EP1661716B1 - Procédé de commande pour une tête d'impression à transfert thermique - Google Patents

Procédé de commande pour une tête d'impression à transfert thermique Download PDF

Info

Publication number
EP1661716B1
EP1661716B1 EP05025141A EP05025141A EP1661716B1 EP 1661716 B1 EP1661716 B1 EP 1661716B1 EP 05025141 A EP05025141 A EP 05025141A EP 05025141 A EP05025141 A EP 05025141A EP 1661716 B1 EP1661716 B1 EP 1661716B1
Authority
EP
European Patent Office
Prior art keywords
energy
printing
printed image
parameter set
processing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05025141A
Other languages
German (de)
English (en)
Other versions
EP1661716A3 (fr
EP1661716A2 (fr
Inventor
Raimund Nisius
Frank Reisinger
Christoph Kunde
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Francotyp Postalia GmbH
Original Assignee
Francotyp Postalia GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102004060156A external-priority patent/DE102004060156A1/de
Priority claimed from DE200410063756 external-priority patent/DE102004063756A1/de
Application filed by Francotyp Postalia GmbH filed Critical Francotyp Postalia GmbH
Publication of EP1661716A2 publication Critical patent/EP1661716A2/fr
Publication of EP1661716A3 publication Critical patent/EP1661716A3/fr
Application granted granted Critical
Publication of EP1661716B1 publication Critical patent/EP1661716B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/35Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads providing current or voltage to the thermal head
    • B41J2/355Control circuits for heating-element selection
    • B41J2/36Print density control

Definitions

  • the present invention relates to a method for driving a printhead which operates on the thermal transfer principle with a plurality of printing elements, wherein in a determining step the first amount of energy to be supplied to a first printing element is determined in a first feeding step, in a further determining step to supply the one printing element associated in a further feeding step further amount of energy is determined and in the first supply step, the first amount of energy is supplied to the first printing element to transfer color from a printhead associated ink carrier device to the color carrier associated substrate for generating a pixel of a first printed image and in the further supply step, the further amount of energy associated printing element is supplied to transfer color of the ink carrier device to the substrate for generating a further pixel of the printed image, wherein the printed image a first subarea and a further subarea of different print image type, the first pixel is assigned to the first subarea, and the further pixel is assigned to the further subarea. It further relates to a printer which is suitable for carrying out the method according to the invention.
  • the respective printing element of the printhead must be supplied with a comparatively precisely metered amount of energy to reliably melt the color particles in the desired amount or spatial extent of the carrier material of the ink ribbon.
  • the respective pressure element more or less energy must be supplied to achieve the optimum melting temperature.
  • the control of the printing elements is usually optimized at the factory to a specific type of ribbon with a particular color.
  • a predetermined determination algorithm and a correspondingly matched printing parameter set are generally used.
  • the present invention is therefore based on the object to provide a method or a printer of the type mentioned, which or which does not have the above-mentioned disadvantages or at least to a lesser extent and in particular a simple and economical improvement of the print image quality Print images of different print image type allows.
  • the present invention solves this problem starting from a method according to the preamble of claim 1 by the features stated in the characterizing part of claim 1. It solves this problem further starting from a printer according to the preamble of claim 19 by the features stated in the characterizing part of claim 20.
  • the present invention is based on the technical teaching that it is possible to easily improve the print image quality in print images of different print image types if the first amount of energy in the determination step is determined as a function of the print image type of the first print image in the region of the first image point.
  • the method according to the invention can be used if entire print images are to be printed with in each case changing print image type. However, its use is particularly advantageous when the first printed image subregions different Druckbuchart having.
  • the first amount of energy is then preferably determined as a function of the print image type of the subarea to which the first pixel is assigned.
  • the first amount of energy can be determined in any suitable manner.
  • different pressure parameters and / or different determination algorithms can be provided to determine the first amount of energy for different types of print images.
  • the first amount of energy in the determination step is determined using a first set of pressure parameters as a function of the print image type at the location of the first image point.
  • the first amount of energy is determined in the determination step using a first print parameter set, the first print parameter set having different sub-parameter sets associated with different print image types, and the first amount of energy being determined at least using that sub-parameter set which is the local print image type associated with the first pixel.
  • the first amount of energy is determined in the determination step using a detection algorithm, wherein different print image types associated determination algorithms are provided and the first amount of energy is determined at least using that determination algorithm, which the print image type at the location of the first pixel assigned.
  • the respective determination algorithm can each work with the same set of pressure parameters.
  • the determination algorithms differ only by factors or summands.
  • the respective determination algorithms differ in their basic structure.
  • the first amount of energy can be determined in such a way that in each case only the first amount of energy corresponding to the print image type at the first pixel is determined in the determination step.
  • a single correct drive set with the first energy quantities can be generated directly for all first pixels of the print image to be generated.
  • first a first print parameter set characteristic of the color carrier device is read from a first store assigned to the color carrier device and the first amount of energy is then determined using at least the first print parameter set.
  • the assignment of the first memory to the ink carrier device makes it possible to exchange the first memory together with the color carrier device used.
  • energy parameters that are precisely matched to the ink carrier device being used can be automatically used in a simple manner. This makes it possible, inter alia, to use color carrier devices with different colors, without the need for a complex modification of the firmware of the control of the print head would be required.
  • the first memory may be associated with the color carrier in any suitable manner. It only has to be ensured that the first memory can be read out by the print head drive during or after the assignment of the ink carrier device to the print head. Preferably, the first printing parameter set in the reading step is therefore read from the first memory, which is arranged on the ink carrier device.
  • the first memory may be any suitable memory that can be read in any suitable manner.
  • it may be one or more electronic, electromagnetic, optical memory modules, etc.
  • it is one or more memory chips that can be contacted and read out by suitable means.
  • it may also be a, preferably suitably coded, mark whose information content is detected by optical means.
  • the ink carrier device can likewise be any suitable device with a color carrier carrying the ink to be removed.
  • the ink carrier device may be an ink ribbon cassette with a color ribbon as ink carrier.
  • This ink carrier device may be exchangeable in any suitable manner, i. H. be designed removable from the printhead. If a new color carrier device is assigned to the print head, for example a new color ribbon cassette is used, then, as mentioned, a connection to the first memory is preferably automatically established in order to be able to read out print parameters from the first print parameter set. This can be done for example by corresponding contact elements on the ink carrier device, which are contacted automatically when mounting the ink carrier device to the printer.
  • the first set of pressure parameters comprises at least one first part parameter set, which in turn comprises at least one first pressure parameter as a function of at least one first state parameter prevailing in the region of the print head. This makes it possible to quickly and easily respond to different states of the printer or its environment, for example, to different temperatures or printing speeds.
  • a correspondingly large number of pairs of values can be provided in order to remove the relevant pressure parameter value directly from the partial parameter set with sufficient accuracy.
  • intermediate values of the first pressure parameter value are determined by interpolation in the determination step for values of the first state parameter lying between the discrete values of the first state parameter.
  • the first state parameter can be any state parameter that influences the printing process or its result.
  • the first state parameter is a temperature in the region of the printhead, since this has an immediate influence on the additional energy to be expended for printing.
  • the first state parameter may be a relative velocity of a medium, for example a substrate to be printed, with regard to the printing element and / or the ink carrier device. This can be, for example, the feed rate of the medium to be printed or the relative speed between the print head and the ink carrier, etc.
  • the respective printing element must be supplied with a comparatively precisely metered amount of energy during the printing process in order to reliably melt the color particles in the desired amount or spatial extent of the ink carrier.
  • more or less energy must be supplied in order to achieve the optimum melting temperature.
  • the determination of the energy required for optimum printing can be carried out in advance for the entire print image.
  • the energy supply to be performed at least to the first pressure element is then taken into account in at least one feed step preceding the first feed step. If the determination of the energy required for the optimum printing takes place during the printing process, the energy supplied to at least the first printing element in at least one feed step preceding the first feeding step is then taken into account in the determining step.
  • the energy supply to be made or to take place is taken into account for at least one second pressure element adjacent to the first pressure element in at least one feed step preceding the first feed step.
  • the energy supply which has taken place or is to take place for the pressure element and / or its neighbor is preferably taken into account in the last supply step before the first supply step. Further preferably, the power supply to and / or to the power element and / or its neighbor is taken into account in the penultimate supply step prior to the first supply step. This can be particularly good estimates of the optimal amount of energy to be supplied.
  • the first print parameter set comprises a plurality of energy supply values for different energy supply constellations in at least one previous feed step.
  • the energy value to be supplied to the pressure element can then be calculated in a simple manner as a function of the recorded or registered printed history.
  • the first amount of energy is determined using at least the first set of pressure parameters by a maximum of a predetermined amount of energy to be supplied is deducted for the energy supply in at least one previous supply step to at least the first pressure element. This makes it possible to determine the required optimum amount of energy particularly easily and quickly.
  • the present invention further relates to a printer having a thermal transfer printing device comprising a printhead having a plurality of printing elements and a processing unit connected to the printhead for driving the printhead. Furthermore, the printer comprises a color carrier device, preferably removable, associated with the print head.
  • the processing unit is configured to determine the first quantity of energy to be supplied to a first pressure element and to trigger the supply of the first quantity of energy to the first pressure element in order to transfer color from the color carrier device to a substrate assigned to the color carrier device for producing a first image point of a first print image.
  • the processing unit is designed to determine the first amount of energy as a function of the print image type of the first print image in the region of the first image point.
  • This printer is suitable for carrying out the method according to the invention.
  • the advantages and variants of the method according to the invention described above can be realized to the same extent, so that in this regard reference is made to the above statements.
  • the first printed image preferably has partial regions of different print image types, and the processing unit is designed to determine the first amount of energy as a function of the print image type of the partial region to which the first pixel is assigned.
  • the processing unit preferably uses at least one first parameter set of pressure parameters.
  • This first set of pressure parameters preferably has sub-parameter sets assigned to different print-image types, and the processing unit is designed to determine the first amount of energy at least using the sub-parameter set associated with the print-image type at the location of the first pixel. Additionally or alternatively, determination algorithms associated with different print image types can be provided and by which the processing unit can be used to determine the first amount of energy in the manner described above.
  • a first memory assigned to the color carrier device is provided, in which a first print parameter set characteristic of the color carrier device is stored. Furthermore, the processing unit is designed to read the first set of pressure parameters and to determine the first amount of energy using at least the first set of pressure parameters.
  • the first memory is therefore connected to the color carrier device as described above.
  • the processing unit is preferably designed for the above-described determination of intermediate values of the first pressure parameter value for values of the first state parameter lying between the discrete values of the first state parameter by interpolation.
  • the processing unit is preferably designed to take account of the previous energy supply to at least the first printing element. Further preferably, the processing unit is designed to take into account the preceding energy supply to at least one second pressure element adjacent to the first pressure element. In this case, the processing unit is preferably designed to take into account the last energy supply that has taken place and / or to take into account the penultimate energy supply.
  • the processing unit is preferably designed to read the first memory in a read step triggered by at least one predeterminable event.
  • a predeterminable event may be any temporal or non-temporal event. For example, it may be provided that the event is the achievement of certain predefinable times.
  • the first event is preferably the connection of the first memory to the processing unit.
  • the reading step is triggered by connecting the first memory to the processing unit. In this way it can be ensured that with each new or renewed insertion of a color carrier device the correct print parameters are read and available for control.
  • the pressure parameter set or individual pressure parameters can be read out again from the first memory for each control.
  • the first set of pressure parameters in the reading step is read from the first memory and stored in a second memory connected to the processing unit, which is then accessed in the further process sequence for the control.
  • the printer according to the invention can basically be used for any desired applications. It can be used particularly advantageously in connection with a franking machine. This applies in particular if, as described above, different print-image type-dependent print parameters are used. In the case of a postage meter machine, this can be used, for example, by using different printing parameters when producing one-dimensional or two-dimensional barcodes than when generating text or free graphics.
  • the printer according to the invention is therefore preferably designed as a printer unit of a franking machine.
  • the present invention accordingly also relates to a franking machine with a printer according to the invention. Furthermore, the present invention relates to a color carrier device, in particular ribbon cassette, for a printer according to the invention which has the features of the ink carrier device described above in connection with the printer according to the invention. Finally, it further relates to a printing device for a printer according to the invention, which has the features of the printing device described above in connection with the printer according to the invention.
  • FIG. 1 shows a schematic representation of a franking machine 1 with a preferred embodiment of the printer according to the invention 2.
  • the printer 2 is operated according to a preferred embodiment of the method according to the invention for operating a printer.
  • a preferred embodiment of the method according to the invention for driving a print head use is also a preferred embodiment of the method according to the invention for driving a print head use.
  • the printer 2 represents the printer unit of the franking machine 1.
  • the franking machine 1 also comprises further components, such as an input / output unit 1.1, a security module 1.2 in the form of a so-called PSD or SAD, in short a so-called SD, and a communication unit 1.3.
  • the input / output unit 1.1 for example a module with keyboard and display
  • a user can enter information into the franking machine 1 or information can be output to a user.
  • the security module 1.2 provides security functionalities for the physical and logical security of the security-relevant data of the franking machine 1.
  • the communication unit 1.3 the franking machine 1 can be connected, for example, via a communication network with remote devices, for example a remote data center.
  • the printer 2 comprises inter alia a processing unit 1.4, a print head 2.1 and a color carrier device in the form of an ink ribbon cassette 3.
  • the processing unit 1.4 is a central processing unit of the franking machine 1, which, among other functions, controls the printing head 2.1 during printing.
  • the printhead 2.1 comprises a power supply device 2.2 which supplies a series of n printing elements 2.3, 2.4, 2.5 with energy.
  • the power supply device 2.2 is controlled accordingly by the processing unit 1.4.
  • the ink ribbon cassette 3 is assigned to the print head 2.1 such that its ribbon 3.1 contacts the printing elements 2.3, 2.4, 2.5 of the print head 2.1 with its rear side.
  • the printing elements 2.3, 2.4, 2.5 driven by the processing unit 1.4 supplied by the power supply device 2.2 each with a precisely metered amount of energy to melt locally color particles of the ink layer 3.2, which is located on the ink carrier 3.3 of the ink ribbon 3.1.
  • These color particles are then transferred to a substrate 4, here a letter to be franked, transferred.
  • the letter 4 is for this purpose passed past the print head 2.1 and pressed by pinch rollers against the intermediate ribbon 3.1.
  • the ink ribbon cassette 3 has a first memory 3.4, which is automatically connected to the processing unit 1.4 when the ink ribbon cassette 3 is assigned to the printer 2, in other words when the ink ribbon cassette 3 is inserted into the franking machine 1.
  • the ink ribbon cassette 3 associated printing parameters are stored as a first set of printing parameters, which, as will be explained in more detail below, be used to control the print head 2.1.
  • FIG. 3 shows a first printed image in the form of a franking imprint 4.1 according to the specifications of Deutsche Post AG, which was created with the printhead 2.1 on the letter 4.
  • the franking impression 4.1 comprises different subregions 4.2 to 4.5 of different print image type.
  • the first subarea 4.2 is a two-dimensional barcode and the second subarea 4.3 is a one-dimensional barcode, while the third and fourth subareas 4.4 and 4.5 are each an area with text and free graphics.
  • the two-dimensional barcode 4.2 has high requirements for sharpness and contrast in the area of Edges of the rectangles or squares created over the pixels. This applies both in the direction of printing and across it.
  • these strict requirements in the one-dimensional barcode 4.3 usually only in one direction, usually the printing direction.
  • other requirements must be met. This is taken into account by the present invention in that the activation of the print head 2.1 takes place as a function of the print image type at the location of the respective pixel to be generated.
  • the procedure is started in a step 6.1.
  • a joining step 6.2 the ink ribbon cassette 3 is inserted into the franking machine 1 in such a way that it is correctly assigned to the print head 2.1.
  • the first memory 3.4 is automatically connected via corresponding contact elements with the processing unit 1.4.
  • the processing unit 1.4 checks whether reading of the print parameters from the first memory should take place. This is the case, on the one hand, when the described insertion of a ribbon cassette 3 has been detected as a first event. Likewise, it is stipulated that the reading should take place each time the franking machine 1 is switched on. Turning on the franking machine 1 thus also represents an event triggering the reading of the printing parameters. It is understood that in other variants of the invention, other temporal or non-temporal events can be defined which trigger the reading of the printing parameters, as described in the beginning already described.
  • the processing unit 1.4 automatically reads the first printing parameter set from the first memory 3.4 in a reading step 6.4.
  • the processing unit 1.4 stores the second memory 1.5 connected to the processing unit 1.4 in the form of a volatile main memory of the franking machine 1. It should be understood, however, that in other variants of the invention it may also be provided that the second memory is a non-volatile one Storage is. Incidentally, it may also be sufficient to read the printing parameters from the first memory only every time a ribbon cassette is detected.
  • a step 6.5 it is checked whether a printing operation should be carried out, for example, a letter 4 is to be franked. If this is the case, the first print element of the print head 2.1 to be triggered in accordance with the print image 4.1 to be generated is first selected in a step 6.6.
  • the first set of print parameters has a separate subparameter set for each print image type to be expected. In the present case, this is thus a first partial parameter set for the print image type "two-dimensional barcode", a second partial parameter set for the print image type "one-dimensional barcode” and a third partial parameter set for the print image type "text and free graphics”.
  • the processing unit 1.4 accesses the partial parameter set of the first print parameter set assigned to this print image type in order to estimate the optimum first energy quantity.
  • the estimation of the first amount of energy will be explained in more detail below.
  • the determination of the optimal first amount of energy adapted to the print image type can also be achieved by different or additional to the use of the respective print image type associated partial parameter sets different determination algorithms for the optimal first amount of energy be used. Different print image types are then assigned different determination algorithms which the processing unit then uses as a function of the print image type of the current image point.
  • step 6.8 the processing unit then checks whether another printing element of the print head 2.1 is to be controlled. If this is the case, jump back to step 6.6, in which then the next to be controlled pressure element of the print head 2.1 is selected.
  • the processing unit 1.4 controls the energy supply device 2.2 in such a way that in each case a corresponding first amount of energy is supplied to the individual printing elements.
  • the determination of the amount of energy in advance for the entire print image has the advantage that a fast printing process can be achieved.
  • the printing is done column by column.
  • all printing elements of the print head 2.1 to be triggered in accordance with the print image 4.1 to be generated are actuated to generate a print column in a drive sequence.
  • all printing elements of the print head 2.1 to be triggered according to the print image 4.1 to be generated are then in turn controlled in a further drive sequence.
  • step 6.10 it is finally checked whether the method sequence should be ended. If this is the case, the procedure ends in a step 6.11. Otherwise, jump back to step 6.3.
  • a first pressure element 2.3 explains in more detail how the estimation of the first amount of energy E is carried out by the processing unit 1.4 in the determination step using the first pressure parameter set and a corresponding determination algorithm.
  • the amount of energy E p, a to be supplied to the pressure element 2.3 depends, on the one hand, on the optimum temperature of the first pressure element 2.3 required for optimum melting of the color particles and, on the other hand, on the current temperature of the pressure element 2.3.
  • the current temperature of the pressure element 2.3 depends on the one hand on the current temperature in its environment, which is detected in the present case by a temperature sensor 2.6 in the print head 2.1. Furthermore, it depends on the relevant printed history of the printing element 2.3 and its two adjacent printing elements 2.4 and 2.5. If energy was supplied to the printing element 2.3 or one or both adjacent printing elements 2.4 and 2.5 in a preceding feeding step, a certain residual energy surplus is still stored in the printing element 2.3, which is expressed in an elevated temperature.
  • the truth values in each case have the value "1" if the relevant activation actually took place, or the value "0" if the relevant activation did not take place.
  • the truth values are logged by the processing unit 1.4 in the second memory 1.5. At each completion of a printing operation, they are set by the processing unit 1.4 to the value "0", if it is assumed that the time to the next printing process is so long that the residual energy surplus has been reduced by heat transfer to the environment. If this is not the case, this can be reset also be delayed in order to work with the optimal amount of energy even in a fast subsequent further printed image.
  • each determination step 6.7 the relevant truth values for the printing elements to be considered are read from the second memory 1.5. In the present case, this results in 16 possible different previous constellations with different values for the amount of energy E p, a currently to be supplied
  • the energy values E max , E p, v , E pn, v and E min thus represent energy supply values for different energy supply constellations in preceding energy supply steps, from which the energy premiums for the respective print histories can be determined.
  • Table 1 First partial parameter set 10 ° C 20 ° C 30 ° C 40 ° C 50 ° C 55 ° C E max [ ⁇ J] 133 mm / s 294 277 247 202 159 110 150 mm / s 293 280 248 199 159 110 Ep , v [ ⁇ J] 133 mm / s 179 168 160 136 109 80 150 mm / s 183 168 156 136 109 80 E pn, v [ ⁇ J] 133 mm / s 135 120 104 104 81 60 150 mm / s 125 108 104 97 79 60 E min [ ⁇ J] 133 mm / s 91 76 71 85 66 50 150 mm /
  • the energy values E max , E p, v , E pn, v and E min represent pressure parameter values in the form of energy parameter values stored in the first pressure parameter set.
  • the print parameter set has a number of sub-parameter sets in which discrete energy values E max , E p, v , E pn, v and E min are stored for two different feed rates of the letter 4 and a number of different temperatures of the print head 2.1.
  • Table 1 below shows an example of a first partial parameter set.
  • the energy values E max , E p, v , E pn, v and E min of the first partial parameter set are matched to the ink ribbon cassette 3 and the ink ribbon 3.1, in particular the color particles of the ink layer 3.2. Furthermore, they are tuned to a specific type of printed image to be generated, namely the generation of a two-dimensional barcode.
  • the processing unit 1.4 When determining the amount of energy E p, a currently to be supplied, the processing unit 1.4 first of all selects the corresponding partial parameter set in accordance with the type of print image currently to be generated. On the basis of the values supplied by the temperature sensor 2.6 and the sensor 1.6, he then extracts the corresponding energy values E max , E p, v , E pn, v and E min from the selected partial parameter set.
  • the processing unit 1.4 determines an intermediate value for the respective energy value E max , E p, v , E pn, v and E min by linear Interpolation.
  • the processing unit still reads the truth values s p, v , s p, vv , s pnl, v and p that belong to the pressure element 2.3 s pnl, from the second memory 1.5 and then calculates the equations (1) to (4) the pressure element 2.3 currently supplied amount of energy E p, a . This is then used as described above to control the printing element 2.3.
  • the described use of energy parameter sets has the advantage that regardless of the structure of the print head 2.1, the processing unit 1.4 can quickly calculate the corresponding activation parameters on the basis of corresponding characteristics of the print head 2.1, which can also be stored in the second memory.
  • the energy supply device 2.2 can also be designed for this conversion, so that the processing unit 1.4 only has to transmit the energy amount E p, a currently to be supplied to the energy supply device 2.2.
  • FIGS. 1 . 3 and 4 an embodiment of a method for operating a printer described with the printer 2 from FIG. 1 can be carried out.
  • the procedure is started in a step 106.1.
  • a connecting step 106.2 the ink ribbon cassette 3 is inserted into the franking machine 1 in such a way that it is correctly assigned to the print head 2.1.
  • the first memory 3.4 is automatically connected via corresponding contact elements with the processing unit 1.4.
  • the processing unit 1.4 checks whether reading of the print parameters from the first memory is to take place. This is the case, on the one hand, when the described insertion of a ribbon cassette 3 has been detected as a first event. Likewise, it is stipulated that the reading should take place each time the franking machine 1 is switched on. Turning on the franking machine 1 thus also represents an event triggering the reading of the printing parameters. It is understood that in other variants of the invention, other temporal or non-temporal events can be defined which trigger the reading of the printing parameters, as described in the beginning already described.
  • the processing unit 1.4 automatically reads the first printing parameter set from the first memory 3.4 in a reading step 106.4.
  • the processing unit 1.4 stores the second memory 1.5 connected to the processing unit 1.4 in the form of a volatile main memory of the franking machine 1. It should be understood, however, that in other variants of the invention it may also be provided that the second memory is a non-volatile one Memory is. Incidentally, it may also be sufficient to read the printing parameters from the first memory only every time a ribbon cassette is detected.
  • a printing process for example, a letter 4 should be franked. If this is the case, the first print element of the print head 2.1 to be triggered in accordance with the print image to be generated is first selected in a step 106.6.
  • the processing unit 1.4 estimates, on access to the first set of pressure parameters stored in the second memory, the optimum first amount of energy with which the selected printing element must be supplied in order to produce a high-quality franking imprint on the letter 4. How the estimation of the first amount of energy takes place has already been described in detail above in connection with the exemplary embodiment FIG. 2 explained, so that only reference is made to the above statements.
  • the processing unit 1.4 controls the power supply device 2.2 in such a way that a corresponding first amount of energy is supplied to the selected pressure element.
  • a step 106.9 the processing unit then checks whether a further printing element of the print head 2.1 is to be controlled. If this is the case, the system jumps back to step 106.6, in which case the next print element of the print head 2.1 to be controlled is selected.
  • the printing is done column by column.
  • all the print elements 2.1 of the print head 2.1 to be triggered in accordance with the print image to be generated are actuated.
  • all printing elements of the print head 2.1 to be triggered according to the print image to be generated are then in turn driven in a further drive sequence.
  • the present invention has been described above with reference to an example in which the amounts of energy for the entire print image are predefined ( FIG. 2 ) were determined. It is understood, however, that in other variants of the invention, another approach may be provided.
  • the determination of the amounts of energy can be carried out in advance for the respective printing gaps. The determination of the amounts of energy can in particular already take place while the drive sequence for the preceding pressure column is still running, so that no appreciable loss of time is associated with this.

Landscapes

  • Electronic Switches (AREA)

Claims (38)

  1. Procédé pour actionner une tête d'impression (2.1) qui fonctionne selon le principe du transfert thermique et comprend une pluralité d'éléments d'impression (2.3, 2.4, 2.5), dans lequel procédé:
    - dans une première étape de détermination (6.7) la première quantité d'énergie à fournir à un premier élément d'impression (2.3) dans une première étape d'alimentation (6.9) est déterminée,
    - dans une étape de détermination supplémentaire (6.7) la quantité d'énergie supplémentaire à fournir à un élément d'impression associé (2.3, 2.4, 2.5) dans une étape d'alimentation supplémentaire (6.9) est déterminée, et
    - dans la première étape d'alimentation (6.9) la première quantité d'énergie est fournie au premier élément d'impression (2.3) afin de transférer de l'encre à partir d'un dispositif porteur d'encre (3) attribué à la tête d'impression (2.1) sur un substrat (4) attribué au dispositif porteur d'encre (3) pour produire un premier pixel d'une image imprimée (4.1), et
    - dans l'étape d'alimentation supplémentaire (6.9) la quantité d'énergie supplémentaire est fournie à l'élément d'impression associé (2.3, 2.4, 2.5) afin de transférer de l'encre à partir du dispositif porteur d'encre (3) sur le substrat (4) pour produire un pixel supplémentaire de l'image imprimée (4.1),
    caractérisé en ce que
    - l'image imprimée (4.1) comprend une première sous-région (4.2, 4.3, 4.4, 4.5) et une sous-région supplémentaire (4.2, 4.3, 4.4, 4.5) de différent type d'image imprimée,
    - le premier pixel est attribué à la première sous-région (4.2, 4.3, 4.4, 4.5), et
    - le pixel supplémentaire est attribué à la sous-région supplémentaire (4.2, 4.3, 4.4, 4.5),
    - différentes exigences en termes de contraste et de netteté sont définies pour les différents types d'image imprimée, et
    - la première quantité d'énergie est déterminée dans la première étape de détermination (6.7) en fonction du type d'image imprimée de l'image imprimée (4.1) dans la première sous-région (4.2, 4.3, 4.4, 4.5) et
    - la quantité d'énergie supplémentaire est déterminée dans l'étape de détermination supplémentaire (6.7) en fonction du type d'image imprimée de l'image imprimée (4.1) dans la sous-région supplémentaire (4.2, 4.3, 4.4, 4.5).
  2. Procédé selon la revendication 1, caractérisé en ce que la première quantité d'énergie est déterminée dans l'étape de détermination (6.7) en utilisant un premier ensemble de paramètres d'impression en fonction du type d'image imprimée à l'emplacement du premier pixel.
  3. Procédé selon la revendication 2, caractérisé en ce que le premier ensemble de paramètres d'impression est un ensemble de paramètres énergétiques.
  4. Procédé selon l'une des revendications précédentes, caractérisé en ce que
    - la première quantité d'énergie est déterminée dans l'étape de détermination (6.7) en utilisant un premier ensemble de paramètres d'impression, où
    - le premier ensemble de paramètres d'impression comprend des sous-ensembles de paramètres attribués à différents types d'image imprimée, et
    - la première quantité d'énergie est déterminée au moins en utilisant ce sous-ensemble de paramètres qui est attribué au type d'image imprimée à l'emplacement du premier pixel.
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce que
    - la première quantité d'énergie est déterminée dans l'étape de détermination (6.7) en utilisant un algorithme de détermination, où
    - des algorithmes de détermination attribués à différents types d'image imprimée sont prévus, et
    - la première quantité d'énergie est déterminée au moins en utilisant cet algorithme de détermination qui est attribué au type d'image imprimée à l'emplacement du premier pixel.
  6. Procédé selon la revendication 4 ou 5, caractérisé en ce que
    - dans l'étape de détermination (6.7) une première quantité d'énergie pour le premier pixel est déterminée dans chaque cas pour différents types d'image imprimée, et
    - dans une étape de sélection suivant l'étape de détermination (6.7) on sélectionne pour l'utilisation dans l'étape d'alimentation cette première quantité d'énergie qui est attribuée au type d'image imprimée à l'emplacement du premier pixel.
  7. Procédé selon l'une des revendications précédentes, caractérisé en ce que
    - dans une étape de lecture (6.4) précédant l'étape de détermination (6.7) un premier ensemble de paramètres d'impression caractéristique du dispositif porteur d'encre (3) est lu à partir d'une première mémoire (3.4) attribuée au dispositif porteur d'encre (3), et
    - la première quantité d'énergie est déterminée dans l'étape de détermination (6.7) en utilisant au moins le premier ensemble de paramètres d'impression.
  8. Procédé selon la revendication 7, caractérisé en ce que le premier ensemble de paramètres d'impression est lu dans l'étape de lecture (6.4) à partir de la première mémoire (3.4) qui est disposée sur le dispositif porteur d'encre (3).
  9. Procédé selon la revendication 7 ou 8, caractérisé en ce que le premier ensemble de paramètres d'impression comprend au moins un premier sous-ensemble de paramètres, où le premier sous-ensemble de paramètres comprend au moins un premier paramètre d'impression en fonction d'au moins un premier paramètre d'état prévalant dans la région de la tête d'impression (2.1).
  10. Procédé selon la revendication 9, caractérisé en ce que le premier sous-ensemble de paramètres comprend, pour une pluralité de valeurs discrètes du premier paramètre d'état, dans chaque cas au moins une valeur associée au premier paramètre d'impression.
  11. Procédé selon la revendication 10, caractérisé en ce que dans l'étape de détermination (6.7) des valeurs intermédiaires de la valeur du premier paramètre d'impression sont déterminées par interpolation pour des valeurs du premier paramètre d'état qui se situent entre les valeurs discrètes du premier paramètre d'état.
  12. Procédé selon l'une des revendications 9 à 11, caractérisé en ce que le premier paramètre d'état est une température dans la région de la tête d'impression (2.1) ou une vitesse relative d'un support (4) par rapport à l'élément d'impression (2.3) et/ou au dispositif porteur d'encre (3).
  13. Procédé selon l'une des revendications précédentes, caractérisé en ce que dans l'étape de détermination (6.7) l'alimentation en énergie au moins vers le premier élément d'impression (2.3) dans au moins une étape d'alimentation précédant la première étape d'alimentation (6.9) est prise en compte.
  14. Procédé selon la revendication 13, caractérisé en ce que dans l'étape de détermination (6.7) l'alimentation en énergie au moins vers le second élément d'impression (2.4, 2.5) adjacent au premier élément d'impression dans au moins une étape d'alimentation précédant la première étape d'alimentation (6.9) est prise en compte.
  15. Procédé selon la revendication 13 ou 14, caractérisé en ce que l'alimentation en énergie qui a eu lieu dans la dernière étape d'alimentation avant la première étape d'alimentation (6.9) est prise en compte.
  16. Procédé selon l'une des revendications 13 to 15, caractérisé en ce que l'alimentation en énergie qui a eu lieu dans l'avant-dernière étape d'alimentation avant la première étape d'alimentation (6.9) est prise en compte.
  17. Procédé selon l'une des revendications précédentes, caractérisé en ce que
    - la première quantité d'énergie est déterminée dans l'étape de détermination (6.7) en utilisant un premier ensemble de paramètres d'impression, où
    - le premier ensemble de paramètres d'impression comprend une pluralité de valeurs d'alimentation en énergie pour différentes constellations d'alimentation en énergie dans au moins une étape d'alimentation précédente.
  18. Procédé selon l'une des revendications précédentes, caractérisé en ce que dans l'étape de détermination (6.7) la première quantité d'énergie est déterminée en soustrayant d'une quantité d'énergie maximale prédéterminée à fournir une déduction pour l'alimentation en énergie vers au moins le premier élément d'impression (2.3) qui a eu lieu dans au moins une étape d'alimentation précédant la première étape d'alimentation (6.9).
  19. Imprimante, comprenant
    - un dispositif d'impression qui fonctionne selon le principe du transfert thermique et qui comprend une tête d'impression (2.1) comprenant une pluralité d'éléments d'impression (2.3, 2.4, 2.5) et une unité de traitement (1.4) connectée à la tête d'impression (2.1) pour actionner la tête d'impression (2.1), et
    - un dispositif porteur d'encre (3) attribué à la tête d'impression (2.1), où
    - l'unité de traitement (1.4) est conçue pour déterminer la première quantité d'énergie à fournir à un premier élément d'impression (2.3) et pour déclencher l'alimentation de la première quantité d'énergie vers le premier élément d'impression (2.3) afin de transférer de l'encre à partir du dispositif porteur d'encre (3) sur un substrat (4) attribué au dispositif porteur d'encre (3) pour produire un premier pixel d'une image imprimée (4.1),
    - l'unité de traitement (1.4) est conçue pour déterminer la quantité d'énergie supplémentaire à fournir à un élément d'impression associé (2.3) et pour déclencher l'alimentation de la quantité d'énergie supplémentaire vers l'élément d'impression associé (2.3) afin de transférer de l'encre à partir du dispositif porteur d'encre (3) sur le substrat (4) pour produire un pixel supplémentaire de l'image imprimée (4.1),
    caractérisée en ce que
    - l'image imprimée (4.1) comprend une première sous-région (4.2, 4.3, 4.4, 4.5) et une sous-région supplémentaire (4.2, 4.3, 4.4, 4.5) de différent type d'image imprimée,
    - le premier pixel est attribué à la première sous-région (4.2, 4.3, 4.4, 4.5), et
    - le pixel supplémentaire est attribué à la sous-région supplémentaire (4.2, 4.3, 4.4, 4.5),
    - différentes exigences en termes de contraste et de netteté sont définies pour les différents types d'image imprimée, et
    - l'unité de traitement (1.4) est conçue pour déterminer la première quantité d'énergie en fonction du type d'image imprimée de l'image imprimée (4.1) dans la première sous-région (4.2, 4.3, 4.4, 4.5) et
    - l'unité de traitement (1.4) est conçue pour déterminer la quantité d'énergie supplémentaire en fonction du type d'image imprimée de l'image imprimée (4.1) dans la sous-région supplémentaire (4.2, 4.3, 4.4, 4.5).
  20. Imprimante selon la revendication 19, caractérisée en ce que l'unité de traitement (1.4) est conçue pour déterminer la première quantité d'énergie en utilisant un premier ensemble de paramètres d'impression en fonction du type d'image imprimée à l'emplacement du premier pixel.
  21. Imprimante selon la revendication 20, caractérisée en ce que le premier ensemble de paramètres d'impression est un ensemble de paramètres énergétiques.
  22. Imprimante selon l'une des revendications 19 à 21, caractérisée en ce que
    - l'unité de traitement (1.4) est conçue pour déterminer la première quantité d'énergie en utilisant un premier ensemble de paramètres d'impression, où
    - le premier ensemble de paramètres d'impression comprend des sous-ensembles de paramètres attribués à différents types d'image imprimée, et
    - l'unité de traitement (1.4) est conçue pour déterminer la première quantité d'énergie au moins en utilisant ce sous-ensemble de paramètres qui est attribué au type d'image imprimée à l'emplacement du premier pixel.
  23. Imprimante selon l'une des revendications 19 à 22, caractérisée en ce que
    - l'unité de traitement (1.4) est conçue pour déterminer la première quantité d'énergie en utilisant au moins un algorithme de détermination, où
    - des algorithmes de détermination attribués à différents types d'image imprimée sont prévus, et
    - l'unité de traitement (1.4) est conçue pour déterminer la première quantité d'énergie au moins en utilisant cet algorithme de détermination qui est attribué au type d'image imprimée à l'emplacement du premier pixel.
  24. Imprimante selon la revendication 22 ou 23, caractérisée en ce que
    - l'unité de traitement (1.4) est conçue pour déterminer dans chaque cas une première quantité d'énergie pour le premier pixel pour différents types d'image imprimée, et
    - l'unité de traitement (1.4) est conçue pour sélectionner pour l'utilisation dans l'étape d'alimentation cette première quantité d'énergie qui est attribuée au type d'image imprimée à l'emplacement du premier pixel.
  25. Imprimante selon l'une des revendications 19 à 24, caractérisée en ce que
    - une première mémoire (3.4) attribuée au dispositif porteur d'encre (3) est prévue, dans laquelle est stocké un premier ensemble de paramètres d'impression caractéristique du dispositif porteur d'encre (3), et
    - l'unité de traitement (1.4) est conçue pour lire le premier ensemble de paramètres d'impression et pour déterminer la première quantité d'énergie en utilisant au moins le premier ensemble de paramètres d'impression.
  26. Imprimante selon la revendication 25, caractérisée en ce que la première mémoire (3.4) est connectée au dispositif porteur d'encre (3).
  27. Imprimante selon la revendication 25 ou 26, caractérisée en ce que le premier ensemble de paramètres d'impression comprend au moins un premier sous-ensemble de paramètres, où le premier sous-ensemble de paramètres comprend au moins un premier paramètre d'impression en fonction d'au moins un premier paramètre d'état prévalant dans la région de la tête d'impression (2.1).
  28. Imprimante selon la revendication 27, caractérisée en ce que le premier sous-ensemble de paramètres comprend, pour une pluralité de valeurs discrètes du premier paramètre d'état, au moins une valeur associée au premier paramètre d'impression.
  29. Imprimante selon la revendication 28, caractérisée en ce que l'unité de traitement (1.4) est conçue pour déterminer, par interpolation, des valeurs intermédiaires de la valeur du premier paramètre d'impression pour des valeurs du premier paramètre d'état qui se situent entre les valeurs discrètes du premier paramètre d'état.
  30. Imprimante selon l'une des revendications 27 à 29, caractérisée en ce que le premier paramètre d'état est une température dans la région de la tête d'impression (2.1) ou une vitesse relative d'un support (4) par rapport à l'élément d'impression (2.3) et/ou au dispositif porteur d'encre (3).
  31. Imprimante selon l'une des revendications 19 à 30, caractérisée en ce que l'unité de traitement (1.4) est conçue pour prendre en compte l'alimentation en énergie vers au moins le premier élément d'impression (2.3) qui a eu lieu auparavant.
  32. Imprimante selon la revendication 31, caractérisée en ce que l'unité de traitement (1.4) est conçue pour prendre en compte l'alimentation en énergie vers au moins un second élément d'impression (2.4, 2.5) adjacent au premier élément d'impression (2.3) qui a eu lieu auparavant.
  33. Imprimante selon la revendication 31 ou 32, caractérisée en ce que l'unité de traitement (1.4) est conçue pour prendre en compte la dernière alimentation en énergie qui a eu lieu.
  34. Imprimante selon l'une des revendications 31 à 33, caractérisée en ce que l'unité de traitement (1.4) est conçue pour prendre en compte l'avant-dernière alimentation en énergie qui a eu lieu.
  35. Imprimante selon l'une des revendications 19 à 34, caractérisée en ce que
    - l'unité de traitement (1.4) est conçue pour déterminer la première quantité d'énergie en utilisant un premier ensemble de paramètres d'impression, et
    - le premier ensemble de paramètres d'impression comprend une pluralité de valeurs d'alimentation en énergie pour différentes constellations d'alimentation en énergie dans au moins une alimentation en énergie précédente.
  36. Imprimante selon l'une des revendications 19 à 35, caractérisée en ce que l'unité de traitement (1.4) est conçue pour déterminer la première quantité d'énergie, en ce qu'elle est conçue pour soustraire d'une quantité d'énergie maximale prédéterminée à fournir une déduction pour au moins une alimentation en énergie précédente vers au moins le premier élément d'impression (2.3).
  37. Imprimante selon l'une des revendications 19 à 36, caractérisée en ce qu'elle est conçue comme une unité d'impression d'une machine à affranchir (1).
  38. Machine à affranchir comprenant une imprimante (2) selon l'une des revendications 19 à 37.
EP05025141A 2004-11-30 2005-11-17 Procédé de commande pour une tête d'impression à transfert thermique Not-in-force EP1661716B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004060156A DE102004060156A1 (de) 2004-11-30 2004-11-30 Verfahren zum Ansteuern eines Thermotransferdruckknopfes
DE200410063756 DE102004063756A1 (de) 2004-12-29 2004-12-29 Verfahren zum Ansteuern eines Thermotransferdruckkopfes

Publications (3)

Publication Number Publication Date
EP1661716A2 EP1661716A2 (fr) 2006-05-31
EP1661716A3 EP1661716A3 (fr) 2007-10-24
EP1661716B1 true EP1661716B1 (fr) 2012-08-08

Family

ID=35789507

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05025141A Not-in-force EP1661716B1 (fr) 2004-11-30 2005-11-17 Procédé de commande pour une tête d'impression à transfert thermique

Country Status (2)

Country Link
US (1) US7508405B2 (fr)
EP (1) EP1661716B1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007003138A1 (de) * 2007-01-16 2008-07-24 Francotyp-Postalia Gmbh Verfahren zum Ansteuern eines Thermotransferdruckkopfes
US10105963B2 (en) * 2017-03-03 2018-10-23 Datamax-O'neil Corporation Region-of-interest based print quality optimization
JP7012476B2 (ja) * 2017-07-21 2022-01-28 東芝テック株式会社 プリンタ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4737860A (en) * 1984-12-13 1988-04-12 Canon Kabushiki Kaisha Image recording apparatus
JPS61241165A (ja) * 1985-04-18 1986-10-27 Matsushita Electric Ind Co Ltd シリアル型印字装置
JPS6377756A (ja) * 1986-09-19 1988-04-07 Shinko Electric Co Ltd サ−マル式バ−コ−ドプリンタ
US4845514A (en) * 1986-09-19 1989-07-04 Shinko Electric Co., Ltd. Thermal transfer type line printer capable of setting printing density by command supplied from an external device
JP2749075B2 (ja) 1988-10-03 1998-05-13 株式会社日立製作所 熱転写記録装置及びインク紙カセット
US5400058A (en) 1989-02-03 1995-03-21 Monarch Marking Systems, Inc. Thermal print head control for printing serial bar codes
US5452095A (en) * 1991-04-22 1995-09-19 Ono; Takeshi Recording apparatus and method having a recording mode which repeatedly records recording data for one line a plurality of times
DE4133207A1 (de) 1991-10-07 1993-04-15 Francotyp Postalia Gmbh Verfahren zum steuern der speisung eines thermodruck-heizelements
DE4220003C2 (de) 1992-06-19 2001-11-22 Meto International Gmbh Thermodrucker
US5564841A (en) * 1994-09-13 1996-10-15 Intermec Corporation System and method for dynamic adjustment of bar code printer parameters
JP2857837B2 (ja) 1994-11-16 1999-02-17 日本電気エンジニアリング株式会社 サ−マルヘッドの発熱制御装置

Also Published As

Publication number Publication date
EP1661716A3 (fr) 2007-10-24
EP1661716A2 (fr) 2006-05-31
US7508405B2 (en) 2009-03-24
US20060139436A1 (en) 2006-06-29

Similar Documents

Publication Publication Date Title
DE68903649T2 (de) Verfahren und vorrichtung fuer die stromversorgung des thermischen druckkopfes eines thermo-druckers.
DE69808698T2 (de) Druckvorrichtung für Endlospapier
DE60224859T2 (de) Gerät und Verfahren zum Tintenstrahldrucken, Programm und computerlesbares Speichermedium zum Speichern des Programms
EP0331138B1 (fr) Imprimante
DE69829237T2 (de) Tintenstrahlvorrichtung und Tintenstrahlverfahren zur Berechnung und Steuerung der Temperatur in einem Tintenstrahldruckkopf
DE3889790T2 (de) Verfahren und Gerät zum Punktmatrix-Wärmedruck.
DE2062494C3 (de) Wärmedruckkopf
DE69020522T2 (de) Wärmeübertragungsdrücken.
EP1661716B1 (fr) Procédé de commande pour une tête d'impression à transfert thermique
DE3613946C2 (de) Thermodrucker/Schreiber
DE2901215A1 (de) Druckvorrichtung zum drucken von zeichen in punktmatrixform
EP1661717B1 (fr) Procédé de commande d'une tête d'impression à transfert thermique
DE60300094T2 (de) Zeilendrucker
DE60119207T2 (de) Kontinuierlich arbeitender Tintenstrahldrucker mit asymmetrischer Tropfenumlenkung
DE3839089C2 (de) Halbton-Drucksystem
EP0536526B1 (fr) Méthode de commande de l'alimentation d'un élément chauffant d'une imprimante thermique
DE4109300A1 (de) Punktmatrixdrucker mit punktzaehler und temperatursensor
DE69126590T2 (de) Zeilenwärmedrucker
DE3882543T2 (de) Wärmeübertragungsdrucker mit Widerstandsband.
EP0730972A2 (fr) Commande thermique d'une tête d'impression
DE69800517T2 (de) Druckschwärzungskontrolle für thermisches Aufzeichnungsgerät
DE102004063756A1 (de) Verfahren zum Ansteuern eines Thermotransferdruckkopfes
DE69303876T2 (de) Thermo-Druckeranordnung und Betriebsverfahren
DE3628191A1 (de) Verfahren und vorrichtung zur informationsaufzeichnung auf einem informationstraeger mittels eines thermodruckkopfes
EP0575668B1 (fr) Circuit de commande pour système d'impression thermique avec ruban résistif

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080423

RIN1 Information on inventor provided before grant (corrected)

Inventor name: REISINGER, FRANK

Inventor name: NISIUS, RAIMUND

Inventor name: KUNDE, CHRISTOPH

17Q First examination report despatched

Effective date: 20080528

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: NISIUS, RAIMUND

Inventor name: REISINGER, FRANK

Inventor name: KUNDE, CHRISTOPH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 569533

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005012977

Country of ref document: DE

Effective date: 20121011

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120808

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120808

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120808

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121109

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120808

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120808

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121210

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120808

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121119

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120808

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120808

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120808

BERE Be: lapsed

Owner name: FRANCOTYP-POSTALIA G.M.B.H.

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120808

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121108

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20130808

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005012977

Country of ref document: DE

Effective date: 20130510

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502005012977

Country of ref document: DE

Effective date: 20130727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051117

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005012977

Country of ref document: DE

Representative=s name: COHAUSZ & FLORACK PATENT- UND RECHTSANWAELTE P, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005012977

Country of ref document: DE

Owner name: FRANCOTYP-POSTALIA GMBH, DE

Free format text: FORMER OWNER: FRANCOTYP-POSTALIA BETEILIGUNGS AG, 16547 BIRKENWERDER, DE

Effective date: 20120808

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005012977

Country of ref document: DE

Owner name: FRANCOTYP-POSTALIA GMBH, DE

Free format text: FORMER OWNER: FRANCOTYP-POSTALIA GMBH, 16547 BIRKENWERDER, DE

Effective date: 20150330

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005012977

Country of ref document: DE

Representative=s name: COHAUSZ & FLORACK PATENT- UND RECHTSANWAELTE P, DE

Effective date: 20150330

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: GARTENSTRASSE 28 A, 5400 BADEN (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20171013

Year of fee payment: 13

Ref country code: NL

Payment date: 20171120

Year of fee payment: 13

Ref country code: FR

Payment date: 20171121

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20171124

Year of fee payment: 13

Ref country code: CH

Payment date: 20171120

Year of fee payment: 13

Ref country code: SE

Payment date: 20171120

Year of fee payment: 13

Ref country code: GB

Payment date: 20171123

Year of fee payment: 13

Ref country code: AT

Payment date: 20171121

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005012977

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20181201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 569533

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181117

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181201

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190601

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181117

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181117

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181117