / cm 2 , and is even more preferably of the order of 30000J / cm 2 ; - the duration (T) between two successive pulses is greater than 0.5s, and more particularly still greater than or equal to 0.9s; - the number of pulses (N) on each transmission is preferably between 50 and 300 pulses; - The duration (t) of each pulse is preferably less than 0.5s, and more preferably still between 0.1s and 0.3s; - The lighting operation of the site to be treated is repeated several times, preferably with at least one day of rest between each lighting operation.
  • FIG. 1 representing a general block diagram of a processing apparatus of the invention.
  • the apparatus 1 for treating cancer or a cancerous state essentially comprises a light source 2 with fibered output 200, and an adaptation interface
  • the adaptation interface 3 generally makes it possible to direct the therapeutic light beam (L) delivered at output 200 by the source to the site to be treated.
  • the adaptation interface 3 is known in itself by those skilled in the art and will therefore not be detailed in the present description. It is chosen by a person skilled in the art according to the type of cancer or precancerous condition to be treated, in a manner comparable to what is practiced in the context of PDT.
  • the adaptation interface 3 is a handpiece which allows the practitioner to bring the beam of the cancerous tumor as close as possible or the precancerous lesion to be treated;
  • the adaptation interface 3 can be a handpiece, a biomicroscope, or a slit lamp with aiming laser, - in gastroenterology, pneumology, urology, gynecology, the interface of adaptation 3 is an endoscope.
  • the light source 2 is designed to emit at output 200 a beam of therapeutic light having an emission wavelength comprised in 1, 2 ⁇ m and 1, 3 ⁇ m.
  • this therapeutic light beam is a coherent light beam (laser).
  • the therapeutic light beam could be an incoherent light beam, generated from a light source of sufficient power followed by optical filtering to keep only the frequency components in the 1.2 ⁇ m range at 1.3 ⁇ m.
  • the light source 2 of the device 1 further comprises means (208, 209,210, S1, S2, S3, S4, S5) allowing adjustment by the practitioner of the main beam emission parameters (L) (in particular power, number of pulses, duration of each pulse, time interval between two pulses); these adjustment means will be described in more detail below.
  • the apparatus 1 further comprises control means 4 which allow the practitioner to control the triggering of the therapeutic light beam in accordance with the emission parameters which have been set.
  • control means 4 comprise for example an action pedal or any other equivalent manual tripping means.
  • the therapeutic light beam is a laser beam
  • the invention is not limited to a particular type of laser source 2, any laser source allowing the emission of a laser beam fulfilling the condition wavelength above, and known to those skilled in the art, which can be used.
  • the following types of laser source can be used:
  • - Cr laser Forsterite (Cr 4 +: Mg 2 SIO 4 ) pulsed or continuous, pumped by a solid laser or with neodymium doped fiber (Nd), by a solid laser or with Ytterbium doped fiber, or pumped by diode;
  • a fiber Raman laser is preferably used for the following main reasons:
  • the fiber output of the laser facilitates the transport of the beam to the output 200; - the laser beam generated has good spectral and spatial quality, the laser source 2 is advantageously compact,
  • the laser source 2 is reliable and requires no maintenance
  • the source 2 is a fiber Raman laser and includes a pump laser diode 201 to a wavelength of 910-930 nm or 970 980 nm, a Ytterbium Yb 202 doped fiber laser, and a Raman converter 204 which has the function of transposing the wavelength of the beam at the output of the fiber laser 202, so as to obtain a laser beam at the wavelength 1260nm-1270nm.
  • the Ytterbium (Yb) 202 doped fiber laser consists of a double-clad fiber 205 whose core is doped with Ytterbium and two Bragg networks 207a at the input and output which are photo-inscribed in the fiber.
  • the output 203 of the laser fiber 202 is welded directly to the input of the Raman converter 204.
  • the Raman converter 204 comprises a fiber 206 whose core is doped with phosphorus and two Bragg gratings 207b at input and output which are regulated at a wavelength in the range 1260 - 1270 nm. This converter 204 makes it possible to transpose the emission wavelength of the laser 202 in a single step.
  • the number of conversion steps of the Raman converter 204 should be adapted according to the nature of the fiber, and in particular the type of dopant used. It is also possible to replace the Bragg gratings by single-mode couplers.
  • the fiber Raman laser which has just been described with reference to FIG. 1, and which allows the emission of a therapeutic laser beam at a wavelength between 1, 2 ⁇ m and 1.3 ⁇ m is new in itself, and can therefore advantageously also be used in other applications (medical or not), outside the particular field of cancer treatment or conditions precancerous.
  • the power adjustment of the laser beam is carried out via a coupler 208 having a low coupling rate, and a photodiode 209 connected to electronic control means 210.
  • the electronic control means 210 also receive as input a first continuous setpoint signal (S1) whose value is manually adjusted by the practitioner (for example by means of a potentiometer or equivalent) and which characterizes the setpoint power in continuous mode of the laser beam. From this setpoint (signal S1), the electronic control means 210 automatically regulate the power of the laser beam emitted by acting as an output directly on the current of the pump diode 201.
  • the electronic control means 210 thus allow the practitioner to manually adjust the power of the therapeutic laser beam to a predefined value (setpoint signal S1).
  • the electronic control means 210 receive as input four other continuous setpoint signals S2, S3, S4 and S5 whose values are adjusted manually by the practitioner: - the setpoint signal S2 characterizes for example the operating regime (continuous or pulse), - the setpoint signal S3 characterizes for example, in the case of a pulse regime, the duration of each pulse of the therapeutic laser beam, - the setpoint signal S4 characterizes for example, in the case of a pulse regime, the time interval between two successive pulses, - the setpoint signal S5 characterizes the duration of transmission (or in other words the number of pulses in the case of a regime pulse) of the therapeutic laser beam, on each actuation of the control means 4.
  • the setpoint signal S2 characterizes for example the operating regime (continuous or pulse)
  • the setpoint signal S3 characterizes for example, in the case of a pulse regime, the duration of each pulse of the therapeutic laser beam
  • the setpoint signal S4 characterizes for example, in the case of a pulse regime, the time interval between
  • the electronic control means 210 thus control the current of the pump diode 201 from the setpoint signals S1 to S5 and the signal taken by the coupler 208 and photodiode 209, so as to automatically adjust the physical characteristics of the emitted laser beam [power, speed (pulse or continuous), duration of emission, and in the case of pulse mode: duration of each pulse and time interval between each pulse ).
  • Processing method The implementation of the apparatus of the invention is as follows. Step 1: The practitioner manually sets the parameters for the emission of the therapeutic laser beam [power, speed (continuous or pulsed), duration of emission (or number of pulses in the case of pulsed regime), and in the case of pulsed regime: duration of each pulse, interval between two pulses].
  • Step 2 By means of the adaptation interface 3, the practitioner very precisely and known per se adjusts the spatial position of the laser beam relative to the cancerous or precancerous site to be treated.
  • Step 3 When the alignment is perfect, the practitioner actuates the control pedal 4, which triggers the emission of the therapeutic beam (lighting of the site to be treated) with the predefined emission parameters.
  • the controller pedal 4 When the target site is treated, the practitioner repeats the operations of steps 2 and 3 on a new site to be treated, as many times as necessary to scan the entire surface of a tumor or cancerous or precancerous lesions. The above operations are repeated with a frequency which will depend on a treatment protocol determined on a case-by-case basis by the practitioner.
  • the treatment method of the invention can be used for the treatment of malignant or benign tumors, the treatment of precancerous conditions, the treatment of tumors postoperatively or in postradiology and / or post-chemotherapy. Treatment can be performed in addition to surgery, chemotherapy or radiology.
  • the treatment device can be used to treat all precancerous lesions (dysplasias, carcinomas in situ)) or cancers which are accessible by a light beam; you just have to choose the appropriate adaptation interface depending on the location of the site.
  • the treatment apparatus can be used to treat all precancerous lesions (dysplasias, carcinomas in situ)) or cancers which are currently treated by means of PDT.
  • the various cancers which can be treated are in particular: - In ENT: cancer of the oral cavity, cancer of the thyroid, cancer of the hypopharynx, cancer of the larynx, cancer of the nasopharynx.
  • - Digestive system cancer of the esophagus, Barnett's mucosa, cancer of the stomach, cancer of the colon and rectum, cancer of the pancreas, cancer of the gallbladder.
  • Respiratory system all known types of cancer of the respiratory tract or lung.
  • - In urology kidney cancer, testicular cancer, bladder cancer, prostate cancer, penis cancer.
  • the power density (d) of the laser beam at the site to be treated is preferably between 30W / cm 2 and 300W / cm 2 , and is more preferably still of the order of 100W / cm 2.
  • the fluence per pulse is preferably between 1 J / cm 2 and 30J / cm 2
  • the surface (S) of the spot depends on the diameter of the laser beam leaving the fiber, the "waist" of the beam and the distance between the fiber output of the laser and the site to be treated. For a given waist and diameter of the laser beam, the further the fiber output from the laser is moved away, the larger the spot surface, and the lower the power density and the fluence per pulse.
  • the time (T) between two successive pulses must be long enough to avoid overheating of the tissues.
  • the duration (T) between two successive pulses is greater than 0.5 s, and more particularly still greater than or equal to 0.9 s.
  • the processing apparatus is preferably characterized by a beam whose power per pulse is between 1W and 5W and is more preferably still of the order of 3W, and whose power density per pulse at the output of l 'device is between 30W / cm 2 and 300W / cm 2 , and is more preferably still of the order of lOOW / cm 2 .
  • the treatment protocol is defined by the practitioner according in particular to the size of the cancerous or precancerous tumor or lesion and also to the duration of immobilization desired for the patient.
  • Example of Treatment Protocol daily for several days in a row or every three days for several days in a row. In all cases, it is preferable to repeat the lighting operation of the site to be treated several times with at least one day of rest between each lighting operation. Nevertheless, it should be emphasized that advantageously the treatment of the invention may cause no harmful side effects, and in particular not cause excessive tissue overheating. It is therefore also possible to shorten the total duration of the treatment protocol by combining several successive lighting operations on the site to be treated on the same day, without it being necessary to plan a day of rest between each operation as in the examples of the aforementioned protocol.
  • the invention is however not limited to the parameters and conditions of use mentioned above, which are given for information only.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Radiation-Therapy Devices (AREA)
  • Laser Surgery Devices (AREA)
  • Lasers (AREA)

Abstract

L'appareil pour le traitement d'un cancer ou d'un état précancéreux comporte une source de lumière thérapeutique (2) conçue pour émettre un faisceau lumineux thérapeutique de longueur d'onde comprise entre 1,2mum et 1,3mum. De préférence, ladite source (2) est un laser conçu pour émettre un faisceau impulsionnel.

Description

APPAREIL ET METHODE DE TRAITEMENT NOTAMMENT PAR LASER D'UN CANCER OU D'UN ETAT PRECANCEREUX
La présente invention concerne le domaine de la cancérologie et a pour objets un appareil et un procédé de traitement d'un cancer ou d'un état précancéreux au moyen d'un faisceau lumineux thérapeutique, et en particulier d'un faisceau laser non nécessairement thermique. ART ANTERIEUR D'une manière générale, le cancer est un processus cellulaire qui se traduit par l'apparition, à partir d'une cellule normale, de cellules de morphologie et de comportement généralement anormaux, dites cellules cancéreuses. Ces cellules cancéreuses se développent au détriment des cellules normales et s'agencent entre-elles pour former des tumeurs cancéreuses. Un tissu cancéreux est ainsi formé : - de cellules cancéreuses proprement dites disposées en formations plus ou moins architecturées et correspondant à la tumeur cancéreuse, et - du stroma, c'est-à-dire d'un tissu conjonctif assurant le soutien et la nutrition de la tumeur cancéreuse. Le développement d'un cancer passe par différents stades connus, depuis le développement du clone initial à partir d'une cellule souche jusqu'à la dissémination métastatique. Egalement, préalablement à l'apparition d'un cancer proprement dit, le sujet passe par des états dits précancéreux. L'organisation mondiale de la santé (O.M.S.) distingue deux types d'états précancéreux : - les conditions précancéreuses qui sont des états cliniques associés à un risque significativement élevé de survenue du cancer, - les lésions précancéreuses, à savoir des anomalies histopathologiques, qui si elles persistent suffisamment longtemps peuvent aboutir à l'apparition d'un cancer. Ces lésions précancéreuses sont également appelées dysplasies. Pour traiter un tissu cancéreux ou une lésion précancéreuse, il est à ce jour connu en cancérologie d'utiliser une méthode dite de thérapie photodynamique (PDT). Cette méthode relativement récente vise la destruction des cellules cancéreuses par des réactions photochimiques. Cette méthode consiste dans un premier temps à marquer la zone à traiter (tissu cancéreux ou lésion précancéreuse) avec un produit photosensibilisant, puis dans un deuxième temps à illuminer la zone à traiter avec un faisceau laser qui présente une longueur d'onde appropriée préférentiellement absorbée par le produit photosensibilisant, et qui permet d'activer le produit photosensibilisant et de produire des composés cytotoxiques assurant la destruction in situ des cellules cancéreuses. Selon le type de cancer ou d'état précancéreux à traiter, le produit photosensibilisant peut être injecté par intraveineuse, être administré par voie orale ou être appliqué directement en surface sur la zone à traiter : par exemple traitement de cancers cutanés, traitement des kératoses actiniques qui sont des lésions précancéreuses de la peau induite par le photovieillissement, ... Un des avantages de la thérapie photodynamique réside dans la possibilité d'utiliser des lasers de faible puissance (lasers « non thermiques ») qui induisent très peu ou pas d'effet thermique dans la zone traitée, et de ce fait qui ne sont pas destructifs. La thérapie photodynamique présente toutefois plusieurs inconvénients. Le premier inconvénient est lié à la photosensibilisation du patient, qui oblige à éviter toute exposition solaire pendant une durée relativement longue, généralement de l'ordre de 48h. Un deuxième inconvénient est lié à l'utilisation d'un médicament (produit photosensibilisant) qui est onéreux, ce qui rend ce traitement coûteux, et ce d'autant plus que généralement le traitement doit être répété plusieurs fois pour être efficace. Un troisième inconvénient réside dans l'apparition chez certains patients, d'effets secondaires indésirables liés à l'injection ou à l'application du produit photosensibilisant. OBJECTIF DE L'INVENTION La présente invention vise à proposer une nouvelle solution au traitement d'un cancer ou d'un état précancéreux, qui présente les avantages de la PDT, en ce qu'elle utilise un faisceau de lumière thérapeutique « non thermique », mais qui ne nécessite pas l'utilisation d'un produit photosensibilisant. RESUME DE L'INVENTION L'invention a ainsi pour objet un appareil pour le traitement du cancer ou d'un état précancéreux, qui de manière connue en soi, comporte une source de lumière thérapeutique. De manière caractéristique selon l'invention, la source de lumière est conçue pour émettre un faisceau lumineux thérapeutique de longueur d'onde comprise entre 1 ,2μm et 1,3μm. L'invention a également pour objet une méthode de traitement d'un cancer ou d'un état précancéreux selon laquelle on éclaire le site à traiter avec un faisceau lumineux thérapeutique de longueur d'onde comprise entre 1 ,2μm et 1 ,3μm, de préférence sans administration préalable d'un médicament photosensibilisant comme dans le cas de la PDT. De préférence, l'appareil de traitement est plus particulièrement caractérisé par l'une et/ou l'autre des caractéristiques additionnelles ci- après, prises isolément ou en combinaison les unes avec les autres : - la source est conçue pour émettre un faisceau lumineux thérapeutique impulsionnel ; - la durée de chaque impulsion est réglable ; - la durée de chaque impulsion est réglable à une valeur inférieure à 0,5s, et de préférence au moins comprise entre 0,1s et 0,3s ; - l'intervalle de temps entre deux impulsions est réglable ; - l'intervalle de temps entre deux impulsions est réglable à une valeur supérieure à 0,5s, et de préférence à une valeur supérieure ou égale à 0,9s ; - la durée d'émission du faisceau lumineux thérapeutique est réglable ; - le nombre d'impulsions à chaque émission est réglable ; - le nombre d'impulsions à chaque émission est réglable au moins entre 50 et 300 ; - la puissance du faisceau lumineux thérapeutique est réglable ; - la puissance du faisceau lumineux thérapeutique est réglable au moins entre 1W et 5W ; - la densité de puissance des impulsions est réglable au moins entre 30W/cm2 et 300W/cm2 ; - la source est une source laser ; - la source laser comporte un laser Raman à fibre ; - le laser Raman à fibre comprend une diode laser de pompe, un laser à fibre dopée Ytterbium, et un convertisseur Raman qui a pour fonction de transposer la longueur d'onde du faisceau issu du laser à fibre dopée Ytterbium. De préférence, la méthode de traitement de l'invention présente l'une et/ou l'autre des caractéristiques additionnelles ci-après, prises isolément ou en combinaison les unes avec les autres: - le faisceau lumineux thérapeutique est avantageusement impulsionnel ; - la densité de puissance (d) du faisceau laser au niveau du site à traiter est de préférence comprise entre 30W/cm2 et 300W/cm2, et est plus préférentiellement encore de l'ordre de 100W/cm2 ; . la fluence par impulsion est de préférence comprise entre 1 J/cm2 et 30J/cm2 ; - la fluence totale pour chaque émission est comprise entre 6000J/cm2 et 90000 J/cm2, et est encore plus préférentiellement de l'ordre de 30000J/cm2 ; - la durée (T) entre deux impulsions successives est supérieure à 0,5s, et plus particulièrement encore supérieure ou égale à 0,9s ; - le nombre d'impulsions (N) à chaque émission est de préférence compris entre 50 et 300 impulsions ; - la durée (t) de chaque impulsion est de préférence inférieure à 0,5s, et plus préférentiellement encore comprise entre 0,1s et 0,3s ; - on réitère plusieurs fois l'opération d'éclairage du site à traiter avec de préférence au moins un jour de repos entre chaque opération d'éclairage. Il a été constaté que l'utilisation d'un faisceau lumineux thérapeutique présentant les caractéristiques précitées de longueur d'onde et de puissance permettait avantageusement et de manière surprenante, d'obtenir des résultats satisfaisants en ce qui concerne le traitement d'états précancéreux ou de cancers, sans qu'il soit nécessaire d'utiliser un médicament comme dans le cas de la PDT. A posteriori, on peut supposer que l'action de ce faisceau lumineux thérapeutique dans la gamme de longueurs d'onde et de puissances précitées permettrait de générer de l'oxygène singulet directement à partir de l'oxygène contenu dans les cellules cancéreuses, et ce en quantité suffisante pour obtenir une nécrose de la cellule cancéreuse, de manière comparable à ce qui est obtenu en PDT avec un médicament activé par un faisceau lumineux. Les inventeurs ne sont toutefois pas liés par cette explication. DESCRIPTION DE LA FIGURE D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lumière de la description ci-après d'une variante préférée de réalisation d'un appareil de traitement de l'invention et de son utilisation, laquelle description est donnée à titre d'exemple non limitatif et en référence à la figure 1 annexée représentant un synoptique général d'un appareil de traitement de l'invention. DESCRIPTION DETAILLEE En référence au synoptique de la figure 1 annexée, l'appareil 1 de traitement d'un cancer ou d'un état cancéreux comporte essentiellement une source lumineuse 2 à sortie 200 fibrée, et une interface d'adaptation
3. L'interface d'adaptation 3 permet d'une manière générale de diriger sur le site à traiter le faisceau lumineux thérapeutique (L) délivré en sortie 200 par la source 2. L'interface d'adaptation 3 est connue en soi par l'homme du métier et ne sera donc pas détaillée dans la présente description. Elle est choisie par l'homme du métier en fonction du type de cancer ou d'état précancéreux à traiter, de manière comparable à ce qui est pratiqué dans le cadre de la PDT. A titre d'exemples non limitatifs et non exhaustifs de l'invention : - en dermatologie, ou chirurgie, l'interface d'adaptation 3 est une pièce à main qui permet au praticien d'amener au plus près le faisceau de la tumeur cancéreuse ou de la lésion précancéreuse à traiter ; - en ORL et ophtalmologie, l'interface d'adaptation 3 peut être une pièce à main, un biomicroscope, ou une lampe à fente avec laser de visée, - en gastro-entérologie, pneumologie, urologie, gynécologie, l'interface d'adaptation 3 est un endoscope. Selon une première caractéristique de l'invention, et quelle que soit l'interface d'adaptation 3, la source lumineuse 2 est conçue pour émettre en sortie 200 un faisceau de lumière thérapeutique présentant une longueur d'onde d'émission comprise en 1 ,2μm et 1 ,3μm. De préférence, ce faisceau de lumière thérapeutique est un faisceau de lumière cohérente (laser). Néanmoins, dans une autre réalisation, le faisceau de lumière thérapeutique pourrait être un faisceau de lumière incohérente, généré à partir d'une source lumineuse de puissance suffisante suivi d'un filtrage optique pour ne conserver que les composantes fréquentielles dans la gamme 1,2μm à 1,3μm. En référence à la figure 1 , la source lumineuse 2 de l'appareil 1 comporte en outre des moyens (208, 209,210, S1, S2, S3, S4, S5) permettant un réglage par le praticien des principaux paramètres d'émission du faisceau (L) (notamment puissance, nombre d'impulsion, durée de chaque impulsion, intervalle de temps entre deux impulsions) ; ces moyens de réglage seront décrits plus en détails ci-après. L'appareil 1 comporte en outre des moyens de commande 4 qui permettent au praticien de commander le déclenchement du faisceau de lumière thérapeutique conformément aux paramètres d'émission qui ont été réglés. Ces moyens de commande 4 comportent par exemple une pédale d'action ou tout autre moyen de déclenchement manuel équivalent. Lorsque le faisceau de lumière thérapeutique est un faisceau laser, dans sa portée la plus générale, l'invention n'est pas limitée à un type particulier de source laser 2, toute source laser permettant l'émission d'un faisceau laser remplissant la condition de longueur d'onde ci-dessus, et connue de l'homme du métier, pouvant être utilisée. En particulier, et de manière non exhaustive, on peut utiliser les types de source laser suivants:
- Laser Raman à fibre, continu ou impulsionnel ;
- Laser Cr : Forsterite (Cr4+ : Mg2SIO4) puisé ou continu, pompé par un laser solide ou à fibre dopé néodyme (Nd), par un laser solide ou à fibre dopé Ytterbium, ou pompé par diode ;
- Oscillateur paramétrique puisé ou continu, pompé par une autre source laser,
- Diode laser de puissance,
- Laser ou convertisseur Raman solide continu ou impulsionnel pompé par une autre source laser. Parmi les lasers ci-dessus, on utilise de préférence un laser Raman à fibre pour les raisons principales suivantes:
- la sortie fibrée du laser facilite le transport du faisceau jusqu'à la sortie 200 ; - le faisceau laser généré présente une bonne qualité spectrale et spatiale, - la source laser 2 est avantageusement compacte,
- la source laser 2 est fiable et ne nécessite aucune maintenance,
- ce type de source laser offre le meilleur compromis qualité/ coût de fabrication du laser. Exemple préféré de réalisation d'un laser Raman à fibre à une longueur d'onde comprise entre 1 ,2um et 1.3μm En référence à la figure 1 , la source 2 est un laser Raman à fibre et comporte une diode laser de pompe 201 à une longueur d'onde de 910- 930 nm ou 970 980 nm, un laser à fibre dopée Ytterbium Yb 202, et un convertisseur Raman 204 qui a pour fonction de transposer la longueur d'onde du faisceau en sortie du laser à fibre 202, en sorte d'obtenir un faisceau laser à la longueur d'onde 1260nm-1270nm. Le laser à fibre dopée Ytterbium (Yb) 202 est constitué d'une fibre à double gaine 205 dont le cœur est dopé en Ytterbium et de deux réseaux de Bragg 207a en entrée et en sortie qui sont photo-inscrits dans la fibre. La sortie 203 de la fibre du laser 202 est soudée directement à l'entrée du convertisseur Raman 204. Le convertisseur Raman 204 comprend une fibre 206 dont le cœur est dopé en phosphore et deux réseaux de Bragg 207b en entrée et en sortie qui sont réglés à une longueur d'onde dans la gamme 1260 - 1270 nm. Ce convertisseur 204 permet d'effectuer la transposition de la longueur d'onde d'émission du laser 202 en un seul pas. Dans une autre variante, Il est possible d'utiliser une fibre monomode, différente de la fibre précédente ; il convient dans ce cas d'adapter le nombre de pas de conversion du convertisseur Raman 204 en fonction de la nature de la fibre, et notamment du type de dopant utilisé. Il est possible également de remplacer les réseaux de Bragg par des coupleurs monomodes. Le laser Raman à fibre qui vient d'être décrit en référence à la figure 1 , et qui permet l'émission d'un faisceau laser thérapeutique à une longueur d'onde comprise entre 1 ,2 μm et 1,3 μm est nouveau en soi, et peut donc avantageusement également être utilisé dans d'autres applications (médicales ou non), en dehors du domaine particulier du traitement du cancer ou des états précancéreux. En référence à la figure 1 , le réglage de puissance du faisceau laser s'effectue via un coupleur 208 présentant un faible taux de couplage, et une photodiode 209 reliée à des moyens de contrôle électroniques 210. Les moyens de contrôle électroniques 210 reçoivent en outre en entrée un premier signal de consigne continu (S1) dont la valeur est réglée manuellement par le praticien (par exemple au moyen d'un potentiomètre ou équivalent) et qui caractérise la puissance de consigne en régime continu du faisceau laser. A partir de cette valeur de consigne (signal S1), les moyens de contrôle électroniques 210 règlent automatiquement la puissance du faisceau laser émis en agissant en sortie directement sur le courant de la diode de pompe 201. Les moyens de contrôle électroniques 210 permettent ainsi au praticien de régler manuellement la puissance du faisceau laser thérapeutique à une valeur prédéfinie (signal de consigne S1). Egalement, les moyens de contrôle électroniques 210 reçoivent en entrée quatre autres signaux de consigne continus S2, S3, S4 et S5 dont les valeurs sont réglées manuellement par le praticien : - le signal de consigne S2 caractérise par exemple le régime de fonctionnement (continu ou impulsionnel), - le signal de consigne S3 caractérise par exemple, en cas de régime impulsionnel, la durée de chaque impulsion du faisceau laser thérapeutique, - le signal de consigne S4 caractérise par exemple, en cas de régime impulsionnel, l'intervalle de temps entre deux impulsions successives, - le signal de consigne S5 caractérise la durée d'émission (ou autrement dit le nombre d'impulsions dans le cas d'un régime impulsionnel) du faisceau laser thérapeutique, lors de chaque actionnement du moyen de commande 4. Les moyens de contrôle électroniques 210 pilotent ainsi le courant de la diode de pompe 201 à partir des signaux de consigne S1 à S5 et du signal prélevé par le coupleur 208 et la photodiode 209, en sorte de régler automatiquement les caractéristiques physiques du faisceau laser émis [puissance, régime (impulsionnel ou continu), durée d'émission, et en cas de régime impulsionnel : durée de chaque impulsion et intervalle de temps entre chaque impulsion). Méthode de traitement La mise en œuvre de l'appareil de l'invention est la suivante. Etape 1 : Le praticien règle manuellement les paramètres d'émission du faisceau laser thérapeutique [puissance, régime (continu ou impulsionnel), durée d'émission (ou nombre d'impulsions en cas de régime impulsionnel), et en cas de régime impulsionnel : durée de chaque impulsion, intervalle entre deux impulsions]. Etape 2 : Au moyen de l'interface d'adaptation 3, le praticien règle de manière très précise et connue en soi la position spatiale du faisceau laser par rapport au site cancéreux ou précancéreux à traiter. Etape 3 : Lorsque l'alignement est parfait, le praticien actionne la pédale de commande 4, ce qui déclenche l'émission du faisceau thérapeutique (éclairage du site à traiter) avec les paramètres d'émission prédéfinis. Lorsque le site visé est traité, le praticien réitère les opérations des étapes 2 et 3 sur un nouveau site à traiter, autant de fois que nécessaire pour balayer toute la surface de tumeur ou lésions cancéreuse ou précancéreuse. Les opérations ci-dessus sont répétées avec une fréquence qui sera fonction d'un protocole de traitement déterminé au cas par cas par le praticien. La méthode de traitement de l'invention peut être utilisée pour le traitement de tumeurs malignes ou bénignes, le traitement d'états précancéreux, le traitement de tumeurs en post-opératoire ou en postradiologie et/ou post-chimiothérapie. Le traitement peut être réalisé en complément de la chirurgie, chimiothérapie ou radiologie. L'appareil de traitement peut être utilisé pour traiter toutes les lésions précancéreuses (dysplasies, carcinomes in situ)) ou les cancers qui sont accessibles par un faisceau lumineux ; il suffit pour cela de choisir l'interface d'adaptation appropriée en fonction de la localisation du site. En particulier, L'appareil de traitement peut être utilisé pour traiter toutes les lésions précancéreuses (dysplasies, carcinomes in situ)) ou les cancers qui sont actuellement traités au moyen de la PDT. A titre d'exemple non limitatif et non exhaustif, les différents cancers qui peuvent être traités sont notamment : - En ORL: cancer de la cavité buccale, cancer de la thyroïde, cancer de l'hypo pharynx, cancer du larynx, cancer nasopharynx. - Appareil digestif : cancer de l'œsophage, la muqueuse de Barnett, cancer de l'estomac, cancer du colon et du rectum, cancer du pancréas, cancer de la vésicule biliaire. - Appareil respiratoire : tous les types connus de cancer des voies respiratoires ou du poumon. - En urologie : cancer du rein, cancer du testicule, cancer de la vessie, cancer de la prostate, cancer de la verge. - En gynécologie : cancer du col utérin, cancer de l'endomètre (utérus), cancer du vagin. - En dermatologie : kératoses actiniques, mélanomes, carcinomes basocellulaires, néoplasies intra épithéliales et carcinomes spinocellulaires. Quel que soit le type de cancer ou de lésion précancéreuse, il est préférable d'utiliser un faisceau laser (L) impulsionnel, plutôt qu'un faisceau laser continu, car cela permet de diminuer les risques de brûlure des tissus. Plus particulièrement, quel que soit le type de cancer ou de lésion précancéreuse la méthode de traitement et l'appareil de traitement de l'invention présentent de préférence l'une et/ou l'autre des caractéristiques techniques ci-après. La densité de puissance (d) du faisceau laser au niveau du site à traiter est de préférence comprise entre 30W/cm2 et 300W/cm2, et est plus préférentiellement encore de l'ordre de 100W/cm2 .étant rappelé que la densité de puissance (d) est définie par la formule suivante : d = - P s
Avec P représentant la puissance par impulsion et S représentant la surface du spot formé par le faisceau laser au niveau du site à traiter. La fluence par impulsion est de préférence comprise entre 1 J/cm2 et 30J/cm2 II est ici rappelé que la fluence (F) par impulsions est définie par la formule suivante : F = dχt formule dans laquelle d représente la densité de puissance par impulsion, et t représente la durée de l'impulsion. La surface (S) du spot dépend du diamètre du faisceau laser en sortie de la fibre, du « waist » du faisceau et de la distance entre la sortie fibrée du laser et le site à traiter. Pour un waist et un diamètre donnés du faisceau laser, plus on éloigne la sortie fibrée du laser, plus la surface du spot est importante, et plus la densité de puissance et la fluence par impulsion sont faibles. De préférence la fluence totale pour chaque émission était comprise entre 6000J/cm2 et 90000 J/cm2, et est encore plus préférentiellement de l'ordre de 30000J/cm2, étant rappelé que fluence totale (FT) pour chaque émission est définie par la formule suivante : Er = E χ N où Ν représente le nombre d'impulsions à chaque émission et F représente la fluence par impulsion. La durée (T) entre deux impulsions successives doit être suffisamment importante pour éviter une surchauffe des tissus. De préférence, la durée (T) entre deux impulsions successives est supérieure à 0,5s, et plus particulièrement encore supérieure ou égale à 0,9s. Plus particulièrement, un compromis satisfaisant qui permet de respecter les valeurs de fluence précitées tout en limitant la durée du traitement à chaque émission afin de ne pas immobiliser le patient trop longtemps, a été obtenu avec un nombre d'impulsions (N) à chaque émission compris de préférence entre 50 et 300 impulsions et avec une durée (t) de chaque impulsion comprise entre 0,1s et 0,3s. Plus particulièrement, l'appareil de traitement se caractérise de préférence par un faisceau dont la puissance par impulsion est comprise entre 1W et 5W et est plus préférentiellement encore de l'ordre de 3W, et dont la densité de puissance par impulsion en sortie de l'appareil est comprise entre 30W/cm2 et 300W/cm2, et est plus préférentiellement encore de l'ordre de lOOW/cm2. Le protocole de traitement est défini par le praticien en fonction notamment de l'importance de la tumeur ou lésion cancéreuse ou précancéreuse et également de la durée d'immobilisation souhaitée pour le patient.
Exemple de Protocole de traitement : journalier pendant plusieurs jours d'affilée ou tous les trois jours pendant plusieurs jours d'affilée. Dans tous les cas, il est préférable de réitérer plusieurs fois l'opération d'éclairage de du site à traiter avec au moins un jour de repos entre chaque opération éclairage. Néanmoins, il convient de souligner que manière avantageuse le traitement de l'invention peut n'occasionner aucun effet secondaire néfaste, et en particulier ne pas provoquer de surchauffe excessive des tissus. Il est donc envisageable également de raccourcir la durée totale du protocole de traitement en cumulant sur une même journée plusieurs opérations successives d'éclairage du site à traiter, sans qu'il soit nécessaire de prévoir une journée de repos entre chaque opération comme dans les exemples de protocole précités. L'invention n'est toutefois pas limitée aux paramètres et conditions d'utilisation susmentionnés, lesquels sont donnés uniquement à titre indicatif.

Claims

REVENDICATIONS
1. Appareil pour le traitement d'un cancer ou d'un état précancéreux, ledit appareil comportant une source de lumière thérapeutique, caractérisé en ce que ladite source (2) est conçue pour émettre un faisceau lumineux thérapeutique de longueur d'onde comprise entre 1 ,2μm et 1 ,3μm.
2. Appareil selon la revendication 1 caractérisé en ce que ladite source (2) est conçue pour émettre un faisceau lumineux thérapeutique impulsionnel.
3. Appareil selon la revendication 2 caractérisé en ce que la durée de chaque impulsion est réglable.
4. Appareil selon la revendication 2 caractérisée en ce que la durée de chaque impulsion est réglable à une valeur inférieure à 0,5s, et de préférence à une valeur comprise au moins entre 0,1s et 0,3s.
5. Appareil selon la revendication 2 caractérisé en ce que l'intervalle de temps entre deux impulsions est réglable.
6. Appareil selon la revendication 5 caractérisé en ce que l'intervalle de temps entre deux impulsions est réglable à une valeur supérieure à 0,5s, et de préférence à une valeur supérieure ou égale à 0,9s.
7. Appareil selon l'une des revendications 1 à 6 caractérisé en ce que la durée d'émission ou le nombre d'impulsions à chaque émission du faisceau lumineux thérapeutique est réglable.
8. Appareil selon la revendication 2 et la revendication 7 caractérisé en ce que le nombre d'impulsions à chaque émission est réglable au moins entre 50 et 300.
9. Appareil selon l'une des revendications 1 à 8 caractérisé en ce que la puissance du faisceau lumineux thérapeutique est réglable.
10. Appareil selon la revendication 9 caractérisé en ce que la puissance du faisceau lumineux thérapeutique est réglable au moins entre 1W et 5W.
11. Appareil selon les revendications 2 et 9 caractérisé en ce que densité de puissance des impulsions est réglable au moins entre 30W/cm2 et 300W/cm2.
12. Appareil selon l'une des revendications 1 à 11 caractérisé en ce que la source (2) est une source laser.
13. Appareil selon la revendication 12 caractérisé en ce que la source laser (2) comporte un laser Raman à fibre.
14. Appareil selon la revendication 13 caractérisé en ce que le laser Raman à fibre comprend une diode laser de pompe (201), un laser à fibre dopée Ytterbium (202), et un convertisseur Raman (204) qui a pour fonction de transposer la longueur d'onde du faisceau issu du laser à fibre dopée Ytterbium.
15. Méthode de traitement d'un cancer ou d'un état précancéreux caractérisée en ce qu'on on éclaire le site à traiter avec un faisceau lumineux thérapeutique de longueur d'onde comprise entre 1 ,2μm et 1 ,3μm.
16. Méthode de traitement selon la revendication 15 caractérisée en ce que le faisceau lumineux thérapeutique est un faisceau laser.
17. Méthode de traitement selon la revendication 15 ou 16 caractérisée en ce que le faisceau lumineux thérapeutique est impulsionnel.
18. Méthode de traitement selon la revendication 17 caractérisée en ce que la fluence par impulsion est comprise entre 1 J/cm2 et 30J/cm2
19. Méthode de traitement selon la revendication 17 ou 18 caractérisée en ce que la durée (T) entre deux impulsions successives est supérieure à 0,5s.
20. Méthode de traitement selon la revendication 17 ou 18 caractérisée en ce la durée (T) entre deux impulsions successives est supérieure ou égale à 0,9s.
21. Méthode de traitement selon l'une des revendications 17 à 20 caractérisée en ce que le nombre d'impulsions (N) à chaque émission est compris entre 50 et 300 impulsions.
22. Méthode de traitement selon l'une des revendications 17 à 21 caractérisée en ce que la durée (t) de chaque impulsion est inférieure à 0,5s.
23. Méthode de traitement selon l'une des revendications 17 à 21 caractérisée en ce que la durée (t) de chaque impulsion est comprise entre 0,1s et 0,3s.
24. Méthode de traitement selon l'une des revendications 15 à 23 caractérisée en ce que la densité de puissance (d) du faisceau lumineux thérapeutique au niveau du site à traiter est comprise entre 30W/cm2 et 300W/cm2.
25. Méthode de traitement selon l'une des revendications 15 à 23 caractérisée en ce que la densité de puissance (d) du faisceau lumineux thérapeutique au niveau du site à traiter est sensiblement égale à 100W/cm2.
26. Méthode de traitement selon l'une des revendications 15 à 25 caractérisée en ce la fluence totale pour chaque émission est comprise entre 6000J/cm2 et 90000 J/cm2.
27. Méthode de traitement selon l'une des revendications 15 à 25 caractérisée en ce que la fluence totale pour chaque émission est sensiblement égale à 30000J/cm2.
28. Méthode de traitement selon l'une des revendications 15 à 27 caractérisée en ce qu'on on réitère plusieurs fois l'opération d'éclairage du site à traiter avec au moins un jour de repos entre chaque opération d'éclairage.
29. Méthode de traitement selon l'une des revendications 15 à 28 caractérisée en ce qu'on n'administre pas au patient de médicament photosensibilisant.
EP05715180A 2004-01-14 2005-01-10 Appareil et methode de traitement notamment par laser d un c ancer ou d un etat precancereux Withdrawn EP1703948A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0400283A FR2864903B1 (fr) 2004-01-14 2004-01-14 Appareil de traitement notamment par laser d'un cancer ou d'un etat precancereux
PCT/EP2005/000128 WO2005077460A1 (fr) 2004-01-14 2005-01-10 Appareil et methode de traitement notamment par laser d'un cancer ou d'un etat precancereux

Publications (1)

Publication Number Publication Date
EP1703948A1 true EP1703948A1 (fr) 2006-09-27

Family

ID=34684965

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05715180A Withdrawn EP1703948A1 (fr) 2004-01-14 2005-01-10 Appareil et methode de traitement notamment par laser d un c ancer ou d un etat precancereux

Country Status (7)

Country Link
US (1) US20080287932A1 (fr)
EP (1) EP1703948A1 (fr)
JP (1) JP2007517559A (fr)
CN (1) CN1909945A (fr)
CA (1) CA2552618A1 (fr)
FR (1) FR2864903B1 (fr)
WO (1) WO2005077460A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007029627A (ja) * 2005-07-29 2007-02-08 Nidek Co Ltd 医療用レーザ装置
RU2321434C1 (ru) * 2006-09-20 2008-04-10 Государственное учреждение научно-исследовательский институт онкологии Томского Научного центра Сибирского отделения Российской академии медицинских наук (ГУ НИИ онкологии ТНЦ СО РАМН) Способ реабилитации больных, оперированных по поводу рака желудка, в отдаленные послеоперационные сроки
JP5100473B2 (ja) * 2008-03-31 2012-12-19 古河電気工業株式会社 一重項酸素生成装置
US20090281536A1 (en) * 2008-05-09 2009-11-12 Hugh Beckman Medical Device For Diagnosing and Treating Anomalous Tissue and Method for Doing the Same
WO2010090287A1 (fr) * 2009-02-06 2010-08-12 キュテラ アイエヌシー. Dispositif d'oncothérapie
US9504824B2 (en) 2009-06-23 2016-11-29 Board Of Regents, The University Of Texas System Noninvasive therapies in the absence or presence of exogenous particulate agents
US20120071867A1 (en) * 2010-03-18 2012-03-22 Metalase, Inc. Diode laser systems and methods for endoscopic treatment of tissue
RU2508138C2 (ru) * 2011-07-06 2014-02-27 Общество с ограниченной ответственностью "ТехноМикрон" Способ элиминации вируса папилломы человека высокого онкогенного риска для профилактики рака шейки матки и устройство для его осуществления
CN103126866B (zh) * 2012-08-30 2015-04-15 李复生 癌症扩散转移治疗器
CN111840550A (zh) * 2020-07-28 2020-10-30 清华大学 一种利用脉冲激光控制药物释放的方法及系统
CN114597737A (zh) * 2021-11-30 2022-06-07 山东森格姆德激光科技有限公司 一种基于掺磷光纤及光纤环形镜的外腔式1270nm激光器
CN114597740A (zh) * 2021-12-01 2022-06-07 山东瑞兴单模激光科技有限公司 一种基于掺磷光纤及全反射镜的内腔式1270nm激光器
CN114597741A (zh) * 2021-12-06 2022-06-07 台州同合激光科技有限公司 一种基于掺磷光纤及光纤全反射镜的外腔式1270nm激光器
CN114597742A (zh) * 2021-12-06 2022-06-07 台州同合激光科技有限公司 一种基于掺磷光纤及环形镜的内腔式1270nm激光器
CN117731239B (zh) * 2023-12-19 2024-08-30 北京信息科技大学 一种活体循环肿瘤细胞无创动态监测及消杀装置和方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001074230A2 (fr) * 2000-04-03 2001-10-11 Ceramoptec Industries, Inc. Systeme laser therapeutique fonctionnant entre 1000 et 1300 nm et son application
WO2004009005A2 (fr) * 2002-07-18 2004-01-29 Universite Des Sciences Et Technologies De Lille Appareil pour le traitement de la degenerescence maculaire liee a l'age (dmla)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990012619A1 (fr) * 1989-04-24 1990-11-01 Abiomed, Inc. Systeme de chirurgie par laser
US5776175A (en) * 1995-09-29 1998-07-07 Esc Medical Systems Ltd. Method and apparatus for treatment of cancer using pulsed electromagnetic radiation
US6200309B1 (en) * 1997-02-13 2001-03-13 Mcdonnell Douglas Corporation Photodynamic therapy system and method using a phased array raman laser amplifier
JP2005502385A (ja) * 2000-12-28 2005-01-27 パロマー・メディカル・テクノロジーズ・インコーポレーテッド 皮膚の療法emr治療を行う方法及び装置
ATE390147T1 (de) * 2001-02-06 2008-04-15 Quadra Logic Tech Inc Photodynamische therapie mit verminderter bestrahlungsstärke
US20040162549A1 (en) * 2002-11-12 2004-08-19 Palomar Medical Technologies, Inc. Method and apparatus for performing optical dermatology
US20030233138A1 (en) * 2002-06-12 2003-12-18 Altus Medical, Inc. Concentration of divergent light from light emitting diodes into therapeutic light energy
CA2487987C (fr) * 2002-06-19 2010-04-13 Palomar Medical Technologies, Inc. Methode et appareil de traitement photothermique d'un tissu en profondeur
FR2864892B1 (fr) * 2004-01-14 2006-12-29 Optical System Res For Industr Appareil pour le traitement de la neovascularisation cornenne ou de l'accumulation de vaisseaux sur la conjonctive

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001074230A2 (fr) * 2000-04-03 2001-10-11 Ceramoptec Industries, Inc. Systeme laser therapeutique fonctionnant entre 1000 et 1300 nm et son application
WO2004009005A2 (fr) * 2002-07-18 2004-01-29 Universite Des Sciences Et Technologies De Lille Appareil pour le traitement de la degenerescence maculaire liee a l'age (dmla)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2005077460A1 *

Also Published As

Publication number Publication date
US20080287932A1 (en) 2008-11-20
JP2007517559A (ja) 2007-07-05
FR2864903B1 (fr) 2006-09-15
CN1909945A (zh) 2007-02-07
CA2552618A1 (fr) 2005-08-25
FR2864903A1 (fr) 2005-07-15
WO2005077460A1 (fr) 2005-08-25

Similar Documents

Publication Publication Date Title
WO2005077460A1 (fr) Appareil et methode de traitement notamment par laser d'un cancer ou d'un etat precancereux
US8105321B2 (en) Apparatus for treating age-related macular degeneration (ARMD)
Giannelli et al. Comparative evaluation of photoablative efficacy of erbium: yttrium‐aluminium‐garnet and diode laser for the treatment of gingival hyperpigmentation. A randomized split‐mouth clinical trial
Roodenburg et al. Carbon dioxide laser surgery of oral leukoplakia
EP0575274A1 (fr) Appareil laser pour traitements médicaux et dentaires
Jha et al. Treatment of oral hyperpigmentation and gummy smile using lasers and role of plasma as a novel treatment technique in dentistry: An introductory review
Elavarasu et al. Lasers in periodontics
FR2957810A3 (fr) Dispositif de therapie photodynamique d'un tissu d'un etre vivant
Panthier et al. 2022 Recommendations of the AFU Lithiasis Committee: Laser–utilization and settings
Abu-Ta’a et al. Laser and its application in periodontology: A review of literature
EP0225831B1 (fr) Utilisation d'huiles hyperoxygénées pour la fabrication d'un médicament pour le traitement de l'herpès.
Esmaeili et al. Gingival melanin depigmentation using a diode 808-nm laser: a case series
Baeder et al. High‐power diode laser use on Fordyce granule excision: a case report
US9034023B2 (en) Dynamic colorectal PDT application
de Arruda Paes-Junior et al. CO2 laser surgery and prosthetic management for the treatment of epulis fissuratum
Bass et al. Single treatment laser iridotomy.
EP1713423A1 (fr) Appareil et methode de traitement de la neovascularisation corneenne ou de l accumulation de vaisseaux sur la conjonctive
RU2119363C1 (ru) Способ фотодинамической терапии опухоли
Jean et al. Correction of myopia with Er: YAG laser fundamental mode photorefractive keratectomy
Abbasakoor et al. Safe ablation of the anal mucosa and perianal skin in rats using Photodynamic Therapy—A promising approach for treating Anal Intraepithelial Neoplasia
Wang et al. A new method of endoscopic treatment for Barrett's esophagus
Ascencio Photodynamic therapy of ovarian carcinosis and cervical intra-epithelial dysplasia. Experimental and clinical study
Panjehpour et al. Photodynamic therapy for Barrett's esophagus using a 20-mm diameter light-delivery balloon
HK1082906B (en) Apparatus for treating age-related maculopathy (arm)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060712

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20061128

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20090622