EP1694774A1 - Luminescent, transparent composite materials - Google Patents

Luminescent, transparent composite materials

Info

Publication number
EP1694774A1
EP1694774A1 EP04802635A EP04802635A EP1694774A1 EP 1694774 A1 EP1694774 A1 EP 1694774A1 EP 04802635 A EP04802635 A EP 04802635A EP 04802635 A EP04802635 A EP 04802635A EP 1694774 A1 EP1694774 A1 EP 1694774A1
Authority
EP
European Patent Office
Prior art keywords
luminescent
polymer
plastic
transparent
nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04802635A
Other languages
German (de)
French (fr)
Inventor
Stefan Kaskel
Ullrich Holle
Holger Althues
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Studiengesellschaft Kohle gGmbH
Original Assignee
Studiengesellschaft Kohle gGmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Studiengesellschaft Kohle gGmbH filed Critical Studiengesellschaft Kohle gGmbH
Publication of EP1694774A1 publication Critical patent/EP1694774A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • C09K11/592Chalcogenides
    • C09K11/595Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/54Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • C09K11/615Halogenides
    • C09K11/616Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • C09K11/641Chalcogenides
    • C09K11/643Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/68Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals containing chromium, molybdenum or tungsten
    • C09K11/681Chalcogenides
    • C09K11/684Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • C09K11/705Halogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7701Chalogenides
    • C09K11/7703Chalogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7704Halogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7708Vanadates; Chromates; Molybdates; Tungstates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium

Definitions

  • the present invention relates to a luminescent transparent polymer, a method for producing this polymer and the use of the polymer for producing luminescent transparent glasses and for producing glasses coated with the polymer.
  • Doped zinc sulfide nanoparticles can be prepared in solution using different processes by precipitation reactions from zinc salts and a sulfur source such as thiourea or sodium sulfide.
  • a sulfur source such as thiourea or sodium sulfide.
  • zinc acetate and manganese acetate are reacted with Na 2 S in methanol, which results in 3-4 nm ZnS: Mn particles.
  • the ZnS nanoparticles doped with manganese luminesce with excitation with UV light (300 nm) with orange color (590 nm) but only with low quantum yields of up to 4%.
  • z. B. polymethacrylic acid can be used in aqueous solution. It is also known that the intensity of the photoluminescence of doped zinc sulfide nanoparticles can be increased considerably by the adsorption of acrylic acid or polyacrylic acid on the surface of the particles. Particles produced in this way can be used, for example, for the production of composite films.
  • ZnS nanocrystals doped with copper are also suitable for the production of polymer composites with polymethacrylic acid methyl ester (PMMA) in the form of thin films for the production of electroluminescent components.
  • PMMA polymethacrylic acid methyl ester
  • CN1394900 describes a method for producing ZnS nanoparticles, in which a zinc salt is reacted with H 2 S in an organic solvent and then processed with the polymer to form a film. It is not described whether the nano-ZnS / polymer dispersions are transparent or cloudy.
  • JP2002105325 describes a transparent film made of acrylic glass, which contains semiconductor nanoparticles such as ZnS and CdSe. The particles are stabilized by a phosphine oxide. These films typically contain a high proportion of solids and are a maximum of a few micrometers thick, to produce electroluminescent components from it.
  • JP2002047425 describes the production of thermoplastic composites from ZnS nanoparticles and a copolymer containing styrene-methacrylate for the production of high-index glasses. Thiols are used to stabilize the nanoparticles.
  • Stabilizers such as thiols, phosphine oxides or surfactants are generally added to improve stability.
  • Stabilizers such as thiols act as radical scavengers in the case of a radical-initiated polymerization and adversely affect the polymerization.
  • the object of the present invention was to provide luminescent plastic glasses which, in particular in terms of their transparency, differ little or only slightly from the pure plastic glass. These glasses should preferably be able to be produced in a simple manner.
  • the present invention accordingly relates to transparent, luminescent plastic glasses which contain luminescent nanoparticles.
  • transparent means that viewing the glass in visible light means that no clouding due to scattering effects can be observed.
  • the particles produced as powder must be separated from one another by suitable dispersion methods in the monomer in order to eliminate scattering effects from aggregates which are larger than the primary particle size, and this dispersion may also be used in the course of the polymerization of larger amounts of monomer in bulk, which leads to shaping and Manufacture of glazing is used, do not cloud it.
  • Plastic glass means that the plastic can take any shape, e.g. B. has the shape of a film or three-dimensional object.
  • the nanoparticles have a particle size of 1 to 300 nm, preferably up to 100 nm, which here means the individual discrete crystallites. It can also be agglomerates are present, the total size of which is above 3 nm and in particular below 100 nm.
  • the nanoparticles are preferably in the form of discrete crystallites or small agglomerates which do not exceed a particle size of 50 nm. Larger agglomerates are disadvantageous because they can reduce the transparency of the finished glass.
  • the glasses according to the invention are particularly suitable for the production of decorative objects, such as in luminescent glazing, decorative lamp parts or transparent color representations, which use a UV source as the active light source.
  • decorative objects such as in luminescent glazing, decorative lamp parts or transparent color representations, which use a UV source as the active light source.
  • they can be used to illuminate printed posters, timetables, etc.
  • the nanoparticles contained according to the invention can be used to modify the properties of the plastic glasses without reducing their transparency.
  • the refractive index can be increased by introducing the nanoparticles, which is advantageous for the use of the glasses in optical components.
  • Another advantage is that many luminescent nanoparticles have a fire-retardant effect and can therefore contribute to improving fire protection when using large-area glazing made from plastic glazing, in particular glazing made from polymethacrylic acid methyl esters.
  • the luminescent nanoparticles contained according to the invention can be selected from phosphors (luminous pigments) and / or phosphors doped with transition metals and / or lanthanides.
  • phosphors luminous pigments
  • Preferred and well-suited phosphors are e.g. B. ZnS and ZnO.
  • the phosphors are preferably present in the glasses in an amount of 0.1 to 20% by weight, based on the amount of polymer.
  • the nanoparticles can be doped with metals known for doping, such as Al, transition metals such as Cu, Ag, Mn, rare earths such as Eu, Yb etc. These metals are preferably in an amount of 0.1 to 5 wt .-%, based on the phosphor.
  • the plastic glasses used according to the invention are preferably selected from conventional transparent plastics.
  • the plastic glasses are preferably polymers or polymer mixtures which are selected from polyacrylates and their derivatives, for example based on acrylic acid, butanediol monoacrylate, trimethylol propane triacrylate, etc., polymethacrylates, polycarbonates, polystyrenes, epoxides, polyethylene terephthalates, ethylene-norbornene copolymers, and any copolymers of the corresponding monomers.
  • Another object of the present invention is a method for producing a luminescent, transparent plastic glass, which is characterized in that one or more luminescent nanoparticles are mixed with a polymer precursor or a solution of the polymer precursor and the mixture obtained is polymerized in a manner known per se.
  • the luminescent nanoparticles are preferably intimately mixed with the polymer precursor or a solution of this polymer precursor in a first process step, product with uniform luminescence and transparency being able to be obtained when the nanoparticles are dispersed in the polymer precursor.
  • the mixture can be heated during the dispersion, but the temperature should be below the polymerization or decomposition temperature of the polymer precursor.
  • the nanoparticles are produced from their soluble salts by precipitation reactions known to the person skilled in the art immediately before incorporation into the polymer precursor. It is also possible to form these in situ from the precursors in a mixture with the polymer precursor. Particularly stable dispersions are obtained when the nanoparticles are prepared from the soluble salts in an alcoholic solution, for example in the presence of methanol, ethanol, i-propanol, butanol or similar solvents. It is assumed that particles form during the precipitation reaction which can be stabilized particularly well by the polar residues, such as the OH groups and by polar groups in the polymer precursor. The phosphor particles obtained are notable for particularly good colloidal stability in the polymer precursor.
  • the nanoparticles are first mixed with a subset of the polymer precursor.
  • the mixture or dispersion obtained can then be mixed with further polymer precursor, which can be a different one than the first subset, and then polymerized.
  • nanoparticles which, as described above, by Precipitation reaction were obtained from an alcoholic solution, these are preferably at least partially separated from the solvent and mixed or dispersed with a polymer precursor.
  • the mixture obtained is preferably a clear dispersion in which the nanoparticles are colloidally dissolved or distributed.
  • the mixture or dispersion obtained is then mixed with further polymer precursor and, as described below, subjected to the polymerization.
  • the polymerization precursor is preferably selected from the monomers or polymerizable oligopolymers which are liquid at processing temperature or are soluble in a solvent.
  • the nanoparticles can be mixed with the pure monomer or a mixture of several monomers or oligopolymers that can be polymerized with one another. If it facilitates dispersing, polymerization or further processing, a solvent can also be added. The solvent should not negatively influence the polymerization and the stability of the nanoparticles in the polymer precursor or in the finished product and should be easy to remove.
  • Suitable solvents are, for example, water, methanol, ethanol, tetrahydrofuran, CH 2 Cl 2 , low-boiling alkanes such as pentane or hexane, aromatics such as toluene, etc.
  • the nanoparticles are as finely divided as possible in the mixture produced, i.e. finely dispersed, before.
  • the particle size of the dispersed nanoparticles is preferably below 100 nm.
  • the mixture of nanoparticles and polymer precursor obtained is polymerized in a known manner in the second process stage.
  • the nanoparticles are preferably only mixed with a subset of the polymer precursor required for producing the glass according to the invention. The remaining amount is added shortly before the polymerization. If it is advantageous for the polymerization, the mixture obtained and, if appropriate, further polymer precursors can be mixed with water to produce a dispersion. Depending on the type of polymerization, an initiator and / or catalyst etc. can also be added.
  • Luminescent transparent glasses are obtained.
  • the mixture obtained in the second process stage is applied to a finished plastic or silicate glass and polymerized on this glass. In this way, glasses coated with luminescent transparent plastic glass can be obtained.
  • Another object is the use of the luminescent transparent plastic glasses according to the invention for the production of lighting elements, luminescent representations including lettering on objects such as glasses, for marking plastics, etc.
  • Another object is the use of the luminescent transparent plastic glasses according to the invention for the production of coatings on inorganic or organic glasses.
  • a stable ethanolic dispersion of the ZnO nanoparticles can be produced as follows:
  • the particles luminesce under UV radiation.
  • BDMA butanediol monoacrylate
  • Ethanol can be distilled off from this mixture in vacuo, so that about 10 ml of dispersion remain.
  • BDMA butanediol monoacrylate
  • a white precipitate is centrifuged off.
  • the supernatant dispersion continues to show the green luminescence of the ZnO particles and is transparent; the precipitation does not contain any significant amounts of ZnO.
  • the surrounding BDMA is polymerizable and miscible with other monomers (methyl methacrylate, styrene and trimethylolpropane triacrylate (TMPTA)). The copolymerization with these monomers leads to transparent, luminescent composite materials.
  • 3 g of the BDMA / ZnO dispersion are mixed with 1 g of TMPTA and 0.004 g of Lucirin TPO (UV initiator) and placed between two glass plates, which are set to 1.5 by a soft PVC ring mm are kept.
  • the mixture and the gas space above the liquid are flushed with argon and irradiated with UV light for one minute (UVA-Cube, Hoenle).
  • a solid, transparent polymer plate is obtained which has the fluorescent properties of the ZnO.
  • 1.5 g of the BDMA / ZnO dispersion from Example 3 are mixed with 1.5 g of styrene, 1 g of TMPTA and 0.004 g of Lucirin TPO (UV initiator) and polymerized as transparent plates as in 3c).
  • 1.5 g of the BDMA / ZnO dispersion from Example 3 are mixed with 1.5 g of methyl methacrylate, 1 g of TMPTA and 0.004 g of Lucirin TPO (UV initiator) and polymerized as transparent plates as in 3c).

Abstract

The invention relates to a transparent, luminescent plastic glass containing luminescent particles and to a method for producing the same. The glass hardly differs or differs only slightly in terms of transparency from pure plastic glass. In addition, said glass is easy to produce.

Description

Lunineszierende transparente Kompositmaterialien Luninescent transparent composite materials
Die vorliegende Erfindung betrifft ein lumineszierendes transparentes Polymer, ein Verfahren zur Herstellung dieses Polymers sowie die Verwendung des Polymers zur Herstellung von lumineszierenden transparenten Gläsern und zur Herstellung von mit dem Polymer beschichteten Gläsern.The present invention relates to a luminescent transparent polymer, a method for producing this polymer and the use of the polymer for producing luminescent transparent glasses and for producing glasses coated with the polymer.
Dotierte Zinksulfid-Nanopartikel können nach unterschiedlichen Verfahren in Lösung durch Fällungsreaktionen aus Zinksalzen und einer Schwefelquelle wie Thioharnstoff oder Natriumsulfid hergestellt werden. Dabei werden beispielsweise Zinkacetat und Manganacetat mit Na2S in Methanol umgesetzt, wodurch 3-4 nm große ZnS:Mn Partikel entstehen. Die mit Mangan dotierten ZnS-Nanopartikel lumineszieren bei Anregung mit UV-Licht (300 nm) mit oranger Farbe (590 nm) jedoch nur mit geringen Quantenausbeuten von bis zu 4%.Doped zinc sulfide nanoparticles can be prepared in solution using different processes by precipitation reactions from zinc salts and a sulfur source such as thiourea or sodium sulfide. For example, zinc acetate and manganese acetate are reacted with Na 2 S in methanol, which results in 3-4 nm ZnS: Mn particles. The ZnS nanoparticles doped with manganese luminesce with excitation with UV light (300 nm) with orange color (590 nm) but only with low quantum yields of up to 4%.
Als Hilfsmittel zur Stabilisierung von ZnS-Nanopartikeln bei deren Synthese kann z. B. Polymethacrylsäure in wässriger Lösung eingesetzt werden. Auch ist bekannt, dass die Intensität der Photolumineszenz von dotierten Zinksulfid-Nanopartikeln erheblich durch die Adsorption von Acrylsäure oder Polyacrylsäure an der Oberfläche der Partikel gesteigert werden kann. Derart hergestellte Partikel können beispielsweise zur Herstellung von Kompositfilmen eingesetzt werden.As an aid for stabilizing ZnS nanoparticles in their synthesis, z. B. polymethacrylic acid can be used in aqueous solution. It is also known that the intensity of the photoluminescence of doped zinc sulfide nanoparticles can be increased considerably by the adsorption of acrylic acid or polyacrylic acid on the surface of the particles. Particles produced in this way can be used, for example, for the production of composite films.
Mit Kupfer dotierte ZnS-Nanokristalle eignen sich ebenfalls zur Herstellung von Polymerkompositen mit Polymethacrylsäuremethylester (PMMA) in Form von dünnen Filmen zur Herstellung von elektrolumineszierenden Bauteilen. Die Einarbeitung, das Eindisperigeren, in das Polymer erfolgt vielfach machnisch.ZnS nanocrystals doped with copper are also suitable for the production of polymer composites with polymethacrylic acid methyl ester (PMMA) in the form of thin films for the production of electroluminescent components. The incorporation into the polymer is often done mechanically.
In CN1394900 wird ein Verfahren zur Herstellung von ZnS-Nanopartikeln beschrieben, wobei ein Zinksalz in einem organischen Lösungsmittel mit H2S zur Reaktion gebracht wird und anschließend mit dem Polymer zu einem Film verarbeitet wird. Es wird nicht beschrieben, ob die nano-ZnS/Polymer-Dispersionen transparent oder trüb sind. In JP2002105325 wird ein transparenter Film aus Acrylglas beschrieben, welcher Halbleiternanopartikel wie ZnS und CdSe enthält. Dabei werden die Partikel durch ein Phosphinoxid stabilisiert. Typischerweise enthalten diese Filme einen hohen Feststoffanteil und sind maximal wenige Mikrometer dick, um daraus elektrolumineszierende Bauteile herzustellen.CN1394900 describes a method for producing ZnS nanoparticles, in which a zinc salt is reacted with H 2 S in an organic solvent and then processed with the polymer to form a film. It is not described whether the nano-ZnS / polymer dispersions are transparent or cloudy. JP2002105325 describes a transparent film made of acrylic glass, which contains semiconductor nanoparticles such as ZnS and CdSe. The particles are stabilized by a phosphine oxide. These films typically contain a high proportion of solids and are a maximum of a few micrometers thick, to produce electroluminescent components from it.
In JP2002047425 wird die Herstellung von thermoplastischen Kompositen aus ZnS- Nanopartikeln und einem Styrol-Methacrylat enthaltenden Copolymer beschrieben zur Herstellung hochbrechender Brillengläser. Dabei werden Thiole zur Stabilisierung der Nanopartikel eingesetzt.JP2002047425 describes the production of thermoplastic composites from ZnS nanoparticles and a copolymer containing styrene-methacrylate for the production of high-index glasses. Thiols are used to stabilize the nanoparticles.
Die aus dem Stand der Technik bekannten Verfahren haben den Nachteil, dass verwendete ZnS-Dispersionen eine für viele Anwendungen unzureichende kolloidale Stabilität aufweisen. Zur Verbesserung der Stabilität werden in der Regel Stabilisatoren wie Thiole, Phosphinoxide oder Tenside zugesetzt. Stabilisatoren wie Thiole wirken bei einer radikalisch initiierten Polymerisation als Radikalfänger und beeinflussen die Polymerisation nachteilig.The processes known from the prior art have the disadvantage that the ZnS dispersions used have an inadequate colloidal stability for many applications. Stabilizers such as thiols, phosphine oxides or surfactants are generally added to improve stability. Stabilizers such as thiols act as radical scavengers in the case of a radical-initiated polymerization and adversely affect the polymerization.
Der vorliegenden Erfindung lag die Aufgabe zugrunde, lumineszierende Kunststoffgläser zur Verfügung zu stellen, die sich insbesondere in ihrer Transparenz von dem reinen Kunststoffglas kaum oder nur geringfügig unterscheiden. Diese Gläser sollen vorzugsweise auf einfache Weise hergestellt werden können.The object of the present invention was to provide luminescent plastic glasses which, in particular in terms of their transparency, differ little or only slightly from the pure plastic glass. These glasses should preferably be able to be produced in a simple manner.
Gegenstand der vorliegenden Erfindung sind demgemäß transparente, lumineszierende Kunststoffgläser, die lumineszierende Nanopartikel enthalten.The present invention accordingly relates to transparent, luminescent plastic glasses which contain luminescent nanoparticles.
Transparent heißt in diesem Fall, dass durch Betrachten des Glases im sichtbaren Licht keine Trübung durch Streueffekte beobachtbar ist. Dazu ist es zum einen nötig, besonders kleine Primärpartikel herzustellen, welche nur in geringem Maße zu Lichtstreueffekten führen. Zum anderen müssen die als Pulver hergestellten Partikel durch geeignete Dispergiermethoden im Monomer voneinander separiert werden, um Streueffekte durch Aggregate, welche größer als die Primärpartikelgröße sind, zu eliminieren und diese Dispersion darf auch im Verlauf der Polymerisation von größeren Monomermengen in Substanz, was zur Formgebung und Herstellung von Verglasungen verwendet wird, nicht eintrüben.In this case, transparent means that viewing the glass in visible light means that no clouding due to scattering effects can be observed. For this, it is necessary, on the one hand, to produce particularly small primary particles which only lead to light scattering effects to a small extent. On the other hand, the particles produced as powder must be separated from one another by suitable dispersion methods in the monomer in order to eliminate scattering effects from aggregates which are larger than the primary particle size, and this dispersion may also be used in the course of the polymerization of larger amounts of monomer in bulk, which leads to shaping and Manufacture of glazing is used, do not cloud it.
Kunststoffglas bedeutet, dass der Kunststoff jede beliebige Form annehmen kann, z. B. die Form eines Films oder dreidimensionalen Gegenstandes aufweist.Plastic glass means that the plastic can take any shape, e.g. B. has the shape of a film or three-dimensional object.
Die Nanopartikel weisen eine Teilchengröße von 1 bis 300 nm, vorzugsweise bis 100 nm auf, wobei hier die einzelnen diskreten Kristallite gemeint sind. Es können auch Agglomerate vorliegen, deren Gesamtgröße oberhalb 3 nm und insbesondere unterhalb von 100 nm liegt. Vorzugsweise liegen die Nanopartikel in Form von diskreten Kristalliten oder kleinen Agglomeraten vor, die eine Teilchengröße von 50 nm nicht überschreiten. Größere Agglomerate sind nachteilig, da sie die Transparenz des fertigen Glases mindern können.The nanoparticles have a particle size of 1 to 300 nm, preferably up to 100 nm, which here means the individual discrete crystallites. It can also be agglomerates are present, the total size of which is above 3 nm and in particular below 100 nm. The nanoparticles are preferably in the form of discrete crystallites or small agglomerates which do not exceed a particle size of 50 nm. Larger agglomerates are disadvantageous because they can reduce the transparency of the finished glass.
Die erfindungsgemäßen Gläser eignen sich insbesondere zur Herstellung von dekorativen Gegenständen, wie in lumineszierenden Verglasungen, dekorativen Lampenteilen oder transparenten Farbdarstellungen, welche als aktive Lichtquelle eine UV-Quelle verwenden. Sie können beispielsweise zur Beleuchtung von bedruckten Plakaten, Fahrplänen etc. eingesetzt werden. Zudem können die erfindungsgemäß enthaltenen Nanopartikel zur Modifizierung der Eigenschaften der Kunststoffgläser verwendet werden, ohne dabei deren Transparenz zu mindern. Durch Einbringen der Nanopartikel kann der Brechungsindex erhöht werden, was für die Verwendung der Gläser in optischen Bauteilen von Vorteil ist.The glasses according to the invention are particularly suitable for the production of decorative objects, such as in luminescent glazing, decorative lamp parts or transparent color representations, which use a UV source as the active light source. For example, they can be used to illuminate printed posters, timetables, etc. In addition, the nanoparticles contained according to the invention can be used to modify the properties of the plastic glasses without reducing their transparency. The refractive index can be increased by introducing the nanoparticles, which is advantageous for the use of the glasses in optical components.
Ein weiterer Vorteil ist, dass viele lumineszierende Nanopartikel eine brandhemmende Wirkung aufweisen und daher zur Verbesserung des Brandschutzes bei der Verwendung von großflächigen Verglasungen aus Kunststoffverglasungen, insbesondere von Verglasungen aus Polymethacrylsäuremethylestern, beitragen können.Another advantage is that many luminescent nanoparticles have a fire-retardant effect and can therefore contribute to improving fire protection when using large-area glazing made from plastic glazing, in particular glazing made from polymethacrylic acid methyl esters.
Die erfindungsgemäß enthaltenen lumineszierenden Nanopartikel können ausgewählt werden aus Leuchtstoffen (Leuchtpigmenten) und/oder mit Übergangsmetallen und/oder Lanthaniden dotierten Leuchtstoffen. Als geeignete Leuchtstoffe können Y2O3, YVO4, Zn2SiO4, CaWO4, MgSi03, BaF2, SrAI2O4, ZnO, ZnS, Gd2O3S, La2O2S, BaFCI, LaOBr, Ca10(PO4)6(F,CI)2, BaMg2AI6O27, CeMgAlnO19, ZnSe, CdS und dgl. genannt werden. Bevorzugt eingesetzte und gut geeignete Leuchtstoffe sind z. B. ZnS und ZnO. Die Leuchtstoffe sind in den Gläsern vorzugsweise in einer Menge von 0,1 bis 20 Gew.-%, bezogen auf die Menge Polymer, enthalten.The luminescent nanoparticles contained according to the invention can be selected from phosphors (luminous pigments) and / or phosphors doped with transition metals and / or lanthanides. Y 2 O 3 , YVO 4 , Zn 2 SiO 4 , CaWO 4 , MgSi0 3 , BaF 2 , SrAI 2 O 4 , ZnO, ZnS, Gd 2 O 3 S, La 2 O 2 S, BaFCI, LaOBr , Ca 10 (PO 4 ) 6 (F, CI) 2 , BaMg 2 Al 6 O 27 , CeMgAlnO 19 , ZnSe, CdS and the like. Preferred and well-suited phosphors are e.g. B. ZnS and ZnO. The phosphors are preferably present in the glasses in an amount of 0.1 to 20% by weight, based on the amount of polymer.
Zur Aktivierung der Lumineszenz können die Nanopartikel mit für die Dotierung bekannten Metallen dotiert werden, wie mit AI, Übergangsmetallen, wie Cu, Ag, Mn, seltene Erden, wie Eu, Yb usw. Diese Metalle sind vorzugsweise in einer Menge von 0,1 bis 5 Gew.-%, bezogen auf den Leuchtstoff, enthalten.To activate the luminescence, the nanoparticles can be doped with metals known for doping, such as Al, transition metals such as Cu, Ag, Mn, rare earths such as Eu, Yb etc. These metals are preferably in an amount of 0.1 to 5 wt .-%, based on the phosphor.
Die erfindungsgemäß verwendeten Kunststoffgläser werden vorzugsweise ausgewählt aus üblichen transparenten Kunststoffen. Vorzugsweise sind die Kunststoffgläser Polymere oder Polymergemische, die ausgewählt sind aus Polyacrylaten und deren Derivaten, beispielsweise auf Basis von Acrylsäure, Butandiolmonoacrylat, Trimethylolpropnantriacrylat, etc., Polymethacrylaten, Polycarbonaten, Polystyrolen, Epoxiden, Polyethylenterephthalaten, Ethylen-Norbornen-Copolymeren, und beliebigen Copolymerisaten der entsprechenden Monomere.The plastic glasses used according to the invention are preferably selected from conventional transparent plastics. The plastic glasses are preferably polymers or polymer mixtures which are selected from polyacrylates and their derivatives, for example based on acrylic acid, butanediol monoacrylate, trimethylol propane triacrylate, etc., polymethacrylates, polycarbonates, polystyrenes, epoxides, polyethylene terephthalates, ethylene-norbornene copolymers, and any copolymers of the corresponding monomers.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung eines lumineszierenden, transparenten Kunststoffglases, das dadurch gekennzeichnet ist, dass ein oder mehrere lumineszierende Nanopartikel mit einer Polymervorstufe oder einer Lösung der Polymervorstufe vermischt werden und das erhaltene Gemisch in an sich bekannter Weise polymerisiert wird.Another object of the present invention is a method for producing a luminescent, transparent plastic glass, which is characterized in that one or more luminescent nanoparticles are mixed with a polymer precursor or a solution of the polymer precursor and the mixture obtained is polymerized in a manner known per se.
Zur Durchführung des Verfahrens werden die lumineszierenden Nanopartikel in einer ersten Verfahrensstufe vorzugsweise innig mit der Polymervorstufe oder einer Lösung dieser Polymervorstufe vermischt, wobei Produkt mit gleichmäßiger Lumineszenz und Transparenz erhalten werden können, wenn die Nanopartikel in der Polymervorstufe dispergiert sind. Um eine gleichmäßige Dispersion zu erhalten, kann das Gemisch während des Dispergierens erwärmt werden, wobei die Temperatur jedoch unter der Polymerisations- oder Zersetzungstemperatur der Polymervorstufe liegen sollte.To carry out the process, the luminescent nanoparticles are preferably intimately mixed with the polymer precursor or a solution of this polymer precursor in a first process step, product with uniform luminescence and transparency being able to be obtained when the nanoparticles are dispersed in the polymer precursor. To obtain a uniform dispersion, the mixture can be heated during the dispersion, but the temperature should be below the polymerization or decomposition temperature of the polymer precursor.
In einer möglichen Ausführungsform der vorliegenden Erfindung werden die Nanopartikel unmittelbar vor Einarbeitung in die Polymervorstufe aus ihren löslichen Salzen durch dem Fachmann bekannte Fällungsreaktionen hergestellt. Es ist auch möglich, diese in situ aus den Vorstufen im Gemisch mit der Polymervorstufe zu bilden. Besonders stabile Dispersionen werden erhalten, wenn die Herstellung der Nanopartikel aus den löslichen Salzen in einer alkoholischen Lösung, beispielsweise in Gegenwart von Methanol, Ethanol, i- Propanol, Butanol oder ähnlichen Lösungsmitteln, erfolgt. Es wird angenommen, dass sich während der Fällungsreaktion Partikel bilden, die besonders gut durch die polaren Reste, wie die OH-Gruppen und durch polare Gruppen in der Polymervorstufe, stabilisiert werden können. Die erhaltenen Leuchtstoffpartikel zeichnen sich durch eine besonders gute kolloidale Stabilität in der Polymervorstufe aus.In one possible embodiment of the present invention, the nanoparticles are produced from their soluble salts by precipitation reactions known to the person skilled in the art immediately before incorporation into the polymer precursor. It is also possible to form these in situ from the precursors in a mixture with the polymer precursor. Particularly stable dispersions are obtained when the nanoparticles are prepared from the soluble salts in an alcoholic solution, for example in the presence of methanol, ethanol, i-propanol, butanol or similar solvents. It is assumed that particles form during the precipitation reaction which can be stabilized particularly well by the polar residues, such as the OH groups and by polar groups in the polymer precursor. The phosphor particles obtained are notable for particularly good colloidal stability in the polymer precursor.
In einer weiteren möglichen Ausführungsform der vorliegenden Erfindung werden die Nanopartikel zunächst mit einer Teilmenge der Polymervorstufe vermischt. Das erhaltenen Gemisch bzw. die Dispersion können anschließend mit weiterer Polymervorstufe, die eine andere sein kann als die erste Teilmenge, vermischt und dann polymerisiert werden. Werden als Nanopartikel solche eingesetzt, die, wie voranstehend beschrieben, durch Fällungsreaktion aus einer alkoholischen Lösung erhalten wurden, werden diese vorzugsweise zumindest teilweise vom Lösungsmittel abgetrennt und mit einer Polymervorstufe vermischt bzw. dispergiert. Das erhaltene Gemisch stellt vorzugsweise eine klare Dispersion dar, in welcher die Nanopartikel kolloidal gelöst bzw. verteilt sind. Anschließend wird das erhaltene Gemisch bzw. die Dispersion mit weiterer Polymervorstufe vermischt und, wie unten beschrieben, der Polymerisation unterworfen.In a further possible embodiment of the present invention, the nanoparticles are first mixed with a subset of the polymer precursor. The mixture or dispersion obtained can then be mixed with further polymer precursor, which can be a different one than the first subset, and then polymerized. Are used as nanoparticles, which, as described above, by Precipitation reaction were obtained from an alcoholic solution, these are preferably at least partially separated from the solvent and mixed or dispersed with a polymer precursor. The mixture obtained is preferably a clear dispersion in which the nanoparticles are colloidally dissolved or distributed. The mixture or dispersion obtained is then mixed with further polymer precursor and, as described below, subjected to the polymerization.
Die Polymerisationsvorstufe ist vorzugsweise ausgewählt aus den Monomeren oder polymerisierbaren Oligopolymeren, welche bei Verarbeitungstemperatur flüssig sind bzw. in einem Lösungsmittel löslich sind. Die Nanopartikel können mit dem reinen Monomer oder einem Gemisch aus mehreren miteinander polymerisierbaren Monomeren oder Oligopolymeren vermischt werden. Sofern es das Dispergieren, die Polymerisation oder die Weiterverarbeitung erleichtert, kann auch ein Lösungsmittel zugesetzt werden. Das Lösungsmittel sollte die Polymerisation und die Stabilität der Nanopartikel in der Polymervorstufe bzw. im fertigen Produkt nicht negativ beeinflussen und leicht wieder entfernbar sein. Geeignete Lösungsmittel sind beispielsweise Wasser, Methanol, Ethanol, Tetrahydrofuran, CH2CI2, niedrig siedende Alkane wie Pentan oder Hexan, Aromaten wie Toluol usw.The polymerization precursor is preferably selected from the monomers or polymerizable oligopolymers which are liquid at processing temperature or are soluble in a solvent. The nanoparticles can be mixed with the pure monomer or a mixture of several monomers or oligopolymers that can be polymerized with one another. If it facilitates dispersing, polymerization or further processing, a solvent can also be added. The solvent should not negatively influence the polymerization and the stability of the nanoparticles in the polymer precursor or in the finished product and should be easy to remove. Suitable solvents are, for example, water, methanol, ethanol, tetrahydrofuran, CH 2 Cl 2 , low-boiling alkanes such as pentane or hexane, aromatics such as toluene, etc.
Die Nanopartikel liegen in dem hergestellten Gemisch möglichst fein verteilt, d.h. fein dispergiert, vor. Die Teilchengröße der dispergierten Nanopartikel liegt vorzugsweise unter 100 nm.The nanoparticles are as finely divided as possible in the mixture produced, i.e. finely dispersed, before. The particle size of the dispersed nanoparticles is preferably below 100 nm.
Das erhaltene Gemisch aus Nanopartikel und Polymervorstufe wird in der zweiten Verfahrensstufe in an sich bekannter Weise polymerisiert. Wie bereits oben beschrieben werden die Nanopartikel vorzugsweise nur mit einer Teilmenge der zur Herstellung des erfindungsgemäßen Glases benötigten Polymervorstufe vermischt. Die restliche Menge wird kurz vor der Polymerisation zugesetzt. Sofern es für die Polymerisation vorteilhaft ist, kann das erhaltene Gemisch und ggf. weitere Polymervorstufen zur Herstellung einer Dispersion mit Wasser gemischt werden. Je nach Art der Polymerisation kann noch ein Initiator und/oder Katalysator etc. zugesetzt werden.The mixture of nanoparticles and polymer precursor obtained is polymerized in a known manner in the second process stage. As already described above, the nanoparticles are preferably only mixed with a subset of the polymer precursor required for producing the glass according to the invention. The remaining amount is added shortly before the polymerization. If it is advantageous for the polymerization, the mixture obtained and, if appropriate, further polymer precursors can be mixed with water to produce a dispersion. Depending on the type of polymerization, an initiator and / or catalyst etc. can also be added.
Das in der zweiten Verfahrenstufe erhaltene Gemisch wird anschließend der Polymerisation unterworfen. Es werden lumineszierende transparente Gläser erhalten. In einer möglichen Ausführungsform der vorliegenden Erfindung wird das in der zweiten Verfahrenstufe erhaltene Gemisch auf ein fertiges Kunststoff- oder Silikatglas aufgebracht und auf diesem Glas polymerisiert. Auf diese Weise können mit lumineszierenden transparentem Kunststoffglas beschichtete Gläser erhalten werden.The mixture obtained in the second process stage is then subjected to the polymerization. Luminescent transparent glasses are obtained. In a possible embodiment of the present invention, the mixture obtained in the second process stage is applied to a finished plastic or silicate glass and polymerized on this glass. In this way, glasses coated with luminescent transparent plastic glass can be obtained.
Ein weiterer Gegenstand ist die Verwendung der erfindungsgemäßen lumineszierenden transparenten Kunststoffgläser zur Herstellung von Beleuchtungselementen, lumineszierenden Darstellungen einschließlich Schriftzügen auf Objekten wie Gläsern, zur Markierung von Kunststoffen usw.Another object is the use of the luminescent transparent plastic glasses according to the invention for the production of lighting elements, luminescent representations including lettering on objects such as glasses, for marking plastics, etc.
Ein weiterer Gegenstand ist die Verwendung der erfindungsgemäßen lumineszierenden transparenten Kunststoffgläser zur Herstellung von Beschichtungen auf anorganischen oder organischen Gläsern. Another object is the use of the luminescent transparent plastic glasses according to the invention for the production of coatings on inorganic or organic glasses.
BeispieleExamples
Beispiel 1example 1
A) Herstellung der ZnS:Mn/Acrylsäure-DispersionA) Preparation of the ZnS: Mn / acrylic acid dispersion
10 g Zinkacetat-Dihydrat und 0,2 g Manganacetat-Tetrahydrat wurden in 300 ml Methanol gelöst. Anschließend wurde eine Lösung von 3 g Natriumsulfid (61%) in 80 ml eines Methanol-Wasser (1 :1)-Gemisches zugegeben. Die entstehende Dispersion wurde 15 min gerührt. Der weiße Zinksulfid:Mangan-Niederschlag wurde durch Zentrifugieren abgetrennt, in 25 ml Acrylsäure aufgenommen und bei 100°C 1/2 h gerührt. Anschließend wurde die Dispersion 10 h bei 90°C behandelt. Durch die Zugabe von 0,5 ml Wasser erhielt man eine transparente Dispersion, die bei Anregung mit UV-Licht (366 nm) eine intensive, orange Lumineszenz aufwies.10 g zinc acetate dihydrate and 0.2 g manganese acetate tetrahydrate were dissolved in 300 ml methanol. A solution of 3 g of sodium sulfide (61%) in 80 ml of a methanol-water (1: 1) mixture was then added. The resulting dispersion was stirred for 15 minutes. The white zinc sulfide: manganese precipitate was separated by centrifugation, taken up in 25 ml of acrylic acid and stirred at 100 ° C. for 1/2 h. The dispersion was then treated at 90 ° C. for 10 h. The addition of 0.5 ml of water gave a transparent dispersion which, when excited with UV light (366 nm), had an intense orange luminescence.
B) Herstellung der ZnS:Mn/Acrylsäure,Methacrylsäuremethylester-Dispersion und deren Polymerisation in SubstanzB) Preparation of the ZnS: Mn / acrylic acid, methacrylic acid methyl ester dispersion and their bulk polymerization
1 ml der Dispersion aus A) wurde mit einem Gemisch aus 4 ml Methacrylsäure-methylester,1 ml of the dispersion from A) was mixed with a mixture of 4 ml of methyl methacrylate,
2 ml Acrylsäure und 0,35 ml Wasser gemischt. Die transparente Dispersion wurde mit 0,2 % des Radikalinitiators AIBN versetzt, entgast und unter leichtem Vakuum in eine Glasampulle (d = 10 mm) eingeschmolzen. Die Polymerisation erfolgte bei 50°C in einem Wasserbad innerhalb von 6 Stunden. Anschließend wurde 3 h bei 90°C ausgehärtet.2 ml acrylic acid and 0.35 ml water mixed. 0.2% of the radical initiator AIBN was added to the transparent dispersion, degassed and melted into a glass ampoule (d = 10 mm) under a slight vacuum. The polymerization was carried out at 50 ° C. in a water bath within 6 hours. The mixture was then cured at 90 ° C. for 3 hours.
Beispiel 2Example 2
A) Herstellung der ZnS:Mn/Acrylsäure-DispersionA) Preparation of the ZnS: Mn / acrylic acid dispersion
5 g Zinkacetat-Dihydrat und 01 g Manganacetat-Tetrahydrat wurden in 150 ml Methanol gelöst. Anschließend wurde eine Lösung von 3 g Natriumsulfid (61 %) in 80 ml eines Methanol-Wasser (1 :1)-Gemisches zugegeben. Die entstehende Dispersion wurde 15 min gerührt. Der weiße Zinksulfid:Mangan-Niederschlag wurde durch Zentrifugieren abgetrennt, in 30 ml Acrylsäure aufgenommen und bei 100°C 1/2 h gerührt. Anschließend wurde die Dispersion 18 h bei 90°C behandelt. Durch die Zugabe von 0,5 ml Wasser erhielt man eine transparente Dispersion, die bei Anregung mit UV-Licht (366 nm) eine intensive, orange Lumineszenz aufwies. B) Herstellung der ZnS:Mn/Acrylsäure,Methacrylsäuremethylester-Dispersion und deren Polymerisation in Substanz5 g of zinc acetate dihydrate and 01 g of manganese acetate tetrahydrate were dissolved in 150 ml of methanol. A solution of 3 g of sodium sulfide (61%) in 80 ml of a methanol-water (1: 1) mixture was then added. The resulting dispersion was stirred for 15 minutes. The white zinc sulfide: manganese precipitate was separated by centrifugation, taken up in 30 ml of acrylic acid and stirred at 100 ° C. for 1/2 h. The dispersion was then treated at 90 ° C. for 18 h. The addition of 0.5 ml of water gave a transparent dispersion which, when excited with UV light (366 nm), had an intense orange luminescence. B) Preparation of the ZnS: Mn / acrylic acid, methacrylic acid methyl ester dispersion and their bulk polymerization
1 ml der Dispersion aus A) wurde mit 0,5 g Zinkacetat versetzt und dann mit 2 ml Methacrylsäuremethylester vermischt. Die entstehende stabile und transparente Dispersion wurde mit 0,2 % des Radikalinitiators AIBN versetzt, entgast und unter leichtem Vakuum in eine Glasampulle (d = 10 mm) eingeschmolzen. Die Polymerisation erfolgte bei 50°C in einem Wasserbad innerhalb einiger Stunden und wurde dann bei 90°C vervollständigt.1 ml of the dispersion from A) was mixed with 0.5 g of zinc acetate and then mixed with 2 ml of methyl methacrylate. The resulting stable and transparent dispersion was mixed with 0.2% of the radical initiator AIBN, degassed and melted under a slight vacuum into a glass ampoule (d = 10 mm). The polymerization was carried out at 50 ° C in a water bath within a few hours and was then completed at 90 ° C.
Transparente ZnO/Kunststoff-KompositeTransparent ZnO / plastic composites
Beispiel 3 a) Synthese der ZnO-NanopartikelExample 3 a) Synthesis of the ZnO nanoparticles
Eine stabile ethanolische Dispersion der ZnO-Nanopartikel kann folgendermaßen hergestellt werden:A stable ethanolic dispersion of the ZnO nanoparticles can be produced as follows:
2.2 g (0,01 mol) Zinkacetat werden in 100 ml Ethanol aufgekocht und so gelöst. Die Lösung wird auf Raumtemperatur abgekühlt und in kurzem Zeitabstand 37,5 ml einer 0,2 molaren ethanolischen NaOH-Lösung (Herstellung durch Erwärmen) zugegeben und 24 h gealtert.2.2 g (0.01 mol) of zinc acetate are boiled in 100 ml of ethanol and dissolved in this way. The solution is cooled to room temperature and 37.5 ml of a 0.2 molar ethanolic NaOH solution (prepared by heating) are added at short intervals and aged for 24 hours.
Die Partikel lumineszieren unter UV-Bestrahlung.The particles luminesce under UV radiation.
b) Herstellung der Monomerdispersionb) Preparation of the monomer dispersion
100 ml dieser ethanolischen Dispersion werden mit 10 ml Butandiolmonoacrylat (BDMA) versetzt. Von diesem Gemisch kann Ethanol im Vakuum abdestilliert werden, so dass ca. 10 ml Dispersion verbleiben. Nach weiteren 24 h Alterung wird ein weißer Niederschlag abzentrifugiert. Die überstehende Dispersion zeigt weiterhin die grüne Lumineszenz der ZnO- Partikel und ist transparent; der Niederschlag enthält keine signifikanten Mengen ZnO. Das umgebende BDMA ist polymerisierbar und mischbar mit anderen Monomeren (Methylmethacrylat, Styrol und Trimethylolpropantriacrylat (TMPTA)). Die Copolymerisation mit diesen Monomeren führt zu transparenten, lumineszierenden Kompositmaterialien.100 ml of this ethanolic dispersion are mixed with 10 ml of butanediol monoacrylate (BDMA). Ethanol can be distilled off from this mixture in vacuo, so that about 10 ml of dispersion remain. After a further 24 h aging, a white precipitate is centrifuged off. The supernatant dispersion continues to show the green luminescence of the ZnO particles and is transparent; the precipitation does not contain any significant amounts of ZnO. The surrounding BDMA is polymerizable and miscible with other monomers (methyl methacrylate, styrene and trimethylolpropane triacrylate (TMPTA)). The copolymerization with these monomers leads to transparent, luminescent composite materials.
c) Herstellung eines ZnO-BDMA-Kompositmaterials:c) Production of a ZnO-BDMA composite material:
3 g der BDMA/ZnO-Dispersion werden mit 1g TMPTA und 0,004 g Lucirin TPO (UV-Initiator) vermischt und zwischen zwei Glasplatten gebracht, die durch einen Weich-PVC-Ring auf 1 ,5 mm Abstand gehalten werden. Die Mischung und der Gasraum über der Flüssigkeit werden mit Argon gespült und eine Minute mit UV-Licht bestrahlt (UVA-Cube, Hoenle). Man erhält ein festes, transparentes Polymerplättchen, das die Fluoreszenzeigenschaften des ZnO aufweist.3 g of the BDMA / ZnO dispersion are mixed with 1 g of TMPTA and 0.004 g of Lucirin TPO (UV initiator) and placed between two glass plates, which are set to 1.5 by a soft PVC ring mm are kept. The mixture and the gas space above the liquid are flushed with argon and irradiated with UV light for one minute (UVA-Cube, Hoenle). A solid, transparent polymer plate is obtained which has the fluorescent properties of the ZnO.
Beispiel 4 a) Herstellung eines ZnO-BDMA/Styrol-Kompositmaterials:Example 4 a) Preparation of a ZnO-BDMA / styrene composite material:
1 ,5 g der BDMA/ZnO-Dispersion aus Beispiel 3 werden mit 1 ,5 g Styrol, 1g TMPTA und 0,004 g Lucirin TPO (UV-Initiator) vermischt und wie in 3c) zu transparenten Platten polymerisiert.1.5 g of the BDMA / ZnO dispersion from Example 3 are mixed with 1.5 g of styrene, 1 g of TMPTA and 0.004 g of Lucirin TPO (UV initiator) and polymerized as transparent plates as in 3c).
Beispiel 5Example 5
Herstellung eines ZnO-BDMA Methy\met acry\at-Kompositmaterials:Production of a ZnO-BDMA Methy \ met acry \ at composite material:
1 ,5 g der BDMA/ZnO-Dispersion aus Beispiel 3 werden mit 1 ,5 g Methylmethacrylat, 1g TMPTA und 0,004 g Lucirin TPO (UV-Initiator) vermischt und wie in 3c) zu transparenten Platten polymerisiert. 1.5 g of the BDMA / ZnO dispersion from Example 3 are mixed with 1.5 g of methyl methacrylate, 1 g of TMPTA and 0.004 g of Lucirin TPO (UV initiator) and polymerized as transparent plates as in 3c).

Claims

Patentanspriiche Patentanspriiche
1. Transparentes, lumineszierendes Kunststoffglas, das lumineszierende Nanopartikel enthält.1. Transparent, luminescent plastic glass that contains luminescent nanoparticles.
2. Kunststoffglas nach Anspruch 1 , dadurch gekennzeichnet, dass die Nanopartikel ausgewählt sind aus Leuchtstoffen (Leuchtpigmenten) und/oder mit Übergangsmetallen und/oder Lanthaniden dotierten Leuchtstoffen.2. Plastic glass according to claim 1, characterized in that the nanoparticles are selected from phosphors (luminous pigments) and / or phosphors doped with transition metals and / or lanthanides.
3. Kunststoffglas nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Nanopartikel in den Gläsern vorzugsweise in einer Menge von 0,1 bis 20 Gew.-%, bezogen auf die Menge Polymer, enthalten sind.3. Plastic glass according to claim 1 or 2, characterized in that the nanoparticles in the glasses are preferably contained in an amount of 0.1 to 20 wt .-%, based on the amount of polymer.
4. Kunststoffglas nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass der Leuchtstoff ausgewählt ist aus Y2O3, YVO4, Zn2SiO4, CaWO4, MgSiO3, BaF2, SrAI2O , ZnO, ZnS, Gd2O3S, La2O2S, BaFCI, LaOBr, Ca10(PO4)6(F,CI)2, BaMg2AI6O27, CeMgAlnO^, ZnSe oder CdS sowie beliebigen Gemischen der voranstehenden.4. Plastic glass according to one of claims 2 or 3, characterized in that the phosphor is selected from Y 2 O 3 , YVO 4 , Zn 2 SiO 4 , CaWO 4 , MgSiO 3 , BaF 2 , SrAI 2 O, ZnO, ZnS, Gd 2 O 3 S, La 2 O 2 S, BaFCI, LaOBr, Ca 10 (PO 4 ) 6 (F, CI) 2 , BaMg 2 AI 6 O 27 , CeMgAlnO ^, ZnSe or CdS as well as any mixtures of the above.
5. Kunststoff glas nach Anspruch 4, dadurch gekennzeichnet, dass der Leuchtstoff ausgewählt ist aus ZnS und ZnO.5. Plastic glass according to claim 4, characterized in that the phosphor is selected from ZnS and ZnO.
6. Kunststoffglas nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass der Leuchtstoff dotiert ist mit AI, Übergangsmetallen, wie Cu, Ag, Mn, oder seltenen Erden, wie Eu, Yb.6. Plastic glass according to claim 4 or 5, characterized in that the phosphor is doped with Al, transition metals such as Cu, Ag, Mn, or rare earths such as Eu, Yb.
7. Kunststoffglas nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Kunststoff ein Polymer oder Polymergemisch ist ausgewählt aus Polyacrylaten und deren Derivate, Polymethacrylaten, Polycarbonaten, Polystyrolen, Epoxiden, Polyethylenterephthalaten, Ethylen-Norbornen-Copolymeren, beliebigen Copolymerisaten der entsprechenden Monomere.7. Plastic glass according to one of claims 1 to 6, characterized in that the plastic is a polymer or polymer mixture selected from polyacrylates and their derivatives, polymethacrylates, polycarbonates, polystyrenes, epoxides, polyethylene terephthalates, ethylene-norbornene copolymers, any copolymers of the corresponding monomers ,
8. Verfahren zur Herstellung eines transparenten, lumineszierenden Kunststoffglases, dadurch gekennzeichnet, dass in einer ersten Verfahrensstufe ein oder mehrere Leuchtstoffe mit einer Polymervorstufe oder einer Lösung der Polymervorstufe vermischt werden und das erhaltene Gemisch in einer zweiten Verfahrensstufe in an sich bekannter Weise polymerisiert wird.8. A process for producing a transparent, luminescent plastic glass, characterized in that in a first process step one or more phosphors with a polymer precursor or a solution of the polymer precursor are mixed and the mixture obtained is polymerized in a known manner in a second process stage.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Leuchtstoffe erhalten werden durch Fällungsreaktion aus einer alkoholischen Lösung.9. The method according to claim 8, characterized in that the phosphors are obtained by precipitation reaction from an alcoholic solution.
10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Leuchtstoffe in der Polymervorstufe oder einer Teilmenge davon oder einer Lösung der Polymervorstufe oder einer Teilmenge davon dispergiert wird.10. The method according to claim 8 or 9, characterized in that the phosphors are dispersed in the polymer precursor or a subset thereof or a solution of the polymer precursor or a subset thereof.
11. Verfahren nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass die Polymervorstufe ausgewählt ist aus Monomeren oder polymerisierbaren Oligopolymeren, welche bei Verarbeitungstemperatur flüssig sind bzw. in einem Lösungsmittel löslich sind.11. The method according to any one of claims 8 to 10, characterized in that the polymer precursor is selected from monomers or polymerizable oligopolymers which are liquid at processing temperature or are soluble in a solvent.
12. Verfahren nach einem der Ansprüche 8 bis 11 , dadurch gekennzeichnet, dass die Leuchtstoffe in dem Gemisch mit dem Polymer in einer Teilchengröße unter 100 nm vorliegen.12. The method according to any one of claims 8 to 11, characterized in that the phosphors are present in the mixture with the polymer in a particle size below 100 nm.
13. Verfahren nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, dass das Kunststoffglas die Form eines Films oder Gegenstandes aufweist.13. The method according to any one of claims 8 to 12, characterized in that the plastic glass has the shape of a film or object.
14. Verwendung der transparenten, lumineszierenden Kunststoffgläser nach einem der Ansprüche 1 bis 7 zur Herstellung von Beleuchtungselementen, lumineszierenden Darstellungen einschließlich Schriftzügen auf Objekten wie Gläsern, zur Markierung von Kunststoffen usw.14. Use of the transparent, luminescent plastic glasses according to one of claims 1 to 7 for the production of lighting elements, luminescent representations including lettering on objects such as glasses, for marking plastics, etc.
15. Verwendung der transparenten, lumineszierenden Kunststoffgläser nach einem der Ansprüche 1 bis 7 zur Herstellung von Beschichtungen auf anorganischen oder organischen Gläsern. 15. Use of the transparent, luminescent plastic glasses according to one of claims 1 to 7 for the production of coatings on inorganic or organic glasses.
EP04802635A 2003-10-22 2004-10-20 Luminescent, transparent composite materials Withdrawn EP1694774A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10349063A DE10349063A1 (en) 2003-10-22 2003-10-22 Luminescent transparent composite materials
PCT/DE2004/002347 WO2005037925A1 (en) 2003-10-22 2004-10-20 Luminescent, transparent composite materials

Publications (1)

Publication Number Publication Date
EP1694774A1 true EP1694774A1 (en) 2006-08-30

Family

ID=34442187

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04802635A Withdrawn EP1694774A1 (en) 2003-10-22 2004-10-20 Luminescent, transparent composite materials

Country Status (5)

Country Link
US (1) US20090014687A1 (en)
EP (1) EP1694774A1 (en)
JP (1) JP2007523221A (en)
DE (2) DE10349063A1 (en)
WO (1) WO2005037925A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005047615A1 (en) * 2005-10-05 2007-04-12 Bayer Materialscience Ag Light-scattering plastic composition with high brightness and its use in flat screens
DE102006024288A1 (en) * 2006-05-24 2007-11-29 Merck Patent Gmbh nanoparticles
WO2008001693A1 (en) * 2006-06-29 2008-01-03 Idemitsu Kosan Co., Ltd. Fluorescent composition and fluorescence conversion substrate using the same
CA2683649A1 (en) * 2007-04-10 2008-10-16 Valspar Sourcing, Inc. Oxygen-scavenging materials and articles formed therefrom
KR20100087137A (en) 2007-11-14 2010-08-03 가부시키가이샤 구라레 Processes for production of group ii metal sulfide phosphor precursors and phosphors
KR20110050552A (en) * 2008-09-04 2011-05-13 바이엘 머티리얼사이언스 아게 Light emitting device, and method for the production thereof
EP2358844B1 (en) 2008-10-10 2014-07-16 Valspar Sourcing, Inc. Oxygen-scavenging composition and article formed therefrom
US8308976B2 (en) 2008-10-10 2012-11-13 Valspar Sourcing, Inc. Oxygen-scavenging materials and articles formed therefrom
JP2010248325A (en) * 2009-04-14 2010-11-04 National Institute For Materials Science Sheet-like illuminant
CN101993692B (en) * 2009-08-30 2013-01-02 中国科学院合肥物质科学研究院 Method for doping earth ions in zinc oxide nano crystal
KR20110045256A (en) * 2009-10-26 2011-05-04 삼성전자주식회사 Nanophosphor, light emitting device including nanophosphor and method for preparing nanophosphor
TWI400587B (en) * 2009-12-16 2013-07-01 Ind Tech Res Inst Biomass chemical toner composition and method for manufacturing the same
US9085728B2 (en) 2011-01-28 2015-07-21 Showa Denko K.K. Composition containing quantum dot fluorescent body, molded body of quantum dot fluorescent body dispersion resin, structure containing quantum dot fluorescent body, light-emitting device, electronic apparatus, mechanical device, and method for producing molded body of quantum dot fluorescent body dispersion resin
US9120681B2 (en) * 2011-04-28 2015-09-01 Sakai Chemical Industry Co., Ltd. Method for production of zinc oxide particles
EP2546319A1 (en) * 2011-07-13 2013-01-16 Koninklijke Philips Electronics N.V. High efficiency plastic light conversion components by incorporation of phosphor in a polymer by adding to monomers before polymerisation
US8524177B2 (en) * 2011-09-09 2013-09-03 Canadus Chemical LLC Process for purifying zinc oxide
US8691915B2 (en) 2012-04-23 2014-04-08 Sabic Innovative Plastics Ip B.V. Copolymers and polymer blends having improved refractive indices
US10232593B2 (en) 2013-03-13 2019-03-19 The Sherwin-Williams Company Oxygen-scavenging composition and articles thereof
CN103755864B (en) * 2014-01-20 2016-06-22 扬州大学 A kind of preparation method of fluorescence lucite
US10312576B2 (en) * 2015-01-07 2019-06-04 FreeFlight Acquisition Corporation Quick mount detachable antenna and mounting

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1003132A6 (en) * 1989-03-31 1991-12-03 Horizon Imp Exp ERASABLE NOTES BOARD.
DE19837390A1 (en) * 1998-08-18 2000-02-24 Max Planck Gesellschaft New complexes of conjugated organic polymer with ionic side chains and ionic surfactant are used as electroluminescent material, e.g. in opto-electronic device, including blue luminescent diode
DE19856485A1 (en) * 1998-12-08 2000-06-15 Bayer Ag Polycarbonate molding compounds with improved mechanical properties
US6699406B2 (en) * 1999-03-19 2004-03-02 Rutgers, The State University Rare earth doped host materials
KR20010095437A (en) * 2000-03-30 2001-11-07 윤덕용 Organic Electro luminescent Devices Using Emitting material/Clay Nano Complex Composite
IL153283A0 (en) * 2000-06-08 2003-07-06 Improved luminous materials
FR2829481B1 (en) * 2001-09-12 2003-12-19 Rhodia Elect & Catalysis COLLOIDAL DISPERSION OF PARTICLES OF A VANADATE OR A PHOSPHO-VANADATE FROM A RARE EARTH
FR2838241B1 (en) * 2002-04-09 2004-06-25 Commissariat Energie Atomique LUMINESCENT MATERIALS CONSISTING OF HEART / SHELL STRUCTURE NANOCRYSTALS AND PROCESS FOR THEIR PREPARATION

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005037925A1 *

Also Published As

Publication number Publication date
US20090014687A1 (en) 2009-01-15
DE10349063A1 (en) 2005-05-25
JP2007523221A (en) 2007-08-16
DE112004002596D2 (en) 2006-09-14
WO2005037925A1 (en) 2005-04-28

Similar Documents

Publication Publication Date Title
EP1694774A1 (en) Luminescent, transparent composite materials
EP0955323B2 (en) Core - shell particles, their production and use
EP1877456B1 (en) METHOD FOR PRODUCTION OF BEAD POLYMERS WITH AN AVERAGE PARTICLE SIZE IN THE RANGE OF 1 µM TO 40 µM AND MOULDED MASSES AND MOULDED BODIES COMPRISING BEAD POLYMERS
DE10228228A1 (en) Shaped body made of core-shell particles
EP1425322A2 (en) Moulded bodies consisting of core-shell particles
DE10227071A1 (en) Composite material containing core-shell particles
DE10204338A1 (en) Shaped body made of core-shell particles
WO2011015604A2 (en) Photoluminescent granulate and method for the production thereof
DE60023562T2 (en) LIGHT-RESISTANT MICROLINE ARRAY AND RESIN COMPOSITION FOR USE THEREIN
DE102005056621A1 (en) Modified zinc oxide nano-particles with a specific average particle size, obtained by converting nano-particle precursor to nano-particles and terminating the growth of nano-particles, useful for UV-stabilization of polymer
DE4011867A1 (en) Conductive, radiation-cured coating materials - contain radiation-curable monomer(s) oligomer(s) and/or polymer(s), mica pigment coated with antimony doped tin oxide photoinitiators, etc.
DE10352177A1 (en) Antistatic coated molding and process for its preparation
DE10357679A1 (en) Effect colorant containing core-shell particles
EP1885761B1 (en) Coloured polymer system with improved colour brilliance
WO2003042290A1 (en) Light conducting body and method for the production thereof
EP1837362A1 (en) Particles, modified by copolymers of unsaturated monomers
WO2005028396A2 (en) Use of core-shell particles
CH698556B1 (en) A process for the polymerization of diethylene glycol bis-allyl carbonate.
DE60205715T2 (en) Process for free radical gas phase polymerization
DE4113974A1 (en) Pale conductive coating compsn., sealant and adhesive
DE102008001526B4 (en) Luminescent nanoscale particles with hydrophobic surface finish, process for their preparation and their use
EP1989050A1 (en) Use of coloured polymer systems for packaging
DE102005018452A1 (en) Production of zinc oxide nanoparticles and these transparent plastic glasses containing UV protectants
DE19749234A1 (en) Highly filled polymethylmethacrylate based plastic containing an inorganic luminescent pigment
DE10343393A1 (en) With effect pigments pigmented, powdery coating materials, process for their preparation and their use

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060405

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KASKEL, STEFAN

Inventor name: HOLLE, ULLRICH

Inventor name: ALTHUES, HOLGER

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20090904

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100115