EP1702140A1 - Verfahren zur umwandlung von wärmeenergie in mechanische energie mit einer niederdruck-entspannungsvorrichtung - Google Patents
Verfahren zur umwandlung von wärmeenergie in mechanische energie mit einer niederdruck-entspannungsvorrichtungInfo
- Publication number
- EP1702140A1 EP1702140A1 EP04816348A EP04816348A EP1702140A1 EP 1702140 A1 EP1702140 A1 EP 1702140A1 EP 04816348 A EP04816348 A EP 04816348A EP 04816348 A EP04816348 A EP 04816348A EP 1702140 A1 EP1702140 A1 EP 1702140A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- roots blower
- expansion device
- working fluid
- pressure
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/06—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
- F01K25/065—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids with an absorption fluid remaining at least partly in the liquid state, e.g. water for ammonia
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/06—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
Definitions
- the invention relates to a method for converting heat energy generated in an evaporator into mechanical energy by expanding a vaporous working medium which evaporates in the evaporator and is expanded in a expansion device. Furthermore, the invention relates to a relaxation device for converting thermal energy into mechanical energy.
- Wäi ⁇ iekraftaölagen are known, for example, in which a working medium at a high in a boiler Isobaric pressure is heated to the boiling point, evaporated and then overheated in a superheater. The steam is then adiabatically expanded in a turbine, performing work, and liquefied in a condenser, giving off heat. The liquid, usually water, is brought to a pressure by the feed water pump and pumped back into the boiler.
- One of the disadvantages of these devices is that high pressures of over 15 bar to 200 bar must be generated in the expansion processes in turbines, in which case the realized pressure ratio of the expansion is decisive for the efficiency achieved for turbines.
- the invention has for its object to provide a method and an apparatus for converting thermal energy into mechanical energy, which avoid the disadvantages mentioned, in particular have an improved efficiency.
- the expansion device is designed as a low-pressure expansion device, which is designed as a Roots blower, in which the working medium is expanded and thermal energy is converted into mechanical energy.
- the Roots blower as a low-pressure expansion device, however, has the advantage according to the invention that it can work with low gas friction and at the same time is insensitive to liquid drops. Furthermore, it achieves this Roots blowers at rotational speed at which the sealing edge on the outer radius reaches speeds of more than about 1/10 of the speed of sound have a particularly high volumetric efficiency, since the gap acts as a dynamic seal at these speeds.
- the Roots blower which can be in the form of an oval gear pump, can operate at full efficiency at a pressure difference of 500 mbar and can be used in a closed system at pressures of 10 to 0.5 bar.
- Another advantage is that in the relaxation devices mentioned, only the pressure difference and not the mass or the relaxation ratio is decisive for the efficiency. With already small pressure differences of less than two bar, full efficiency can be achieved. The physical reason for this lies in the high operating time of almost 95% in the pump, since it is actually not a conventional expansion in the sense of a compressor, but the expansion takes place through the discharge of the gas into the pressure port.
- the inflow and outflow with an increase or decrease in the scooping volume does not take place in the Roots blower, but the inflow of the gas takes place parallel to the transport of the gas via the rotary movement at a constant volume and thus with full efficiency.
- the Roots blower and other comparable low-pressure expansion devices according to the invention are distinguished here from other expansion devices in which the pressure change itself takes place by changing the scoop volume. As a result, the working time of this device is much shorter.
- the thermal energy of the vaporous working medium is at least partially converted into mechanical energy.
- the Roots blower is advantageously connected to a generator which converts the mechanical energy into electrical energy.
- the relaxed working fluid can be condensed in a heat exchanger.
- at least some of the condensed working fluid can be injected into the Roots blower during the expansion process, for example up to 16% of the mass fraction, whereby according to the invention the injected working fluid in the Roots blower partially condenses in the blower in the heat exchange with the steam and thereby the acting pressure difference of relaxation increases.
- a separator is connected downstream of the heat exchanger, which removes part of the condensed working fluid for injection into the Roots blower.
- a pump which is in turn connected downstream of the separator, expediently asks the condensed working medium back into the evaporator.
- a pressure-controlled injection takes place in a further embodiment of the invention.
- the method preferably has a first component of the working medium, which is formed by a mixture, is absorbed in and / or after the low-pressure expansion device by means of an absorption medium, heat being transferred to the remaining, vaporous second component, which is traceable.
- the mixture is an azeotr ⁇ p with a boiling point minimum at a specific mixing ratio of the components.
- the evaporation temperatures can be lowered so that they are below the condensation temperatures of the individual components. If the first component is absorbed adiabatically from the steam mixture, the corresponding heat is transferred to the second component remaining in vapor form.
- the heat of condensation can thus be withdrawn at an elevated temperature level.
- the second vapor-like component can be condensed in the evaporator of the working medium itself, giving off the heat of condensation, so that the corresponding proportion of the thermal energy can be returned to the process.
- the first component to be absorbed is water, an alkaline silicate solution, for example, can be used as the absorbent.
- the working medium for example an azeotropic mixture of water with perchlorethylene or silicone
- the working medium can be evaporated, for example, by heat exchange with primary energy from process vapors or heated process liquids and / or heat stores.
- the absorption in which, according to the invention, the heat of absorption obtained is transferred to the second component remaining in vapor form, as a result of which this component heats up to a temperature level above the boiling point of the azeotropic mixture, can take place in and / or after the expansion device.
- One of the main advantages here is that mechanical energy can be "gained” by the relaxation of the azeotropic mixture in the Roots blower and at the same time the relaxed working medium, which has already done “work” in the relaxation process, by separating (absorption) the first from the second component heats up due to the released heat of absorption.
- it can remaining work equipment can be returned after relaxation, for example, to give off its heat in the heat exchanger.
- the remaining working fluid only second component
- the remaining working fluid condenses and, due to the heat of condensation that arises, the liquid working fluid with the first and second components evaporated and then returned to the expansion device.
- the efficiency of the method for converting thermal energy into mechanical energy can be significantly improved.
- the working medium is preferably formed by an azeotropic mixture with a boiling point or an almost azeotropic mixture.
- the invention is described below with an azeotropic mixture; of course, the invention can also be applied to almost azeotropic mixtures or to non-azeotropic mixtures. High efficiencies can be achieved particularly with an azeotropic or an almost azeotropic mixture.
- the evaporation temperatures can be lowered so that they are below the evaporation temperatures of the individual components.
- the working medium has a low volume-specific or low molar enthalpy of vaporization. This ensures that a large amount of motive steam is generated with a predetermined amount of thermal energy.
- the working medium is preferably a solvent mixture which has organic and / or inorganic solvent components. Examples of this are mixtures of water and selected silicones.
- at least one component can also be a protic solvent.
- the absorbent is a reversible immobilizable solvent, which is the first component of the working medium in the non-immobilized physical state.
- the reversible solvent in the boiling agent can advantageously change through physico-chemical changes in such a way that it can be changed from the non-immobilized state to the reversibly immobilized state by ionization or complex formation from the vapor phase and in the non-immobilized form as an absorbent works for the work equipment.
- the vaporous working medium thus already contains the absorbent (in the non-immobilized state) before the expansion.
- the reversibly immobilized solvent is in a vaporous state and changes to the liquid state due to physico-chemical changes - such as pH shift, change in mole fraction and temperature in its volatility and / or vapor pressure (comparable to steam as a solvent in non-immobilized form and water as a reversibly immobilizable solvent).
- the advantage here is that the working fluid consists of two components, with one component simultaneously acting as an absorbent for the other component in the reversibly immobilized state.
- Cyclic nitrogen compounds such as pyridines, for example, can be used as pH-dependent, reversibly immobilizable solvents.
- the object of the invention is also achieved by a relaxation device for converting thermal energy into mechanical energy by relaxing a vaporous working medium with the features of claim 15.
- a relaxation device for converting thermal energy into mechanical energy by relaxing a vaporous working medium with the features of claim 15.
- the expansion device is designed as a low-pressure expansion device, which is designed as a Roots blower.
- a Roots blower two rotors run on one another on elliptical or oval-shaped pitch curves.
- Well-known examples are the oval wheel pump or the Roots blower.
- With multi-bladed rotors higher order elliptical pitch curves can be realized.
- One advantage of Roots blowers with multi-bladed rotors is a reduction in the pulsations that occur, since the chamber volume, based on the scooping volume, is smaller and the frequency of gas discharge increases.
- the Roots blower expediently has a gas-tight seal between the pump chamber and the gear chamber in order to prevent oil from entering the vaporous working medium.
- the Roots blower also has a shaft that can be connected to the generator, whereby the mechanical energy can be converted into electrical energy.
- the use of a Roots blower as a low-pressure expansion device opens up the possibility, on the one hand, of the process by injecting absorption agents, in particular when using waste heat with a temperature of less than approximately 100 ° C. for driving pumps or generators support, and on the other hand to "raise the condensation energy of the working fluid, for example with a heat pump," to an increased temperature level due to the small pressure and temperature differences.
- FIG. 1 shows a method for converting thermal energy accumulating in an evaporator 6 into mechanical energy by expanding a vaporous working medium which evaporates in the evaporator 6 and is expanded in a low-pressure expansion device 2.
- the working medium in this exemplary embodiment is water, which is conveyed in the vapor state to the expansion device 2, which is designed as a Roots blower 2.
- the expansion device 2 which is designed as a Roots blower 2.
- the Roots blower 2 is connected to a generator 1 and drives it, so that mechanical energy is converted into electrical energy.
- the expanded motive steam is condensed in a heat exchanger 7.
- the evaporator 6 is preferably connected to the heat exchanger 7, the condensate being conveyed back into the evaporator 6 by means of the pump 9.
- the heat exchanger 7 is followed by a separator 3, which removes part of the condensed working fluid for injection into the Roots blower 2.
- the Roots blower 2 has a plurality of injection openings (not shown) through which the condensed working fluid is injected into the scooping space of the Roots blower 2, a portion of the vaporous working fluid condensing in the Roots blower 2, thereby reducing the outlet pressure and thus improving the efficiency. Due to the pressure difference compared to the heat exchanger 7 connected to the outlet of the Roots blower 2, the rotors arranged in the Roots blower 2 are set in motion by the relaxing working medium, and those that come with the relaxation Change in entropy is given off as mechanical energy.
- a pump 9 is connected downstream of the separator 3, which conveys the condensed working fluid back into the evaporator 6.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Sorption Type Refrigeration Machines (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE202004021185U DE202004021185U1 (de) | 2003-12-22 | 2004-12-22 | Entspannungsvorrichtung zur Umwandlung von Wärmeenergie in mechanische Energie mit einer Niederdruck-Entspannungsvorrichtung |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2003160380 DE10360380A1 (de) | 2003-12-22 | 2003-12-22 | Extraktions-Wärmepumpe mit reversibel immobilisierbarem Lösemittel |
DE2003160379 DE10360379A1 (de) | 2003-12-22 | 2003-12-22 | Niederdruck-Entspannungsmotor auf der Basis von Rootsgebläsen |
DE2003160364 DE10360364A1 (de) | 2003-12-22 | 2003-12-22 | Offene Wärmepumpe unter Verwendung von flüssigkeitsüberlagerten Verdichtersystemen |
DE2003161223 DE10361223A1 (de) | 2003-12-24 | 2003-12-24 | Niederdruck-Entspannungsmotor mit Treibdampftrennung mittels extraktiver Rektifikation |
DE2003161203 DE10361203A1 (de) | 2003-12-24 | 2003-12-24 | Niederdruck-Entspannungsmotor mit Energierückführung |
PCT/EP2004/053654 WO2005061858A1 (de) | 2003-12-22 | 2004-12-22 | Verfahren zur umwandlung von wärmeenergie in mechanische energie mit einer niederdruck-entspannungsvorrichtung |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1702140A1 true EP1702140A1 (de) | 2006-09-20 |
EP1702140B1 EP1702140B1 (de) | 2007-08-22 |
Family
ID=34714591
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04816348A Active EP1702140B1 (de) | 2003-12-22 | 2004-12-22 | Verfahren zur umwandlung von wärmeenergie in mechanische energie mit einer niederdruck-entspannungsvorrichtung |
EP04804985A Withdrawn EP1706681A1 (de) | 2003-12-22 | 2004-12-22 | Verfahren und anlage zur temperaturerhöhung eines dampfförmigen arbeitsmittels |
EP04804984A Withdrawn EP1702139A1 (de) | 2003-12-22 | 2004-12-22 | Vorrichtung und verfahren zur umwandlung von wärmeenergie in mechanische energie |
EP04804983.7A Active EP1706598B1 (de) | 2003-12-22 | 2004-12-22 | Verfahren und anlage zur umwandlung von wärmeenergie aus kältemaschinen |
EP04804988.6A Active EP1706599B1 (de) | 2003-12-22 | 2004-12-22 | Verfahren und anlage zur umwandlung von anfallender wärmeenergie in mechanische energie |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04804985A Withdrawn EP1706681A1 (de) | 2003-12-22 | 2004-12-22 | Verfahren und anlage zur temperaturerhöhung eines dampfförmigen arbeitsmittels |
EP04804984A Withdrawn EP1702139A1 (de) | 2003-12-22 | 2004-12-22 | Vorrichtung und verfahren zur umwandlung von wärmeenergie in mechanische energie |
EP04804983.7A Active EP1706598B1 (de) | 2003-12-22 | 2004-12-22 | Verfahren und anlage zur umwandlung von wärmeenergie aus kältemaschinen |
EP04804988.6A Active EP1706599B1 (de) | 2003-12-22 | 2004-12-22 | Verfahren und anlage zur umwandlung von anfallender wärmeenergie in mechanische energie |
Country Status (6)
Country | Link |
---|---|
US (2) | US7726128B2 (de) |
EP (5) | EP1702140B1 (de) |
AT (1) | ATE371101T1 (de) |
DE (1) | DE502004004776C5 (de) |
ES (2) | ES2293384T3 (de) |
WO (5) | WO2005066465A1 (de) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006021928A1 (de) * | 2005-06-02 | 2007-11-15 | Lutz Giechau | Vorrichtung zur Erzeugung mechanischer Energie |
DE102006022792B3 (de) * | 2006-05-16 | 2007-10-11 | Erwin Dr. Oser | Umwandlung solarer Wärme in mechanische Energie mit einem Strahlverdichter |
DE102007041457B4 (de) * | 2007-08-31 | 2009-09-10 | Siemens Ag | Verfahren und Vorrichtung zur Umwandlung der Wärmeenergie einer Niedertemperatur-Wärmequelle in mechanische Energie |
DE102008013737A1 (de) | 2008-03-06 | 2009-09-10 | Heinz Manfred Bauer | Verfahren zur Wandlung thermischer Energie in mechanische und weiter in elektrische Energie |
DE102008024116A1 (de) * | 2008-05-17 | 2009-11-19 | Hamm & Dr. Oser GbR (vertretungsberechtiger Gesellschafter: Dr. Erwin Oser, 50670 Köln) | Umwandlung der Druckenergie von Gasen und Dämpfen bei niedrigen Ausgangsdrücken in mechanische Energie |
DE102008036917A1 (de) | 2008-08-05 | 2010-02-11 | Heinz Manfred Bauer | Verfahren zur Wandlung thermischer Energie in mechanische und weiter in elektrische Energie |
WO2010104601A1 (en) * | 2009-03-12 | 2010-09-16 | Seale Joseph B | Heat engine with regenerator and timed gas exchange |
US20130174552A1 (en) * | 2012-01-06 | 2013-07-11 | United Technologies Corporation | Non-azeotropic working fluid mixtures for rankine cycle systems |
CN103321778A (zh) * | 2012-02-29 | 2013-09-25 | 伊顿公司 | 体积能量回收装置和系统 |
DE102012016991A1 (de) | 2012-08-25 | 2014-02-27 | Erwin Oser | Energieeffizientes Entspannungsaggregat |
DE102013112024A1 (de) * | 2013-10-31 | 2015-04-30 | ENVA Systems GmbH | Drehkolbengebläse mit einem Dichtsystem |
US10648745B2 (en) | 2016-09-21 | 2020-05-12 | Thermal Corp. | Azeotropic working fluids and thermal management systems utilizing the same |
DE102019135820A1 (de) | 2019-12-27 | 2021-07-01 | Corinna Ebel | Verfahren zur Dampferzeugung, Dampferzeuger und Verwendung eines Wälzkolbengebläses |
CN112412560A (zh) * | 2020-10-28 | 2021-02-26 | 北京工业大学 | 一种基于单螺杆膨胀机的卡琳娜循环系统 |
DE202021100874U1 (de) | 2021-02-23 | 2022-05-30 | Marlina Hamm | Wälzkolbengebläse zur Entspannung eines dampfförmigen Mediums bei hohem Druck und guter Dichtigkeit |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1601003A1 (de) | 1966-12-02 | 1970-07-16 | Gohee Mamiya | Energieerzeugungssystem |
FR1546326A (fr) * | 1966-12-02 | 1968-11-15 | Générateur d'énergie perfectionné, particulièrement pour créer une énergie enutilisant un réfrigérant | |
GB1301214A (en) | 1970-05-26 | 1972-12-29 | Wallace Louis Minto | Prime mover system |
US3972195A (en) * | 1973-12-14 | 1976-08-03 | Biphase Engines, Inc. | Two-phase engine |
US4009575A (en) * | 1975-05-12 | 1977-03-01 | said Thomas L. Hartman, Jr. | Multi-use absorption/regeneration power cycle |
FR2374539A1 (fr) * | 1976-12-15 | 1978-07-13 | Air Ind | Procede de compression de vapeur d'eau, et circuits thermiques pour sa mise en oeuvre |
US4295335A (en) * | 1978-01-09 | 1981-10-20 | Brinkerhoff Verdon C | Regenative absorption engine apparatus and method |
DE2803118B2 (de) * | 1978-01-25 | 1980-07-31 | Stiebel Eltron Gmbh & Co Kg, 3450 Holzminden | Verfahren zur Beheizung mit einer Absorptionswärmepumpenanlage und Vorrichtung zur Durchführung des Verfahrens |
US4195485A (en) * | 1978-03-23 | 1980-04-01 | Brinkerhoff Verdon C | Distillation/absorption engine |
US4307572A (en) * | 1978-05-15 | 1981-12-29 | New Energy Dimension Corporation | Externally cooled absorption engine |
US4429661A (en) * | 1981-11-27 | 1984-02-07 | Mcclure Michael C | Heat recovery apparatus and method |
US4534175A (en) * | 1982-03-11 | 1985-08-13 | Gason Energy Engineering Ltd. | Method and apparatus for the absorption of a gas in a liquid and their use in energy conversion cycles |
DE3219680A1 (de) * | 1982-05-21 | 1983-11-24 | Siemens AG, 1000 Berlin und 8000 München | Waermepumpenanlage |
AU3780385A (en) * | 1983-12-22 | 1985-07-12 | Lipovetz Ivan | System for converting heat energy, particularly for utilizingheat energy of the environment |
DE3417833A1 (de) * | 1984-05-14 | 1985-11-14 | VEB Wärmeanlagenbau "DSF" im VE Kombinat Verbundnetze Energie, DDR 1020 Berlin | Anordnung fuer eine resorptionswaermepumpenanlage zur erzeugung von heizwaerme aus industrie- und umweltwaerme |
DE3619547A1 (de) | 1984-12-13 | 1987-12-17 | Peter Koch | Verfahren und einrichtung zur erzeugung einer kraft aus einer temperaturdifferenz zweier medien |
JPS61171811A (ja) | 1985-01-28 | 1986-08-02 | Sanyo Electric Co Ltd | 動力取出し用吸収ヒ−トポンプ装置 |
US4622820A (en) * | 1985-09-27 | 1986-11-18 | Sundquist Charles T | Absorption power generator |
JPH0696978B2 (ja) | 1985-12-03 | 1994-11-30 | トヨタ自動車株式会社 | 過給機付内燃機関 |
US4848088A (en) * | 1987-12-03 | 1989-07-18 | Lazarevich Milan P M | Heat recycling process |
US5027602A (en) * | 1989-08-18 | 1991-07-02 | Atomic Energy Of Canada, Ltd. | Heat engine, refrigeration and heat pump cycles approximating the Carnot cycle and apparatus therefor |
US5791157A (en) * | 1996-01-16 | 1998-08-11 | Ebara Corporation | Heat pump device and desiccant assisted air conditioning system |
DE19712325A1 (de) | 1997-03-24 | 1998-10-15 | Wilhelm Holzapfel | Anlage zur Umwandlung thermischer Energie niedrigen Niveaus in mechanische Energie |
KR20010002901A (ko) * | 1999-06-18 | 2001-01-15 | 김창선 | 물질 열팽창에너지 재활용 방법 |
GB0007917D0 (en) * | 2000-03-31 | 2000-05-17 | Npower | An engine |
HU0100463D0 (en) * | 2001-01-29 | 2001-03-28 | Szopko Mihaly | Method and device for absorption heat pumping |
US6672064B2 (en) | 2002-03-14 | 2004-01-06 | The Sun Trust, L.L.C. | Rankine cycle generation of electricity |
DE10214183C1 (de) * | 2002-03-28 | 2003-05-08 | Siemens Ag | Kraftwerk zur Kälteerzeugung |
US7019412B2 (en) * | 2002-04-16 | 2006-03-28 | Research Sciences, L.L.C. | Power generation methods and systems |
DE10221145A1 (de) * | 2002-05-11 | 2003-11-20 | Juergen Uehlin | Wärmekraftmaschine mit interner Wärmesenke |
US7028476B2 (en) * | 2004-05-22 | 2006-04-18 | Proe Power Systems, Llc | Afterburning, recuperated, positive displacement engine |
-
2004
- 2004-12-22 US US10/583,936 patent/US7726128B2/en not_active Expired - Fee Related
- 2004-12-22 WO PCT/EP2004/053649 patent/WO2005066465A1/de active Application Filing
- 2004-12-22 WO PCT/EP2004/053650 patent/WO2005061857A1/de active Application Filing
- 2004-12-22 DE DE502004004776.9T patent/DE502004004776C5/de active Active
- 2004-12-22 EP EP04816348A patent/EP1702140B1/de active Active
- 2004-12-22 ES ES04816348T patent/ES2293384T3/es active Active
- 2004-12-22 WO PCT/EP2004/053654 patent/WO2005061858A1/de active IP Right Grant
- 2004-12-22 US US10/583,925 patent/US8132413B2/en not_active Expired - Fee Related
- 2004-12-22 EP EP04804985A patent/EP1706681A1/de not_active Withdrawn
- 2004-12-22 ES ES04804988.6T patent/ES2624638T3/es active Active
- 2004-12-22 EP EP04804984A patent/EP1702139A1/de not_active Withdrawn
- 2004-12-22 WO PCT/EP2004/053651 patent/WO2005061973A1/de active Application Filing
- 2004-12-22 EP EP04804983.7A patent/EP1706598B1/de active Active
- 2004-12-22 AT AT04816348T patent/ATE371101T1/de active
- 2004-12-22 EP EP04804988.6A patent/EP1706599B1/de active Active
- 2004-12-22 WO PCT/EP2004/053655 patent/WO2005066466A1/de active Application Filing
Non-Patent Citations (1)
Title |
---|
See references of WO2005061858A1 * |
Also Published As
Publication number | Publication date |
---|---|
ES2624638T3 (es) | 2017-07-17 |
US7726128B2 (en) | 2010-06-01 |
EP1706599A1 (de) | 2006-10-04 |
WO2005061973A1 (de) | 2005-07-07 |
EP1702139A1 (de) | 2006-09-20 |
EP1706598B1 (de) | 2013-10-16 |
DE502004004776D1 (de) | 2007-10-04 |
WO2005061857A1 (de) | 2005-07-07 |
DE502004004776C5 (de) | 2020-01-16 |
WO2005066466A1 (de) | 2005-07-21 |
US20080134680A1 (en) | 2008-06-12 |
ES2293384T3 (es) | 2008-03-16 |
ATE371101T1 (de) | 2007-09-15 |
WO2005061858A1 (de) | 2005-07-07 |
US20080289336A1 (en) | 2008-11-27 |
WO2005066465A1 (de) | 2005-07-21 |
EP1702140B1 (de) | 2007-08-22 |
EP1706598A1 (de) | 2006-10-04 |
US8132413B2 (en) | 2012-03-13 |
EP1706599B1 (de) | 2017-02-15 |
EP1706681A1 (de) | 2006-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1702140B1 (de) | Verfahren zur umwandlung von wärmeenergie in mechanische energie mit einer niederdruck-entspannungsvorrichtung | |
DE69511962T2 (de) | System und Vorrichtung zur Umwandlung von thermischer Energie in mechanische oder elektrische Leistung | |
DE69935087T2 (de) | Einlassluftkühlung für Gas-Dampf Kombikraftwerk | |
EP2188499B1 (de) | Verfahren und vorrichtung zur umwandlung der wärmeenergie einer niedertemperatur-wärmequelle in mechanische energie | |
EP1613841B1 (de) | Verfahren und vorrichtung zur ausführung eines thermodynamischen kreisprozesses | |
DE102007009503B4 (de) | Mehrstufiger ORC-Kreislauf mit Zwischenenthitzung | |
EP2188500A2 (de) | Verfahren und vorrichtung zur umwandlung thermischer energie in mechanische energie | |
DE10335143B4 (de) | Verfahren zur Erhöhung des Wirkungsgrades einer Gasturbinenanlage und dafür geeignete Gasturbinenanlage | |
EP2021634B1 (de) | Anlage und assoziiertes verfahren zur umwandlung von wärmeenergie in mechanische, elektrische und/oder thermische energie | |
DE10335134A1 (de) | Verfahren und Vorrichtung zur Ausführung eines thermodynamischen Kreisprozesses | |
WO2005078243A1 (de) | Verfahren und anlage zur umwandlung von wärmeenergie aus fluiden in mechanische energie | |
CH675749A5 (de) | ||
WO2007042215A1 (de) | Verfahren und vorrichtung zur gewinnung von mechanischer oder elektrischer energie aus wärme | |
WO2008055720A2 (de) | Arbeitsmedium für dampfkreisprozesse | |
DE202004021185U1 (de) | Entspannungsvorrichtung zur Umwandlung von Wärmeenergie in mechanische Energie mit einer Niederdruck-Entspannungsvorrichtung | |
EP0134431B1 (de) | An den Ericsson- Prozess angenähertes thermodynamisches Verfahren | |
DE102004040730B3 (de) | Verfahren und Vorrichtung zum Nutzen von Abwärme | |
WO2008031613A2 (de) | Stromerzeugung im grundlastbereich mit geothermischer energie | |
DE102023122824A1 (de) | Verfahren und Anordnung zur Nutzung von Kältepotentialen zur Erzeugung elektrischer Energie mittels eines ORC-Kreisprozesses | |
DE102022127011A1 (de) | Wärmepumpenvorrichtung zum energieeffizienten Erzeugen einer Prozesswärme, Trocknervorrichtung zum Trocknen eines zu trocknenden Gutes und Verfahren zum Betreiben einer Wärmepumpenvorrichtung | |
DE2803953A1 (de) | Verfahren zur verbesserung des wirkungsgrades bei dampfkraftmaschinen | |
DE4243569A1 (en) | Efficient steam-raising process for thermally operated power station - has additional water circulation for reclamation of latent heat of condensation to assist steam generation and eliminate cooling towers | |
DE102005039019A1 (de) | Umwandlung von Wärmeenergie in mechanische Energie mit Energierückführung unter Verwendung eines Strahlverdichters | |
DE102004030367A1 (de) | Stromgewinnung aus der Kondensatorabwärme einer Anlage zur Wassergewinnung aus Luft mittels Kondensation zur anteiligen Deckung des Energiebedarfs | |
DE10360379A1 (de) | Niederdruck-Entspannungsmotor auf der Basis von Rootsgebläsen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060614 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR LV MK YU |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ECOENERGY PATENT GMBH |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR LV MK YU |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 502004004776 Country of ref document: DE Date of ref document: 20071004 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: BOVARD AG PATENTANWAELTE |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20071128 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070822 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070822 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071222 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071122 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070822 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2293384 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071123 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070822 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070822 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070822 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080122 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070822 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071122 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070822 |
|
26N | No opposition filed |
Effective date: 20080526 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070822 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070822 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070822 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080223 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070822 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: COENERGY PATENT GMBH Free format text: ECOENERGY PATENT GMBH#VERONA STRASSE 10#55411 BINGEN AM RHEIN (DE) -TRANSFER TO- ECOENERGY PATENT GMBH#LANDWEHRSTRASSE 54#64293 DARMSTADT (DE) |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CA |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: ECOENERGY PATENT GMBH Free format text: ECOENERGY PATENT GMBH#LANDWEHRSTRASSE 54#64293 DARMSTADT (DE) -TRANSFER TO- ECOENERGY PATENT GMBH#LANDWEHRSTRASSE 54#64293 DARMSTADT (DE) |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20150105 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151222 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: BE Effective date: 20160610 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R008 Ref document number: 502004004776 Country of ref document: DE Ref country code: DE Ref legal event code: R039 Ref document number: 502004004776 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R043 Ref document number: 502004004776 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R206 Ref document number: 502004004776 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: AAA EFFICIENCY AG Effective date: 20200330 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: WEINMANN ZIMMERLI, CH Ref country code: CH Ref legal event code: PUE Owner name: AAA EFFICIENCY AG, CH Free format text: FORMER OWNER: ECOENERGY PATENT GMBH, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502004004776 Country of ref document: DE Representative=s name: MICHALSKI HUETTERMANN & PARTNER PATENTANWAELTE, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502004004776 Country of ref document: DE Owner name: AAA EFFICIENCY AG, CH Free format text: FORMER OWNER: ECOENERGY PATENT GMBH, 64293 DARMSTADT, DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20200430 AND 20200506 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: PD Owner name: AAA EFFICIENCY AG; CH Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CESSION; FORMER OWNER NAME: ECOENERGY PATENT GMBH Effective date: 20200331 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: PC Ref document number: 371101 Country of ref document: AT Kind code of ref document: T Owner name: AAA EFFICIENCY AG, CH Effective date: 20200721 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: PD Owner name: AAA EFFICIENCY AG; CH Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: ECOENERGY PATENT GMBH Effective date: 20200828 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20201230 Year of fee payment: 17 Ref country code: FR Payment date: 20201230 Year of fee payment: 17 Ref country code: AT Payment date: 20201231 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20201230 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20201230 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20201230 Year of fee payment: 17 Ref country code: CH Payment date: 20210120 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20201230 Year of fee payment: 17 Ref country code: ES Payment date: 20210219 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: PC Ref document number: 371101 Country of ref document: AT Kind code of ref document: T Owner name: SATORIUS AG, CH Effective date: 20210607 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502004004776 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20220101 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 371101 Country of ref document: AT Kind code of ref document: T Effective date: 20211222 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20211222 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20211231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211222 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220701 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211222 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20230221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211223 |