EP1696402B1 - Communication system with cross-compatibility and associated communication frame - Google Patents

Communication system with cross-compatibility and associated communication frame Download PDF

Info

Publication number
EP1696402B1
EP1696402B1 EP06290273.9A EP06290273A EP1696402B1 EP 1696402 B1 EP1696402 B1 EP 1696402B1 EP 06290273 A EP06290273 A EP 06290273A EP 1696402 B1 EP1696402 B1 EP 1696402B1
Authority
EP
European Patent Office
Prior art keywords
frame
protocol
data
control
frames
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06290273.9A
Other languages
German (de)
French (fr)
Other versions
EP1696402A1 (en
Inventor
Jérôme Duval
Serge Neuman
Michel Fournet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Somfy SA
Original Assignee
Somfy SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Somfy SA filed Critical Somfy SA
Priority to PL06290273T priority Critical patent/PL1696402T3/en
Publication of EP1696402A1 publication Critical patent/EP1696402A1/en
Application granted granted Critical
Publication of EP1696402B1 publication Critical patent/EP1696402B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link

Definitions

  • the invention relates to a communication system which makes it possible to ensure cross-compatibility between products of an older generation and products of a new generation.
  • Cross-compatibility means upward and downward compatibility.
  • Backward compatibility is ensured when new receivers accept and understand data transmitted by old transmitters according to an old protocol; and downward compatibility is provided when older receivers accept and understand data transmitted by new protocol to a new protocol.
  • the present invention relates to the field of the remote control of actuators and in particular to the wireless control of actuators used in a home automation system for the comfort and safety of the building, for example for lighting, the operation of closures , solar protection, ventilation systems and air conditioning, etc.
  • Home automation systems conventionally comprise actuators with associated sensors forming command receivers controlled by control units or control points forming command transmitters.
  • the term "transmitter” will henceforth denote a device adapted to transmit control data and "receiver” means a device adapted to receive and interpret control data.
  • the receivers are linked to actuators, for example electromechanical actuators, to transform the received order into action on an element of the home automation system.
  • the transmission of data between the transmitter and the receiver is conventionally done by a radiofrequency-type link, although other transmission media are possible, such as an infrared link, for example.
  • Transmitters and receivers can be nomadic or fixed and include an autonomous power supply, for example on batteries.
  • a fixed receiver can itself be powered by batteries or via photovoltaic cells for example, if it is connected to a separate actuator, which avoids wiring; and the receive function can be activated on command or intermittently to limit consumption.
  • the data transmitted between a transmitter and a receiver contain information about the nature of the command, the identification of the receiver and the transmitter and other information such as encryption data, command history issued and the verification of the integrity of the data transmitted.
  • the transmitted data is organized in a predetermined manner by a protocol.
  • a protocol is a set of specifications describing conventions and rules to follow in a data exchange. Protocols are used to ensure efficiency in data exchange.
  • the document WO 92/01979 presents a non-wired communication protocol extension to change from fixed codes to revolving codes, which is similar to an increase in the number of possible addresses for the protocol.
  • the old frames have messages of ten words of 4 bits each. Two consecutive frames are separated by pauses (white intervals) of 39 bits. Each frame start is signaled by a synchronization bit.
  • the frame is repeated a certain number of times, as long as the pressing of the key of the transmitter at the origin of this transmission is maintained.
  • the transmission times of frames are in fact generally well below the time of manual support.
  • the receiver recognizes the transmitted format by detecting a synchronization bit in a white interval and records the message of 10 words transmitted.
  • the new frames contain, for their part, signals of twenty words, divided into two messages of ten words. Each message of ten words is transmitted in a traditional way, that is to say as an old frame with white intervals separating the two messages.
  • the synchronization bit of the second message is however modified with respect to the first. Each message part is recorded successively by the receiver.
  • the synchronization bit of the second message is used to identify whether it is a second message part, and therefore a frame of the new generation, or another message of the old generation (repetition of the frame or frame with different content).
  • the document WO 01/31873 presents a protocol extension for frames of fixed length and predetermined content.
  • This patent application describes the state of the art by mentioning that the known protocol extensions allowing downward compatibility consist in providing an explicit mechanism indicating an extension of the frames, for example by an indication of the frame length, a coding of indicator or reserved data.
  • These known methods are not systematically applicable and in particular are not applicable in the case of a fixed-length frame protocol, in which all the bits are used or reserved.
  • the field extensions are not contiguous to existing fields of the protocol, but placed elsewhere in the message.
  • the document WO 98/34208 describes a compatibility management system between an older generation of products using infrared transmission and a new generation of products using radio frequency transmission.
  • Downward compatibility is defined such that the products of an older generation only consider part of the data transmitted for their operation but all the data for the calculation of a checksum, known as the "checksum" .
  • the new generation protocol must keep the checksum as the last data passed in order to maintain this compatibility.
  • the upward compatibility is ensured by the control of the number of transmitted data and the determination of the corresponding protocol type by the receivers of the new generation. In this system, the data inside the frame is reorganized and not contiguous as a result of an old frame.
  • the protocol extension described in the aforementioned document WO 92/01979 can disrupt the reception of a message by receivers of an older generation.
  • the additional information is not integrated in the same frame and the transmission flow (cyclic repetition of frames and inter-frame intervals) of messages readable by the receivers of an older generation is not the same according to whether it is an issue by an issuer of an old or a new generation.
  • the invention proposes to add additional information following a conventional frame of an existing protocol by transmitting this information in the inter-frame interval usually provided for in the protocol.
  • the invention thus relates to a control frame according to the claim.
  • a frame for a protocol of a new generation comprises a first part comprising data corresponding to a conventional frame of an existing protocol and a second part comprising additional data and starting with a relay bit set at a predetermined value.
  • the relay bit and the second part of the frame are transmitted during the time interval corresponding to the inter-frame silence of the existing protocol.
  • the invention also relates to an actuator control system according to claim 5.
  • the invention also relates to a command transmitter for a telecommunication system adapted to transmit control frames according to the invention.
  • the invention further relates to a command receiver for a telecommunication system adapted to receive control frames according to the invention and
  • the receiver interprets the content of the second portion of data according to the content of the first portion of data.
  • order issuers and "order receivers” are used in the following to designate objects whose function is to transmit or receive the commands given by a user.
  • An order transmitter is also commonly called a control unit, while an order receiver is a sensor controlling an opening or moving screen actuator.
  • the invention is an extension of existing protocol.
  • RTS Radio Technology Somfy TM
  • the RTS protocol is a widely proven and widespread protocol in the world of home automation. It is linked to ergonomics known by installers and its transmission qualities are reliable, particularly in terms of power and acceptance of frames by the receivers of orders.
  • the figure 1 illustrates a conventional RTS frame transmission.
  • a frame hereinafter referred to as a basic frame, is introduced by a number of electronic synchronization pulses (called “hardware”) and starts with a software synchronization pulse (called “software”).
  • the RTS frames are repeated cyclically and separated from each other by inter-frame silences during which no signal is transmitted.
  • the control frames are repeated several times cyclically to ensure that at least one of the frames is correctly received by the receiver and / or to verify that certain commands are not not maintained so extended.
  • the reaction time of the transmitter causes the transmission of several complete frames corresponding to the same support. It is expected a time-out, for example 10s, to stop the transmission, for example in the case of a long press on the remote control key.
  • inter-frame interval The set comprising inter-frame silence and hardware synchronization bits is called inter-frame interval. It is understood that the receiver does not perceive silence during this interval, but noise, as opposed to interpretable data. These non-coded silence intervals allow the receiver's electronics to correctly identify each beginning and end of the frame and to have the time to properly process the received data, for example to perform the decryption and the calculation of the checksum.
  • the duration between the start of two consecutive frames is constant for a given protocol.
  • the inter-frame silence time is not decisive for a correct transmission of the frame and it can be slightly variable without affecting the correct reception of the data.
  • the inter-frame interval makes it possible above all to maintain a margin of safety for the processing of the data in the previously transmitted frame and also serves to mark the flow of the various cyclically repeated frames.
  • the frame flow is defined by a transmission rate of sets each consisting of a frame and an inter-frame interval.
  • the duration of transmission of a complete frame according to the RTS protocol is of the order of 140 ms, including the hardware synchronization, the software synchronization, the data frame as such and the end of frame silence.
  • the silence time between the end of the data frame and a new hardware synchronization is of the order of 34 ms.
  • the figure 2 illustrates the organization of data in a classic RTS frame.
  • An RTS frame contains 56 bits distributed as follows.
  • the first byte contains an encryption key constituted by a random number.
  • the second byte contains 4 bits identifying the nature of the command (door opening or closing for example) and 4 checksum bits, called checksums.
  • the third and fourth bytes are rotating code bits, modified according to a predetermined algorithm with each press on the remote control of the transmitter to constitute security to piracy.
  • the following bytes comprise the address bits identifying the transmitter.
  • the 24 address bits make it possible to create pairings between transmitters and receivers. Sharing a common identifier allows the receiver to recognize orders from an order issuer, to answer them. One can assimilate to the list of identifiers any information relating to the control of a particular order receiver by a particular issuer of orders. It can therefore be an encryption key specific to this pair of elements or any confidential data useful for the transmission and / or execution of an order.
  • the conventional RTS protocol is not optimal for an application to autonomous receivers.
  • autonomous products are not connected to the electricity grid and therefore have limited energy resources.
  • Autonomous receivers generally operate as follows: the receiver's electronics are put to sleep for reasons of energy saving. Regularly, the receiver wakes up, listens if it receives a signal and if not, goes back to sleep.
  • To be adapted to a communication according to a protocol of RTS or equivalent type it is necessary to provide a wake-up time of the receiver at least equivalent to the inter-frame silence time. This inter-frame silence is relatively long in the case of the RTS protocol, which is not compatible with the consumption standards or lifetimes required for autonomous products.
  • a frame for a protocol of a new generation comprises a first part consisting of a basic RTS frame comprising first data and a first control field, such as a first checksum, and a second part comprising second data and a second control field, such as a second checksum.
  • the second frame part of the new generation starts with a relay bit set to a predetermined value.
  • the figure 3 illustrates a frame transmission according to a protocol of the new generation, for example emitted by a transmitter of a new generation.
  • a protocol of the new generation for example emitted by a transmitter of a new generation.
  • part of the inter-frame silence is replaced by a quantity of information that can be interpreted by receivers of the new generation.
  • additional data is simply contiguous to a basic frame.
  • the second part of the frame therefore directly follows the first part of data constituted by a conventional RTS frame.
  • This additional data can then be used to manage new product features.
  • the duration of the inter-frame interval of the protocol of the new generation is thus reduced with respect to the duration of the inter-frame interval of the protocol of the old generation, and in particular the duration of the inter-frame silence.
  • the time difference between each start of frame during a cyclic transmission of the frames is constant and identical to that of the old generation.
  • the frame flow is thus preserved between the protocol of the new generation and the protocol of the old generation.
  • the functions based on the frame flow can be retained as in the new protocol, for example the number of repeated frames for a command or the time-out in the case of prolonged command.
  • the protocol of the new generation is also particularly adapted to autonomous products since the duration of the inter-frame silence is reduced by the transmission of the second part of data; the wake up time of the required receiver is therefore greatly reduced.
  • the figure 4 shows the organization of data in a new generation RTS frame.
  • the frame of the protocol of the new generation contains a first part consisting of a basic RTS frame of 56 bits to which is added a second part constituted by 24 bits of additional information; in particular one relay bit and 23 other bits usable for transmitting data complementary to the data of the basic frame.
  • the second transmitted frame part is preferably linked to the first part, that is to say that the second data will allow to better define the information of the first data transmitted in the RTS frame basic.
  • the additional information supplements or parameterizes the basic RTS frame by adding new features, new parameters, enhancing the security of the transmission, and so on.
  • the additional information does not necessarily have an intrinsic value, that is, it may be irrelevant if it is taken independently of the basic RTS frame.
  • the data information of the first frame part is encrypted for security reasons, it will not be necessary to encrypt the second additional data information of the second frame part, which in itself, do not have a proper control function. If the second data of the second frame part nevertheless had to be encrypted, the same encryption key as used for the first data of the basic RTS frame could be used, or another encryption key, transmitted with the second data in the second frame part.
  • the number of bytes of the second frame portion corresponding to the amount of additional information transmitted, will be chosen according to the available inter-frame silence time, possibly providing a margin of safety for the processing of information by the electronics of the receiver.
  • the transmission of the second frame portion may extend over a part of the hardware synchronization in addition to inter-frame silence.
  • the number of synchronization pulses provided is between 6 and 12, 6 pulses of which are mandatory.
  • the inter-frame silence can be used for the transmission of optional synchronization pulses. These pulses can then be replaced by the additional data.
  • the frame according to the invention for a RTS protocol of a new generation, therefore contains a first part constituted by the basic RTS frame and a second part comprising additional information.
  • the frame according to the invention also comprises two separate control fields, called checksum.
  • a first control field, specific to the basic RTS frame, is placed in the first frame part, for example in the second byte (CKS1), and a second control field (CKS2) is placed in the second frame part.
  • the second control field may be specific to the second frame portion for verifying the integrity of the additional data transmitted.
  • the second control field can also be calculated over the entire frame rather than the second part only.
  • the frame according to the invention also comprises a relay bit set at a predetermined value and which starts the second frame part.
  • This relay bit can inform the new generation receivers that additional information follows, but most importantly, the relay bit can inform the old receivers that the information that follows does not concern them and that they must consider them as noise. This information is particularly necessary when a Manchester type code is used to determine the state of a bit.
  • the conventional RTS protocol uses a Manchester code and systematically controls the end of the frame.
  • the state of the data bit is provided by a rising or falling edge in the middle of the bit transmission time.
  • a rising edge represents a logic bit 1
  • a falling edge represents a logic bit 0.
  • the conventional RTS protocol checks the presence of a falling edge in a given time interval equal to half the bit transmission time, ie ⁇ t / 2 (640 ⁇ s). If the last bit of the frame is 0, the falling edge corresponding to 0 validates the last bit. On the other hand, if the last bit of the frame is at 1, obtaining a falling edge will depend on the signal that follows the end of transmission of the conventional frame.
  • the noise is such that it substantially prolongs the high state of the signal, without a falling edge beyond the clock signal or that it corresponds for example to a bit of value 0, the next falling edge will only be obtained if after a time interval greater than ⁇ t / 2 (640 ⁇ s). The frame will be refused. This random phenomenon is rare and possibly compensated by the cyclic succession of repetition of the frames.
  • additional information is added at the end of a conventional RTS frame, the probability of having a logic code of 0 on the first additional information bit is 50%. This would result in traditional RTS frames being rejected by older receivers too common to be acceptable.
  • the first additional information bit must be rigged to 1 so that the older receivers pass all of the base RTS frame forming part of the new data frame, regardless of the value of the 56th bit terminating the frame Basic RTS.
  • a first bit of additional information is thus reserved in the second frame part, called relay bit, which will be systematically set to 1.
  • relay bit By forcing a rising edge on the next bit just the last bit of the basic RTS frame, it is guaranteed that a falling edge (at the time of the clock signal) occurs in an interval of ⁇ t / 2 (640 ms).
  • the old receivers having received a sufficient and comprehensible number of bits, do not react to the new transmitted information which they interpret as noise. If this first bit of additional information is not forced to 1, the additional data of the second frame part could start with a zero and compromise the acceptance of the first part of the frame by a former receiver.
  • This arrangement is in this case related to the choice of criteria to validate the frame of the old protocol and also depends on the coding used, in particular the choice of logic code for a rising or falling edge for a Manchester coding.
  • the invention also relates to a telecommunication system comprising at least one transmitter of orders of an old generation, a transmitter of orders of a new generation, a receiver of orders of an old generation and a receiver of orders of a new generation.
  • the figure 5 illustrates the system according to the invention.
  • the transmitters EMa and receivers RCa of the old generation are respectively adapted to transmit and receive and interpret a cyclic control frame TRa according to a first protocol, for example a conventional RTS protocol.
  • the EMb transmitters and RCb receivers of the new generation are respectively adapted to transmit and receive and interpret a cyclic control frame TRb according to a second protocol.
  • the frame of the second protocol has a frame of the first protocol directly followed by additional information, for example a new generation RTS frame as described above.
  • Receivers RCa or RCb are linked to actuators, for example as shown in FIG. figure 5 , tubular motor gearboxes for driving solar protections.
  • the receiver may be an integral part of the actuator, for example be contained in the casing of the tubular actuator inside the winding tube of the sun protection screen.
  • a receiver RCa of the old generation is also adapted to receive and interpret a control frame TRb according to the new protocol and a receiver RCb of the new generation is also adapted to receive and interpret a TRa control frame according to the old protocol.
  • the frame of the old protocol has a fixed length, for example 56 bits, and the old protocol transmits frames separated by an inter-frame interval.
  • the frame of the new protocol transmits additional information during the inter-frame silences defined in the inter-frame intervals of the old protocol.
  • the additional data transmitted by the new protocol TRb frames appear as noise for the old RCa receivers while the data provided in the interframe interval can be processed by the new RCb receivers. Since the frame of the first protocol is found entirely in the new protocol and the frame flow is not modified, the new frame is readable by the old types of receivers; This ensures downward compatibility with communication between new EMb transmitters and old RCa receivers. Similarly, backward compatibility is ensured with communication between old EMa transmitters and new RCb receivers; blanks (inter-frame silence) are received by the new receivers instead of the additional data, but the message is readable by the new receivers because the format of the basic frame is identical for both types of protocols.
  • the number of bytes transmitted in a control frame TRb of the new generation depends on the available inter-frame silence, but can be increased by an increase in the transmission rate of these data.
  • the frame of the new protocol can be transmitted with a first rate during the transmission of the basic frame and then with a second rate when the additional information is transmitted, the second rate being greater than the first.
  • the message sent by the transmitters of the new generation may comprise a first transmission part with a first bit rate corresponding to that of the old protocol followed by a second part of data transmission at a higher bit rate so as to transmit a number of bytes greater.
  • This rate change will be transparent to older receivers that do not process the additional data. On the other hand, it may involve a modification of the data processing electronics for the next-generation transmitters and receivers, if the chosen bit rate is greater than the maximum bit rate that can be processed by the transmitters and receivers of the older generation.
  • the invention thus relates to an EMb command transmitter for a telecommunication system according to the invention adapted to transmit control frames TRb according to the new protocol and a command receiver RCb for a telecommunication system according to the invention adapted to receive data.
  • the new generation receivers are adapted to interpret the content of additional information transmitted following a base frame in the new frames. This additional information is interpreted in combination with the data of the basic frame which is entirely contained in the frame of the new protocol.
  • This additional information may include additional identification or addresses.
  • the existing RTS protocol has a limited number of addresses, coded on 24 bits, which can lead to saturation. It is therefore possible, in the context of the new protocol, to use certain bytes of additional information to encode an additional address.
  • This additional address can represent a family indication, corresponding to a type of product, a reseller using the protocol on its own product or other, or simply correspond to a random code complement. If one chooses to differentiate families of products operating on the protocol of the new generation according to the invention, one can provide receiver blocking functions on a particular family, according to the first code or codes received in the additional information of the second frame part.
  • the additional information can also make it possible to reinforce the security of the transmission of a frame.
  • new authentication features can be added in the second part of the frame transmitted according to the protocol of the new generation.
  • the transmitter provides, in the second portion of data of the frame, a random number along with a calculation result based on a key that it shares with a receiver.
  • the receiver On reception of the frame, the receiver recalculates from the random number transmitted and verifies the result with that transmitted in the additional information of the frame.
  • This authentication can intervene in addition to verifying the identifier of the sender with the data of the first part of the frame.

Description

L'invention concerne un système de communication permettant d'assurer une compatibilité croisée entre des produits d'une ancienne génération et des produits d'une nouvelle génération. Par compatibilité croisée, on entend une compatibilité ascendante et descendante. La compatibilité ascendante est assurée lorsque de nouveaux récepteurs acceptent et comprennent des données transmises selon un ancien protocole par d'anciens émetteurs ; et la compatibilité descendante est assurée lorsque d'anciens récepteurs acceptent et comprennent des données transmises selon un nouveau protocole par de nouveaux émetteurs.The invention relates to a communication system which makes it possible to ensure cross-compatibility between products of an older generation and products of a new generation. Cross-compatibility means upward and downward compatibility. Backward compatibility is ensured when new receivers accept and understand data transmitted by old transmitters according to an old protocol; and downward compatibility is provided when older receivers accept and understand data transmitted by new protocol to a new protocol.

La présente invention se rapporte au domaine de la commande à distance d'actionneurs et notamment à la commande sans fil d'actionneurs utilisés dans un système domotique permettant le confort et la sécurité du bâtiment, par exemple pour l'éclairage, la manoeuvre des fermetures, des protections solaires, des systèmes de ventilation et d'air conditionné, etc....The present invention relates to the field of the remote control of actuators and in particular to the wireless control of actuators used in a home automation system for the comfort and safety of the building, for example for lighting, the operation of closures , solar protection, ventilation systems and air conditioning, etc.

Les systèmes domotiques comportent classiquement des actionneurs avec capteurs associés formant des récepteurs d'ordres pilotés par des unités de contrôle ou points de commande formant des émetteurs d'ordres. On désignera par la suite par « émetteur » un organe adapté à émettre des données de commande et par « récepteur » un organe adapté à recevoir et interpréter des données de commande. Les récepteurs sont liés à des actionneurs, par exemple des actionneurs électromécaniques, pour transformer l'ordre reçu en action sur un élément du système domotique. La transmission de données entre l'émetteur et le récepteur se fait classiquement par un lien de type radiofréquence, bien que d'autres supports de transmission soient possibles, comme un lien infrarouge par exemple.Home automation systems conventionally comprise actuators with associated sensors forming command receivers controlled by control units or control points forming command transmitters. The term "transmitter" will henceforth denote a device adapted to transmit control data and "receiver" means a device adapted to receive and interpret control data. The receivers are linked to actuators, for example electromechanical actuators, to transform the received order into action on an element of the home automation system. The transmission of data between the transmitter and the receiver is conventionally done by a radiofrequency-type link, although other transmission media are possible, such as an infrared link, for example.

Les émetteurs et récepteurs peuvent être nomades ou fixes et comporter une alimentation autonome, par exemple sur piles. Un récepteur fixe peut lui-même être alimenté par piles ou par l'intermédiaire de cellules photovoltaïques par exemple, s'il est relié à un actionneur autonome, ce qui évite les câblages ; et la fonction réception peut être activée sur commande ou par intermittence pour limiter la consommation.Transmitters and receivers can be nomadic or fixed and include an autonomous power supply, for example on batteries. A fixed receiver can itself be powered by batteries or via photovoltaic cells for example, if it is connected to a separate actuator, which avoids wiring; and the receive function can be activated on command or intermittently to limit consumption.

Les données transmises entre un émetteur et un récepteur contiennent des informations relatives à la nature de la commande, à l'identification du récepteur et de l'émetteur et d'autres informations telles que des données relatives au cryptage, à l'historique des commandes émises et à la vérification de l'intégrité des données transmises. Les données transmises sont organisées de manière prédéterminée par un protocole. On entend par protocole un ensemble de spécifications décrivant des conventions et des règles à suivre dans un échange de données. Les protocoles servent à garantir l'efficacité dans les échanges de données.The data transmitted between a transmitter and a receiver contain information about the nature of the command, the identification of the receiver and the transmitter and other information such as encryption data, command history issued and the verification of the integrity of the data transmitted. The transmitted data is organized in a predetermined manner by a protocol. A protocol is a set of specifications describing conventions and rules to follow in a data exchange. Protocols are used to ensure efficiency in data exchange.

Certains protocoles existants utilisent des trames de longueur fixe et l'ensemble des bits de la trame est exploité. C'est le cas du protocole RTS (Radio Technology Somfy™) utilisé dans les systèmes domotiques installés par la demanderesse.Some existing protocols use frames of fixed length and all the bits of the frame are exploited. This is the case of the RTS (Radio Technology Somfy ™) protocol used in home automation systems installed by the applicant.

Dans une telle situation, pour permette une évolution des fonctionnalités pour de nouveaux produits, il est courant de construire un nouveau protocole dans lequel l'ensemble des fonctionnalités existantes ou nouvellement étudiées est pris en compte et qui prévoit des octets disponibles pour des évolutions futures. L'inconvénient d'un nouveau protocole est généralement sa non-compatibilité avec les produits déjà installés, sans compter les coûts de développement générés.In such a situation, to allow an evolution of the functionalities for new products, it is common to build a new protocol in which all the existing or newly studied functionalities is taken into account and which foresees bytes available for future evolutions. The disadvantage of a new protocol is usually its non-compatibility with the products already installed, not to mention the development costs generated.

Le document WO 92/01979 présente une extension de protocole de communication non filaire pour passer de codes fixes à des codes tournant, ce qui s'apparente à une augmentation du nombre d'adresses possibles pour le protocole.The document WO 92/01979 presents a non-wired communication protocol extension to change from fixed codes to revolving codes, which is similar to an increase in the number of possible addresses for the protocol.

Les anciennes trames comportent des messages de dix mots de 4 bits chacun. Deux trames consécutives sont séparées par des pauses (intervalles blancs) de 39 bits. Chaque début de trame est signalé par un bit de synchronisation. Dans le cas d'une communication radio entre un émetteur et un récepteur, la trame est répétée un certain nombre de fois, tant que l'appui sur la touche de l'émetteur à l'origine de cette transmission est maintenu. Les temps de transmission de trames sont en effet généralement bien inférieurs au temps d'un appui manuel. Le récepteur reconnaît le format émis en détectant un bit de synchronisation suivant un intervalle blanc et il enregistre le message de 10 mots émis.The old frames have messages of ten words of 4 bits each. Two consecutive frames are separated by pauses (white intervals) of 39 bits. Each frame start is signaled by a synchronization bit. In the case of a radio communication between a transmitter and a receiver, the frame is repeated a certain number of times, as long as the pressing of the key of the transmitter at the origin of this transmission is maintained. The transmission times of frames are in fact generally well below the time of manual support. The receiver recognizes the transmitted format by detecting a synchronization bit in a white interval and records the message of 10 words transmitted.

Les nouvelles trames comportent, quant à elles, des signaux de vingt mots, divisées en deux messages de dix mots. Chaque message de dix mots est transmis de manière traditionnelle, c'est-à-dire comme une ancienne trame avec des intervalles blancs séparant les deux messages. Le bit de synchronisation du deuxième message est cependant modifié par rapport au premier. Chaque partie de message est enregistrée successivement par le récepteur. Le bit de synchronisation du deuxième message sert à identifier s'il s'agit d'une deuxième partie de message, et donc d'une trame de la nouvelle génération, ou d'un autre message de l'ancienne génération (répétition de la trame ou trame à contenu différent).The new frames contain, for their part, signals of twenty words, divided into two messages of ten words. Each message of ten words is transmitted in a traditional way, that is to say as an old frame with white intervals separating the two messages. The synchronization bit of the second message is however modified with respect to the first. Each message part is recorded successively by the receiver. The synchronization bit of the second message is used to identify whether it is a second message part, and therefore a frame of the new generation, or another message of the old generation (repetition of the frame or frame with different content).

Le document WO 01/31873 présente une extension de protocole pour des trames de longueur fixe et à contenu prédéterminé. Cette demande de brevet décrit l'état de l'art en mentionnant que les extensions de protocole connues permettant une compatibilité descendante consistent à fournir un mécanisme explicite indiquant une extension des trames, par exemple par une indication de la longueur de trame, un codage d'indicateur ou des données réservées. Ces méthodes connues ne sont pas systématiquement applicables et en particulier ne sont pas applicables dans le cas d'un protocole à trames de longueur fixe, dans lesquelles tous les bits sont utilisés ou réservés. En effet, selon la solution présentée dans ce document, les extensions de champs ne sont pas accolées à des champs existant du protocole, mais placés ailleurs dans le message.The document WO 01/31873 presents a protocol extension for frames of fixed length and predetermined content. This patent application describes the state of the art by mentioning that the known protocol extensions allowing downward compatibility consist in providing an explicit mechanism indicating an extension of the frames, for example by an indication of the frame length, a coding of indicator or reserved data. These known methods are not systematically applicable and in particular are not applicable in the case of a fixed-length frame protocol, in which all the bits are used or reserved. Indeed, according to the solution presented in this document, the field extensions are not contiguous to existing fields of the protocol, but placed elsewhere in the message.

Le document WO 98/34208 décrit un système de gestion de la compatibilité entre une ancienne génération de produits utilisant une transmission infrarouge et une nouvelle génération de produits utilisant une transmission radiofréquence. La compatibilité descendante est définie telle que les produits d'une ancienne génération ne considèrent qu'une partie des données transmises pour leur fonctionnement mais l'ensemble des données pour le calcul d'une somme de vérification, connue sous le terme de « checksum ». Le protocole de la nouvelle génération doit maintenir le checksum comme dernière donnée transmise afin de conserver cette compatibilité. La compatibilité ascendante est assurée par le contrôle du nombre de données transmises et la détermination du type de protocole correspondant par les récepteurs de la nouvelle génération. Dans ce système, les données à l'intérieur de la trame sont réorganisées et non pas accolées à la suite d'une ancienne trame.The document WO 98/34208 describes a compatibility management system between an older generation of products using infrared transmission and a new generation of products using radio frequency transmission. Downward compatibility is defined such that the products of an older generation only consider part of the data transmitted for their operation but all the data for the calculation of a checksum, known as the "checksum" . The new generation protocol must keep the checksum as the last data passed in order to maintain this compatibility. The upward compatibility is ensured by the control of the number of transmitted data and the determination of the corresponding protocol type by the receivers of the new generation. In this system, the data inside the frame is reorganized and not contiguous as a result of an old frame.

Les extensions de protocole décrites dans les documents précités WO 01/31873 et WO 98/34208 nécessitent des adaptations des trames du protocole existant.The protocol extensions described in the aforementioned documents WO 01/31873 and WO 98/34208 require adaptations of the existing protocol frames.

Par ailleurs, l'extension de protocole décrit dans le document précité WO 92/01979 peut perturber la réception d'un message par des récepteurs d'une ancienne génération. En effet, les informations complémentaires ne sont pas intégrées dans la même trame et le flux d'émission (répétition cyclique des trames et des intervalles inter-trame) de messages lisibles par les récepteurs d'une ancienne génération n'est pas le même selon qu'il s'agisse d'une émission par un émetteur d'une ancienne ou d'une nouvelle génération.Moreover, the protocol extension described in the aforementioned document WO 92/01979 can disrupt the reception of a message by receivers of an older generation. Indeed, the additional information is not integrated in the same frame and the transmission flow (cyclic repetition of frames and inter-frame intervals) of messages readable by the receivers of an older generation is not the same according to whether it is an issue by an issuer of an old or a new generation.

Il existe donc un besoin pour une extension de protocole qui permette de conserver l'organisation et le contenu des données d'une trame ancienne tout en ajoutant des informations supplémentaires, le tout étant transmis dans une même trame.There is therefore a need for a protocol extension that makes it possible to preserve the organization and the data content of an old frame while adding additional information, all of which is transmitted in the same frame.

A cet effet, l'invention propose d'ajouter des informations supplémentaires à la suite d'une trame classique d'un protocole existant en transmettant ces informations dans l'intervalle inter-trame habituellement prévu dans le protocole.For this purpose, the invention proposes to add additional information following a conventional frame of an existing protocol by transmitting this information in the inter-frame interval usually provided for in the protocol.

L'invention concerne ainsi une trame de commande selon la revendication.The invention thus relates to a control frame according to the claim.

Selon l'invention, une trame pour un protocole d'une nouvelle génération est créée. Une telle trame comporte une première partie comprenant des données correspondant à une trame classique d'un protocole existant et une seconde partie comprenant des données supplémentaire et débutant par un bit de relais fixé à une valeur prédéterminée. Le bit de relais et la seconde partie de la trame sont transmis pendant l'intervalle de temps correspondant au silence inter-trame du protocole existant.According to the invention, a frame for a protocol of a new generation is created. Such a frame comprises a first part comprising data corresponding to a conventional frame of an existing protocol and a second part comprising additional data and starting with a relay bit set at a predetermined value. The relay bit and the second part of the frame are transmitted during the time interval corresponding to the inter-frame silence of the existing protocol.

Selon les modes de réalisation, la trame de commande selon l'invention comporte une ou plusieurs des caractéristiques suivantes :

  • le bit de relais est fixé à '1' ;
  • les secondes données de la seconde partie de trame sont cryptées avec une première clé de cryptage transmise dans la première partie de trame ;
  • les secondes données de la seconde partie de trame sont cryptées avec une seconde clé de cryptage transmise dans la seconde partie de trame ;
According to the embodiments, the control frame according to the invention comprises one or more of the following characteristics:
  • the relay bit is set to '1';
  • the second data of the second frame portion is encrypted with a first encryption key transmitted in the first frame portion;
  • the second data of the second frame portion is encrypted with a second encryption key transmitted in the second frame portion;

L'invention concerne aussi un système de commande d'actionneurs selon la revendication 5.The invention also relates to an actuator control system according to claim 5.

Selon les modes de réalisation, système de commande d'actionneurs selon l'invention comporte une ou plusieurs des caractéristiques suivantes :

  • la trame du premier protocole a une longueur fixe ;
  • le premier protocole émet des trames séparées par des silences inter-trame et en ce que les informations supplémentaires des trames du second protocole sont émises pendant les silences inter-trame du premier protocole ;
  • les informations supplémentaires des trames du second protocole ne sont interprétées que par les récepteurs d'ordres de la nouvelle génération, les récepteurs d'ordres de l'ancienne génération interprétant uniquement la trame du premier protocole contenue dans la trame du second protocole ;
  • une trame du second protocole est émise avec un premier débit lors de l'émission de la trame du premier protocole et avec un second débit lors de l'émission des informations supplémentaires, le second débit étant supérieur au premier ;
  • les informations supplémentaires d'une trame du second protocole sont interprétées en combinaison avec les données de la trame du premier protocole contenue dans la trame du second protocole ;
  • les cycles d'émission des trames de commande du premier protocole et du second protocole sont identiques ;
  • au moins une portion de la trame du second protocole est cryptée ;
  • la portion cryptée est la trame du premier protocole contenue dans la trame du second protocole ;
According to the embodiments, the actuator control system according to the invention comprises one or more of the following characteristics:
  • the frame of the first protocol has a fixed length;
  • the first protocol transmits frames separated by inter-frame silences and in that the additional information of the frames of the second protocol are transmitted during the inter-frame silences of the first protocol;
  • the additional information of the frames of the second protocol are only interpreted by the new generation command receivers, the old generation command receivers interpreting only the frame of the first protocol contained in the frame of the second protocol;
  • a frame of the second protocol is transmitted with a first rate when the frame of the first protocol is transmitted and with a second rate when the supplementary information is transmitted, the second bit rate being greater than the first;
  • the additional information of a frame of the second protocol is interpreted in combination with the data of the frame of the first protocol contained in the frame of the second protocol;
  • the transmission cycles of the control frames of the first protocol and the second protocol are identical;
  • at least a portion of the frame of the second protocol is encrypted;
  • the encrypted portion is the frame of the first protocol contained in the frame of the second protocol;

L'invention concerne également un émetteur d'ordres pour système de télécommunication adapté à émettre des trames de commande selon l'invention.The invention also relates to a command transmitter for a telecommunication system adapted to transmit control frames according to the invention.

L'invention concerne en outre un récepteur d'ordres pour système de télécommunication adapté à recevoir des trames de commande selon l'invention etThe invention further relates to a command receiver for a telecommunication system adapted to receive control frames according to the invention and

à interpréter le contenu de la seconde partie de données.to interpret the content of the second part of data.

Selon une caractéristique, le récepteur interprète le contenu de la seconde partie de données en fonction du contenu de la première partie de données.According to one characteristic, the receiver interprets the content of the second portion of data according to the content of the first portion of data.

D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit des modes de réalisation de l'invention, donnés à titre d'exemple uniquement et en références aux dessins qui montrent :

  • figure 1, une représentation d'un protocole de transmission connu RTS ;
  • figure 2, l'organisation des données d'une trame du protocole RTS de la figure 1 ;
  • figure 3, une représentation d'un protocole de transmission selon la présente invention ;
  • figure 4, l'organisation des données d'une trame du protocole de la figure 3 selon l'invention ;
  • figure 5, une représentation d'un système à compatibilité croisée selon la présente invention.
Other features and advantages of the invention will appear on reading the following detailed description of the embodiments of the invention, given by way of example only and with reference to the drawings which show:
  • figure 1 , a representation of a known transmission protocol RTS;
  • figure 2 , the organization of the data of a frame of the RTS protocol of the figure 1 ;
  • figure 3 a representation of a transmission protocol according to the present invention;
  • figure 4 , the organization of the data of a frame of the protocol of the figure 3 according to the invention;
  • figure 5 , a representation of a cross-compatibility system according to the present invention.

Dans la suite de la description, l'invention est décrite dans un exemple d'application à un système domotique. On utilise dans la suite les mots « émetteurs d'ordres » et « récepteurs d'ordres » pour désigner des objets qui ont pour fonction d'émettre ou recevoir les ordres donnés par un utilisateur. Un émetteur d'ordres est aussi couramment appelé unité de commande, tandis qu'un récepteur d'ordres est un capteur commandant un actionneur d'ouvrant ou d'écran mobile.In the remainder of the description, the invention is described in an example of application to a home automation system. The words "order issuers" and "order receivers" are used in the following to designate objects whose function is to transmit or receive the commands given by a user. An order transmitter is also commonly called a control unit, while an order receiver is a sensor controlling an opening or moving screen actuator.

L'invention vise une extension de protocole existant. La description qui suit est faite en référence au protocole existant RTS (Radio Technology Somfy™) mis en oeuvre dans la transmission entre des émetteurs d'ordres et des récepteurs d'ordres commercialisés par la demanderesse, utilisé par exemple pour les moteurs Altus RTS, Oximo RTS, Axovia, Axorn et les commandes Tells, Inis RTS, Centralis RTS, Chronis RTS ou Keytis.The invention is an extension of existing protocol. The following description is made with reference to the existing Radio Technology Somfy ™ (RTS) protocol implemented in transmission between command transmitters and command receivers marketed by the applicant, used for example for Altus RTS engines. Oximo RTS, Axovia, Axorn and Tells commands, Inis RTS, Centralis RTS, Chronis RTS or Keytis.

Le protocole RTS est un protocole largement éprouvé et répandu dans le monde de la domotique. Il est lié à des ergonomies connues par les installateurs et ses qualités de transmission sont fiables, notamment en terme de puissance et d'acceptation des trames par les récepteurs d'ordres.The RTS protocol is a widely proven and widespread protocol in the world of home automation. It is linked to ergonomics known by installers and its transmission qualities are reliable, particularly in terms of power and acceptance of frames by the receivers of orders.

La figure 1 illustre une transmission de trame RTS classique. Une telle trame, désignée par la suite comme une trame de base, est introduite par un certain nombre d'impulsions de synchronisation électronique (dites « hardware ») et débute par une impulsion de synchronisation logicielle (dite « software »). Les trames RTS sont répétées cycliquement et séparées entre elles par des silences inter-trame, pendant lesquelles aucun signal n'est émis. Lors d'une commande émise par un émetteur d'ordres selon le protocole RTS, les trames de commande sont répétées plusieurs fois cycliquement pour garantir qu'au moins une des trames est reçue correctement par le récepteur et/ou vérifier que certaines commandes ne sont pas maintenues de manière prolongée. Par exemple, lors de l'appui sur une touche de télécommande d'un émetteur par un utilisateur, le temps de réaction de l'émetteur entraîne la transmission de plusieurs trames complètes correspondant au même appui. Il est prévu un épuisement du temps (dit « time-out »), par exemple de 10s, pour cesser l'émission, par exemple dans le cas d'un appui prolongé sur la touche de télécommande.The figure 1 illustrates a conventional RTS frame transmission. Such a frame, hereinafter referred to as a basic frame, is introduced by a number of electronic synchronization pulses (called "hardware") and starts with a software synchronization pulse (called "software"). The RTS frames are repeated cyclically and separated from each other by inter-frame silences during which no signal is transmitted. When a command is sent by a command transmitter according to the RTS protocol, the control frames are repeated several times cyclically to ensure that at least one of the frames is correctly received by the receiver and / or to verify that certain commands are not not maintained so extended. For example, when a remote control key of a transmitter is pressed by a user, the reaction time of the transmitter causes the transmission of several complete frames corresponding to the same support. It is expected a time-out, for example 10s, to stop the transmission, for example in the case of a long press on the remote control key.

L'ensemble comprenant le silence inter-trame et les bits de synchronisation hardware est appelé intervalle inter-trame. Il est entendu que le récepteur ne perçoit pas du silence pendant cet intervalle, mais du bruit, par opposition à des données interprétables. Ces intervalles de silence non codés permettent à l'électronique du récepteur de bien repérer chaque début et fin de trame et d'avoir le temps de bien traiter les données reçues, comme par exemple effectuer le décryptage et le calcul du checksum.The set comprising inter-frame silence and hardware synchronization bits is called inter-frame interval. It is understood that the receiver does not perceive silence during this interval, but noise, as opposed to interpretable data. These non-coded silence intervals allow the receiver's electronics to correctly identify each beginning and end of the frame and to have the time to properly process the received data, for example to perform the decryption and the calculation of the checksum.

La durée entre le début de deux trames consécutives est constante pour un protocole donné. En revanche, le temps de silence inter-trame n'est pas déterminant pour une transmission correcte de la trame et il peut être légèrement variable sans que cela influe sur une réception correcte des données. L'intervalle inter-trame permet surtout de garder une marge de sécurité pour le traitement des données dans la trame transmise précédemment et sert également à bien marquer le flux des différentes trames répétées cycliquement. Le flux de trame est défini par un débit de transmission d'ensembles constitués chacun d'une trame et d'un intervalle inter-trame.The duration between the start of two consecutive frames is constant for a given protocol. On the other hand, the inter-frame silence time is not decisive for a correct transmission of the frame and it can be slightly variable without affecting the correct reception of the data. The inter-frame interval makes it possible above all to maintain a margin of safety for the processing of the data in the previously transmitted frame and also serves to mark the flow of the various cyclically repeated frames. The frame flow is defined by a transmission rate of sets each consisting of a frame and an inter-frame interval.

La durée de transmission d'une trame complète selon le protocole RTS est de l'ordre de 140 ms, en incluant la synchronisation hardware, la synchronisation software, la trame de données en tant que telle et le silence de fin de trame. Le temps de silence entre la fin de la trame de données et une nouvelle synchronisation hardware est de l'ordre de 34 ms.The duration of transmission of a complete frame according to the RTS protocol is of the order of 140 ms, including the hardware synchronization, the software synchronization, the data frame as such and the end of frame silence. The silence time between the end of the data frame and a new hardware synchronization is of the order of 34 ms.

La figure 2 illustre l'organisation des données dans une trame RTS classique. Une trame RTS contient 56 bits repartis comme suit.The figure 2 illustrates the organization of data in a classic RTS frame. An RTS frame contains 56 bits distributed as follows.

Le premier octet contient une clé de cryptage constituée par un nombre aléatoire. Le deuxième octet contient 4 bits identifiant la nature de la commande (ouverture de porte ou fermeture par exemple) et 4 bits de somme de vérification, dits checksum. Les troisième et quatrième octets sont des bits de code tournant, modifiés selon un algorithme prédéterminé à chaque appui sur la télécommande de l'émetteur pour constituer une sécurité au piratage. Les octets suivants comportent les bits d'adresses identifiant l'émetteur.The first byte contains an encryption key constituted by a random number. The second byte contains 4 bits identifying the nature of the command (door opening or closing for example) and 4 checksum bits, called checksums. The third and fourth bytes are rotating code bits, modified according to a predetermined algorithm with each press on the remote control of the transmitter to constitute security to piracy. The following bytes comprise the address bits identifying the transmitter.

Les 24 bits d'adresse permettent de créer des appariements entre émetteurs et récepteurs. Le partage d'un identifiant commun permet au récepteur de reconnaître les commandes provenant d'un émetteur d'ordres, pour y répondre. On peut assimiler à la liste des identifiants toute information relative au contrôle d'un récepteur d'ordres particulier par un émetteur d'ordres particulier. Il peut donc s'agir d'une clé de cryptage propre à cette paire d'éléments ou de toute donnée confidentielle utile à la transmission et ou l'exécution d'un ordre.The 24 address bits make it possible to create pairings between transmitters and receivers. Sharing a common identifier allows the receiver to recognize orders from an order issuer, to answer them. One can assimilate to the list of identifiers any information relating to the control of a particular order receiver by a particular issuer of orders. It can therefore be an encryption key specific to this pair of elements or any confidential data useful for the transmission and / or execution of an order.

On constate sur la figure 2 que tous les bits de la trame RTS classique sont utilisés et une modification de trame entraînerait une incompatibilité de transmission avec les anciens produits. En effet, la trame RTS est constituée intégralement de données exploitées ; de nouvelles évolutions ou fonctionnalités ne peuvent plus être implantées en utilisant la trame classique. En particulier, le nombre d'adresses disponibles ne peut plus être augmenté, le cryptage et le checksum sont limités.We see on the figure 2 that all the bits of the conventional RTS frame are used and a frame modification would result in a transmission incompatibility with the old products. Indeed, the RTS frame consists entirely of exploited data; new developments or functionalities can no longer be implemented using the conventional frame. In particular, the number of available addresses can no longer be increased, the encryption and the checksum are limited.

Par ailleurs, le protocole RTS classique n'est pas optimal pour une application à des récepteurs autonomes. En effet, les produits autonomes ne sont pas connectés au réseau électrique et ont donc des ressources en énergie limitées. Les récepteurs autonomes ont généralement le fonctionnement suivant : l'électronique du récepteur est mise en sommeil pour des raisons d'économies d'énergie. Régulièrement, le récepteur se réveille, écoute s'il reçoit un signal et dans le cas contraire, se rendort. Pour être adapté à une communication suivant un protocole de type RTS ou équivalent, il faut prévoir un temps de réveil du récepteur au moins équivalent au temps de silence inter-trame. Ce silence inter-trame est relativement long dans le cas du protocole RTS, ce qui n'est pas compatible avec les standards de consommation ou les durées de vie requis pour les produits autonomes.Moreover, the conventional RTS protocol is not optimal for an application to autonomous receivers. In fact, autonomous products are not connected to the electricity grid and therefore have limited energy resources. Autonomous receivers generally operate as follows: the receiver's electronics are put to sleep for reasons of energy saving. Regularly, the receiver wakes up, listens if it receives a signal and if not, goes back to sleep. To be adapted to a communication according to a protocol of RTS or equivalent type, it is necessary to provide a wake-up time of the receiver at least equivalent to the inter-frame silence time. This inter-frame silence is relatively long in the case of the RTS protocol, which is not compatible with the consumption standards or lifetimes required for autonomous products.

Selon l'invention, une trame pour un protocole d'une nouvelle génération est créée. Une telle trame comporte une première partie constituée par une trame RTS de base comprenant des premières données et un premier champ de contrôle, tel qu'un premier checksum, et une seconde partie comprenant des secondes données et un second champ de contrôle, tel qu'un second checksum. La seconde partie de trame de la nouvelle génération débute par un bit de relais fixé à une valeur prédéterminée.According to the invention, a frame for a protocol of a new generation is created. Such a frame comprises a first part consisting of a basic RTS frame comprising first data and a first control field, such as a first checksum, and a second part comprising second data and a second control field, such as a second checksum. The second frame part of the new generation starts with a relay bit set to a predetermined value.

La figure 3 illustre une transmission de trame selon un protocole de la nouvelle génération, par exemple émise par un émetteur d'une nouvelle génération. On constate, par comparaison avec la figure 1, qu'une partie du silence inter-trame est remplacée par une quantité d'information qui est interprétable par des récepteurs de la nouvelle génération. En particulier, des données supplémentaires sont simplement accolées à une trame de base. La seconde partie de la trame suit donc directement la première partie de données constituée par une trame RTS classique.The figure 3 illustrates a frame transmission according to a protocol of the new generation, for example emitted by a transmitter of a new generation. In comparison with the figure 1 that part of the inter-frame silence is replaced by a quantity of information that can be interpreted by receivers of the new generation. In particular, additional data is simply contiguous to a basic frame. The second part of the frame therefore directly follows the first part of data constituted by a conventional RTS frame.

Ces données supplémentaires peuvent alors être utilisées pour gérer de nouvelles fonctionnalités des produits.This additional data can then be used to manage new product features.

La durée de l'intervalle inter-trame du protocole de la nouvelle génération est ainsi réduite par rapport à la durée de l'intervalle inter-trame du protocole de l'ancienne génération, et en particulier la durée du silence inter-trame. Cependant le décalage temporel entre chaque début de trame au cours d'une émission cyclique des trames est constant et identique à celui de l'ancienne génération. Le flux de trames est donc conservé entre le protocole de la nouvelle génération et le protocole de l'ancienne génération. Ainsi, les fonctionnalités basées sur le flux de trame peuvent être conservées telles que dans le nouveau protocole, par exemple le nombre de trames répétées pour une commande ou le time-out en cas de commande prolongée.The duration of the inter-frame interval of the protocol of the new generation is thus reduced with respect to the duration of the inter-frame interval of the protocol of the old generation, and in particular the duration of the inter-frame silence. However, the time difference between each start of frame during a cyclic transmission of the frames is constant and identical to that of the old generation. The frame flow is thus preserved between the protocol of the new generation and the protocol of the old generation. Thus, the functions based on the frame flow can be retained as in the new protocol, for example the number of repeated frames for a command or the time-out in the case of prolonged command.

Le protocole de la nouvelle génération est aussi particulièrement adapté aux produits autonomes puisque la durée du silence inter-trame est réduite par la transmission de la seconde partie de données ; le temps de réveil du récepteur requis est donc largement diminué.The protocol of the new generation is also particularly adapted to autonomous products since the duration of the inter-frame silence is reduced by the transmission of the second part of data; the wake up time of the required receiver is therefore greatly reduced.

La figure 4 montre l'organisation des données dans une trame RTS de nouvelle génération. On constate que la trame du protocole de la nouvelle génération contient une première partie constituée par une trame RTS de base de 56 bits à laquelle est ajoutée une seconde partie constituée par 24 bits d'informations supplémentaires ; en particulier un bit de relais et 23 autres bits utilisables pour de la transmission de données complémentaires aux données de la trame de base. En effet, dans le cadre de l'invention, la seconde partie de trame transmise est de préférence liée à la première partie, c'est à dire que les secondes données vont permettre de mieux définir les informations des premières données transmises dans la trame RTS de base. Par exemple, les informations supplémentaires viennent compléter ou paramétrer la trame RTS de base en ajoutant de nouvelles fonctionnalités, de nouveaux paramètres, en renforçant la sécurité de la transmission, etc. Les informations supplémentaires n'ont pas nécessairement de valeur intrinsèque, c'est-à-dire qu'elles sont éventuellement sans objet si elles sont prises indépendamment de la trame RTS de base. En l'occurrence, si les informations des données de la première partie de trame sont cryptées pour des raisons de sécurité, il ne sera pas nécessaire de crypter les informations des secondes données supplémentaires de la seconde partie de trame, qui en elles-mêmes, n'ont pas de fonction propre de commande. Si les secondes données de la seconde partie de trame devaient néanmoins être cryptées, une même clé de cryptage que celle utilisée pour les premières données de la trame RTS de base pourrait être utilisée, ou une autre clé de cryptage, transmise avec les secondes données dans la seconde partie de trame.The figure 4 shows the organization of data in a new generation RTS frame. It can be seen that the frame of the protocol of the new generation contains a first part consisting of a basic RTS frame of 56 bits to which is added a second part constituted by 24 bits of additional information; in particular one relay bit and 23 other bits usable for transmitting data complementary to the data of the basic frame. Indeed, in the context of the invention, the second transmitted frame part is preferably linked to the first part, that is to say that the second data will allow to better define the information of the first data transmitted in the RTS frame basic. For example, the additional information supplements or parameterizes the basic RTS frame by adding new features, new parameters, enhancing the security of the transmission, and so on. The additional information does not necessarily have an intrinsic value, that is, it may be irrelevant if it is taken independently of the basic RTS frame. In this case, if the data information of the first frame part is encrypted for security reasons, it will not be necessary to encrypt the second additional data information of the second frame part, which in itself, do not have a proper control function. If the second data of the second frame part nevertheless had to be encrypted, the same encryption key as used for the first data of the basic RTS frame could be used, or another encryption key, transmitted with the second data in the second frame part.

Le nombre d'octets de la seconde partie de trame, correspondant à la quantité d'informations supplémentaires transmise, sera choisi en fonction du temps de silence inter-trame disponible, en ménageant éventuellement une marge de sécurité pour le traitement des informations par l'électronique du récepteur. Eventuellement, la transmission de la seconde partie de trame pourra s'étendre sur une partie de la synchronisation hardware en plus du silence inter-trame. En effet, dans le cas du protocole RTS, le nombre d'impulsions de synchronisation prévu est compris entre 6 et 12, dont 6 impulsions sont obligatoires. Dans certains cas de mise en oeuvre du protocole, le silence inter-trame peut être utilisé pour la transmission d'impulsions de synchronisation facultatives. Ces impulsions peuvent alors être remplacées par les données supplémentaires.The number of bytes of the second frame portion, corresponding to the amount of additional information transmitted, will be chosen according to the available inter-frame silence time, possibly providing a margin of safety for the processing of information by the electronics of the receiver. Optionally, the transmission of the second frame portion may extend over a part of the hardware synchronization in addition to inter-frame silence. Indeed, in the case of the RTS protocol, the number of synchronization pulses provided is between 6 and 12, 6 pulses of which are mandatory. In certain cases of implementation of the protocol, the inter-frame silence can be used for the transmission of optional synchronization pulses. These pulses can then be replaced by the additional data.

La trame selon l'invention, pour un protocole RTS d'une nouvelle génération, contient donc une première partie constituée par la trame RTS de base et une seconde partie comprenant des informations supplémentaires. La trame selon l'invention comporte aussi deux champs de contrôle distincts, dits checksum. Un premier champ de contrôle, propre à la trame RTS de base, est placé dans la première partie de trame, par exemple dans le deuxième octet (CKS1), et un second champ de contrôle (CKS2) est placé dans la deuxième partie de trame. Le second champ de contrôle peut être propre à la deuxième partie de trame pour vérifier l'intégrité des données supplémentaires transmises. Le second champ de contrôle peut aussi être calculé sur l'ensemble de la trame plutôt que sur la seconde partie uniquement.The frame according to the invention, for a RTS protocol of a new generation, therefore contains a first part constituted by the basic RTS frame and a second part comprising additional information. The frame according to the invention also comprises two separate control fields, called checksum. A first control field, specific to the basic RTS frame, is placed in the first frame part, for example in the second byte (CKS1), and a second control field (CKS2) is placed in the second frame part. . The second control field may be specific to the second frame portion for verifying the integrity of the additional data transmitted. The second control field can also be calculated over the entire frame rather than the second part only.

La trame selon l'invention comporte aussi un bit de relais fixé à une valeur prédéterminée et qui débute la seconde partie de trame. Ce bit de relais peut informer les récepteurs de la nouvelle génération que des informations supplémentaires suivent, mais surtout, le bit de relais peut informer les anciens récepteurs que les informations qui suivent ne les concernent pas et qu'ils doivent les considérer comme du bruit. Cette information est en particulier nécessaire lorsqu'un code de type Manchester est utilisé pour déterminer l'état d'un bit. Or, le protocole RTS classique utilise un code Manchester et contrôle systématiquement la fin de trame.The frame according to the invention also comprises a relay bit set at a predetermined value and which starts the second frame part. This relay bit can inform the new generation receivers that additional information follows, but most importantly, the relay bit can inform the old receivers that the information that follows does not concern them and that they must consider them as noise. This information is particularly necessary when a Manchester type code is used to determine the state of a bit. However, the conventional RTS protocol uses a Manchester code and systematically controls the end of the frame.

Dans un code du type Manchester, l'état du bit de donnée est fourni par un front montant ou descendant au milieu du temps de transmission de ce bit. Dans le cadre d'une trame RTS classique, un front montant représente un bit de logique 1 et un front descendant représente un bit de logique 0. Pour valider un bit lu, trois facteurs sont pris en compte : le comptage des bits lus, le sens du front (montant ou descendant) et l'intervalle de temps Δt entre deux fronts (classiquement de 1280 µs, correspondant au temps de transmission d'un bit). Pour vérifier la fin d'une trame, le protocole RTS classique vérifie la présence d'un front descendant dans un intervalle de temps donné égal à la moitié du temps de transmission d'un bit, soit Δt/2 (640 µs). Si le dernier bit de la trame est à 0, le front descendant correspondant au 0 valide le dernier bit. En revanche, si le dernier bit de la trame est à 1, l'obtention d'un front descendant va dépendre du signal qui suit la fin d'émission de la trame classique.In a Manchester type code, the state of the data bit is provided by a rising or falling edge in the middle of the bit transmission time. In the context of a conventional RTS frame, a rising edge represents a logic bit 1 and a falling edge represents a logic bit 0. To validate a read bit, three factors are taken into account: the count of bits read, the edge direction (rising or falling) and the time interval Δt between two edges (typically 1280 μs, corresponding to the bit transmission time). To verify the end of a frame, the conventional RTS protocol checks the presence of a falling edge in a given time interval equal to half the bit transmission time, ie Δt / 2 (640 μs). If the last bit of the frame is 0, the falling edge corresponding to 0 validates the last bit. On the other hand, if the last bit of the frame is at 1, obtaining a falling edge will depend on the signal that follows the end of transmission of the conventional frame.

Si le bruit est tel qu'il prolonge de manière sensiblement stable l'état haut du signal, sans front descendant au delà du signal horloge ou qu'il correspond par exemple à un bit de valeur 0, le prochain front descendant ne sera obtenu qu'après un intervalle supérieur à Δt/2 (640 µs). La trame sera alors refusée. Ce phénomène aléatoire est rare et éventuellement compensé par la succession cyclique de répétition des trames. En revanche, si des informations supplémentaires sont ajoutées en fin d'une trame RTS classique, la probabilité d'avoir un code logique à 0 sur le premier bit d'information supplémentaire est de 50%. Cela entraînerait un refus des trames RTS classiques par les anciens récepteurs trop fréquent pour être acceptable. Le premier bit d'information supplémentaire doit donc être calé à 1 pour que les anciens récepteurs valident l'ensemble de la trame RTS de base constituant la première partie de données de la nouvelle trame, quelque soit la valeur du 56ème bit clôturant la trame RTS de base.If the noise is such that it substantially prolongs the high state of the signal, without a falling edge beyond the clock signal or that it corresponds for example to a bit of value 0, the next falling edge will only be obtained if after a time interval greater than Δt / 2 (640 μs). The frame will be refused. This random phenomenon is rare and possibly compensated by the cyclic succession of repetition of the frames. On the other hand, if additional information is added at the end of a conventional RTS frame, the probability of having a logic code of 0 on the first additional information bit is 50%. This would result in traditional RTS frames being rejected by older receivers too common to be acceptable. The first additional information bit must be rigged to 1 so that the older receivers pass all of the base RTS frame forming part of the new data frame, regardless of the value of the 56th bit terminating the frame Basic RTS.

En ajoutant un certain nombre de bits à la fin de la première partie de trame, on réserve donc un premier bit d'information supplémentaire dans la seconde partie de trame, dit bit de relais, qui sera systématiquement calé à 1. Ainsi, en forçant un front montant sur le bit suivant juste le dernier bit de la trame RTS de base, on garantit qu'un front descendant (au moment du signal horloge) intervient dans un intervalle de Δt/2 (640 ms). Les anciens récepteurs, ayant reçu un nombre suffisant et compréhensible de bits, ne réagissent pas aux nouvelles informations transmises qu'ils interprètent comme du bruit. Si on ne force pas ce premier bit d'information supplémentaire à 1, les données supplémentaires de la seconde partie de trame pourraient débuter par un zéro et compromettre l'acceptation de la première partie de la trame par un ancien récepteur. Cet arrangement est dans ce cas lié au choix des critères pour valider la trame de l'ancien protocole et dépend également du codage utilisé, en particulier du choix du code logique pour un front montant ou descendant pour un codage Manchester.By adding a certain number of bits at the end of the first frame part, a first bit of additional information is thus reserved in the second frame part, called relay bit, which will be systematically set to 1. Thus, by forcing a rising edge on the next bit just the last bit of the basic RTS frame, it is guaranteed that a falling edge (at the time of the clock signal) occurs in an interval of Δt / 2 (640 ms). The old receivers, having received a sufficient and comprehensible number of bits, do not react to the new transmitted information which they interpret as noise. If this first bit of additional information is not forced to 1, the additional data of the second frame part could start with a zero and compromise the acceptance of the first part of the frame by a former receiver. This arrangement is in this case related to the choice of criteria to validate the frame of the old protocol and also depends on the coding used, in particular the choice of logic code for a rising or falling edge for a Manchester coding.

L'invention concerne aussi un système de télécommunication comprenant au moins un émetteur d'ordres d'une ancienne génération, un émetteur d'ordres d'une nouvelle génération, un récepteur d'ordres d'une ancienne génération et un récepteur d'ordres d'une nouvelle génération.The invention also relates to a telecommunication system comprising at least one transmitter of orders of an old generation, a transmitter of orders of a new generation, a receiver of orders of an old generation and a receiver of orders of a new generation.

La figure 5 illustre le système selon l'invention.The figure 5 illustrates the system according to the invention.

Les émetteurs EMa et récepteurs RCa de l'ancienne génération sont respectivement adaptés à émettre et à recevoir et interpréter une trame de commande TRa cyclique selon un premier protocole, par exemple un protocole RTS classique. Par ailleurs, les émetteurs EMb et récepteurs RCb de la nouvelle génération sont respectivement adaptés à émettre et à recevoir et interpréter une trame de commande TRb cyclique selon un second protocole. La trame du second protocole comporte une trame du premier protocole directement suivie d'informations complémentaires, par exemple une trame RTS de nouvelle génération telle que décrite précédemment.The transmitters EMa and receivers RCa of the old generation are respectively adapted to transmit and receive and interpret a cyclic control frame TRa according to a first protocol, for example a conventional RTS protocol. Moreover, the EMb transmitters and RCb receivers of the new generation are respectively adapted to transmit and receive and interpret a cyclic control frame TRb according to a second protocol. The frame of the second protocol has a frame of the first protocol directly followed by additional information, for example a new generation RTS frame as described above.

Les récepteurs RCa ou RCb sont liés à des actionneurs, par exemple ainsi que représentés sur la figure 5, des motoréducteurs tubulaires pour l'entraînement de protections solaires. Le récepteur peut faire partie intégrale de l'actionneur, par exemple être contenu dans le boîtier de l'actionneur tubulaire à l'intérieur du tube d'enroulement de l'écran de protection solaire.Receivers RCa or RCb are linked to actuators, for example as shown in FIG. figure 5 , tubular motor gearboxes for driving solar protections. The receiver may be an integral part of the actuator, for example be contained in the casing of the tubular actuator inside the winding tube of the sun protection screen.

Selon l'invention, un récepteur RCa de l'ancienne génération est également adapté à recevoir et interpréter une trame de commande TRb selon le nouveau protocole et un récepteur RCb de la nouvelle génération est également adapté à recevoir et interpréter une trame de commande TRa selon l'ancien protocole.According to the invention, a receiver RCa of the old generation is also adapted to receive and interpret a control frame TRb according to the new protocol and a receiver RCb of the new generation is also adapted to receive and interpret a TRa control frame according to the old protocol.

La trame de l'ancien protocole a une longueur fixe, par exemple 56 bits, et l'ancien protocole émet des trames séparées par un intervalle inter-trame. La trame du nouveau protocole émet des informations complémentaires pendant les silences inter-trame définis dans les intervalles inter-trame de l'ancien protocole.The frame of the old protocol has a fixed length, for example 56 bits, and the old protocol transmits frames separated by an inter-frame interval. The frame of the new protocol transmits additional information during the inter-frame silences defined in the inter-frame intervals of the old protocol.

Ainsi, les données supplémentaires transmises par les trames TRb du nouveau protocole apparaissent comme du bruit pour les anciens récepteurs RCa alors que les données fournies dans l'intervalle inter-trame peuvent être traitées par les nouveaux récepteurs RCb. Puisque la trame du premier protocole se retrouve intégralement dans le nouveau protocole et que le flux de trame n'est pas modifié, la nouvelle trame est lisible par les anciens types de récepteurs ; on assure ainsi la compatibilité descendante avec une communication entre nouveaux émetteurs EMb et anciens récepteurs RCa. De même, la compatibilité ascendante est assurée avec une communication entre anciens émetteurs EMa et nouveaux récepteurs RCb ; des blancs (silence inter-trame) sont reçus par les nouveaux récepteurs à la place des données supplémentaires, mais le message est lisible par les nouveaux récepteurs car le format de la trame de base est identique pour les deux types de protocoles.Thus, the additional data transmitted by the new protocol TRb frames appear as noise for the old RCa receivers while the data provided in the interframe interval can be processed by the new RCb receivers. Since the frame of the first protocol is found entirely in the new protocol and the frame flow is not modified, the new frame is readable by the old types of receivers; This ensures downward compatibility with communication between new EMb transmitters and old RCa receivers. Similarly, backward compatibility is ensured with communication between old EMa transmitters and new RCb receivers; blanks (inter-frame silence) are received by the new receivers instead of the additional data, but the message is readable by the new receivers because the format of the basic frame is identical for both types of protocols.

Le nombre d'octets transmis dans une trame de commande TRb de la nouvelle génération dépend du silence inter-trame disponible, mais peut être augmenté par une augmentation du débit de transmission de ces données. La trame du nouveau protocole peut être émise avec un premier débit lors de l'émission de la trame de base puis avec un second débit lors de l'émission des informations supplémentaires, le second débit étant supérieur au premier. Ainsi, le message émis par les émetteurs de la nouvelle génération pourra comprendre une première partie de transmission avec un premier débit correspondant à celui de l'ancien protocole suivie d'une seconde partie de transmission de données à un débit supérieur de manière à transmettre un nombre d'octets supérieur.The number of bytes transmitted in a control frame TRb of the new generation depends on the available inter-frame silence, but can be increased by an increase in the transmission rate of these data. The frame of the new protocol can be transmitted with a first rate during the transmission of the basic frame and then with a second rate when the additional information is transmitted, the second rate being greater than the first. Thus, the message sent by the transmitters of the new generation may comprise a first transmission part with a first bit rate corresponding to that of the old protocol followed by a second part of data transmission at a higher bit rate so as to transmit a number of bytes greater.

Cette modification de débit sera transparente pour les anciens récepteurs qui ne traitent pas les données supplémentaires. Par contre, elle implique éventuellement une modification de l'électronique de traitement des données pour les émetteurs et récepteurs de nouvelle génération, si le débit choisi est supérieur au débit maximal que peuvent traiter les émetteurs et récepteurs de l'ancienne génération.This rate change will be transparent to older receivers that do not process the additional data. On the other hand, it may involve a modification of the data processing electronics for the next-generation transmitters and receivers, if the chosen bit rate is greater than the maximum bit rate that can be processed by the transmitters and receivers of the older generation.

L'invention concerne ainsi un émetteur d'ordres EMb pour système de télécommunication selon l'invention adapté à transmettre des trames de commande TRb selon le nouveau protocole et un récepteur d'ordres RCb pour système de télécommunication selon l'invention adapté à recevoir des trames de commande TRb selon le nouveau protocole.The invention thus relates to an EMb command transmitter for a telecommunication system according to the invention adapted to transmit control frames TRb according to the new protocol and a command receiver RCb for a telecommunication system according to the invention adapted to receive data. TRb control frames according to the new protocol.

En particulier, les récepteurs de la nouvelle génération sont adaptés à interpréter le contenu des informations supplémentaires transmises à la suite d'une trame de base dans les nouvelles trames. Ces informations supplémentaires sont interprétées en combinaison avec les données de la trame de base qui est entièrement contenue dans la trame du nouveau protocole.In particular, the new generation receivers are adapted to interpret the content of additional information transmitted following a base frame in the new frames. This additional information is interpreted in combination with the data of the basic frame which is entirely contained in the frame of the new protocol.

Ces informations supplémentaires peuvent comprendre des compléments d'identification ou d'adresses. En effet, le protocole RTS existant a un nombre d'adresses limité, codées sur 24 bits, ce qui peut conduire à une saturation. Il est donc possible, dans le cadre du nouveau protocole, d'utiliser certains octets d'informations supplémentaires pour coder un complément d'adresse. Ce complément d'adresse peut représenter une indication de famille, correspondant à un type de produit, à un revendeur utilisant le protocole sur ses propres produit ou autre, ou simplement correspondre à un complément de code aléatoire. Si on choisit de différencier des familles de produits fonctionnant sur le protocole de la nouvelle génération selon l'invention, on peut prévoir des fonctionnalités de blocage du récepteur sur une famille particulière, selon le ou les premiers codes reçus dans les informations supplémentaires de la seconde partie de trame.This additional information may include additional identification or addresses. Indeed, the existing RTS protocol has a limited number of addresses, coded on 24 bits, which can lead to saturation. It is therefore possible, in the context of the new protocol, to use certain bytes of additional information to encode an additional address. This additional address can represent a family indication, corresponding to a type of product, a reseller using the protocol on its own product or other, or simply correspond to a random code complement. If one chooses to differentiate families of products operating on the protocol of the new generation according to the invention, one can provide receiver blocking functions on a particular family, according to the first code or codes received in the additional information of the second frame part.

Les informations supplémentaires peuvent aussi permettre de renforcer la sécurité de la transmission d'une trame. En effet, de nouvelles fonctionnalités d'authentification peuvent être ajoutées dans la seconde partie de la trame transmise selon le protocole de la nouvelle génération. Par exemple, l'émetteur fournit, dans la seconde partie de données de la trame, un nombre aléatoire en même temps qu'un résultat de calcul basé sur une clé qu'il partage avec un récepteur. A réception de la trame, le récepteur refait le calcul à partir du nombre aléatoire transmis et vérifie le résultat avec celui transmis dans les informations supplémentaires de la trame. Cette authentification peut intervenir en complément de la vérification de l'identifiant de l'émetteur avec les données de la première partie de la trame.The additional information can also make it possible to reinforce the security of the transmission of a frame. Indeed, new authentication features can be added in the second part of the frame transmitted according to the protocol of the new generation. For example, the transmitter provides, in the second portion of data of the frame, a random number along with a calculation result based on a key that it shares with a receiver. On reception of the frame, the receiver recalculates from the random number transmitted and verifies the result with that transmitted in the additional information of the frame. This authentication can intervene in addition to verifying the identifier of the sender with the data of the first part of the frame.

Bien entendu, la présente invention n'est pas limitée aux modes de réalisations décrits à titre d'exemple. Tout protocole de commande d'actionneurs utilisant des trames de longueur fixe répétées cycliquement peut être utilisé dans le cadre de l'invention pour construire un nouveau protocole consistant à ajouter, à la trame de base classique, des informations supplémentaires placées dans le silence inter-trame défini par le protocole classique.Of course, the present invention is not limited to the embodiments described by way of example. Any actuator control protocol using cyclically repeated fixed length frames can be used within the scope of the invention to construct a new protocol of adding to the conventional backbone additional information placed in the interlocking silence. frame defined by the classical protocol.

Claims (16)

  1. A control frame for remote control of actuators used in a home automation system comprising:
    - a first part comprising first data identifying the nature of control and/or a transmitter and a first control field (CKS1) specific to the first part of the frame;
    characterised in that the frame also includes:
    a second part directly following the first part and comprising second data for defining the first data and a second control field (CKS2) specific to the second part of the frame or global to the whole of the frame;
    - a relay bit commencing the second part, said relay bit having a predetermined value.
  2. The control frame according to claim 1, characterized in that the relay bit is set at '1'.
  3. The control frame according to one of claims 1 or 2, characterized in that the second data of the second part of the frame are encrypted with a first encryption key transmitted in the first part of the frame.
  4. The control frame according to one of claims 1 or 2, characterized in that the second data of the second part of the frame are encrypted with a second encryption key transmitted in the second part of the frame.
  5. A system for control of actuators comprising:
    - an old generation command transmitter (EMa) which is adapted to transmit a control frame (TRa) in a cyclic manner according to a first protocol;
    - an old generation command receiver (RCa) linked to an actuator and adapted to receive and interpret a control frame according to the first protocol;
    the system also including:
    - a new generation command transmitter (EMb) adapted to transmit a control frame (TRb) in a cyclic manner according to a second protocol, said frame of the second protocol comprising a frame of the first protocol directly followed by additional information;
    - a new generation command receiver (RCb) linked to an actuator and adapted to receive and interpret a control frame according to the first and second protocols,
    and in that the old generation command receiver (RCa) is also adapted to receive and interpret a control frame according to the second protocol;
    wherein the control frame of the second protocol is a frame according to one of claims 1 to 4.
  6. The system according to claim 5, characterized in that the frame of the first protocol has a fixed length.
  7. The system according to one of claims 5 to 6, characterized in that the first protocol transmits frames separated by inter-frame silences and in that the additional information of the frames of the second protocol are transmitted during the inter-frame silences of the first protocol.
  8. The system according to one of claims 5 to 7, characterized in that the additional information of the frames of the second protocol are only interpreted by the new generation command receivers, the old generation command receivers interpreting only the frame of the first protocol contained in the frame of the second protocol.
  9. The system according to one of claims 5 to 8, characterized in that a frame of the second protocol is transmitted at a first data rate when the frame of the first protocol is transmitted and at a second data rate when the additional information are transmitted, the second data rate being greater than the first.
  10. The system according to one of claims 5 to 9, characterized in that the additional information of a frame of the second protocol are interpreted in combination with the data of the frame of the first protocol contained in the frame of the second protocol.
  11. The system according to one of claims 5 to 10, characterized in that the cycles of transmission of the control frames of the first protocol and of the second protocol are identical.
  12. The system according to one of claims 5 to 11, characterized in that at least one portion of the frame of the second protocol is encrypted.
  13. The system according to claim 12, characterized in that the encrypted portion is the frame of the first protocol contained in the frame of the second protocol.
  14. A command transmitter (EMb) for telecommunications system which is adapted to transmit control frames according to one of claims 1 to 4.
  15. A command receiver (RCb) for telecommunications system which is adapted to receive control frames according to one of claims 1 to 4 and characterized in that it is adapted to interpret the content of the second part of data.
  16. The receiver (RCb) according to claim 15, characterized in that it interprets the content of the second part of data as a function of the content of the first part of data.
EP06290273.9A 2005-02-25 2006-02-17 Communication system with cross-compatibility and associated communication frame Active EP1696402B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL06290273T PL1696402T3 (en) 2005-02-25 2006-02-17 Communication system with cross-compatibility and associated communication frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0501943A FR2882599B1 (en) 2005-02-25 2005-02-25 COMMUNICATION SYSTEM WITH CROSS ACCOUNTING AND ASSOCIATED COMMUNICATION FRAME

Publications (2)

Publication Number Publication Date
EP1696402A1 EP1696402A1 (en) 2006-08-30
EP1696402B1 true EP1696402B1 (en) 2013-04-10

Family

ID=35355394

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06290273.9A Active EP1696402B1 (en) 2005-02-25 2006-02-17 Communication system with cross-compatibility and associated communication frame

Country Status (7)

Country Link
US (1) US8189620B2 (en)
EP (1) EP1696402B1 (en)
JP (1) JP2006262457A (en)
CN (1) CN1848852B (en)
ES (1) ES2423963T3 (en)
FR (1) FR2882599B1 (en)
PL (1) PL1696402T3 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2882599B1 (en) * 2005-02-25 2007-05-04 Somfy Soc Par Actions Simplifi COMMUNICATION SYSTEM WITH CROSS ACCOUNTING AND ASSOCIATED COMMUNICATION FRAME
EP2112640B1 (en) * 2008-04-23 2012-10-03 EFR Europäische Funk-Rundsteuerung Terminal for a radio ripple control system
JP2010087665A (en) * 2008-09-30 2010-04-15 Nippon Seiki Co Ltd Remote controller
JP2010161588A (en) * 2009-01-07 2010-07-22 Yamaha Corp Remote control system
FR2952463B1 (en) 2009-11-06 2012-12-21 Somfy Sas ORDERS COMMUNICATION IN A DOMOTIC NETWORK AND BETWEEN DOMOTIC NETWORKS.
JP5306169B2 (en) * 2009-12-25 2013-10-02 ニッタン株式会社 Data transmission method and monitoring system
US8966622B2 (en) * 2010-12-29 2015-02-24 Amazon Technologies, Inc. Techniques for protecting against denial of service attacks near the source
US10241522B2 (en) * 2011-12-06 2019-03-26 Somfy Sas Communication method in a system comprising a power supply and communication entity and a home automation actuator
FR2986644B1 (en) 2012-02-02 2014-02-07 Somfy Sas METHOD AND COMMUNICATION DEVICE FOR REMOTELY CONTROLLING AN ACTUATOR FOR A BUILDING MOBILE EQUIPMENT
FR2986645B1 (en) 2012-02-02 2014-10-17 Somfy Sas METHOD AND COMMUNICATION DEVICE FOR REMOTELY CONTROLLING AN ACTUATOR FOR A BUILDING MOBILE EQUIPMENT
EP2672393A1 (en) * 2012-06-04 2013-12-11 Dialog Semiconductor B.V. Circuit and methods to use an audio interface to program a device within an audio stream
CN106940536A (en) * 2017-03-03 2017-07-11 珠海格力电器股份有限公司 Clock method for self-calibrating and device, air-conditioner set system
CN110347862B (en) * 2019-06-24 2022-09-06 歌尔股份有限公司 Recording processing method, device, equipment, system and audio equipment
CN112437061B (en) * 2020-11-11 2022-10-21 广州彩熠灯光股份有限公司 Out-of-band communication method, system, storage medium and device based on DMX512 protocol

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0540621B1 (en) 1990-07-16 1996-09-11 The Chamberlain Group, Inc. Remote actuating apparatus
US6088342A (en) * 1997-05-05 2000-07-11 Nokia Mobile Phones Limited Dynamic configuration of radio link protocol in a telecommunications system
US6970434B1 (en) * 1995-06-07 2005-11-29 Broadcom Corporation Hierarchical communication system providing intelligent data, program and processing migration
KR100497964B1 (en) * 1997-01-31 2005-07-01 톰슨 콘슈머 일렉트로닉스, 인코포레이티드 Remote control apparatus and a method for the same
JP3603529B2 (en) * 1997-03-13 2004-12-22 株式会社日立製作所 Communication method and wideband digital wireless communication terminal in wideband digital wireless system
JP3245552B2 (en) * 1997-08-27 2002-01-15 甲府日本電気株式会社 Transfer control system
FI980427A (en) * 1998-02-25 1999-08-26 Ericsson Telefon Ab L M Procedure, arrangement and device for verification
US7340251B1 (en) * 1999-03-30 2008-03-04 Nokia Corporation Scanning guard timer
US6507582B1 (en) * 1999-05-27 2003-01-14 Qualcomm Incorporated Radio link protocol enhancements for dynamic capacity wireless data channels
EP1224814A2 (en) 1999-10-28 2002-07-24 Siemens Aktiengesellschaft Method for extending protocol fields
JP3541787B2 (en) * 2000-07-26 2004-07-14 株式会社デンソー Multiplex communication system
US6721282B2 (en) * 2001-01-12 2004-04-13 Telecompression Technologies, Inc. Telecommunication data compression apparatus and method
KR100547722B1 (en) * 2001-11-10 2006-02-01 삼성전자주식회사 Gigabit ethernet passive optical network system and method for media access control thereof
US7350077B2 (en) * 2002-11-26 2008-03-25 Cisco Technology, Inc. 802.11 using a compressed reassociation exchange to facilitate fast handoff
CN1275400C (en) * 2002-12-31 2006-09-13 中兴通讯股份有限公司 Velocity regulating method of speech sound self adaptive multivelocity
US7071838B2 (en) * 2003-05-02 2006-07-04 Potentia Semiconductor, Inc. Coupling signals via a coupling arrangement
KR100547116B1 (en) * 2003-05-23 2006-01-26 삼성전자주식회사 Method for communicating through wireless network and a device thereof
US8842657B2 (en) * 2003-10-15 2014-09-23 Qualcomm Incorporated High speed media access control with legacy system interoperability
WO2005065035A2 (en) * 2004-01-08 2005-07-21 Wisair Ltd. Distributed and centralized media access control device and method
US20060126847A1 (en) * 2004-11-12 2006-06-15 Jin-Meng Ho System and method for establishing secure communications between devices in distributed wireless networks
FR2882599B1 (en) * 2005-02-25 2007-05-04 Somfy Soc Par Actions Simplifi COMMUNICATION SYSTEM WITH CROSS ACCOUNTING AND ASSOCIATED COMMUNICATION FRAME

Also Published As

Publication number Publication date
CN1848852B (en) 2012-05-23
ES2423963T3 (en) 2013-09-25
EP1696402A1 (en) 2006-08-30
PL1696402T3 (en) 2013-09-30
US8189620B2 (en) 2012-05-29
US20060193293A1 (en) 2006-08-31
JP2006262457A (en) 2006-09-28
FR2882599A1 (en) 2006-09-01
FR2882599B1 (en) 2007-05-04
CN1848852A (en) 2006-10-18

Similar Documents

Publication Publication Date Title
EP1696402B1 (en) Communication system with cross-compatibility and associated communication frame
EP1476859B1 (en) Method for matching bidirectional objects
EP1898563B1 (en) Method and system for remotely controlling domestic equipment
EP3016078B1 (en) Method for detecting, identifying and automatically disarming an alarm unit, and alarm system suitable for carrying out said method
WO2002082316A9 (en) Radio communication interface module, and its use in a device reading, processing, transmitting and operating on a bar code
EP2083408B1 (en) Method for communicating information by infrared rays between a transmitter and a receiver in a home automation network
EP2832158A1 (en) Method for processing the reception of a communication signal by radio channel, and associated method for processing the transmission, devices and computer programs
EP1476860B1 (en) Method for defining a group from among bi-directional objects
FR2745972A1 (en) RADIO LINK COMMUNICATION SYSTEM
EP0320390A1 (en) Remote control system for domestic appliances
EP2320401B1 (en) Communication of orders within a home-automation network and between home-automation networks
EP1160752B1 (en) High frequency wireless transmission process for a remote controlled heating regulation device
FR2902916A1 (en) Self-powered elements e.g. actuator, communicating method for home-automation installation, involves sending information between sending and receiving elements when receiving element is no longer in sleep mode
EP1798902A1 (en) Communication system between home automation terminals connected to the internet
FR2788858A1 (en) Maintenance of an anti collision channel in an electronic identification system with an interrogator and multiple transponders placed close together that prevents collisions between their signals, for use in shops, vehicles etc.
EP1950722B1 (en) Method for configuring an order transmitter in a home automation system
EP3625930B1 (en) Method and system for serial data transmission
FR3035292A1 (en) DOMOTIC NETWORK
EP3433979B1 (en) Service recording in a local area network
EP0924893A1 (en) Secure communication procedure
EP3001325B1 (en) Method for providing power and data transfer by wire between master and peripherals
EP3692764B1 (en) Method for determining binary words forming a preamble
FR2959081A1 (en) METHOD OF SCREWING A RADIO FREQUENCY LINK IN A REMOTE CONTROL SYSTEM OF A MOTOR VEHICLE
WO1999004366A1 (en) Method and system for voice transmission of a binary data sequence from a piezoelectric transducer
FR2855298A1 (en) Wireless alarm system for domestic application, has device that is out of range of wireless coverage zone of central control system and within range of coverage zone of alarm or intrusion detection device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070228

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20071214

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 606389

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006035539

Country of ref document: DE

Effective date: 20130606

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: WAGNER PATENT AG, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 606389

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130410

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2423963

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130925

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130812

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130810

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130711

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602006035539

Country of ref document: DE

Owner name: SOMFY SAS, FR

Free format text: FORMER OWNER: SOMFY, CLUSES, FR

Effective date: 20131008

Ref country code: DE

Ref legal event code: R081

Ref document number: 602006035539

Country of ref document: DE

Owner name: SOMFY SAS, FR

Free format text: FORMER OWNER: SOMFY, CLUSES, FR

Effective date: 20130410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: BAECHERSTRASSE 9, 8832 WOLLERAU (CH)

26N No opposition filed

Effective date: 20140113

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006035539

Country of ref document: DE

Effective date: 20140113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140217

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006035539

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060217

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602006035539

Country of ref document: DE

Owner name: SOMFY ACTIVITIES SA, FR

Free format text: FORMER OWNER: SOMFY SAS, CLUSES, FR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602006035539

Country of ref document: DE

Owner name: SOMFY ACTIVITES SA, FR

Free format text: FORMER OWNER: SOMFY SAS, CLUSES, FR

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006035539

Country of ref document: DE

Representative=s name: LAVOIX MUNICH, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006035539

Country of ref document: DE

Representative=s name: LAVOIX MUNICH, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602006035539

Country of ref document: DE

Owner name: SOMFY ACTIVITES SA, FR

Free format text: FORMER OWNER: SOMFY ACTIVITIES SA, CLUSES, FR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220218

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220211

Year of fee payment: 17

Ref country code: BE

Payment date: 20220224

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230222

Year of fee payment: 18

Ref country code: ES

Payment date: 20230306

Year of fee payment: 18

Ref country code: CH

Payment date: 20230303

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230123

Year of fee payment: 18

Ref country code: DE

Payment date: 20230207

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230125

Year of fee payment: 18

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230217

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240129

Year of fee payment: 19