EP1701814A2 - Method of producing channels in a fuel injection device, electrode adapted for said method and device thus obtained - Google Patents

Method of producing channels in a fuel injection device, electrode adapted for said method and device thus obtained

Info

Publication number
EP1701814A2
EP1701814A2 EP05717369A EP05717369A EP1701814A2 EP 1701814 A2 EP1701814 A2 EP 1701814A2 EP 05717369 A EP05717369 A EP 05717369A EP 05717369 A EP05717369 A EP 05717369A EP 1701814 A2 EP1701814 A2 EP 1701814A2
Authority
EP
European Patent Office
Prior art keywords
electrode
cavity
channel
mouth
counterbore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05717369A
Other languages
German (de)
French (fr)
Inventor
Bernard Bourdon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lajous Industries
Original Assignee
Lajous Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lajous Industries filed Critical Lajous Industries
Publication of EP1701814A2 publication Critical patent/EP1701814A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H3/00Electrochemical machining, i.e. removing metal by passing current between an electrode and a workpiece in the presence of an electrolyte
    • B23H3/04Electrodes specially adapted therefor or their manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • B23H9/02Trimming or deburring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • F02M55/025Common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • F02M2200/8069Fuel injection apparatus manufacture, repair or assembly involving removal of material from the fuel apparatus, e.g. by punching, hydro-erosion or mechanical operation

Definitions

  • the invention relates to the production of channels in a fuel injection device, and more particularly to the deburring of the mouth of a channel in a cavity.
  • a fuel injection device As is known, the injection of fuel into an engine takes place under increasing pressure.
  • pressures of the order of 1,500 bars are currently used, and pressures of up to 20,000 bars can be envisaged.
  • Such pressures are in particular sought to improve engine performance, including from the point of view of environmental impact.
  • there is a tendency to seek higher pressures for diesel engines the injection device is then commonly called “rail”, often made of steel or the like
  • petrol engines the injection device is then commonly called “ramp", commonly made of aluminum or the like.
  • An injection device is in practice a body comprising channels opening into a cavity, and the pressures used require that there is good deburring at the mouth of the channels in the cavity, to avoid any detachment of particles during service, such as machining chips.
  • Various procedures have been set up for this purpose, including a so-called chemical deburring procedure, the principle of which is presented in FIG. 1.
  • a body 1 comprising a channel 2 opening into a larger channel 3.
  • the channel 2 is in practice made at by means of a drill, and a deburring is useful for rounding, or chamfering, the edge at the mouth of this channel 2 in the channel 3.
  • an electrode 4 is engaged in the channel which has just been made until presenting its stripped end 4A at the mouth to be deburred.
  • This electrode is brought to a negative potential while the body 1 is a positive potential while the channels 2 and 3 are filled with an electrolyte maintained in recirculation so as to ensure good evacuation of the chemical deburring debris.
  • This solution gives very good results and is widely used with satisfaction.
  • it has drawbacks and limits.
  • the distance between the end of the negative electrode (cathode) and the edge to be deburred must be precisely controlled, it is necessary to have an electrode geometry for each diameter possible drilling. It must also be possible to precisely control the depth to which the end of this electrode is engaged.
  • the invention proposes for this purpose a method of producing a channel in a fuel injection device according to which a channel is created in the body of this device opening out through a mouth into a cavity, an electrode is placed in the cavity, this electrode being provided with a stripped zone facing this mouth, and a difference of potential between this body and this electrode, in the presence of an electrolyte circulating in the cavity so as to deburr by electro-erosion the periphery of this mouth.
  • the stripped portion of the electrode used has substantially the same dimensions as a stripped end according to conventional procedures, therefore with in particular a diameter substantially smaller than that of the canal whose mouth is to be deburred.
  • the stripped portion of the negative electrode it is important that the stripped portion of the negative electrode either at similar distances from the internal surfaces of the small channel and the cavity connected by this edge.
  • the stripped portion of the electrode has dimensions at least equal to those of the section of the channel which opens out.
  • the same electrode is used to, simultaneously, deburr several mouths of channels in the same cavity, which leads to a significant reduction in cost.
  • This single electrode can thus include a longitudinal row of bare areas. It can also include a ring of such stripped areas for deburring at once the mouths of an annular plurality of channels arranged around the longitudinal axis of the electrode.
  • the single electrode can also have an annular rib, taking advantage of the fact that the geometry of the bare area can be defined fairly freely, independently of the precise geometry of the channels; thus there can be continuity between the bare areas intended to cooperate with each mouth.
  • the cavity can be a channel of constant section, and open at its ends. It can also be a dead end pocket, the access to which may have a smaller section than that of the pocket at the location of the mouths to be deburred. It is then possible to use a laterally extendable electrode capable of bringing the stripped areas of the mouths to be deburred transversely to the axis.
  • this bare area has dimensions smaller than those of the mouth, - this bare area has dimensions at least equal to those of the mouth, electro-erosion of the periphery of this mouth leading to the appearance of counterbore on at least part of this periphery, - the dimensions of this bare area are generally between once and twice that of the mouth deburring, - EDM is conducted to a maximum depth of counterbore which can reach several millimeters, for example of the order of a tenth of a millimeter, - the depth of the counterbore is equal to or greater than of hundredth of a millimeter, - the electrode is provided with several stripped zones and the electro-chemical deburring of several mouths of channels opening into the cavity is carried out simultaneously - deburring of several mouths offset longitudinally in the cavity, - Simultaneously deburring several mouths offset radially around a longitudinal axis of the cavity, - To simultaneously deburr several mouths
  • the invention further provides, for implementing the method, an electrode comprising at least one bare area projecting transversely.
  • this electrode possibly combined: - it comprises a plurality of stripped projections offset longitudinally along the axis of this electrode, - it comprises a plurality of stripped projections angularly offset around the longitudinal axis of this electrode , - the plurality of projections forms a continuous annular rib, - the angularly offset projections are radially movable.
  • the invention further provides an injection device, the body of which comprises a cavity into which opens at least one channel, characterized in that the mouth of this channel in the cavity is surrounded, on at least part of its periphery, by a counterbore bordered by rounded areas of connection to the surrounding surfaces.
  • - in this cavity open several longitudinally offset channels whose mouth is surrounded by a counterbore
  • - in this cavity open several angularly offset channels whose mouth is surrounded by a counterbore
  • - l the mouth has, with the counterbore, dimensions between once and three times the dimensions of the channel
  • - the counterbore has a depth of at most a few millimeters, for example of the order of a tenth of a millimeter
  • - the counterbore has a depth equal to or greater than about a hundredth of a millimeter
  • - the cavity is a channel of constant section
  • - the cavity is a dead end pocket.
  • FIG. 1 is a schematic representation of a conventional deburring process chemical
  • Figure 2 is a schematic representation of a chemical deburring process according to the invention
  • Figure 3 is a schematic representation of another chemical deburring process according to the invention
  • Figure 4 is a view enlarged view of the mouth of a canal in a cavity, deburred according to the method of FIG. 3
  • FIG. 5 is a schematic representation of another method according to the invention for the simultaneous deburring of several mouths
  • FIG. 6 is a variant
  • Figure 7 is another variant.
  • FIG. 2 represents an embodiment of the method of the invention, according to which, in a body 10 in which a cavity 13 and a channel 12 have been previously produced, a negative electrode 14 is placed, no longer in this channel 12, but in the cavity 13, in principle of larger size than the channel.
  • This electrode has a bare area 14A, preferably made up of a projection.
  • This projection is a lower height than the stripped end 4A of Figure 1, but a barely larger width. Indeed, this projection has dimensions smaller than those of the mouth to be deburred.
  • This electrode and the body are put at appropriate potentials for an appropriate time, while a given electrolyte circulates under appropriate conditions (all these operating conditions are within the reach of the skilled person, in the light of his know-how developed with the classic procedure).
  • FIG. 1 represents a variant of the method described with reference to FIG.
  • channel 22 includes a large diameter section 22A and a smaller diameter section 22B, typically having the same diameter as the channel 12.
  • the diameter of the section 22A is 4 mm, while that of the section is 1 mm.
  • a rounded 26A in principle similar to that to that of FIG. 2 (here it has a radius of curvature of 0.2 mm).
  • This rounding is connected to a flat or to any rounded shape, designated by the term counterbore, 26B which surrounds the mouth bordered by the round 26A.
  • This counterbore is connected to the internal surface of the cavity 23 by a second rounded 26C, for example of curvature substantially equal to that of the rounded 26A.
  • This counterbore can have a depth ranging from about a hundredth of a millimeter to a few millimeters.
  • FIGS. 1 to 3 correspond to case where the cavity is a channel of constant section, in which the channels are offset longitudinally. It is easy to understand that, unlike the case of FIG. 1, the configurations of FIGS.
  • the cavity 33 being of short length, the various channels are arranged radially with respect to the longitudinal axis of this cavity (vertical in this figure 5); one thus distinguishes, in this figure, two channels arranged diametrically opposite, respectively designated by 32 and 32 '.
  • the production of such an injection device body, with a dead end cavity and radially arranged channels is known per se from document WO-99/60263 or its equivalent US-6196192 and will not be detailed here.
  • an electrode 34 is engaged in the cavity, provided with bare areas 34A and 34A ', until these bare areas are positioned, here constituted by projections, as precisely as possible opposite the mouths of the channels (it can therefore there are some in front and behind the plane of the figure).
  • a negative potential is applied to the electrode 34 while the body
  • FIG. 30 is set to a positive potential while circulating in the cavity, all around the electrode 34, a suitable known electrolyte: simultaneously deburring of all the mouths of the channels opposite which have projections 34A or 34A '...
  • Figure 6 shows an alternative embodiment of the electrode all the other elements of the body being identical.
  • This electrode, denoted 44 comprises, opposite the mouths of the channels, no longer an annular plurality of individual stripped projections, but a continuous stripped rib 44A. In this way, it is no longer necessary to seek to position this electrode with great angular precision. However, it appeared that the deburring phenomenon obtained is quite similar to that obtained with the electrode 34 of FIG. 5.
  • FIG. 7 represents an alternative embodiment of the electrode, all the other elements of the body being identical .
  • This electrode 54 is transversely deformable, in the sense that the projections 54A and 54A 'are radially movable, here against a spring of reminder 55. More precisely, each projection is disposed at the end of a link and, by action on the end 56 common to these links, for example by means of a slide movable along the body 57 of this electrode, we can force the projection of the projections.
  • An electrode thus makes it possible to arrange the projections at any suitable distance from the mouths to be deburred, independently of the passage section of the access opening to the cavity. As before, the simultaneous deburring of the mouths of the various channels is carried out, by adopting the appropriate operating conditions.
  • the dimensions of the stripped projections are preferably between once and twice (advantageously between once and one and a half times) that of the mouthpieces to be deburred, and that the mouthpiece, after deburring, has a dimension worth, with the counterbore, between one and a half and three times the dimension before deburring (in FIG. 4, the ratio is barely greater than 2).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

The invention relates to a method of producing a channel in a fuel injection device. The inventive method comprises the following steps consisting in: producing a channel (32) or (32') in the body (30) of the device, which opens into a cavity (33) by means of an opening; placing an electrode (34) in the cavity, said electrode being equipped with a stripped zone (34A) or (34A'), opposite the aforementioned opening; and applying a potential difference between the body and the opening in the presence of an electrolyte flowing in the cavity, such as to deburr the periphery of the opening by means of electro-chemical spark machining. In this way, several openings can be deburred simultaneously with the formation of an optional counterbore on at least one part of the periphery of said openings.

Description

Procédé de réalisation de canaux dans un dispositif d'injection de carburant, électrode adaptée à sa mise en œuyre et dispositif ainsi obtenu Method for producing channels in a fuel injection device, electrode adapted to its application and device thus obtained
L'invention concerne la réalisation de canaux dans un dispositif d'injection de carburant, et plus particulièrement l'ébavurage de l'embouchure d'un canal dans une cavité. Ainsi qu'on le sait, l'injection de carburant dans un moteur se fait sous une pression de plus en plus importante. Ainsi, dans le domaine des moteurs diesel, on utilise actuellement des pressions de l'ordre de 1 500 bars, et on en est à envisager des pressions pouvant aller au-delà des 20O0 bars. De telles pressions sont notamment recherchées pour améliorer les performances des moteurs, y compris du point de vue incidence sur l'environnement. En fait, on a tendance à rechercher des pressions plus élevées pour les moteurs diesel (le dispositif d'injection est alors couramment appelé « rail », souvent fabriqué en acier ou analogue) que pour les moteurs à essence (le dispositif d'injection est alors couramment appelé « rampe », couramment fabriqué en aluminium ou analogue). Un dispositif d'injection est en pratique un corps comportant des canaux débouchant dans une cavité, et les pressions utilisées imposent qu'il y ait un bon ébavurage à l'embouchure des canaux dans la cavité, pour éviter tout détachement de particules en cours de service, tels que des copeaux d'usinage. Diverses procédures ont été fixées à cet effet, dont une procédure dite d'ébavurage chimique, dont le principe est présenté à la figure 1 . Sur cette figure sont représentés un corps 1 comportant un canal 2 débouchant dans un canal plus grand 3. Le canal 2 est en pratique réalisé au moyen d'un foret, et un ébavurage est utile pour arrondir, ou chanfreiner, l'arête à l'embouchure de ce canal 2 dans le canal 3. Pour ce faire, une électrode 4 est engagée dans le canal qui vient d'être réalisé jusqu'à présenter son extrémité dénudée 4A au niveau de l'embouchure à ébavurer. Cette électrode est portée à un potentiel négatif tandis que le corps 1 est un potentiel positif tandis que les canaux 2 et 3 sont remplis d'un electrolyte maintenu en recirculation de manière à assurer une bonne évacuation des débris d'ébavurage chimique. Cette solution donne de très bons résultats et est largement utilisée avec satisfaction. Toutefois, elle présente des inconvénients et des limites. C'est ainsi que, compte tenu de ce que la distance entre l'extrémité de l'électrode négative (cathode) et l'arête à ébavurer doit être contrôlée avec précision, il faut disposer d'une géométrie d'électrode pour chaque diamètre possible de perçage. Il faut aussi pouvoir contrôler avec précision la profondeur à laquelle l'extrémité de cette électrode est engagée. De plus et surtout, cette procédure n'est valable qu'au dessus d'un seuil de diamètre de canal, puisqu'il faut pouvoir manipuler avec précision une électrode de plus petit diamètre que celui du canal en cours de finition. Or la tendance à augmenter les pressions d'injection s'accompagne d'une tendance à réduire les diamètres des canaux d'injection (plus le diamètre est petit, plus la pression est importante). A titre indicatif, on cherche aujourd'hui à réaliser des canaux de diamètre sensiblement inférieur à 4 mm. C'est pourquoi il existe actuellement le besoin de disposer d'une procédure d'ébavurage chimique qui se prête à une grande gamme de diamètre, tout en étant simple et aisé à mettre en œuvre, même avec des diamètres très faibles, en profitant autant que possible du savoir-faire développé avec les procédures actuelles. L'invention propose à cet effet un procédé de production d'un canal dans un dispositif d'injection de carburant selon lequel on réalise, dans le corps de ce dispositif, un canal débouchant par une embouchure dans une cavité, on dispose une électrode dans la cavité, cette électrode étant munie d'une zone dénudée en regard de cette embouchure, et on applique une différence de potentiel entre ce corps et cette électrode, en présence d'un electrolyte en circulation dans la cavité en sorte d'ébavurer par électro-érosion chimique la périphérie de cette embouchure. Il mérite d'être noté que, l'homme de métier avait l'habitude de vouloir situer l'électrode négative dans le canal qui venait d'être percé, en profitant de ce qu'il est en principe plus facile de positionner une tige (l'électrode) dans un petit canal que dans une grande cavité, et qu'il n'est pas nécessaire de prendre en considération la géométrie du canal dans lequel le petit canal débouche. Bien entendu il faut, selon le procédé selon l'invention, utiliser une nouvelle géométrie d'électrode, avec des zones dénudées disposées en des endroits précis de la périphérie (il s'agit avantageusement de saillies latérales). Il est pourtant apparu que le fait de disposer l'électrode d'ébavurage chimique, non plus dans le petit canal, mais dans la cavité dans laquelle débouche ce canal, pouvait se faire de manière fiable, tout en garantissant un bon positionnement d'une portion dénudée de cette électrode en regard de l'embouchure de ce petit canal. C'est ainsi que, selon une première forme de réalisation de l'invention, la portion dénudée de l'électrode utilisée a sensiblement les mêmes dimensions qu'une extrémité dénudée selon les procédures classiques, donc avec notamment un diamètre sensiblement inférieur à celui du canal dont l'embouchure est à ébavurer. En effet, pour assurer l'ébavurage de l'arête définissant l'embouchure du petit canal dans la cavité en sorte de simplement arrondir la transition entre les surfaces de ce canal et de cette cavité, il est important que la portion dénudée de l'électrode négative soit à des distances similaires des surfaces internes du petit canal et de la cavité reliées par cette arête. Toutefois, selon une caractéristique tout particulièrement avantageuse de l'invention, la portion dénudée de l'électrode a des dimensions au moins égales à celles de la section du canal qui débouche. Il est en effet apparu, contrairement à ce que l'homme de métier aurait pu penser, que l'éventuelle formation d'un lamage autour de l'embouchure du canal dans la cavité n'implique pas de dégradation sensible de la tenue à la pression, ou à la corrosion, du corps dans lequel cette cavité et ce canal sont ménagés. Bien entendu, la tenue à la pression du corps implique que le raccord entre le lamage et la surface environnante de la cavité soit aussi correctement arrondie, mais l'expérience a confirmé qu'il en était bien ainsi, lorsqu'on utilisait, dans la cavité, une électrode présentant une saillie de dimensions au moins de l'ordre de celles de l'embouchure à ébavurer. Il y avait en fait une tendance à considérer qu'il fallait minimiser toutes les perturbations à la surface de la cavité susceptibles de conduire à dégrader la tenue mécanique ou la tenue à la corrosion du corps, mais il est apparu que les lamages auxquels peut conduire l'utilisation d'une zone dénudée de taille au moins égale à celle de l'embouchure d'un canal étaient sans incidence notable. Bien entendu, il est souhaitable de maintenir la profondeur d'un tel lamage à un faible niveau, par exemple à une fraction de millimètre, typiquement à de l'ordre d'un dixième de millimètre. Plus généralement, la profondeur de ce lamage peut être comprise entre de l'ordre du centième de millimètre et quelques millimètres. Une conséquence importante est qu'il est donc possible de choisir pour les portions dénudées des géométries variées, permettant par exemple de minimiser les contraintes de fabrication de ces nouvelles électrodes. Par ailleurs, il devient possible, si on le souhaite, d'utiliser une même géométrie d'électrode pour plusieurs diamètres de canaux. Selon une autre caractéristique avantageuse de l'invention, on utilise une même électrode pour, simultanément, ébavurer chimiquement plusieurs embouchures de canaux dans une même cavité, ce qui conduit à une réduction sensible de coût. Cette électrode unique peut ainsi comporter une rangée longitudinale de zones dénudées. Elle peut aussi comporter une couronne de telles zones dénudées pour ébavurer en une fois les embouchures d'une pluralité annulaire de canaux disposés autour de l'axe longitudinal de l'électrode. Mais l'électrode unique peut aussi comporter une nervure annulaire, en profitant de ce que la géométrie de la zone dénudée peut être définie assez librement, indépendamment de la géométrie précise des canaux ; c'est ainsi qu'il peut y avoir continuité entre les zones dénudées destinées à coopérer avec chaque embouchure. La cavité peut être un canal de section constante, et ouvert à ses extrémités. Il peut aussi s'agir d'une poche en cul de sac, dont l'accès peut avoir une section inférieure à celle de la poche à l'endroit des embouchures à ébavurer. Il est alors possible d'utiliser une électrode latéralement extensible, propres à rapprocher, transversalement à l'axe, les zones dénudées des embouchures à ébavurer. C'est ainsi que, selon des caractéristiques avantageuses de l'invention, éventuellement combinées : - cette zone dénudée a des dimensions inférieures à celles de l'embouchure, - cette zone dénudée a des dimensions au moins égales à celles de l'embouchure, l'électro-érosion de la périphérie de cette embouchure conduisant à l'apparition d'un lamage sur au moins une partie de cette périphérie, - les dimensions de cette zone dénudée sont globalement comprises entre une fois et deux fois celle de l'embouchure à ébavurer, - l'électro-érosion est conduite jusqu'à une profondeur maximale du lamage pouvant atteindre plusieurs millimètres, par exemple de l'ordre du dixième de millimètre, - la profondeur du lamage est égale ou supérieure à de l'ordre du centième de millimètre, - on munit l'électrode de plusieurs zones dénudées et on réalise simultanément l'ébavurage électro-chimique de plusieurs embouchures de canaux débouchant dans la cavité, - on réalise simultanément l'ébavurage de plusieurs embouchures décalées longitudinalement dans la cavité, - on réalise simultanément l'ébavurage de plusieurs embouchures décalées radialement autour d'un axe longitudinal de la cavité, - pour ébavurer simultanément plusieurs embouchures décalées radialement on ménage sur l'électrode une nervure annulaire formant l'ensemble des zones dénudées. L'invention propose en outre, pour la mise en œuvre du procédé, une électrode comportant au moins une zone dénudée en saillie transversale. Selon des caractéristiques préférées de cette électrode, éventuellement combinées : - elle comporte une pluralité de saillies dénudées décalées longitudinalement le long de l'axe de cette électrode, - elle comporte une pluralité de saillies dénudées décalées angulairement autour de l'axe longitudinal de cette électrode, - la pluralité de saillies forme une nervure annulaire continue, - les saillies décalées angulairement sont mobiles radialement. L'invention propose en outre un dispositif d'injection dont le corps comporte une cavité dans laquelle débouche au moins un canal, caractérisé en ce que l'embouchure de ce canal dans la cavité est entourée, sur au moins une partie de sa périphérie, par un lamage bordé par des zones arrondies de raccordement aux surfaces environnantes. Selon d'autres caractéristiques préférées, éventuellement combinées : - dans cette cavité débouchent plusieurs canaux décalés longitudinalement dont l'embouchure est entourée par un lamage, - dans cette cavité débouchent plusieurs canaux décalés angulairement dont l'embouchure est entourée par un lamage, - l'embouchure a, avec le lamage, des dimensions comprises entre une fois et trois fois les dimensions du canal, - le lamage a une profondeur d'au plus quelques millimètres, par exemple de l'ordre du dixième de millimètre, - le lamage a une profondeur égale ou supérieure à de l'ordre du centième de millimètre, - la cavité est un canal de section constante, - la cavité est une poche en cul de sac. Des objets, caractéristiques et avantages de l'invention ressortent de la description qui suit, donnée à titre d'exemple illustratif non limitatif, en regard des dessins annexés sur lesquels : la figure 1 est une représentation schématique d'un procédé classique d'ébavurage chimique, la figure 2 est une représentation schématique d'un procédé d'ébavurage chimique selon l'invention, - la figure 3 est une représentation schématique d'un autre procédé d'ébavurage chimique selon l'invention, la figure 4 est une vue agrandie de l'embouchure d'un canal dans une cavité, ébavurée selon le procédé de la figure 3, la figure 5 est une représentation schématique d'un autre procédé selon l'invention pour l'ébavurage simultané de plusieurs embouchures, la figure 6 en est une variante, et la figure 7 en est une autre variante. La figure 2 représente un mode de réalisation du procédé de l'invention, selon lequel, dans un corps 10 dans lequel ont été préalablement réalisés une cavité 13 et un canal 12, on met une électrode négative 14, non plus dans ce canal 12, mais dans la cavité 13, en principe de plus grande taille que le canal. Cette électrode comporte une zone dénudée 14A, de préférence constituée d'une saillie. Cette saillie, telle que représentée, est une plus faible hauteur que l'extrémité dénudée 4A de la figure 1 , mais une largeur à peine plus importante. En effet, cette saillie a des dimensions inférieures à celles de l'embouchure à ébavurer. Cette électrode et le corps sont mis à des potentiels appropriés pendant un temps approprié, tandis que circule un electrolyte donné dans des conditions appropriées (toutes ces conditions opératoires sont à la portée de l'homme de métier, à la lumière de son savoir-faire développé avec la procédure classique). A titre d'exemple, ces conditions opératoires sont les suivantes : différence de potentiel : - durée de l'ébavurage : nature de l'électrolyte : Comme dans le cas de la figure 1 , on obtient à la périphérie de l'embouchure du canal, un arrondi de rayon R typiquement de l'ordre du dixième de millimètre. Le corps 10 peut, selon les applications, être en alliage léger, par exemple en alliage d'aluminium dans le cas d'un dispositif d'injection pour moteur à essence, ou en acier notamment, dans le cas d'un dispositif d'injection pour moteur diesel. La réalisation de la cavité et du canal sont réalisés par tout moyen connu approprié et ne sera pas détaillée ici. La figure 3 représente une variante du procédé décrit à propos de la figure 2, en ce sens qu'on utilise une électrode 24 dont la saillie 24A est de dimensions au moins égales à celles de l'embouchure à ébavurer (les éléments de cette figure 3 qui sont analogues à ceux de la figure 2 sont désignés par des signes de référence qui s'en déduisent par addition du nombre 10. On peut noter que, à la différence du canal 12 qui est de section constante, le canal 22 comporte un tronçon de grand diamètre 22A et un tronçon de plus petit diamètre 22B, ayant typiquement le même diamètre que le canal 12. A titre d'exemple, le diamètre du tronçon 22A est de 4 mm, tandis que celui du tronçon est de 1 mm (à quelques dixièmes près). La mise en œuvre de conditions opératoires analogues à celles utilisées pour la figure 3 conduit, à la liaison entre la surface du canal et celle de la cavité, à une creusure 26 qui est représentée à plus grande échelle à la figure 4. Plus précisément, on observe qu'il y a, à l'extrémité inférieure du canal 22B, un arrondi 26A, en principe analogue à celui à celui de la figure 2 (il a ici un rayon de courbure de 0.2 mm). Cet arrondi se raccorde à un méplat ou à une forme arrondie quelconque, désigné sous le terme de lamage, 26B qui entoure l'embouchure bordée par l'arrondi 26A. Ce lamage se raccorde à la surface interne de la cavité 23 par un deuxième arrondi 26C, par exemple de courbure sensiblement égale à celle de l'arrondi 26A. Ce lamage peut avoir une profondeur allant de l'ordre du centième de millimètre jusqu'à quelques millimètres. Le détail de la figure 4 est pris parallèlement à l'axe de la cavité ; il est clair que, en fonction de la forme choisie pour la saillie 24A de l'électrode, cette forme est plus ou moins modifiée dans d'autres plans de coupe du corps 20 passant par l'axe du canal 22. On peut noter que le lamage 26B, est de faible profondeur, notamment par rapport au diamètre du canal, et qu'il n'est bordé d'aucune arête vive. C'est pourquoi on peut comprendre que des essais ont pu conduire à la conclusion que ces lamages n'ont pas d'incidence sur la tenue en pression ou à la corrosion du corps d'injection 20. Les figures 1 à 3 correspondent à des cas où la cavité est un canal de section constante, dans lequel les canaux sont décalés longitunalement. On comprend aisément que, à la différence du cas de la figure 1 , les configurations des figures 2 et 3 permettent un ébavurage simultané des embouchures de plusieurs décalés longitudinaux : il suffit de disposer plusieurs saillies dénudées sur l'électrode, selon la même disposition géométrique que les embouchures à ébavurer. Cela est schématisé en pointillés en partie gauche de la figure 3 De même, si plusieurs embouchures sont disposées dans le corps, à un même niveau longitudinal (en d'autres termes, s'il y a plusieurs embouchures simplement décalées angulairement l'une vis-à-vis des autres) il suffit de disposer des saillies dénudées sur l'électrode, selon la même disposition annulaire que les embouchures. Cela est représenté à la figure 5, dans une configuration où la cavité 33 est une poche en cul de sac, dont l'accès, en partie inférieure est de plus faible section que la partie centrale de cette cavité. Les éléments analogues à ceux de la figure 3 sont désignés par des signes de référence qui se déduisent de ceux de la figure 3 par addition du nombre 10. La cavité 33, étant de courte longueur, les divers canaux sont disposés radialement par rapport à l'axe longitudinal de cette cavité (vertical sur cette figure 5) ; on distingue ainsi, sur cette figure, deux canaux disposés diamétralement en regard, respectivement désignés par 32 et 32'. La réalisation d'un tel corps de dispositif d'injection, avec une cavité en cul de sac et des canaux disposés radialement est connue en soi d'après le document WO-99/60263 ou son équivalent US-6196192 et ne sera pas détaillée ici. Selon l'invention, on engage dans la cavité une électrode 34, munie de zones dénudées 34A et 34A', jusqu'à positionner ces zones dénudées, ici constituées de saillies, aussi précisément que possible en regard des embouchures des canaux (il peut donc y en avoir en avant et en arrière du plan de la figure). On applique à l'électrode 34 un potentiel négatif tandis que le corpsThe invention relates to the production of channels in a fuel injection device, and more particularly to the deburring of the mouth of a channel in a cavity. As is known, the injection of fuel into an engine takes place under increasing pressure. Thus, in the field of diesel engines, pressures of the order of 1,500 bars are currently used, and pressures of up to 20,000 bars can be envisaged. Such pressures are in particular sought to improve engine performance, including from the point of view of environmental impact. In fact, there is a tendency to seek higher pressures for diesel engines (the injection device is then commonly called "rail", often made of steel or the like) than for petrol engines (the injection device is then commonly called "ramp", commonly made of aluminum or the like). An injection device is in practice a body comprising channels opening into a cavity, and the pressures used require that there is good deburring at the mouth of the channels in the cavity, to avoid any detachment of particles during service, such as machining chips. Various procedures have been set up for this purpose, including a so-called chemical deburring procedure, the principle of which is presented in FIG. 1. In this figure are shown a body 1 comprising a channel 2 opening into a larger channel 3. The channel 2 is in practice made at by means of a drill, and a deburring is useful for rounding, or chamfering, the edge at the mouth of this channel 2 in the channel 3. To do this, an electrode 4 is engaged in the channel which has just been made until presenting its stripped end 4A at the mouth to be deburred. This electrode is brought to a negative potential while the body 1 is a positive potential while the channels 2 and 3 are filled with an electrolyte maintained in recirculation so as to ensure good evacuation of the chemical deburring debris. This solution gives very good results and is widely used with satisfaction. However, it has drawbacks and limits. Thus, taking into account that the distance between the end of the negative electrode (cathode) and the edge to be deburred must be precisely controlled, it is necessary to have an electrode geometry for each diameter possible drilling. It must also be possible to precisely control the depth to which the end of this electrode is engaged. Furthermore and above all, this procedure is only valid above a threshold of channel diameter, since it is necessary to be able to handle with precision an electrode of smaller diameter than that of the channel being finished. However, the tendency to increase the injection pressures is accompanied by a tendency to reduce the diameters of the injection channels (the smaller the diameter, the greater the pressure). As an indication, it is now sought to produce channels with a diameter substantially less than 4 mm. This is why there is currently the need to have a chemical deburring procedure which lends itself to a wide range of diameters, while being simple and easy to implement, even with very small diameters, taking advantage of as much know-how developed with current procedures as possible. The invention proposes for this purpose a method of producing a channel in a fuel injection device according to which a channel is created in the body of this device opening out through a mouth into a cavity, an electrode is placed in the cavity, this electrode being provided with a stripped zone facing this mouth, and a difference of potential between this body and this electrode, in the presence of an electrolyte circulating in the cavity so as to deburr by electro-erosion the periphery of this mouth. It should be noted that, the skilled person used to want to locate the negative electrode in the channel which had just been drilled, taking advantage of the fact that it is in principle easier to position a rod (the electrode) in a small channel only in a large cavity, and that it is not necessary to take into consideration the geometry of the channel into which the small channel opens. Of course, it is necessary, according to the method according to the invention, to use a new electrode geometry, with stripped zones arranged in precise places of the periphery (they are advantageously lateral projections). However, it appeared that placing the chemical deburring electrode, no longer in the small channel, but in the cavity into which this channel opens, could be done reliably, while guaranteeing good positioning of a stripped portion of this electrode opposite the mouth of this small channel. Thus, according to a first embodiment of the invention, the stripped portion of the electrode used has substantially the same dimensions as a stripped end according to conventional procedures, therefore with in particular a diameter substantially smaller than that of the canal whose mouth is to be deburred. Indeed, to ensure the deburring of the edge defining the mouth of the small channel in the cavity so as to simply round the transition between the surfaces of this channel and of this cavity, it is important that the stripped portion of the negative electrode either at similar distances from the internal surfaces of the small channel and the cavity connected by this edge. However, according to a very particularly advantageous characteristic of the invention, the stripped portion of the electrode has dimensions at least equal to those of the section of the channel which opens out. It has indeed appeared, contrary to what the skilled person would have thought, that the possible formation of a counterbore around the mouth of the channel in the cavity does not imply significant degradation of the resistance to pressure, or to corrosion, of the body in which this cavity and this channel are formed. Of course, the resistance to the pressure of the body implies that the connection between the counterbore and the surrounding surface of the cavity is also correctly rounded, but experience has confirmed that this was indeed so, when used, in the cavity, an electrode having a projection of dimensions at least of the order of those of the mouth to be deburred. There was in fact a tendency to consider that it was necessary to minimize all the disturbances on the surface of the cavity likely to lead to degrading the mechanical strength or the corrosion resistance of the body, but it appeared that the counterbores to which can lead the use of a bare area at least equal in size to that of the mouth of a canal was of no significant impact. Of course, it is desirable to keep the depth of such counterbore at a low level, for example at a fraction of a millimeter, typically on the order of a tenth of a millimeter. More generally, the depth of this counterbore can be between around a hundredth of a millimeter and a few millimeters. An important consequence is that it is therefore possible to choose for the stripped portions of various geometries, making it possible for example to minimize the manufacturing constraints of these new electrodes. Furthermore, it becomes possible, if desired, to use the same electrode geometry for several channel diameters. According to another advantageous characteristic of the invention, the same electrode is used to, simultaneously, deburr several mouths of channels in the same cavity, which leads to a significant reduction in cost. This single electrode can thus include a longitudinal row of bare areas. It can also include a ring of such stripped areas for deburring at once the mouths of an annular plurality of channels arranged around the longitudinal axis of the electrode. However, the single electrode can also have an annular rib, taking advantage of the fact that the geometry of the bare area can be defined fairly freely, independently of the precise geometry of the channels; thus there can be continuity between the bare areas intended to cooperate with each mouth. The cavity can be a channel of constant section, and open at its ends. It can also be a dead end pocket, the access to which may have a smaller section than that of the pocket at the location of the mouths to be deburred. It is then possible to use a laterally extendable electrode capable of bringing the stripped areas of the mouths to be deburred transversely to the axis. Thus, according to advantageous characteristics of the invention, possibly combined: - this bare area has dimensions smaller than those of the mouth, - this bare area has dimensions at least equal to those of the mouth, electro-erosion of the periphery of this mouth leading to the appearance of counterbore on at least part of this periphery, - the dimensions of this bare area are generally between once and twice that of the mouth deburring, - EDM is conducted to a maximum depth of counterbore which can reach several millimeters, for example of the order of a tenth of a millimeter, - the depth of the counterbore is equal to or greater than of hundredth of a millimeter, - the electrode is provided with several stripped zones and the electro-chemical deburring of several mouths of channels opening into the cavity is carried out simultaneously - deburring of several mouths offset longitudinally in the cavity, - Simultaneously deburring several mouths offset radially around a longitudinal axis of the cavity, - To simultaneously deburr several mouths offset radially, an annular rib is formed on the electrode forming all of the bare areas. The invention further provides, for implementing the method, an electrode comprising at least one bare area projecting transversely. According to preferred characteristics of this electrode, possibly combined: - it comprises a plurality of stripped projections offset longitudinally along the axis of this electrode, - it comprises a plurality of stripped projections angularly offset around the longitudinal axis of this electrode , - the plurality of projections forms a continuous annular rib, - the angularly offset projections are radially movable. The invention further provides an injection device, the body of which comprises a cavity into which opens at least one channel, characterized in that the mouth of this channel in the cavity is surrounded, on at least part of its periphery, by a counterbore bordered by rounded areas of connection to the surrounding surfaces. According to other preferred characteristics, possibly combined: - in this cavity open several longitudinally offset channels whose mouth is surrounded by a counterbore, - in this cavity open several angularly offset channels whose mouth is surrounded by a counterbore, - l the mouth has, with the counterbore, dimensions between once and three times the dimensions of the channel, - the counterbore has a depth of at most a few millimeters, for example of the order of a tenth of a millimeter, - the counterbore has a depth equal to or greater than about a hundredth of a millimeter, - the cavity is a channel of constant section, - the cavity is a dead end pocket. Objects, characteristics and advantages of the invention appear from the following description, given by way of nonlimiting illustrative example, with reference to the appended drawings in which: FIG. 1 is a schematic representation of a conventional deburring process chemical, Figure 2 is a schematic representation of a chemical deburring process according to the invention, - Figure 3 is a schematic representation of another chemical deburring process according to the invention, Figure 4 is a view enlarged view of the mouth of a canal in a cavity, deburred according to the method of FIG. 3, FIG. 5 is a schematic representation of another method according to the invention for the simultaneous deburring of several mouths, FIG. 6 is a variant, and Figure 7 is another variant. FIG. 2 represents an embodiment of the method of the invention, according to which, in a body 10 in which a cavity 13 and a channel 12 have been previously produced, a negative electrode 14 is placed, no longer in this channel 12, but in the cavity 13, in principle of larger size than the channel. This electrode has a bare area 14A, preferably made up of a projection. This projection, as shown, is a lower height than the stripped end 4A of Figure 1, but a barely larger width. Indeed, this projection has dimensions smaller than those of the mouth to be deburred. This electrode and the body are put at appropriate potentials for an appropriate time, while a given electrolyte circulates under appropriate conditions (all these operating conditions are within the reach of the skilled person, in the light of his know-how developed with the classic procedure). By way of example, these operating conditions are as follows: potential difference: - duration of deburring: nature of the electrolyte: As in the case of FIG. 1, one obtains at the periphery of the mouth of the canal , a rounding of radius R typically of the order of a tenth of a millimeter. The body 10 may, depending on the applications, be made of a light alloy, for example of aluminum alloy in the case of an injection device for a gasoline engine, or of steel in particular, in the case of a injection for diesel engine. The realization of the cavity and the channel are made by any suitable known means and will not be detailed here. FIG. 3 represents a variant of the method described with reference to FIG. 2, in the sense that an electrode 24 is used, the projection 24A of which is at least equal in size to that of the mouthpiece to be deburred (the elements of this figure 3 which are similar to those of FIG. 2 are designated by reference signs which are deduced therefrom by adding the number 10. It may be noted that, unlike channel 12 which is of constant cross section, channel 22 includes a large diameter section 22A and a smaller diameter section 22B, typically having the same diameter as the channel 12. For example, the diameter of the section 22A is 4 mm, while that of the section is 1 mm ( The implementation of operating conditions analogous to those used for FIG. 3 leads, to the connection between the surface of the channel and that of the cavity, to a recess 26 which is shown on a larger scale on the figure 4. More specifically, it is observed that there is, at the lower end of the channel 22B, a rounded 26A, in principle similar to that to that of FIG. 2 (here it has a radius of curvature of 0.2 mm). This rounding is connected to a flat or to any rounded shape, designated by the term counterbore, 26B which surrounds the mouth bordered by the round 26A. This counterbore is connected to the internal surface of the cavity 23 by a second rounded 26C, for example of curvature substantially equal to that of the rounded 26A. This counterbore can have a depth ranging from about a hundredth of a millimeter to a few millimeters. The detail of Figure 4 is taken parallel to the axis of the cavity; it is clear that, depending on the shape chosen for the projection 24A of the electrode, this shape is more or less modified in other cutting planes of the body 20 passing through the axis of the channel 22. It may be noted that the counterbore 26B is shallow, in particular with respect to the diameter of the channel, and that it is not bordered by any sharp edge. This is why it can be understood that tests have led to the conclusion that these counterbores have no effect on the pressure or corrosion resistance of the injection body 20. FIGS. 1 to 3 correspond to case where the cavity is a channel of constant section, in which the channels are offset longitudinally. It is easy to understand that, unlike the case of FIG. 1, the configurations of FIGS. 2 and 3 allow simultaneous deburring of the mouths of several longitudinal offsets: it suffices to have several stripped projections on the electrode, according to the same geometrical arrangement. than the mouths to be deburred. This is shown schematically in dotted lines in the left part of FIG. 3 Similarly, if several mouthpieces are arranged in the body, at the same longitudinal level (in other words, if there are several mouthpieces simply offset angularly by one screw vis-à-vis the others) it suffices to have stripped projections on the electrode, according to the same annular arrangement as the mouthpieces. This is shown in Figure 5, in a configuration where the cavity 33 is a dead end pocket, the access, in the lower part is of smaller section than the central part of this cavity. Elements analogous to those of FIG. 3 are designated by reference signs which are deduced from those of FIG. 3 by adding the number 10. The cavity 33, being of short length, the various channels are arranged radially with respect to the longitudinal axis of this cavity (vertical in this figure 5); one thus distinguishes, in this figure, two channels arranged diametrically opposite, respectively designated by 32 and 32 '. The production of such an injection device body, with a dead end cavity and radially arranged channels is known per se from document WO-99/60263 or its equivalent US-6196192 and will not be detailed here. According to the invention, an electrode 34 is engaged in the cavity, provided with bare areas 34A and 34A ', until these bare areas are positioned, here constituted by projections, as precisely as possible opposite the mouths of the channels (it can therefore there are some in front and behind the plane of the figure). A negative potential is applied to the electrode 34 while the body
30 est mis à un potentiel positif tout en faisant circuler dans la cavité, tout autour de l'électrode 34, un electrolyte connu approprié : on obtient simultanément un ébavurage de toutes les embouchures des canaux en regard desquels ont été disposés des saillies 34A ou 34A'... La figure 6 représente une variante de réalisation de l'électrode tous les autres éléments du corps étant identiques. Cette électrode, notée 44, comporte en regard des embouchures des canaux, non plus une pluralité annulaire de saillies dénudées individuelles, mais une nervure dénudée continue 44A. De la sorte, il n'est plus nécessaire de chercher à positionner avec une grande précision angulaire cette électrode. Il est pourtant apparu que le phénomène d'ébavurage obtenu est tout à fait similaire à celui obtenu avec l'électrode 34 de la figure 5. La figure 7 représente une variante de réalisation de l'électrode, tous les autres éléments du corps étant identiques. Cette électrode 54 est transversalement déformable, en ce sens que les saillies 54A et 54A' sont mobiles radialement, ici à encontre d'un ressort de rappel 55. Plus précisément, chaque saillie est disposée à l'extrémité d'une biellette et, par action sur l'extrémité 56 commune à ces biellettes, par exemple au moyen d'un coulisseau mobile le long du corps 57de cette électrode, on peut forcer l'écartement des saillies. Une électrode permet ainsi de disposer les saillies à une distance quelconque appropriée des embouchures à ébavurer, indépendamment de la section de passage de l'orifice d'accès à la cavité. Comme précédemment, l'ébavurage simultané des embouchures des divers canaux est réalisé, en adoptant les conditions opératoires appropriées. Ce qui précède a été présenté à propos de la production de canaux d'injection au sein d'un dispositif d'injection de carburant, mais cela se généralise à tout autre canal dans un dispositif d'injection, et même à la réalisation à tout dispositif comportant un canal dont l'embouchure dans une cavité doit être ébavurée avec soin. On appréciera que les dimensions des saillies dénudées sont de préférence entre une fois et deux fois (avantageusement entre une fois et une fois et demie) celle des embouchures à ébavurer, et que l'embouchure, après ébavurage, a une dimension valant, avec le lamage, entre une fois et demie et trois fois la dimension avant ébavurage (à la figure 4, le rapport est à peine supérieur à 2). 30 is set to a positive potential while circulating in the cavity, all around the electrode 34, a suitable known electrolyte: simultaneously deburring of all the mouths of the channels opposite which have projections 34A or 34A '... Figure 6 shows an alternative embodiment of the electrode all the other elements of the body being identical. This electrode, denoted 44, comprises, opposite the mouths of the channels, no longer an annular plurality of individual stripped projections, but a continuous stripped rib 44A. In this way, it is no longer necessary to seek to position this electrode with great angular precision. However, it appeared that the deburring phenomenon obtained is quite similar to that obtained with the electrode 34 of FIG. 5. FIG. 7 represents an alternative embodiment of the electrode, all the other elements of the body being identical . This electrode 54 is transversely deformable, in the sense that the projections 54A and 54A 'are radially movable, here against a spring of reminder 55. More precisely, each projection is disposed at the end of a link and, by action on the end 56 common to these links, for example by means of a slide movable along the body 57 of this electrode, we can force the projection of the projections. An electrode thus makes it possible to arrange the projections at any suitable distance from the mouths to be deburred, independently of the passage section of the access opening to the cavity. As before, the simultaneous deburring of the mouths of the various channels is carried out, by adopting the appropriate operating conditions. The above has been presented in connection with the production of injection channels within a fuel injection device, but this generalizes to any other channel in an injection device, and even to the realization at any device comprising a channel, the mouth of which in a cavity must be carefully deburred. It will be appreciated that the dimensions of the stripped projections are preferably between once and twice (advantageously between once and one and a half times) that of the mouthpieces to be deburred, and that the mouthpiece, after deburring, has a dimension worth, with the counterbore, between one and a half and three times the dimension before deburring (in FIG. 4, the ratio is barely greater than 2).

Claims

REVENDICATIONS 1. Procédé de production d'un canal dans un dispositif d'injection de carburant selon lequel on réalise, dans le corps (10, 20, 30) de ce dispositif, un canal (12, 22, 32, 32') débouchant par une embouchure dans une cavité (13, 23, 33), on dispose une électrode (14, 24, 34, 44, 54 dans la cavité, cette électrode étant munie d'une zone dénudée (14A, 24A, 34A, 34A', 44A, 54A, 54A'), en regard de cette embouchure, et on applique une différence de potentiel entre ce corps et cette électrode, en présence d'un electrolyte en circulation dans la cavité en sorte d'ébavurer par électro-érosion chimique la périphérie de cette embouchure. CLAIMS 1. Method for producing a channel in a fuel injection device according to which a channel (12, 22, 32, 32 ') opens out in the body (10, 20, 30) of this device by an opening in a cavity (13, 23, 33), there is an electrode (14, 24, 34, 44, 54 in the cavity, this electrode being provided with a stripped zone (14A, 24A, 34A, 34A ') , 44A, 54A, 54A '), opposite this mouth, and a potential difference is applied between this body and this electrode, in the presence of an electrolyte circulating in the cavity so as to deburr by electro-chemical erosion the periphery of this mouth.
2. Procédé selon la revendication 1 , caractérisé en ce que cette zone dénudée a des dimensions inférieures à celles de l'embouchure. 2. Method according to claim 1, characterized in that this bare area has dimensions smaller than those of the mouth.
3. Procédé selon la revendication 1 , caractérisé en ce que cette zone dénudée a des dimensions au moins égales à celles de l'embouchure, l'électro- érosion de la périphérie de cette embouchure conduisant à l'apparition d'un lamage (26) sur une au moins une partie de cette périphérie. 3. Method according to claim 1, characterized in that this bare area has dimensions at least equal to those of the mouth, the electro-erosion of the periphery of this mouth leading to the appearance of a counterbore (26 ) on at least part of this periphery.
4. Procédé selon la revendication 3, caractérisé en ce que les dimensions de cette zone dénudée sont globalement comprises entre une fois et deux fois celle de l'embouchure à ébavurer. 4. Method according to claim 3, characterized in that the dimensions of this bare area are generally between once and twice that of the mouth to be deburred.
5. Procédé selon la revendication 3 ou la revendication 4, caractérisé en ce que l'électro-érosion est conduite jusqu'à une profondeur du lamage comprise entre de l'ordre du centième de millimètre et quelques millimètres. 5. Method according to claim 3 or claim 4, characterized in that the spark erosion is carried out to a depth of counterbore between about a hundredth of a millimeter and a few millimeters.
6. Procédé selon la revendication 5, caractérisé en ce que la profondeur du lamage est de l'ordre du centième de millimètre. 6. Method according to claim 5, characterized in that the depth of the counterbore is of the order of a hundredth of a millimeter.
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que, on munit l'électrode de plusieurs zones dénudées (24A, 34A, 34A', 44A, 54A, 54A') et on réalise simultanément l'ébavurage électrochimique de plusieurs embouchures de canaux débouchant dans la cavité. 7. Method according to any one of claims 1 to 6, characterized in that, the electrode is provided with several stripped zones (24A, 34A, 34A ', 44A, 54A, 54A') and deburring is carried out simultaneously. electrochemical of several mouths of channels opening into the cavity.
8. Procédé selon la revendication 7, caractérisé en ce qu'on réalise (24A) simultanément l'ébavurage de plusieurs embouchures décalées longitudinalement dans la cavité. 8. Method according to claim 7, characterized in that one carries out (24A) simultaneously the deburring of several mouths offset longitudinally in the cavity.
9. Procédé selon la revendication 7 ou la revendication 8, caractérisé en ce qu'on réalise simultanément l'ébavurage (34A, 34A', 44A, 54A, 54A') de plusieurs embouchures décalées radialement autour d'un axe longitudinal de la cavité. 9. Method according to claim 7 or claim 8, characterized in that simultaneously deburring (34A, 34A ', 44A, 54A, 54A') of several mouths offset radially around a longitudinal axis of the cavity .
10. Procédé selon la revendication 9, caractérisé en ce que pour ébavurer simultanément plusieurs embouchures décalées radialement on ménage sur l'électrode une nervure annulaire (44A) formant l'ensemble des zones dénudées. 10. The method of claim 9, characterized in that to simultaneously deburr several radially offset mouths is formed on the electrode an annular rib (44A) forming all of the bare areas.
11. Electrode (14, 24, 34, 44, 54) adaptée à la mise en œuvre du procédé selon l'une quelconque des revendications 1 à 10, comportant au moins une zone dénudée en saillie transversale (14A, 24A, 34A, 34A', 44A, 54A, 54A'). 11. Electrode (14, 24, 34, 44, 54) suitable for implementing the method according to any one of claims 1 to 10, comprising at least one bare area projecting transversely (14A, 24A, 34A, 34A ', 44A, 54A, 54A').
12. Electrode selon la revendication 11 , caractérisée en ce que elle comporte une pluralité de saillies dénudées (24A) décalées longitudinalement le long de l'axe de cette électrode. 12. An electrode according to claim 11, characterized in that it comprises a plurality of stripped projections (24A) offset longitudinally along the axis of this electrode.
13. Electrode selon la revendication 11 ou la revendication 12, caractérisée en ce qu'elle comporte une pluralité de saillies dénudées(34A, 34A', 44A, 54A, 54A') décalées angulairement autour de l'axe longitudinal de cette électrode. 13. An electrode according to claim 11 or claim 12, characterized in that it comprises a plurality of stripped projections (34A, 34A ', 44A, 54A, 54A') offset angularly around the longitudinal axis of this electrode.
14. Electrode selon la revendication 13, caractérisée en ce que la pluralité de saillies forme une nervure annulaire continue (44A). 14. An electrode according to claim 13, characterized in that the plurality of projections forms a continuous annular rib (44A).
15. Electrode selon la revendication 13, caractérisée en ce que les saillies décalées angulairement (54A, 54A') sont mobiles radialement. 15. An electrode according to claim 13, characterized in that the angularly offset projections (54A, 54A ') are radially movable.
16. Dispositif d'injection comportant, dans un corps (20, 30), une cavité (23, 33) dans laquelle débouche au moins un canal, ce canal étant entouré, sur au moins une partie de sa périphérie, par un lamage (26) bordé de contours arrondis. 16. Injection device comprising, in a body (20, 30), a cavity (23, 33) into which opens at least one channel, this channel being surrounded, on at least part of its periphery, by a countersink ( 26) bordered by rounded contours.
17. Dispositif selon la revendication 16, caractérisé en ce que dans cette cavité débouchent plusieurs canaux (22) décalés longitudinalement dont l'embouchure est entourée par un lamage. 17. Device according to claim 16, characterized in that in this cavity open several channels (22) offset longitudinally whose mouth is surrounded by a countersink.
18. Dispositif selon la revendication 16 ou la revendication 17, caractérisé en ce que dans cette cavité débouchent plusieurs canaux (32, 32') décalés angulairement dont l'embouchure est entourée par un lamage (26). 18. Device according to claim 16 or claim 17, characterized in that in this cavity open several channels (32, 32 ') angularly offset whose mouth is surrounded by a countersink (26).
19. Dispositif selon l'une quelconque des revendications 16 à 18, caractérisé en ce que l'embouchure a, avec le lamage, des dimensions comprises entre une fois et trois fois les dimensions du canal. 19. Device according to any one of claims 16 to 18, characterized in that the mouth has, with the counterbore, dimensions between once and three times the dimensions of the channel.
20. Dispositif selon l'une quelconque des revendications 16 à 19, caractérisé en ce que le lamage a une profondeur comprise entre de l'ordre du centième de millimètre et quelques millimètres. 20. Device according to any one of claims 16 to 19, characterized in that the counterbore has a depth of between about a hundredth of a millimeter and a few millimeters.
21. Dispositif selon la revendication 20, caractérisé en ce que le lamage a une profondeur de l'ordre du centième de millimètre. 21. Device according to claim 20, characterized in that the counterbore has a depth of the order of a hundredth of a millimeter.
22. Dispositif selon l'une quelconque des revendications 16 à 21 , caractérisé en ce que la cavité (23) est un canal de section constante. 22. Device according to any one of claims 16 to 21, characterized in that the cavity (23) is a channel of constant section.
23. Dispositif selon l'une quelconque des revendications 16 à 21 , caractérisé en ce que la cavité (33) est une poche en cul de sac. 23. Device according to any one of claims 16 to 21, characterized in that the cavity (33) is a dead end pocket.
EP05717369A 2004-01-09 2005-01-06 Method of producing channels in a fuel injection device, electrode adapted for said method and device thus obtained Withdrawn EP1701814A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0400193A FR2864916A1 (en) 2004-01-09 2004-01-09 Injection channel producing process for fuel injection device, involves arranging electrode with unsheathed zone in cavity, and applying potential difference between body and electrode using electrolyte to trim periphery of opening
PCT/FR2005/000021 WO2005072899A2 (en) 2004-01-09 2005-01-06 Method of producing channels in a fuel injection device, electrode adapted for said method and device thus obtained

Publications (1)

Publication Number Publication Date
EP1701814A2 true EP1701814A2 (en) 2006-09-20

Family

ID=34684920

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05717369A Withdrawn EP1701814A2 (en) 2004-01-09 2005-01-06 Method of producing channels in a fuel injection device, electrode adapted for said method and device thus obtained

Country Status (3)

Country Link
EP (1) EP1701814A2 (en)
FR (1) FR2864916A1 (en)
WO (1) WO2005072899A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005027844A1 (en) * 2005-06-16 2006-12-28 Robert Bosch Gmbh Tool for electrochemical machining of a fuel injection device
RU2560892C2 (en) * 2013-06-19 2015-08-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Method of electrochemical treatment of coaxial-spray atomiser channels for chamber of liquid-fuel rocket engine
RU2556182C2 (en) * 2013-06-25 2015-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Electrochemical processing of nozzle orifices
DE102014101308B4 (en) * 2014-02-03 2022-01-27 Stoba Holding Gmbh & Co. Kg Fuel injector, fuel injector, tool for manufacturing a fuel injector and method for manufacturing a fuel injector
DE102016211228A1 (en) * 2016-06-23 2017-12-28 Robert Bosch Gmbh High pressure fuel pump with a housing and method for processing channels of a housing of a high pressure fuel pump
RU2723855C1 (en) * 2020-01-30 2020-06-17 Общество с ограниченной ответственностью Управляющая компания "Алтайский завод прецизионных изделий" Nozzle openings piercing method
GB2598318A (en) * 2020-08-25 2022-03-02 Delphi Tech Ip Ltd Common rail housing and a method of forming a drilling in a common rail housing
CN112207378B (en) * 2020-09-29 2022-11-29 联合汽车电子有限公司 Manufacturing method of oil injector seat positioning hole and high-pressure fuel oil distribution pipe

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578164A (en) * 1983-08-24 1986-03-25 Nissan Motor Co., Ltd. Method of electrolytically finishing spray-hole of fuel injection nozzle
GB8924118D0 (en) * 1989-10-26 1989-12-13 Lucas Ind Plc Fuel injection nozzles for internal combustion engines
US5026462A (en) * 1990-03-06 1991-06-25 Ail Corporation Method and apparatus for electrochemical machining of spray holes in fuel injection nozzles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005072899A3 *

Also Published As

Publication number Publication date
FR2864916A1 (en) 2005-07-15
WO2005072899A3 (en) 2005-10-06
WO2005072899A2 (en) 2005-08-11
WO2005072899A8 (en) 2005-12-15

Similar Documents

Publication Publication Date Title
EP1701814A2 (en) Method of producing channels in a fuel injection device, electrode adapted for said method and device thus obtained
CA2137437C (en) Hermispherical head, evolutive cut drilling bit
FR2713117A1 (en) A process for machining titanium or titanium alloy parts and a flange for such machining.
EP0035301A1 (en) Process for precision grinding two cooperating truncated-cone surfaces, apparatus for carrying out this process, use of this apparatus and precision ground article resulting upon the application of this process
FR2874342A1 (en) CARBIDE DRILL FOR DRILLING A HOLE WITH A REDUCED DEGREE OF NUTS
FR2882116A1 (en) BEARING BEARING COMPRISING A FILTRATION CAGE
FR2551375A1 (en) PROCESS FOR PRODUCING PISTONS, AND PISTON FOR INTERNAL COMBUSTION ENGINE
CA2389576C (en) Spindle for machining accurate inner grooves
EP3711898B1 (en) Improved tool for coating seals
EP2362496B1 (en) Connection element production method for bayonet connector and connection device
EP2082823B1 (en) Cooling channel arranged in a wall
FR2629380A1 (en) Indexing device for turret lathes and the like
EP1858664A1 (en) Tool and machine for machining operations posing an inverse operation risk
EP2801427B1 (en) Anti-vibration mounting and method for milling a metal part
EP0054481A1 (en) Method of producing cutting edges, and inserts or other cutting materials having these cutting edges
EP0945206B1 (en) Reamer
FR2523010A1 (en) Method of milling external or internal surfaces of cylindrical work - uses free wheel with helical teeth moved axially through or over work
FR2897547A1 (en) Rotative cutting tool e.g. molding tool, for machining engine part of aircraft, has cutting portions with helical teeth having same helix directions and operating in clockwise and anticlockwise direction of rotation of tool, respectively
FR3089439A1 (en) TURNING TOOL, METHOD FOR MANUFACTURING PISTON AND PISTON
EP2783778B1 (en) Tool and method for milling a metal part
FR2761622A1 (en) METHOD FOR MANUFACTURING A DIVIDED DISC
FR3143069A1 (en) Rotating hydraulic machine equipped with pistons
FR2616695A1 (en) METHOD FOR MANUFACTURING A CUTTING TOOL BY ELECTRO-EROSION, ELECTRODE AND CORRESPONDING TOOL
FR3057481B1 (en) "TOOL FOR MACHINING AND GALETING A PERCE HOLE, A METHOD USED BY MEANS OF SUCH A TOOL AND PART OBTAINED BY THE IMPLEMENTATION OF SUCH A METHOD"
FR2891319A1 (en) Fuel injector for e.g. oil engine, of motor vehicle, has adaptation unit connected to case integrated in wall of nozzle and modifying fuel injection angle with respect to main axis of injector according to operating conditions of engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060719

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080807

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20111124