EP1643633A1 - Schaltungsanordnung zur Unterdrückung einer Störung , sowie Verfahren - Google Patents

Schaltungsanordnung zur Unterdrückung einer Störung , sowie Verfahren Download PDF

Info

Publication number
EP1643633A1
EP1643633A1 EP05020455A EP05020455A EP1643633A1 EP 1643633 A1 EP1643633 A1 EP 1643633A1 EP 05020455 A EP05020455 A EP 05020455A EP 05020455 A EP05020455 A EP 05020455A EP 1643633 A1 EP1643633 A1 EP 1643633A1
Authority
EP
European Patent Office
Prior art keywords
signal
output
quadrature
synchronous demodulator
integral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05020455A
Other languages
German (de)
English (en)
French (fr)
Inventor
Ingo Steinbach
Hans Fiesel
Miodrang Temerinac
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Entropic Communications LLC
Original Assignee
TDK Micronas GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Micronas GmbH filed Critical TDK Micronas GmbH
Publication of EP1643633A1 publication Critical patent/EP1643633A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/015High-definition television systems
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D1/00Demodulation of amplitude-modulated oscillations
    • H03D1/22Homodyne or synchrodyne circuits
    • H03D1/2245Homodyne or synchrodyne circuits using two quadrature channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems

Definitions

  • the invention relates to a method and a circuit arrangement for suppressing a disturbing quadrature component of a carrier signal of an amplitude-modulated signal in the recovery of the carrier signal in a synchronous demodulator which outputs a quadrature signal.
  • an amplitude-modulated signal (eg an analog television signal)
  • the present signal can now be digitally converted at a much lower sampling frequency f AT2 .
  • the digitized signal is mixed into baseband by means of a synchronous demodulator, the carrier frequency f T (preferably the image carrier frequency f BT ) being generated by a fully digital phase-locked loop (PLL). Further digital filtering of the resulting in-phase and quadrature component extracts the signal (eg, picture and / or sound information).
  • the input IF IN is connected via a signal path 3 to a first input E 2,1 of a mixer 2.
  • a local oscillator 5 is connected via a signal path 4 with a second input E 2,2 to the mixer 2.
  • the output A 2 of the mixer 2 is connected via a signal path 6 to an input E 7 of a bandpass filter 7.
  • An output A 7 of the bandpass filter 7 is connected via a signal path 8 to an input Eg of an analog-to-digital converter 9.
  • An output A 9 of the analog-to-digital converter 9 is connected via a signal path 10 to an input of a digital signal processor 11, which has three outputs A 11.1 , A 11.2 and A 11.3 .
  • the signal path 10 is divided at a node 12 into two partial signal paths 13 and 14.
  • the sub-signal path 13 is fed to a first input E 21,1 of an automatic gain control device for tuner (channel selector) signals 21.
  • the second partial signal path 14 is fed to an input E 15 of a synchronous demodulator 15.
  • This synchronous demodulator 15 has two outputs, namely an in-phase signal output A 15, I and a quadrature signal output A 15, Q.
  • Both signal outputs A 15, I and A 15, Q of the synchronous demodulator 15 are connected via corresponding signal paths 16, 17 to respective inputs E 18, I and E 18, Q of a filter device 18.
  • This filter device 18 itself has in turn two signal outputs, namely an in-phase signal output A 18, I and a quadrature signal output A 18, Q.
  • the in-phase signal output A 18, I of the filter device 18 is via a signal path 19 with an input E 23 of an automatic Gain controller for video signals 23 connected.
  • This automatic gain control device for video signals 23 has two outputs, namely a first with the reference numeral A 23.1 and a second marked with the reference numeral A 23.2 output.
  • the first output A 23,1 of the video signal automatic gain control device 23 is connected to a second input E 21,2 of the automatic gain control device 21 for tuner signals 21. Its single output A 21 leads via a signal path 27 to the above-mentioned first output A 11, 1 of the digital signal processor 11.
  • the second output A 23,2 of the automatic gain control device for video signals 23 is connected via a signal path 28 to the aforementioned second output A 11,2 of the digital signal processor.
  • the quadrature signal output A 18, Q of the filter device 18 is connected via a signal path 20 to an input E 25 of an automatic gain control device 25 for audio signals. Its output A 25 is connected via a further signal path 29 to the third output A 11.3 of the digital signal processor 11.
  • All outputs A 11,1 , A 11,2 , A 11,3 are connected to respective inputs E 30 , E 31 , E 32 of three analog-to-digital converters 30, 31, 32. Their outputs form the aforementioned outputs Tuner AGC, CVBS, SIF of the digital TV receiver 1.
  • the output signal of a tuner is supplied to the input IF IN of the digital TV receiver 1.
  • LO local oscillator
  • This second IF signal is present at the output A 2 of the mixer 2. It is fed to the bandpass filter 7 via the input E 7 . After the bandpass filtering unwanted mixing products are removed from the signal and it can be digitized without Signalverkennung, ie without so-called aliasing, using the analog-to-digital converter 9.
  • the signal is first mixed using the synchronous demodulator 15 in the baseband.
  • the outputs A 15, I , A 15, Q of the synchronous demodulator 15 are demodulated in-phase and quadrature signals I, Q before.
  • the video signal and the audio IF signal are obtained from the I / Q data.
  • the tuner AGC 21 acronym for Automatic Gain Control
  • the tuner output level is set to the tuner output level so that the DSP 11 of the connected A / D converter 9 is not overridden at input E 11 s.
  • u ( t ) u ⁇ B T ⁇ cos ( 2 ⁇ f B T t ) ⁇ ( 1 + m ⁇ cos ( 2 ⁇ f picture t ) ) ⁇ image ( AM modulation )
  • Figure 7a shows the phasor diagram of this amplitude modulated signal.
  • OSB upper sideband
  • USB acronym for lower sideband
  • Demodulators according to the internally known state of the art are dimensioned so that the phase modulation is constantly readjusted by the carrier preparation.
  • this results in the fact that the information is correctly reconstructed even if an orthogonal carrier component is present due to rapid tracking of the image carrier, but because e.g. in the case of analogue television, the sound carrier is mixed with the audio intermediate frequency with the aid of the reconstructed video carrier, the latter being subject to the same frequency changes, which manifests itself in additional frequency modulation;
  • the digital carrier preparation in the digital signal processor 11 according to FIG. 6, as implemented according to the state of the art known in the art, is shown in the form of a block diagram in FIG.
  • FIG. 8 shows the synchronous demodulator 15 from FIG. 6.
  • the synchronous demodulator 15 consists of the actual I / Q demodulator 15a, which converts an input signal into an in-phase signal I and a quadrature signal Q.
  • a circuit arrangement is provided which wins the image carrier signal BT from the in-phase signal I and the quadrature signal Q and a first mixer 40 of the I / Q demodulator 15a directly and a second mixer 41 of the I / Q demodulator 15a with 90 ° phase shift feeds.
  • the I / Q demodulator 15a is constructed in a conventional manner. It comprises an input E 15 and two outputs, namely an in-phase signal output A 15 , I and a quadrature signal output A 15, Q.
  • the input E 15 is connected via a signal path 14 to a node 42. This node 42 splits the signal path 14 into two partial signal paths 43 and 44.
  • the first part signal path 43 is connected to an input E 40 of the above-mentioned first mixer 40
  • the second part signal path 44 is connected to a first input E 41,1 of the aforementioned second mixer 41.
  • Both mixers 40, 41 each have a further second input E 40,2 , E 41,2 , to which the image carrier signals BT are supplied in the aforementioned manner.
  • An output A 40 of the mixer 40 is connected via a signal path 45 to an input E 38 of a low-pass filter 38.
  • An output A 41 of the mixer 41 is connected via a signal path 46 to an input E 39 of a second low-pass filter 39.
  • An output A 38 of the first low-pass filter 38 forms the abovementioned in-phase signal output A 15, I
  • an output A 39 of the second low-pass filter 39 forms the abovementioned quadrature signal output A 15, Q of the I / Q demodulator A.
  • the output A 15, I leads via a signal path 16 to a node 47. From this node 47, a signal path leads on the one hand to the filter 18 shown in FIG. 6 and via one signal path 41 to a first input E 41, 1 of a low-pass filter 51.
  • the quadrature signal output A 15, Q leads via a signal path 17 to a node 48. From this node 48 leads on the one hand a Signal connection on to the filter 16 shown in Figure 6 and on the other hand via a signal path 50 to a second input E 51,2 of the above-mentioned low-pass filter 51st
  • Two outputs A 54,1 , A 54,2 of this arithmetic unit 54 are connected via corresponding signal paths 55, 56 with inputs E 37,1 , E 37,2 a control device 37.
  • One or more outputs A 37 of the arithmetic unit 37 are connected via corresponding signal paths 57 to the corresponding inputs E 36 of a digital I / Q oscillator 36.
  • signal paths 58 lead to the inputs E 40,2 and E 41,2 of the mixers 40 and 41, respectively.
  • the low-pass filter 51 selects the image carrier which lies here in the baseband (f BT ⁇ 0 Hz).
  • the subsequent CORDIC (Coordinate Rotation Digital Computer) 54 determines the phase 55 and the amplitude 56 from the low-pass filtered I / Q value pairs (signals 52/53).
  • Phase 55 represents the phase difference between the image carrier of the received signal 14 and the local carrier 58
  • the phase 55 is converted in block 37 to a correction signal 57 to track the local I / Q oscillator 36. After several iterations (loop passes), the carrier 58 will align with the received carrier 14.
  • Fig. 9 shows the effects of a quadrature component in the in-phase signal on the demodulated video signal.
  • the sound carrier is converted to the audio intermediate frequency by means of the local I / Q oscillator 36. If due to an orthogonal noise component of the image carrier, a phase modulation of the image carrier occurs, this has an effect as a frequency modulation of the audio intermediate frequency carrier, since the local carrier 58 follows the phase modulation.
  • Fig. 9 shows a section of a CVBS signal.
  • the horizontal synchronization pulse is clearly recognizable (approximately 650 ⁇ t ⁇ 750).
  • Fig. 9b shows the same case with additional orthogonal noise component.
  • the PLL loop in this case is not fast enough to demodulate the signal without error.
  • the horizontal sync pulse is so distorted that a connected TV can not generate a stable picture from it.
  • Object of this invention is to provide a method and a circuit arrangement in which or in the carrier preparation even with poorly balanced transmitters a trouble-free demodulation of the signal is guaranteed.
  • a method and a circuit arrangement for orthogonal disturbance estimation and their compensation are to be provided.
  • the disturbing quadrature component of the carrier signal is estimated and that the estimated quadrature component is subtracted from the quadrature signal.
  • the circuit arrangement according to the invention comprises a tinctsab collectedin therapies and a subtractor in the quadrature signal path.
  • the invention it is provided to compensate the orthogonal carrier component contained in the signal for measurements and within the carrier control.
  • the bandwidth of the PLL does not have to be changed in order to demodulate the information without sacrificing quality, in order to prevent a frequency-modulated sound signal from being disturbed by the existence of an orthogonal image carrier component in the example of analogue television.
  • modulator imbalance The orthogonal noise component, which is referred to in English as “modulator imbalance”, can be estimated as follows:
  • the orthogonal noise component appears as a DC value in the Q path after the I / Q mixer.
  • the carrier recovery interprets this as a phase error (measured with Cordic) and thus controls the digital I / Q oscillator to a supposedly correct value.
  • a DC signal in the Q path is again briefly visible, which is regulated back.
  • the magnitude of the excursion of the DC signal in the Q path depends on the magnitude and direction of the amplitude jump.
  • the pointer diagram in FIG. 1 illustrates this relationship using the example of the television signal:
  • the painted coordinate system I '/ Q' shows the composition 59 of a modulated image carrier 34 with spurious component 35
  • point (a) represents the signal at small information signal amplitude 3a (eg white level at analog TV) and point (b) shows a large information signal amplitude 33b (eg Black level).
  • the other coordinate system I / Q shows the currently valid carrier recovery coordination system in the locked state.
  • the signal change from point (a) to (b) one first obtains a negative Q value q ⁇ .
  • the simple relationship applies here:
  • the amplitude change is determined using the absolute value of the current I and Q value.
  • a more cost-effective solution is obtained - assuming that the carrier recovery is locked - by only the change of the I-part is evaluated, as shown in Fig. 2 by way of example.
  • FIG. 2d shows the differential amplitude changes 79, 81, 83, 85 determined from the corresponding amplitude changes 62, 63, 68, 67 of the in-phase signal I.
  • the estimated values obtained for the above-mentioned amplitude jumps of the in-phase signal are indicated by reference numerals 87, 88 and 89.
  • FIG. 5 like FIG. 9, shows the section of a CVBS signal.
  • the signal contains a relatively strong orthogonal noise component and is distorted as previously described with a horizontal sync pulse (marked by the arrow) ( Figure 9 above) and a connected TV would not be able to generate a stable TV picture from it.
  • the imbalance compensation control is active in FIG. 9 below and has already settled to an end value.
  • the orthogonal noise component is fully compensated and the signal is demodulated without error.
  • FIG. 4 shows a synchronous demodulator 115 with orthogonal noise compensation.
  • the synchronous demodulator 115 according to FIG. 4 comprises, on the one hand, the circuit components of the synchronous demodulator 15 according to FIG. 8 as well as an implemented orthogonal disturbance estimation circuit arrangement.
  • This circuit arrangement for orthogonal disturbance estimation can be embodied identically, for example, as the circuit arrangement 90 according to FIG. 3.
  • the signal paths 52, 53 between the low-pass filter 51 and the arithmetic unit 54 are connected via corresponding nodes 117, 118 to the signal paths 99, 100 of the circuit arrangement 90 according to FIG.
  • a connection to an input E 119 of an I-controller 119 is established via a signal path 112.
  • An output A 119 carries a signal path 120 to a second input E 121 of a subtractor whose first input E 121 is connected to the output A 39 of the low-pass filter 39 in the Q path.
  • the low-pass filtered estimation signal U ⁇ q a with the amplitude ⁇ qa subtracted from the quadrature signal Q in the Q path and thus compensated U ⁇ q a with the amplitude ⁇ qa subtracted from the quadrature signal Q in the Q path and thus compensated. It goes without saying for the person skilled in the art that any other control loop could be used instead of the I-controller 119.
  • the signal 112 is first amplified or attenuated with an adjustable factor and then fed to an integrator.
  • the factor influences the speed of the control loop.
  • the current state of the integrator is also the estimated signal U ⁇ q a ,
  • control deviation is caused by the interfering orthogonal component, since this leads to the described phase modulation. Integration (and sign correction) is used to estimate the quadrature component from the control deviation. This works only with a control loop, since there is no way to directly the orthogonal noise component to calculate.
  • the actual fault estimate is defined according to reference numeral 90.
  • the filter 93 By using the filter 93, the estimation result becomes more reliable.
  • the disturbance estimation 90 alone will not be able to determine the absolute value of the disturbance component. It is only possible to identify a trend. This tendency is used by charging or discharging the integrator in the I-controller 119 in order to obtain the absolute value of the noise component in the steady state of the control loop.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Noise Elimination (AREA)
  • Circuits Of Receivers In General (AREA)
EP05020455A 2004-10-04 2005-09-20 Schaltungsanordnung zur Unterdrückung einer Störung , sowie Verfahren Withdrawn EP1643633A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004048572A DE102004048572A1 (de) 2004-10-04 2004-10-04 Verfahren sowie Schaltungsanordnung zur Unterdrückung einer orthogonalen Störung

Publications (1)

Publication Number Publication Date
EP1643633A1 true EP1643633A1 (de) 2006-04-05

Family

ID=35229628

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05020455A Withdrawn EP1643633A1 (de) 2004-10-04 2005-09-20 Schaltungsanordnung zur Unterdrückung einer Störung , sowie Verfahren

Country Status (6)

Country Link
US (1) US7920653B2 (ko)
EP (1) EP1643633A1 (ko)
JP (1) JP4594202B2 (ko)
KR (1) KR100727458B1 (ko)
CN (1) CN1812554A (ko)
DE (1) DE102004048572A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004047424A1 (de) * 2004-09-28 2006-04-06 Micronas Gmbh Schaltung und Verfahren zur Trägerrückgewinnung
US8902365B2 (en) * 2007-03-14 2014-12-02 Lance Greggain Interference avoidance in a television receiver
US8502920B2 (en) * 2007-03-14 2013-08-06 Vyacheslav Shyshkin Method and apparatus for extracting a desired television signal from a wideband IF input
EP2797225B1 (en) * 2013-04-24 2018-01-10 Analog Devices Global Method of and apparatus for demodulating an amplitude modulated signal

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4484194A (en) * 1980-09-12 1984-11-20 Telefonaktiebolaget L M Ericsson Arrangement in a radar system for correction of phase and amplitude errors in a video signal
US4729110A (en) * 1984-12-24 1988-03-01 General Electric Company Correction of offset and gain errors in RF receivers
EP0948128A1 (en) * 1998-04-03 1999-10-06 Motorola Semiconducteurs S.A. DC offset cancellation in a quadrature receiver
WO2001005025A1 (de) 1999-07-07 2001-01-18 Siemens Aktiengesellschaft Verfahren und vorrichtung zur korrektur einer nutzsignalverfälschung
US20020097812A1 (en) * 2000-12-01 2002-07-25 John Wiss In-phase and quadrature-phase rebalancer
US20030203728A1 (en) * 2002-04-26 2003-10-30 Filipovic Daniel F. DC removal techniques for wireless networking

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731235A (en) 1980-08-01 1982-02-19 Hitachi Denshi Ltd Receiving system
DE3120050A1 (de) 1981-05-20 1982-12-09 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Zf-verstaerker fuer einen mehrnormen-fernsehempfaenger
US4860018A (en) * 1982-03-01 1989-08-22 Western Atlas International, Inc. Continuous wave interference rejection for reconstructed carrier receivers
US4608703A (en) * 1983-05-12 1986-08-26 Ricoh Company, Ltd. Synchronization detection system for data transmission
JPH06105898B2 (ja) 1986-04-03 1994-12-21 日本電信電話株式会社 干渉補償回路
US5177604A (en) * 1986-05-14 1993-01-05 Radio Telcom & Technology, Inc. Interactive television and data transmission system
DE3851424T2 (de) * 1987-12-24 1995-01-19 Nippon Electric Co Trägerrückgewinnungsschaltung eines Demodulators für verschobene quaternäre Phasenumtastung.
CA1288878C (en) * 1988-08-15 1991-09-10 John D. Mcnicol Timing and carrier recovery in tdma without preamable sequence
JP2513331B2 (ja) * 1989-11-10 1996-07-03 日本電気株式会社 搬送波再生器
US5604768A (en) * 1992-01-09 1997-02-18 Cellnet Data Systems, Inc. Frequency synchronized bidirectional radio system
US5377232A (en) * 1992-01-09 1994-12-27 Cellnet Data Systems, Inc. Frequency synchronized bidirectional radio system
JPH06104788A (ja) 1992-09-22 1994-04-15 Toko Inc スーパーヘテロダイン方式の受信機
JPH06112858A (ja) 1992-09-29 1994-04-22 Hitachi Ltd 受信装置
JPH06189342A (ja) * 1992-12-17 1994-07-08 Pioneer Electron Corp 映像合成装置
US5572264A (en) * 1994-02-14 1996-11-05 Hitachi, Ltd. High definition TV signal receiver
CA2144596A1 (en) 1994-04-05 1995-10-06 Richard Prodan Modulator/demodulator using baseband filtering
US5507024A (en) * 1994-05-16 1996-04-09 Allegro Microsystems, Inc. FM data-system radio receiver
JPH07326980A (ja) 1994-06-02 1995-12-12 Japan Radio Co Ltd 移動通信用受信機
EP0696854A1 (en) 1994-08-08 1996-02-14 THOMSON multimedia S.A. Broadcast receiver adapted for analog and digital signals
JP3171052B2 (ja) * 1995-04-13 2001-05-28 松下電器産業株式会社 Catvコンバータ
FR2734681B1 (fr) * 1995-05-23 1997-07-04 Thomson Multimedia Sa Procede pour numeriser un signal de frequence intermediaire fi, en particulier de television, et circuit pour la mise en oeuvre de ce procede
FR2735316B1 (fr) * 1995-06-12 1997-07-18 Thomson Multimedia Sa Procede de numerisation de signaux video fi et dispositif pour mettre en oeuvre ce procede
US5828705A (en) * 1996-02-01 1998-10-27 Kroeger; Brian W. Carrier tracking technique and apparatus having automatic flywheel/tracking/reacquisition control and extended signal to noise ratio
JP3636397B2 (ja) * 1996-04-04 2005-04-06 富士通株式会社 ジッタ抑圧回路
KR100200589B1 (ko) * 1996-06-12 1999-06-15 윤종용 고해상도 텔레비젼 수신기의 디지털 복조회로 및 방법
KR100241890B1 (ko) * 1997-01-10 2000-03-02 윤종용 디지털 통신 시스템에서 간섭 제거 회로
US6028903A (en) * 1997-03-31 2000-02-22 Sun Microsystems, Inc. Delay lock loop with transition recycling for clock recovery of NRZ run-length encoded serial data signals
DE19739645C2 (de) 1997-09-10 1999-07-15 Fraunhofer Ges Forschung Vorrichtung zur Gewinnung eines Takt- oder Trägersignales
US6233295B1 (en) * 1998-08-26 2001-05-15 Thomson Licensing S.A. Segment sync recovery network for an HDTV receiver
US6184921B1 (en) 1998-02-20 2001-02-06 Samsung Electronics Co., Ltd. Method for transmitting VSB digital TV with carrier frequency near co-channel NTSC audio carrier frequency
JP3659800B2 (ja) * 1998-04-15 2005-06-15 三菱電機株式会社 位相誤差検出装置
JP3576410B2 (ja) 1998-05-29 2004-10-13 松下電器産業株式会社 受信装置と送受信装置及び方法
DE19825455C2 (de) 1998-06-06 2000-04-06 Micronas Intermetall Gmbh Frequenzumsetzungseinrichtung für ein Fernsehsignalgemisch
KR100318959B1 (ko) * 1998-07-07 2002-04-22 윤종용 부호분할다중접속통신시스템의서로다른부호간의간섭을제거하는장치및방법
US6222891B1 (en) 1998-11-03 2001-04-24 Broadcom Corporation Timing recovery using the pilot signal in high definition TV
US6005363A (en) * 1998-11-06 1999-12-21 Texas Instruments Incorporated Method and apparatus for position error signal (PES) measurement in a disk drive servo system
US6304136B1 (en) * 1999-03-03 2001-10-16 Level One Communications, Inc. Reduced noise sensitivity, high performance FM demodulator circuit and method
FR2792103B1 (fr) * 1999-03-16 2001-11-09 St Microelectronics Sa Procede et dispositif d'asservissement d'un faisceau optique incident sur une piste d'un support mobile d'informations, en particulier un disque numerique
JP2001008118A (ja) 1999-06-22 2001-01-12 Alps Electric Co Ltd デジタルテレビジョンチューナ
US6661852B1 (en) * 1999-07-21 2003-12-09 Raytheon Company Apparatus and method for quadrature tuner error correction
FR2812162B1 (fr) 2000-07-18 2003-01-17 Thomson Multimedia Sa Procede de determination de parametres d'un signal de type ofdm et recepteur associe
JP3694639B2 (ja) 2000-07-26 2005-09-14 株式会社日立国際電気 デジタルpll回路及び位相同期方法
JP3917919B2 (ja) * 2002-09-19 2007-05-23 日本電信電話株式会社 直交復調誤差補償方法および回路
JP2004254243A (ja) * 2003-02-21 2004-09-09 Fujitsu Ltd 干渉測定評価システム
CA2470546C (en) 2003-06-13 2010-08-17 The Directv Group, Inc. Method and apparatus for providing carrier synchronization in digital broadcast and interactive systems
KR100581059B1 (ko) * 2003-09-26 2006-05-22 한국전자통신연구원 직교 복조 수신 시스템에서 가변루프이득을 이용한 동위상채널과 직교 채널 간 위상 및 이득 불일치 보상 장치 및그 방법
KR100554981B1 (ko) * 2003-11-20 2006-03-03 주식회사 하이닉스반도체 지연 고정 루프
US7327806B2 (en) * 2004-04-20 2008-02-05 Delphi Technologies, Inc. System/method for receiving ASK and FSK signals using a single RF receiver
DE102004047424A1 (de) * 2004-09-28 2006-04-06 Micronas Gmbh Schaltung und Verfahren zur Trägerrückgewinnung
DE102004054893A1 (de) * 2004-11-12 2006-05-24 Micronas Gmbh Verfahren und Schaltungsanordnung zur Kanalfilterung analog oder digital modulierter TV-Signale

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4484194A (en) * 1980-09-12 1984-11-20 Telefonaktiebolaget L M Ericsson Arrangement in a radar system for correction of phase and amplitude errors in a video signal
US4729110A (en) * 1984-12-24 1988-03-01 General Electric Company Correction of offset and gain errors in RF receivers
EP0948128A1 (en) * 1998-04-03 1999-10-06 Motorola Semiconducteurs S.A. DC offset cancellation in a quadrature receiver
WO2001005025A1 (de) 1999-07-07 2001-01-18 Siemens Aktiengesellschaft Verfahren und vorrichtung zur korrektur einer nutzsignalverfälschung
US20020097812A1 (en) * 2000-12-01 2002-07-25 John Wiss In-phase and quadrature-phase rebalancer
US20030203728A1 (en) * 2002-04-26 2003-10-30 Filipovic Daniel F. DC removal techniques for wireless networking

Also Published As

Publication number Publication date
US7920653B2 (en) 2011-04-05
KR100727458B1 (ko) 2007-06-13
US20060072686A1 (en) 2006-04-06
JP2006217565A (ja) 2006-08-17
CN1812554A (zh) 2006-08-02
DE102004048572A1 (de) 2006-04-13
JP4594202B2 (ja) 2010-12-08
KR20060051967A (ko) 2006-05-19

Similar Documents

Publication Publication Date Title
DE3341430C2 (ko)
EP0062872B1 (de) Empfangssystem
DE69420727T2 (de) Tuner mit direktumsetzung
EP0177076B1 (de) Schaltungsanordnung zum Ableiten digitaler Farbsignale aus einem analogen Fernsehsignal
DE19964615B4 (de) Messgeräteempfänger für digital modulierte Radiofrequenzsignale
DE102006014858B4 (de) Quadraturerfassungsverfahren; Quadraturerfassungsvorrichtung und Funkwellenchronometer
DE2656924C3 (de) Phasendiskriminator in einem Empfänger eines Datenübertragungssystems
DE10205044A1 (de) Digitaler Phase Locked Loop
EP1641205A2 (de) Schaltung und Verfahren zur Trägerrückgewinnung
EP0237590B1 (de) Regelschaltung zur Regelung von zwei ca. 90o Phasenverschiebung aufweisenden Signalen
EP1643633A1 (de) Schaltungsanordnung zur Unterdrückung einer Störung , sowie Verfahren
DE4309518A1 (de) Schaltungsanordnung zur Ableitung mindestens eines von der Qualität eines empfangenen Signals abhängigen Qualitätssignals
DE60014790T2 (de) Vorrichtung zum Reduzieren von Rauschen
EP0912010A1 (de) Abtastregelkreis für einen Empfänger von digital übertragenen Signalen
DE69524331T2 (de) Schaltung zur automatischen Verstärkungsregelung und Vorrichtung mit einer solchen Schaltung
DE3789984T2 (de) Rauschsignaldetektion durch Abtastung des digitalen Grundfrequenzsignals an einer Augenöffnung.
AT395795B (de) Videosignalverarbeitungsschaltung zur regelung der amplitude eines digitalen videosignals
DE3412191C2 (ko)
DE4238542C1 (de) Verfahren und Vorrichtung zur Korrektur von Gleichspannungs-Fehlersignalen bei direktmischenden Empfangseinrichtungen
DE4036452C2 (ko)
DE69518134T2 (de) Signaldetektorvorrichtung
EP0602394B1 (de) Verfahren und Vorrichtung zur Korrektur der Phasen- und Amplitudenfehler bei direktmischenden Empfangseinrichtungen
EP0786921B1 (de) Digitaler Demodulator
DE3511440C2 (ko)
DE68921396T2 (de) Rekursif-Rauschverminderungsfilter für Videokomponenten.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20060510

17Q First examination report despatched

Effective date: 20060703

AKX Designation fees paid

Designated state(s): DE FR GB IT NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TRIDENT MICROSYSTEMS (FAR EAST) LTD.

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ENTROPIC COMMUNICATIONS, INC.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140117

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140401