EP1627073A2 - Verwendung eines biotinylierten polypeptides zur bestimmung der aktivität von protein-phosphorylierenden enzymen - Google Patents

Verwendung eines biotinylierten polypeptides zur bestimmung der aktivität von protein-phosphorylierenden enzymen

Info

Publication number
EP1627073A2
EP1627073A2 EP04729646A EP04729646A EP1627073A2 EP 1627073 A2 EP1627073 A2 EP 1627073A2 EP 04729646 A EP04729646 A EP 04729646A EP 04729646 A EP04729646 A EP 04729646A EP 1627073 A2 EP1627073 A2 EP 1627073A2
Authority
EP
European Patent Office
Prior art keywords
polypeptide
enzyme
ability
irs
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04729646A
Other languages
English (en)
French (fr)
Inventor
Norbert Tennagels
Aimo Kannt
Harald Thuering
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanofi Aventis Deutschland GmbH
Original Assignee
Sanofi Aventis Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanofi Aventis Deutschland GmbH filed Critical Sanofi Aventis Deutschland GmbH
Publication of EP1627073A2 publication Critical patent/EP1627073A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/48Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/48Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase
    • C12Q1/485Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase involving kinase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/04Screening involving studying the effect of compounds C directly on molecule A (e.g. C are potential ligands for a receptor A, or potential substrates for an enzyme A)

Definitions

  • the invention relates to the use of a polypeptide to determine the ability of an enzyme to modulate the phosphorylation state of the polypeptide. Further aspects of the invention relate to a method for determining such an activity and to a method for identifying substances which modify this ability of the enzyme.
  • Insulin is a peptide hormone that affects a large number of growth and metabolic pathways by binding to the insulin receptor, thereby activating its intrinsic tyrosine kinase. This event leads to the phosphorylation of a variety of proteins that can bind to the insulin receptor (IR) on specific tyrosine residues.
  • IR insulin receptor
  • the family of insulin receptor substrate (IRS) proteins also belongs to the proteins phosphorylated in this way.
  • Insulin receptor substrate 1 is a cellular protein which can be phosphorylated by a large number of protein kinases (tyrosine-specific or serine / threonine-specific protein kinases) on tyrosine and / or serine residues and or threonine residues. Depending on the enzyme, different tyrosine or serine / threonine residues will presumably be phosphorylated specifically.
  • protein kinases tyrosine-specific or serine / threonine-specific protein kinases
  • IGF-1 receptor White 2002
  • JAK 1/2 Thife et al.
  • IRS-1 is also known to be produced by serine / threonine kinases such as kinases from the PKC family (Schmitz-Peiffer 2002), inhibitor kappa B kinase complex (Gao et al. 2002), c-Jun NH (2) - terminal kinase (JNK, Aguirre et al. 2000) Protein kinase A (Sun et al. 1991) , Mitogen activated protein kinase (Mothe et al. 1996), protein kinase B (Paz et al. 1999), casein kinase (Tanasijevic et al.
  • serine / threonine kinases such as kinases from the PKC family (Schmitz-Peiffer 2002), inhibitor kappa B kinase complex (Gao et al. 2002), c-Jun NH (2) - terminal kinase (
  • IRS molecules are key molecules in the insulin signal transduction pathway and play a central role in the maintenance of cellular functions such as growth, survival and metabolism.
  • Phosphorylated IRS proteins serve as "docking" proteins with a variety of docking sites for the insulin receptor and a complex network of intracellular signaling molecules with so-called Signal Recognition Complex (SRC) homology 2 domains (SH2 Domains).
  • SRC Signal Recognition Complex
  • IRS belongs to a group of phosphoproteins from 160 to 185 kDA in size that serve as a substrate for the insulin receptor.
  • IRS-1, IRS-2, IRS-3 and IRS-4 are known. They differ in tissue distribution, subcellular localization, development-specific expression, type of binding to the insulin receptor and the type of SH2 proteins with which they interact.
  • the four members of the IRS family are very similar in their basic protein structure: All have an amino (N) -terminal Plextrin homology domain (PH domain) that binds to membrane phospholipids, a phosphotyrosine binding domain (PTB domain) that is directly connects carboxy (C) terminal to the PH domain and is involved in the detection of the Asp-Pro-Glu phosphotyrosine (NPEpY) sequence which beta-insulin receptor in the juxta-membrane region. Subunit is localized. Furthermore, they have a somewhat less conserved C-terminal part, which has various potential tyrosine phosphorylation motifs to which special SH2 domain-containing proteins can bind.
  • NPEpY Asp-Pro-Glu phosphotyrosine
  • IRS-1 contains 21 possible, tyrosine phosphorylation sites, some of which are located in Aminpklaresequenzmotiven that can bind to the SH2 Domjänen proteins. IRS-1 also contains 30 potential serine / threonine phosphorylation sites in motifs that can be recognized by various kinases such as kinases from the PKC family (Schmitz-Peiffer 2002), inhibitor kappa B kinase complex (Gao et al. 2002), c- Jun NH (2) terminal kinase (JNK, Aguirre et al. 2000) Protein kinase A (Sun et al. 1991), Mitogen activated protein kinase (Mothe et al.
  • Protein kinase B (Paz et al. 1999), casein kinase (Tanasijevic et al. 1993), glycogen synthase kinase beta (Eldar-Finkelmann et al. 1997), AMP activated kinase (Jakobsen et al. 2001) or phosphoinositol 3 kinase (PI3 Kinase, Freund et al. 1995).
  • Inhibitory effects on the insulin receptor signaling pathway can be at least partly due to the recently discovered role of serine / threonine phosphorylation of IRS-1 explained, which is associated with a deterioration in the interaction with the insulin receptor and / or a reduction in the tyrosine phosphorylation of IRS-1 and / or a deterioration in the interaction with subsequent signal proteins which can bind to tyrosine phosphorylated IRS-1 5 (for For an overview, see White 2002).
  • kinases for example kinases from the PKC family (Schmitz-Peiffer 2002), inhibitor kappa B kinase complex (Gao et al.
  • JNK c-Jun NH (2) terminal kinase
  • JNK c-Jun NH (2) terminal kinase
  • protein kinase A (Sun et al. 1991), mitogen-activated protein kinase (Mothe et al. 1996), protein kinase B (Paz et al. 1999), casein kinase (Tanasijevic et al. 1993)
  • IRS-1 15 residues in some studies are directly related to the reduced tyrosine phosphorylation by the insulin receptor (Le Marchand-Brustel 1999)).
  • the sequences of IRS-1, 2, 3 and 4 are publicly available.
  • the coding polynucleotide sequences and the associated protein sequences of these genes are under the numbers NM_005544 (IRS-1 hs), XM: 007095 (IRS-2 hs), NM: 032074
  • IRS-1 20 (IRS-3 rat), NM: 003604 (IRS-4 hs) available from the NCBI Nucleotide Database.
  • NCBI is the National Center for Biotechnology Information (postal address: National Center for Biotechnology Information, National Library of Medicine, Building 38A, Bethesda, MD 20894, USA; web address: www.ncbi.nhm.nih.gov).
  • the cloning of the IRS-1 gene was described, inter alia, in Araki et al. 1993 and Sieffle et. al,
  • IRS-2 to 4 was carried out by Araki et al 1994, Lavan et al. 1997a and Lavan et al. 1997bbeprim.
  • IRS-1 fragments for example a fragment of IRS-1 (amino acid 516-777) and insulin receptor, IGF-1 receptor or recombinant insulin receptor kinase
  • a fragment of IRS-1 amino acid 516-777
  • insulin receptor IGF-1 receptor
  • recombinant insulin receptor kinase Incubation with radioactively labeled ATP, dropping of the substrate onto a positively charged membrane (nitrocellulose or similar material), Washing and detection of the bound radioactively labeled substrate by means of autoradiography or measurement of the radioactive radiation.
  • the disadvantage of the radioactive test methods described above is obvious, since the use of radioactivity entails considerable dangers, is very cost-intensive and is therefore not particularly suitable for high-throughput methods (HTS methods).
  • the disadvantage of the methods described above, which are based on the use of short peptides, is that these peptides have unfavorable kinetic constants (Vmax, Km) and, moreover, the spatial structure in the case of peptides is very different from that of the physiological enzyme substrates.
  • the object of the invention is therefore to provide a possibility for determining the activity of protein phosphorylating and / or dephosphorylating enzymes which does not have the disadvantages mentioned above.
  • This object is achieved by using a polypeptide (Def GGs to the peptide) to determine the ability of an enzyme, a functional fragment or derivative thereof to modulate the phosphorylation status of a polypeptide, characterized in that the polypeptide is biotinylated.
  • the invention is based on the results of the inventors, who surprisingly showed that even with polypeptides or full-length proteins there was no steric hindrance to the binding of biotin by streptavidin and that the biotinylation did not interfere with the phosphorylation of the substrate under investigation by kinases.
  • polypeptide means a molecule containing amino acids linked by peptide bonds, which has at least 50 amino acids linked linearly in this way. Shorter molecules of this type are called peptides.
  • protein refers to molecules that comprise at least one polypeptide chain, but can also consist of several polypeptide chains that are associated or linked with one another. The term protein thus includes the term polypeptide. According to a preferred embodiment of the various aspects of the present invention, the polypeptide has a length of 50 amino acids and more, preferably 50-300.
  • the polypeptide has a size of 1 kda and more, preferably 1 to 100 kDa and particularly preferably 10 to 50 kDa.
  • substrate of an enzyme is understood to mean any molecule that is suitable for being modified by the enzyme.
  • natural substrates are molecules which are designed in such a way as they occur in nature in a physiological or pathological context and are capable of being modified by the enzyme in question.
  • the modulation of the state of phosphorylation by the enzyme denotes the type of modification of a substrate by an enzyme in which at least one phosphate group is transferred to or removed from the substrate.
  • the enzymes relevant to the present invention therefore have the ability to catalyze one and / or the other reaction. They therefore have at least this ability of the kinases and / or the phosphatases, but can also have other enzymatic properties (e.g. protease properties, etc.).
  • the various enzyme categories and their properties are well known to the person skilled in the art.
  • a functional fragment of an enzyme is any fragment of the enzyme (that is, a molecule that is reduced or shortened compared to the naturally occurring form) that still has the ability to modulate the phosphorylation state of at least one polypeptide.
  • the term "functional derivative" of an enzyme encompasses any type of modification of the enzyme compared to the naturally occurring form, which does not constitute a shortening, the derivative of the enzyme still having the ability to modulate the phosphorylation state of at least one polypeptide.
  • the present invention also refers to functional derivatives of fragments of enzymes that can modulate the phosphorylation state of at least one polypeptide. The ability of the enzyme to modulate the phosphorylation state of the polypeptide can be determined both qualitatively and quantitatively (ie as a quantifiable measurement).
  • the use according to the invention has the advantage that the results obtained in this way are more meaningful due to the length of the substrates used, since they assume a tertiary structure that more closely corresponds to the physiological conditions.
  • the polypeptides used have good kinetic constants (for example with IRS-1: Km 19 ⁇ M: compared to peptides:> 200 ⁇ M see Sieffle et al. 1995) and it is in the analysis of substrates with several phosphorylation sites only one substrate is necessary with which, for example the ability of various enzymes can also be determined.
  • a preferred embodiment relates to a use in which the ability of an enzyme to phosphorylate the polypeptide is determined.
  • Particularly useful types of enzymes with kinase activity for the various aspects of the present invention relate to serine / threonine or tyrosine kinases.
  • Particularly suitable examples of kinases include u. a.
  • the use according to the invention is also suitable for determining the ability of an enzyme to dephosphorylate the polypeptide.
  • Another aspect of the invention relates to a method for determining the ability of an enzyme, a functional fragment or derivative thereof to modulate the phosphorylation status of a biotinylated polypeptide.
  • Suitable methods for determining the degree of phosphorylation of biotinylated polypeptides relate, for example, to methods which are known to be suitable for determining the degree of phosphorylation of short peptides. These are familiar to the person skilled in the art.
  • the method according to the invention relates to a method in which the ability of an enzyme, a functional fragment or derivative thereof to phosphorylate the polypeptide is determined by the following steps: a) contacting the enzyme or functional fragment or derivative with the biotinylated polypeptide and starting the phosphorylation reaction in a suitable reaction mixture, b) contacting the reaction mixture with an a carrier-coupled agent capable of binding to the biotinylated polypeptide, c) determining the phosphorylation state of the polypeptide bound to the agent.
  • a further preferred embodiment of the invention relates to a method for determining the ability of an enzyme, a functional fragment or derivative thereof to dephosphorylate the polypeptide with the steps a) bringing the enzyme or functional fragment or derivative into contact with the biotinylated polypeptide, which has at least one Has phosphate residue and start the phosphoryiation reaction in a suitable
  • Reaction batch b) contacting the reaction batch with an agent coupled to a carrier capable of binding the biotinylated polypeptide, c) determining the phosphorylation state of the polypeptide bound to the agent.
  • the agent can be any type of molecule or supramolecular assembly (e.g. body or device) that is suitable for binding the biotinylated polypeptide.
  • the binding can take place to the biotin portion or to the polypeptide itself, with one binding to the polypeptide itself
  • binding dependent on the phosphorylation state is preferred (eg binding only in the phosphorylated or unphosphorylated state with reference to individual or more phosphorylation sites).
  • Preferred embodiments of the agent therefore relate to streptavidin or phosphospecific antibodies (ie antibodies which recognize the phosphorylation of certain residues on the polypeptide and can bind specifically to the polypeptide phosphorylated there).
  • the reaction mixture used in the various aspects of the invention can be biochemical (ie in vitro) or cellular.
  • the composition of biochemical approaches depends on the requirements of the enzyme to be investigated, but suitable constituents and compositions, for example ATP, a buffer for setting a desired pH environment and a desired salt concentration for ensuring the enzyme activity are known to the person skilled in the art.
  • enzyme and or polypeptide can be present recombinantly and / or as a molecule partially or completely purified from natural sources and / or in the form of extracts from biological material, in particular cell or tissue extracts.
  • Biological material can include, among others: the cells of a tissue or organ (e.g. brain, blood, liver, spleen, kidney, heart, blood vessels), preferably those of a vertebrate including humans, or cells from a cell culture.
  • Cells used in the context of the invention include all types of cells, e.g. eukaryotic or prokaryotic unicellular organisms (such as bacteria, e.g. E. coli or yeasts, e.g. S. pombe or s. cerevisiae) or cell lines derived from multicellular organisms (such as HeLA, COS, NIH-3T3, CHO, etc.) , Mammalian cell lines are preferred.
  • Cells from a tissue association or organ of a vertebrate, including humans, can be obtained using common techniques such as “blood collection, tissue puncture or surgical techniques.
  • blood collection, tissue puncture or surgical techniques The production of such recombinant molecules, the purification of naturally occurring molecules from cells or tissues and the production of cell or tissue extracts is well known to the person skilled in the art (see also examples of the standard literature listed below).
  • Cellular systems suitable for use in the various aspects are also known to the person skilled in the art and preferably comprise isolated cells which originally come from tissue associations (preferably from vertebrates, particularly preferably mammals and in particular humans), particularly preferably in the form of cultivated cell lines; they also include unicellular organisms (eukaryotes or prokaryotes), such as yeast or bacterial cells, especially in the form of cultivated strains.
  • Carriers can be all types of molecules or supramolecular assemblies (eg bodies or devices) which are suitable for removing or labeling the peptide coupled to them via the biotin-streptavidin interaction from the reaction mixture.
  • Suitable devices are, for example, membranes, plates or bodies of various shapes (generally referred to as beads in the present case), made of various materials which are well known in the prior art.
  • the type of carrier depends on the process objective (e.g. diagnostic, drug discovery or discovery of new interaction partners) and the type of detection, the selection of suitable carriers is within the range of expert knowledge.
  • radioactively labeled ⁇ 32P-ATP is added to the reaction mixture, and the phosphorylation state is determined by measuring the radioactivity remaining on the support, preferably the membrane or plate, after carrying out at least one washing step.
  • the components of the reaction mixture, including free radioactivity, which are not bound to the streptavidin can simply be removed, so that the phosphorylation state of the polypeptide can easily be determined on the basis of the radioactivity immobilized on the support.
  • Streptavidin is particularly suitable in this case as a means of binding the biotinylated polypeptide.
  • an antibody is added to the reaction mixture, which is able to bind specifically to the phosphorylated polypeptide.
  • the antibody can both be the agent itself and can be added in addition to the agent (in which case it is then preferably not a phosphospecific antibody and particularly preferably streptavidin).
  • the phosphorylation state is determined here by determining the amount of the antibody bound to the polypeptide. Suitable measures for labeling and detection of the antibody are known to the person skilled in the art.
  • appropriately labeled first antibodies can be used that are directly detectable, or appropriately labeled second antibodies directed against the FC (crystalizing fragment) portion of the first antibody can be used, which increases the specificity of the detection.
  • Suitable labels for such antibodies are also known in the prior art and include, for example, enzymatic labels such as CIP (Calf intestinal phosphatase) or HRP (Horseraddish Peroxidase), fluorescent molecules which, when excited by irradiation with light of a certain wavelength, generate a detectable signal such as Texas Red, Cy3, FITC (fluorescein isothiocyanate), or known fluorescent proteins.
  • CIP Calf intestinal phosphatase
  • HRP Haseraddish Peroxidase
  • fluorescent molecules which, when excited by irradiation with light of a certain wavelength, generate a detectable signal such as Texas Red, Cy3, FITC (fluorescein isothiocyanate), or known fluorescent proteins.
  • the selection of suitable markings also corresponds to the professional ability.
  • first and second antibodies Suitable labeled or unlabeled first and second antibodies and their production are known in the art, moreover such antibodies are commercially available from various suppliers.
  • First and second antibodies are available, for example, from Becton Dickinson, Pharmacia or Santa Cruz Biotech.
  • the amount of the antibody bound to the polypeptide is determined by determining the amount of the antibody remaining on the support, preferably the membrane or plate, after carrying out at least one washing step.
  • the carrier coupled to the agent is a first carrier that includes a first signal generator and the polypeptide is coupled to a second carrier that includes a second signal generator, the two signal generators being able to generate a detectable signal when they are are in close proximity to each other and the determination of the phosphorylation state using the
  • the carriers are preferably beads.
  • the agent here is preferably a phosphospecific antibody.
  • the carrier can be directly or indirectly connected to the antibody, preferably indirectly through ProteinA, which is coupled to the carrier.
  • the second carrier can be bound directly or indirectly to the polypeptide, preferably indirectly through the biotin portion of the biotinylated polypeptide; this is preferably done via streptavidin coupled to the carrier.
  • a signal generator can be any type of agent or molecule that is suitable for generating detectable signals; Examples include fluorophores that emit light upon excitation by energy, which can be detected directly or after signal amplification by suitable means known in the art.
  • the signal generators are selected such that a signal is only generated when the agent (ie preferably the phosphospecific antibody) interacts directly with the polypeptide.
  • Suitable carriers and signal generators for example in the form of the ALPHAScreen TM or LANCE TM, Perkin-Elmer Life Sciences; HTRF TM, CIS Bio International) are known.
  • the immediate proximity of the carriers to each other is crucial for signal generation. It is therefore very surprising that this type of method is suitable for use in conjunction with polypeptides, although these are significantly larger than the peptides used in the prior art.
  • the polypeptide is preferably the natural substrate of the enzyme, preferably in an unabridged length.
  • Particularly suitable polypeptides include all substrates of the insulin receptor kinase.
  • Particularly preferred polypeptides are insulin receptor substrate '(IRS) family, preferably IRS-1, 2, 3 or 4 and particularly preferably IRS-1, or functional fragments or derivatives thereof. That is fragments or derivatives (or derivatives of fragments) which have the ability to be phosphorylated by the insulin receptor. It is further preferred if the IRS is human IRS.
  • IRS-1 in particular human IRS-1 with the sequence according to SEQ ID No.1, is particularly preferred in the context of the various aspects of the present invention, human IRS-1 encoded by the sequence according to SEQ ID No.2.
  • the aforementioned polypeptides are particularly suitable for determining the ability of the insulin receptor to phosphorylate them.
  • a preferred IRS-1 fragment is a polypeptide with the amino acid sequence according to SEQ ID No.3.
  • the various aspects of the invention can be used at different levels. Their use is particularly useful in the identification of Substances that modify the ability of the enzyme or functional fragment or derivative thereof to modulate the phosphorylation state of the polypeptide.
  • Suitable analytical methods or systems which measure the activity or the concentration or amount or specific target molecules of the body (so-called “targets”, in this case the phosphorylation state of the polypeptide), as parameters of the effectiveness of potential active substances, are in the prior art
  • targets in this case the phosphorylation state of the polypeptide
  • these can be, for example, in vitro assays, that is to say biochemical assays with isolated or partially isolated components, which are put together to form a reaction mixture, by means of which the effectiveness of potential active substances can be measured.
  • these can also be cellular test systems (assays) , in which the activity of the target protein (in this case the enzyme) and the effectiveness of potential active substances on the activity of this target molecule in the cellular environment can be determined.
  • An assay is any type of analytical method that can be used to monitor a biological process.
  • Molecular processes and signal cascades which represent parts of physiological metabolic pathways and control mechanisms, but also pathological states, are conventionally simulated in cellular or biochemical systems. The pharmacological activity of an active substance can then be determined on the basis of its ability to intervene in these pathways and mechanisms.
  • the assay For use in the context of drug binding, in particular high-throughput screening for drugs, the assay must be reproducible and is preferably also scalable and robust (i.e. not very sensitive to external influences).
  • the assay should preferably be suitable for high throughput screening of chemical substances for their ability to affect the activity of target molecules.
  • the type of assay depends, among other things, on the type of target molecule used (eg exact type or type of basic biochemical molecule, eg polypeptide or polynucleotide) and the "read out", ie the parameters on the basis of which the activity of the target molecule is determined, from.
  • Various types of assays are known in the prior art and for the most part are also commercially available from commercial suppliers.
  • Assays suitable for measuring the interaction of two binding partners include, for example, radioisotopic or fluorescent assays, for example fluorescence polarization assays, such as those commercially available from Panvera, Perkin-Elmer Life Sciences (NEN, LANCE TM, AlphaScreen TM) or CIS Bio International (HTRF TM).
  • Other examples of assays include cellular assays in which a cell line expresses stably (inducible or constitutive; chromosomal or episomal) or transiently a recombinant protein as desired.
  • These assays include, for example, reporter gene assays in which the regulation of a specific promoter or the regulation of a signal transduction path or a member of a signal transduction cascade is measured on the basis of the activity of a reporter enzyme whose expression is under the control of the promoter in question.
  • reporter gene assays in which the regulation of a specific promoter or the regulation of a signal transduction path or a member of a signal transduction cascade is measured on the basis of the activity of a reporter enzyme whose expression is under the control of the promoter in question.
  • Suitable reporter enzymes are generally known to the person skilled in the art and include fireflies luciferase, Renilla luciferase (both commercially available, for example, from Packard Reagents), ⁇ -galactosidase, etc.
  • the selection of suitable cell lines is known to the person skilled in the art and depends, inter alia, on the aim of the assay or read out ". These are usually cell lines that are easy to cultivate and transfect, such as HeLA, COS, CHO or NIH-3T3 cells.
  • fluorescence polarization are suitable for measuring protein phosphorylation or kinase activity
  • HTRF TM Homogeneous Time Resolved Fluorescence
  • LANCE TM Assays Perkin-Elmer Life Sciences
  • ALPHAScreen TM Amplified Luminescent Proximity Homogeneous Assay
  • present invention particularly expedient measurement of kinase activity using ALPHAScreen TM from Perkin-Elmer Li fe sciences is carried out, for example, in that the kinase to be investigated phosphorylates a biotinylated peptide in a biochemical approach in the presence of ATP.
  • the phosphorylated Peptide is then bound by a specific anti-phospho antibody to which protein A-conjugated acceptor beads or with suitable second antibodies are coupled.
  • protein A-conjugated acceptor beads or with suitable second antibodies are coupled.
  • streptavidin-coupled donor beads that bind the biotin portion of the peptide.
  • acceptor and donor beads come in close proximity, which sets in motion a cascade of chemical reactions that generate a highly amplified, detectable luminescence signal:
  • Laser excitation stimulates a photosensitizer in the donor bead to put ambient oxygen into a singlet status , The singlet oxygen then diffuses to the acceptor bead, where it excites a thioxane derivative, which emits chemiluminescence with a wavelength of 370 nm, which in turn stimulates further fluorophores in the acceptor bead to luminesce light with wavelengths from 520 to 620 nm. Since the singlet oxygen excites the fluorophores only when the donor and acceptor beads are in close proximity, detectable signals are only generated.
  • Other types of assays and other types of "read outs" are also well known to the person skilled in the art.
  • the modification of the modulation can mean an inhibition or activation of the modulation by the enzyme.
  • the type of modification includes all possible influences that ultimately have an effect on the enzyme-catalyzed phosphorylation state of the polypeptide, such as the modification of the enzyme-substrate interaction or the modification of the catalytic activity of the enzyme, but also (preferably in the analysis by means of cellular reaction approaches ) modification of enzyme expression, etc.
  • Another aspect of the invention relates to a method for identifying substances which modify the ability of an enzyme or functional fragment or derivative thereof to modulate the phosphorylation state of a polypeptide with the steps a) determining the ability of the enzyme or functional fragment or derivative from modulating the phosphorylation state of the polypeptide according to one of the above-mentioned methods according to the invention, the substance to be tested not being added to the reaction mixture, b) determining the ability of the enzyme or functional fragment or. Derivative of modulating the phosphorylation state of the polypeptide according to one of the methods according to the invention described above, the substance to be tested being added to the reaction mixture, c) comparing the ability according to a) with that according to b).
  • the methods according to the invention are particularly suitable for the identification of pharmacologically active substances for the treatment of non-insulin-dependent diabetes mellitus (NIDDM), in oncology (IGFRK) or for the treatment of inflammatory processes (IKK kinase).
  • NIDDM non-insulin-dependent diabetes mellitus
  • IGFRK in oncology
  • IKK kinase inflammatory processes
  • the fragment contains five potential tyrosine phosphorylation sites, which are highlighted in FIG. 3 and subsequently together with their
  • Serins 612, 632, 662 and 731 which represent four possible serine kinase phosphorylation sites in YMXMSP motifs, are located near the tyrosine phosphorylation sites of the insulin receptor, which are housed in binding sites for SH2 somenas.
  • the mutation of these serine residues to alanine leads to an increase in the IRS-1 -mediated activity of the phosphatidyl-insositol trisphosphate kinase (PI3K), (Mothe et al. 1996), which indicates that they have an inhibitory function.
  • PI3K phosphatidyl-insositol trisphosphate kinase
  • the 262 amino acid domain D516-P777 (HLRS-1- p30) of human IRS-1 was first expressed in E-coli as described in Siemeister et al., 1995.
  • the expression vectors were thereby inserted by inserting the polynucleotide with the sequence according to SEQ ID No. 10 (cDNA sequence of HLRS-1-p30) into the plasmid pET3d (commercially available under order number 69421 from Novagen), prepared by conventional methods.
  • the empty vector was first digested with the enzymes Ncol (commercially available from Röche Diagnostics GmbH Mannheim under order number 835315) and BamHI (commercially available from Röche Diagnostics GmbH Mannheim under order number 656275) under standard conditions and using spin columns (commercially available from Qiagen, Hilden cleaned under order number 28104).
  • Ncol commercially available from Röche Diagnostics GmbH Mannheim under order number 835315
  • BamHI commercially available from Röche Diagnostics GmbH Mannheim under order number 656275
  • spin columns commercially available from Qiagen, Hilden cleaned under order number 28104.
  • WGA-IR wheat germ lectin affinity chromatographically purified insulin receptor from rat liver
  • WGA-IR wheat germ lectin affinity chromatographically purified insulin receptor from rat liver
  • human insulin for example commercially available from Sigma under order number 14
  • biotinylated IRS fragment for 10 minutes at 4 ° C in 50 mM Tris buffer, pH 7.4, 8 mM MgCl2, 2 mM MnCl2, followed by a 30 minute incubation after addition of ATP (final concentration 50 ⁇ M) at 30 ° C.
  • the reaction was then stopped by adding EDTA to a final concentration of 20 mM and the phosphorylation of IRS-1 was detected by using a p-Tyr-specific antibody directly coupled to the acceptor (commercially available from Perkin-Elmer Life Sciences under order number 6760601 C), which resulted in the readout shown in FIG. With this method, the EC50 for insulin could be determined to be 10 nM.
  • ALPHAScreen TM Phosphorylation of biotinylated IRS-1 fragment by PKC and recombinant insulin receptor kinase.
  • Perkin-Elmer Life Sciences' ALPHAScreen TM enables detection of the interaction between the phosphorylated IRS-1 fragment and antibodies that recognize phosphorylated serine or tyrosine residues (p-Ser / p-Tyr antibody).
  • the biotinylated IRS-1 is bound to the streptavidin donor and the antibody by acceptor-coupled protein A or a suitable second antibody bound to the acceptor.
  • acceptor-coupled protein A or a suitable second antibody bound to the acceptor When an interaction takes place, the acceptor gets and stays in the immediate vicinity of the donor, so that singlet oxygen atoms, which are generated by the donor can reach chemiluninescent groups in the acceptor bead by diffusion, which ultimately results in the emission of detectable light.
  • the light intensities (the so-called “readout”) generated in the aforementioned assay in the form of bar graphs in FIGS. 5 A and B were obtained after 30 minutes incubation of IRS-1 with protein kinase C and ATP and subsequent addition of p-Ser antibodies (commercial available from Biosource, Belgium under order number 44-550) and further incubation for 120 minutes detected and quantified by measurement with a Perkin-Elmer Fusion or AlphaQuest instrument.
  • the comparison of the light intensities generated in the presence and absence of PKC is shown in Figure 11A. In the experiment, the result of which is shown in FIG.
  • recombinant insulin receptor kinase (IRK, amino acid 941- (1343, NCBI accession number NM_000208) was incubated with polyiysin for 10 minutes at 30 ° C. in 50 mM Tris buffer, pH 7 , 4, 8 mM MgCl 2, 50 ⁇ M ATP reaction buffer activated and then the IRK substrate IRS added, followed by a 30 minute incubation ion at 30 ° C. Phosphorylation of IRS-1 was detected using a p-Tyr specific antibody directly coupled to the acceptor (commercially available from Perkin-Elmer Life Sciences under order number 6760601 C), resulting in the readout shown in Figure 11B.
  • IRS insulin receptor kinase
  • biotinylated polypeptides can be phosphorylated by kinases. This was demonstrated using a 28 kDA fragment of hlRS-1, which in the biotinylated state can be phosphorylated by the serine kinase PKC ⁇ and by the tyrosine kinase of the insulin receptor Detection by phosphospecific antibodies was also successful without a steric hindrance due to the size of the polypeptide in connection with the biotin residue, which interfered with the detection reaction, thereby generating a homogeneous assay system based on the principle of the ALPHAScreens TM
  • the phosphorylation state of polypeptides can be determined using the purification and detection techniques possible through biotinylation.This assay principle was applied here for the first time to a protein fragment the size of a polypeptide (more precisely 28kDa) enables the improved search for pharmacologically active substances which interact with the
  • the readout was also non-radioactive but luminescent, which is an advantage for use in high throughput screening (HTS) procedures.
  • the assay shown here can thus be used for the HTS of all enzymes modulating the phosphorylation status of polypeptides and proteins, such as kinases and phosphatases, for identifying novel active substances or for verifying known active substances. It is also suitable for other processes, such as the aforementioned processes for the search for new enzymes which phosphorylate certain polypeptides, for example new IRS-1 phosphorylating kinases in whole cell lysates.
  • IRS 1 - IRS 4 Protein sequence from IRS 1 - IRS 4 (SEQ ID No. 1 to 4).
  • the sequence access numbers (NCBI Protein Database) of the four family members are NM_005544 (IRS-1 hs),: M: 007095 (IRS-2 hs), NM: 032074 (IRS-3 hs), NM_003604 (IRS-4 hs).
  • IRS 1 - IRS 4 Coding DNA sequence from IRS 1 - IRS 4 (SEQ ID No. 5 to 8).
  • sequence access numbers NCBI nucleotide database of the four family members are NM_005544 (IRS-1 hs),: M: 007095 (IRS-2 hs), NM: 032074 (IRS-3 hs), NM_003604 (IRS-4 hs).
  • FIG. 3 The 262 amino acid domain of the IRS-1 protein (hIRS-1-p30), which was used for the present studies. Serins 612, 632, 662 and 731 are underlined. YXXM tyrosine phosphorylation motifs are shown in bold.
  • FIG. 4 results of the ALPHAScreen using insulin receptor purified by wheat germ lectin affinity chromatography
  • Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate.
  • IRS-1 insulin receptor substrates IRS-1
  • IRS-1 insulin receptor substrate-1
  • the PI3-kinase serine kinase phosphorylates its p85 subunit and IRS-1 in PI3-kinase / IRS-1 complexes.
  • Human skeletal muscle insulin receptor substrate-1 Characterization of the cDNA, gene, and chromosomal localization.
  • the 60-kDa phosphotyrosine protein in insulin-treated adipocytes is a new member of the insulin receptor Substrate family. J. Biol. Chem. 272, 11439-11443
  • a novel 160-kDa phosphotyrosine protein in insulin-treated embryonic kidney cells is a new member of the insulin receptor Substrate family. J. Biol. Chem. 272, 21403-21407 De Fea K, Roth RA. (1997)
  • Protein kinase C modulation of insulin receptor substrate-1 tyrosine phosphorylation requires serine 612 Biochemistry 36, 12939-12947 Standard literature for laboratory methods

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Diabetes (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Verwendung eines Polypeptids zur Bestimmung der Fähigkeit eines Enzyms, eines funktionellen Fragments oder Derivats davon, den Phosphorylierungsstatus des Polypeptides zu modulieren, dadurch gekennzeichnet, dass das Polypeptid biotinyliert ist.

Description

Verwendung eines Polypeptides
Die Erfindung betrifft die Verwendung eines Polypeptids zur Bestimmung der Fähigkeit eines Enzyms, den Phosphorylierungszustand des Polypeptids zu modulieren. Weitere Aspekte der Erfindung beziehen sich auf ein Verfahren zur Bestimmung einer solchen Aktivität sowie auf ein Verfahren zur Identifizierung von Substanzen, die diese Fähigkeit des Enzyms modifizieren.
Insulin ist ein Peptidhormon, das eine große Anzahl von Wachstums- und Stoffwechselwegen beeinflusst, indem es an den Insulinrezeptor bindet und so dessen intrinsische Tyrosinkinase aktiviert. Dieses Ereignis führt zur Phosphorylierung einer Vielzahl von Proteinen, die an den Insulin Rezeptor (IR) binden können, an spezifischen Tyrosin Resten. Zu den so phosphorylierten Proteinen gehört auch die Familie der Insulinrezeptorsubstrat (IRS) Proteine.
Insulinrezeptorsubstrat 1 (IRS-1 ) ist ein zelluläres Protein, welches von einer Vielzahl von Proteinkinasen (tyrosinspezifische oder serin-/threoninspezifische Proteinkinasen) an Tyrosin- und / oder Serinresten und oder Threoninresten phosphoryliert werden kann. Dabei werden je nach Enzym vermutlich unterschiedliche Tyrosin- oder Serin- /Threoninreste spezifisch phosphoryliert werden. Ausser durch Tyrosinkinasen wie beispielsweise dem Insulinrezeptor (White 2002), dem IGF-1 Rezeptor (White 2002) oder JAK 1/ 2 (Thirone et al. 1999) wird IRS-1 bekanntermassen auch noch durch Serin-/Threoninkinasen wie beispielsweise Kinasen aus der PKC Familie (Schmitz- Peiffer 2002), Inhibitor kappa B kinase Komplex (Gao et al. 2002), c-Jun NH(2)- terminal kinase (JNK, Aguirre et al. 2000) Proteinkinase A (Sun et al. 1991), Mitogen aktivierte Proteinkinase (Mothe et al. 1996), Proteinkinase B (Paz et al. 1999), Casein Kinase (Tanasijevic et al. 1993), Glykogensynthasekinase beta (Eldar-Finkelmann et al. 1997), AMP aktivierte Kinase (Jakobsen et al. 2001 ) oder Phosphoinositoi 3 Kinase (Freund et al. 1995).phosphoryliert. IRS Moleküle sind Schlüsselmoleküle des Insulin- Signaltransduktionsweges und spielen eine zentrale Rolle in der Aufrechterhaltung zellulärer Funktionen wie Wachstum, Überleben und Stoffwechsel. Phosphorylierte IRS Proteine dienen dabei als "Andock"-Proteine mit einer Vielzahl von Andockstellen für den Insulinrezeptor und einem komplexen Netzwerk intrazellulärer Signalmoleküle mit sogenannten Signal Recognition Complex (SRC) Homologie 2 Domänen (SH2 Domänen). Die Aktivierung dieser Sh2 Domänen Proteine aktiviert dabei bestimmte Signalkaskaden, was wiederum zur Aktivierung verschiedener Effektoren führt, die weiter abwärts in der Signalkaskade liegen, was ultimativ zur Vermittlung des Insulinsignals an eine verzweigte Serie anderer intrazellulärer Signalkaskaden führt (zur Übersicht siehe White 2002). IRS gehört zu einer Gruppe von Phosphoproteinen von 160 bis 185 kDA Größe, die als Substrat des Insulin Rezeptors dienen. Vier Mitglieder der IRS Familie (IRS-1 , IRS- 2, IRS-3 und IRS-4) sind bekannt. Sie unterscheiden sich in Gewebsverteilung, subzellulärer Lokalisierung, entwicklungsspezifischer Expression, Art der Bindung an den Insulinrezeptor und der Art der SH2 Proteine, mit denen sie interagieren. Die vier Mitglieder der IRS Familie sind in ihrer grundlegenden Proteinstruktur sehr ähnlich aufgebaut: Alle weisen eine Amino (N)-terminale Plextrin -Homologie Domäne (PH Domäne) auf, die an Membranphospholipide bindet, eine Phosphotyrosin Bindungs Domäne (PTB Domäne), die sich unmittelbar Carboxy (C) -terminal an die PH Domäne anschliesst und in die Erkennung der Asp-Pro-Glu Phosphotyrosin (NPEpY) Sequenz involviert ist, die in der juxtamembranären Region der Insulinrezeptor beta- . Untereinheit lokalisiert ist. Des weiteren weisen sie einen etwas weniger stark konservierten C-terminalen Teil auf, der verschiedene potentielle Tyrosin- Phosphorylierungsmotive aufweist, an die spezielle SH2 Domänen-enthaltende Proteine binden können.
IRS-1 enthält 21 mögliche, Tyrosin Phosphorylierungsstellen, von denen einige in Aminpsäuresequenzmotiven lokalisiert sind, die an die SH2-Domjänen Proteine binden können. IRS-1 enthält weiterhin 30 potentielle Serin/Threonin Phosphorylierungsstellen in Motiven, die durch verschiedene Kinasen erkannt werden können wie beispielsweise Kinasen aus der PKC Familie (Schmitz-Peiffer 2002), Inhibitor kappa B kinase Komplex (Gao et al. 2002), c-Jun NH(2)-terminal kinase (JNK, Aguirre et al. 2000) Proteinkinase A (Sun et al. 1991 ), Mitogen aktivierte Proteinkinase (Mothe et al. 1996), Proteinkinase B (Paz et al. 1999), Casein Kinase (Tanasijevic et al. 1993), Glykogensynthasekinase beta (Eldar-Finkelmann et al. 1997), AMP aktivierte Kinase (Jakobsen et al. 2001) oder Phosphoinositol 3 Kinase (PI3 Kinase, Freund et al. 1995). Inhibitorische Effekte auf den Insulinrezeptor Signalweg können zumindest teilweise durch die kürzlich entdeckte Rolle der Serin /Threonin Phosphorylierung von IRS-1 erklärt werden, die in Verbindung gebracht wird mit einer Verschlechterung der Interaktion mit dem Insulinrezeptor und/ oder einer Reduzierung der der Tyrosinphosphorylierung von IRS-1 und/ oder einer Verschlechterung der Interaktion mit nachfolgenden Signalproteinen, die an Tyrosinphosphorylioertes IRS-1 binden 5 können (zur Übersicht siehe White 2002). Für verschiedene Kinasen beispielsweise Kinasen aus der PKC Familie (Schmitz-Peiffer 2002), Inhibitor kappa B kinase Komplex (Gao et al. 2002), c-Jun NH(2)-terminal kinase (JNK, Aguirre et al. 2000) Proteinkinase A (Sun et al. 1991 ), Mitogen aktivierte Proteinkinase (Mothe et al. 1996), Proteinkinase B (Paz et al. 1999), Casein Kinase (Tanasijevic et al. 1993),
10 Glykogensynthasekinase beta (Eldar-Finkelmann et al. 1997) oder Phosphoinositol 3 Kinase (Freund et al. 1995).konnte bislang demonstriert werden, dass sie IRS-1 in vitro direkt phosphorylieren. Dabei inhibierte in jedem Fall eine gesteigerte Kinaseaktivität in intakten Zellen die Aktivität des Insulin Signaltransduktionsweges. Des weiteren wurde die in vitro Phosphorylierung von IRS-1 an Serin / Threonin
15 Resten in einigen Studien in direkten Zusammenhang gebracht mit der verminderten Tyrosinphosphorylierung durch den Insulinrezeptor (Le Marchand-Brustel 1999)). Die Sequenzen von IRS-1 , 2 , 3 und 4 sind öffentlich zugänglich. Die kodierenden Polynukleotidsequenzen und die zugehörigen Proteinsequenzen dieser Gene sind unter den Nummern NM_005544 (IRS-1 hs), XM:007095 (IRS-2 hs), NM:032074
20 (IRS-3 rat), NM:003604 (IRS-4 hs) bei der NCBI Nucleotide-Database abrufbar. NCBI ist das National Center for Biotechnology Information (Postadresse: National Center for Biotechnology Information, National Library of Medicine, Building 38A, Bethesda, MD 20894, USA; Web-Adresse: www.ncbi.nhm.nih.gov). Die Klonierung des IRS-1 Gens wurde unter anderem beschrieben in Araki et al. 1993 und Siemeister et. al,
25 1996; die Klonierung von IRS- 2 bis 4 wurde durch Araki et al 1994, Lavan et al. 1997a und Lavan et al. 1997bbeschrieben.
Zur Bestimmung der Fähigkeit und zur Messung der Aktivität verschiedener Kinasen, IRS-1 zu phosphorylieren, sind verschiedene Verfahren im Stand der Technik bekannt, die entweder auf radioaktiven Nachweisverfahren (z.Bi Übertragung von radioaktiv
30 markiertem Phosphat auf das Substrat) oder nicht-radioaktiven Nachweisverfahren basieren. So ist es bekannt, die Phosphorylierung von IRS-1 an IRS-1 Protein voller Länge, Fragmenten oder Peptiden davon, welche noch mindestens eine Phosphorylierungsstelle aufweisen, durch ein Verfahren zu bestimmen, bei dem durch Inkubation mit radioaktiv markiertem ATP und der zu testenden Kinase in Abhängigkeit von der Fähigkeit der Kinase, IRS-1 zu phosphorylieren, radioaktive Phosphatreste auf IRS-1 übertragen werden. Anschliessend erfolgt eine chromatographische oder elektrophoretische Auftrennung des IRS-1 und Nachweis der Menge übertragenen Phosphates durch Durchflußscintillation oder Autoradiographie (wie z.B beschrieben für das komplette IRS-1 Protein und Glykogensynthasekinase 3 beta in Eldar- Finkelman et al. 1997, für ein Fragment von IRS-1 (Aminosäure 516 - 777) und Insulinrezeptor, IGF-1 Rezeptor oder rekombinanter Insulinrezeptorkinase in Siemeister et al. 1995 oder ein IRS-1 Peptid (Aminosäure 601 - 616) mit Zell-Lysaten, die aktivierte Proteinkinase aus der PKC Familie enthalten in De Fea et al. 1997. Des weiteren ist es aus Siemeister et al. 1995 die Fähigkeit IRS-1 Fragmente beispielsweise ein Fragment von IRS-1 (Aminosäure 516 - 777) und Insulinrezeptor, IGF-1 Rezeptor oder rekombinanter Insulinrezeptorkinase zu phosphorylieren, durch Inkubation mit radioaktiv markiertem ATP, Auftropfen des Substrates auf eine positiv geladene Membran (Nitrozellulose oder ähnlichem Material), Waschen und Nachweis des gebundenen radioaktiv markierten Substrates mittels Autoradiographie oder Messung der radioaktiven Strahlung, zu bestimmen.
Die Inkubation eines biotinylierten IRS-1 Peptides (Aminosäure 601 - 616) mit radioaktiv markiertem ATP, Auftropfen des Substrates auf eine Streptavidin- beschichtete Membran, waschen und Nachweis des gebundenen radioaktiv markierten Substrates durch Autoradiographie oder Messung der radioaktiven Strahlung, ist eine weitere Methode, die Fähigkeit von Kinasen, IRS-1 zu phosphorylieren, zu bestimmen (s.De Fea et al. 1997).
Der Nachteil der vorstehend beschriebenen radioaktiven Testverfahren liegt auf der Hand, da der Umgang mit Radioaktivität erhebliche Gefahren in sich birgt, sehr kostenintensiv und somit insbesondere für Hochdurchsatzverfahren (HTS Verfahren) wenig geeignet ist. Der Nachteil der vorstehend beschriebenen, auf der Verwendung von kurzen Peptiden beruhenden, Verfahren besteht darin, dass diese Peptide ungünstige kinetische Konstanten (Vmax, Km) aufweisen und sich zudem die räumliche Struktur bei Peptiden stark von der der physiologischen Enzym-Substrate unterscheidet. Dies manifestiert sich zum einen in einer völlig unterschiedlichen Faltung, so dass bestimmte biologische Räume nicht vorhanden sind, die die Spezifität der Enzym- Substrat Interaktion ausmachen, was entweder in einer fehlenden Erkennung (und somit Modifizierung) oder in einer unspezifischen Erkennung (und somit Modifizierung) resultiert und ultimativ falsche Ergebnisse hervorbringt. Zudem weisen Peptide wegen ihrer Kürze nur eine oder wenige Phosphorylierungsstellen auf, so dass für die Untersuchung der Phosphorylierungs-Modifikation eines bestimmten Substrats durch verschiedene Enzyme unterschiedliche Peptide benötigt werden. Auch dies resultiert wiederum in erhöhten Kosten und einer nur bedingten Anwendbarkeit für Verfahren im HTS Format. Die Aufgabe der Erfindung besteht daher in der Bereitstellung einer Möglichkeit, die Aktivität von Protein-phosphorylierenden und/oder -dephosphorylierenden Enzymen zu bestimmen, die die oben genannten Nachteile nicht aufweist. Diese Aufgabe wird gelöst durch die Verwendung eines Polypeptids (Def GGs zum Peptid) zur Bestimmung der Fähigkeit eines Enzyms, eines funktionellen Fragments oder Derivats davon, den Phosphorylierungsstatus eines Polypeptides zu modulieren, dadurch gekennzeichnet, dass das Polypeptid biotinyliert ist. Die Erfindung beruht auf Ergebnissen der Erfinder, die überraschenderweise zeigten, dass auch bei Polypeptiden oder Proteinen voller Länge keine sterische Behinderung der Biotin-Bindung durch Streptavidin erfolgte und die Biotinylierung auch nicht mit der Phosphorylierung des untersuchten Substrats durch Kinasen interferierte.
Mit der Bezeichnung Polypeptid ist im Rahmen der vorliegenden Erfindung ein durch Peptidbindungen verknüpften Aminosäuren enthaltendes Molekül gemeint, welches —mindestens 50 auf diese Weise linear verknüpfte Aminosäuren aufweist. Kürzere Moleküle dieser Art werden, als Peptide bezeichnet. Die Bezeichnung Protein bezieht sich auf Moleküle, die mindestens eine Polypeptidkette umfassen, aber auch aus mehreren miteinander assoziierten oder verknüpften Polypeptid ketten bestehen können. Der Terminus Protein umfasst somit die Bezeichnung Polypeptid. Gemäß einer bevorzugten Ausführungsform der verschiedenen Aspekte der vorliegenden Erfindung weist das Polypeptid eine Länge von 50 Aminosäuren und mehr, vorzugsweise 50-300 auf.
Gemäß einer weiteren bevorzugten Ausführungsform der verschiedenen Aspekte der Erfindung weist das Polypeptid eine Größe von 1 kda und mehr, vorzugsweise 1 bis 100 kDa und besonders bevorzugt 10 bis 50 kDa auf.
Als Substrat eines Enzyms wird vorliegend jedes Molekül verstanden, dass geeignet ist, durch das Enzym modifiziert zu werden. Natürliche Substrate sind im Rahmen der vorliegenden Erfindungen Moleküle, die derartig ausgestaltet sind wie sie im physiologischen oder pathologischen Kontext in der Natur vorkommen und fähig sind durch das betreffende Enzym modifiziert zu werden.
Die Modulierung des Phosphorylierungszustandes durch das Enzym bezeichnet die Art der Modifikation eines Substrates durch ein Enzym, bei der mindestens eine Phosphatgruppe auf das Substrat übertragen oder entfernt wird. Die für die vorliegende Erfindung relevanten Enzyme weisen daher die Fähigkeit auf, die eine und/oder die andere Reaktion zu katalysieren. Sie weisen somit mindestens diese Fähigkeit der Kinasen und/oder der Phosphatasen auf, können darüberhinaus aber noch weitere enzymatische Eigenschaften (z.B. Protease-Eigenschaften, etc.) aufweisen. Die verschiedenen Enzymkategorien und deren Eigenschaften sind dem zuständigen Fachmann hinlänglich bekannt.
Ein funktionelles Fragment eines Enzyms, ist vorliegend jedes Fragment des Enzyms (also ein gegenüber der natürlich vorkommenden Form verkleinertes bzw. Verkürztes Molekül), dass noch die Fähigkeit aufweist, den Phosphorylierungszustand mindestens eines Polypeptides zu modulieren. Der Terminus „funktionelles Derivat" eines Enzyms umfasst dabei jede Art der Modifikation des Enzyms gegenüber der in der Natur vorkommenden Form, die keine Verkürzung darstellt, wobei das Derivat des Enzyms noch die Fähigkeit aufweist, den Phosphorylierungszustand mindestens eines Polypeptids zu modulieren. Die vorliegende Erfindung bezieht sich dabei auch auf funktioneile Derivate von Fragmenten von Enzymen, die den Phosphorylierungs- zustand mindestens eines Polypeptids modulieren können. Die Bestimmung der Fähigkeit des Enzyms, den Phosphorylierungszustand des Polypeptids zu modulieren kann dabei sowohl qualitativ als auch quantitativ (also als quantifizierbare Messung) erfolgen.
Die erfindungsgemäße Verwendung weist den Vorteil auf, dass die so erzielten Ergebnisse aufgrund der Länge der verwendeten Substrate aussagekräftiger sind, da sie eine Tertiärstruktur einnehmen, die eher den physiologischen Gegebenheiten entspricht. Darüberhinaus weisen die verwendeten Polypeptide im Gegensatz zu den im Stand der Technik bekannten Peptiden gute kinetische Konstanten auf (z.B. bei IRS-1 : Km 19 μM: im Vergleich zu Peptiden: > 200 μM vgl. Siemeister et al. 1995) und es ist bei der Analyse von Substraten mit mehreren Phosphorylierungsstellen nur ein Substrat nötig, mit dem z.B. die Fähigkeit auch verschiedener Enzyme bestimmt werden kann.
Eine bevorzugte Ausführungsform betrifft eine Verwendung, bei der die Fähigkeit eines Enzyms, das Polypeptid zu phosphorylieren bestimmt wird. Besonders zweckmäßige Arten von Enzymen mit Kinaseaktivität für die verschiedenen Aspekte der vorliegenden Erfindung betreffen Serin/Threonin oder Tyrosin-Kinasen. Besonders geeignete Beispiele von Kinasen umfassen u. a. den Insulinrezeptor, IGF-1 Rezeptor, trK-Rezeptor, EGF-Rezeptor, Casein Kinase II, Mitglieder der Protein Kinase C Familie, Protein Kinase B/Akt, Mitogen Aktivierte Protein Kinase (MAP Kinase), GSK-3 beta, ERK1/2 , IKK beta Kinase, AMP- Kinase, PI3 Kinase oder JNK. Darüberhinaus eignet sich die erfindungsgemäße Verwendung ebenso zur Bestimmung der Fähigkeit eines Enzyms, das Polypeptid zu dephosphorylieren. Ein weiterer Aspekt der Erfindung betrifft ein Verfahren zur Bestimmung der Fähigkeit eines Enzyms, eines funktionellen Fragments oder Derivats davon, den Phosphorylierungsstatus eines biotinylierten Polypeptids zu modulieren.
Geeignete Verfahren zur Bestimmung des Phosphorylierungsgrades biotinylierter Polypeptide betreffen zum Beispiel Verfahren, die bekanntermassen geeignet sind, den Phosphporylierungsgrad kurzer Peptide zu bestimmen. Diese sind dem Fachmann gelaufig. Gemäß einer bevorzugten Ausführungsform betrifft das erfindungsgemäße Verfahren ein Verfahren, bei dem die Fähigkeit eines Enzyms, eines funktionellen Fragments oder Derivats davon, das Polypeptid zu phosphorylieren mit den folgenden Schritten bestimmt wird: a) In Kontakt Bringen des Enzyms oder funktionellen Fragments oder Derivats mit dem biotinylierten Polypeptid und Starten der Phosphoryiierungsreaktion in einem geeigneten Reaktionsansatz, b) In Kontakt Bringen des Reaktionsansatzes mit einem an einen Träger gekoppelten Mittel, das fähig ist, an das biotinylierte Polypeptid zu binden, c) Bestimmung des Phosphorylierungszustandes des an das Mittel gebundenen Polypeptids. Eine weitere bevorzugte Ausführungsform der Erfindung betrifft ein Verfahren zur Bestimmung der Fähigkeit eines Enzyms, eines funktionellen Fragments oder Derivats davon, das Polypeptid zu dephosphorylieren mit den Schritten a) In Kontakt Bringen des Enzyms oder funktionellen Fragments oder Derivats mit dem biotinylierten Polypeptid, welches mindestens einen Phosphatrest aufweist und Starten der Phosphoryiierungsreaktion in einem geeigneten
Reaktionsansatz, b) In Kontakt Bringen des Reaktionsansatzes mit einem an einen Träger gekoppelten Mittel, das fähig ist, das biotinylierte Polypeptid zu binden, c) Bestimmung des Phosphorylierungszustandes des an das Mittel gebundenen Polypeptids.
Das Mittel kann dabei jede Art von Molekül oder supramolekularem Zusammenschluss (z.B. Körper oder Vorrichtung) sein, die geeignet ist, das biotinylierte Polypeptid zu binden. Die Bindung kann dabei an den Biotin-Anteil oder das Polypeptid selbst erfolgen, wobei bei einer Bindung an das Polypeptid selbst eine vom
Phosphorylierungszustand abhängige Bindung bevorzugt ist (z.B. Bindung nur im phosphorylierten oder unphosphorylierten Zustand mit Bezug auf einzelne oder mehrere Phosphorylierungsstellen). Bevorzugte Ausführungsformen des Mittels betreffen daher Streptavidin oder phosphospezifische Antikörper (also Antikörper, die die Phosphorylierung bestimmter Reste am Polypeptid erkennen und spezifisch an das dort phosphorylierte Polypeptid binden können). Der im Rahmen der verschiedenen Aspekte der Erfindung verwendete Reaktionsansatz kann dabei biochemischer (d.h. in vitro) oder zellulärer Art sein. Die Zusammensetzung biochemischer Ansätze hängt dabei von den Erfordernissen des zu untersuchenden Enzyms ab, geeignete Bestandteile und Zusammensetzungen, z.B. ATP, ein Puffer zur Einstellung eines gewünschten pH- Milieus und einer gewünschten Salzkonzentration zur Gewährleistung der Enzymaktivität sind dem zuständigen Fachmann jedoch bekannt. Bei biochemischen Ansätzen können Enzym und oder Polypeptid rekombinant und/oder als aus natürlichen Quellen teil- oder vollständig aufgereinigtes Molekül und/oder in Form von Extrakten aus biologischem Material, insbesondere Zeil- oder Gewebeextrakten vorliegen.
Biologisches Material kann unter anderem umfassen: die Zellen eines Gewebes oder Organs (z.B. Gehirn, Blut, Leber, Milz, Niere, Herz, Blutgefäße), vorzugsweise die eines Wirbeltiers einschliesslich des Menschen, oder Zellen aus einer Zellkultur. Im Rahmen der Erfindung verwendete Zellen umfassen dabei alle Arten von Zellen, z.B. eukaryontische oder prokaryontische einzellige Organismen (wie Bakterien, z.B. E. Coli oder Hefen, z.B. S. pombe oder s. cerevisiae) oder Zellinien, die von vielzelligen Organismen abgeleitet sind (wie z.B. HeLA, COS, NIH-3T3, CHO, etc.), Säuger- Zellinien bevorzugt sind. Zellen eines Gewebeverbandes oder Organs eines Wirbeltiers einschliesslich des Menschen können durch gängige Techniken wie „Blutentnahme, Gewebepunktion oder operative Techniken gewonnen werden. Die Herstellung derartiger rekombinanter Moleküle, die Aufreinigung natürlich vorkommender Moleküle aus Zellen oder Geweben und die Herstellung von Zeil- oder Gewebeextrakten ist dem Fachmann hinlänglich bekannt (s. auch nachstehend aufgeführte Beispiele der Standardliteratur).
Für die Verwendung im Rahmen der verschiedenen Aspekte geeignete zelluläre Systeme sind dem Fachmann ebenfalls bekannt und umfassen vorzugsweise isolierte Zellen, die ursprünglich Gewebeverbänden entstammen (vorzugsweise aus Wirbeltieren, besonders bevorzugt Säugetieren und insbesondere dem Menschen), besonders bevorzugt in Form kultivierter Zellinien; sie umfassen weiterhin einzellige Lebewesen (Eukaryonten oder Prokaryonten), wie beispielsweise Hefe- oder Bakterienzellen, insbesondere in Form kultivierter Stämme. Träger können alle Arten von Molekülen oder supramolekularen Zusammenschlüssen (z.B. Körper oder Vorrichtungen) sein, die sich dazu eignen, das über die Biotin- Streptavidin Interaktion an sie gekoppelte Peptid aus dem Reaktionsansatz zu entfernen oder dieses zu markieren. Geeignete Vorrichtungen sind z.B. Membranen, Platten oder Körper verschiedenster Formgebung (vorliegend allgemein als Bead bezeichnet), aus verschiedenen Materialien die im Stand der Technik hinlänglich bekannt sind. Die Art des Trägers hängt dabei von dem Verfahrensziel (z.B. diagnostisch, Wirkstoffindung oder Entdeckung neuer Interaktionspartner) und der Art der Detektion ab, die Auswahl geeigneter Träger liegt dabei im Bereich fachmännischen Könnens.
Gemäß einer Ausführungsform des erfindungsgemäßen Verfahrens ist dem Reaktionsansatz radioaktiv markiertes γ32P-ATP zugefügt, und die Bestimmung des Phosphorylierungszustandes erfolgt durch Messung der auf dem Träger, vorzugsweise der Membran oder Platte verbleibenden Radioaktivität nach Durchführung mindestens eines Waschschrittes. Auf diese Weise können einfach die nicht an das Streptavidin gebundenen Bestandteile des Reaktionsansatzes einschliesslich freier Radioaktivität entfernt werden, so dass der Phosphorylierungszustand des Polypeptids einfach anhand der auf dem Träger immobilisierten Radioaktivität bestimmt werden kann. Als Mittel zur Bindung des biotinylierten Polypeptids eignet sich in diesem Fall besonders Streptavidin. Gemäß einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen
Verfahrens wird dem Reaktionsansatz ein Antikörper (BSP) zugefügt, der fähig ist, spezifisch an das phosphorylierte Polypeptid zu binden. Der Antikörper kann dabei sowohl selbst das Mittel darstellen als auch zusätzlich zum Mittel zugefügt werden (wobei dieses dann vorzugsweise kein phosphospezifischer Antikörper und besonders bevorzugt Streptavidin ist). Die Bestimmung des Phosphorylierungszustandes erfolgt hier durch die Bestimmung der Menge des an das Polypeptid gebundenen Antikörpers. Geeignete Massnahmen zur Markierung und Detektion des Antikörpers sind dem Fachmann bekannt. So können einerseits geeignet markierte Erstantikörper eingesetzt werden, die direkt detektierbar sind oder es werden gegen den FC (Chrystalizing Fragment) Anteil des Erstantikörpers gerichtete, geeignet markierte Zweitantikörper eingesetzt, was die Spezifität der Detektion erhöht. Der Begriff Antikörper umfasst dabei sowohl monoklonale Antikörper als auch polyklonale Antiseren, rekombinant hergestellte Antikörper und rekombinant hergestellte single-chain Antikörper. Die Auswahl und Herstellung derartiger Antikörper liegt im Bereich fachmännischen Könnens, hierzu sei ferner auf die nachfolgend aufgeführte Standardliteratur verwiesen. Auch geeignete Markierungen derartiger Antikörper sind im Stand der Technik bekannt und umfassen z.B. enzymatische Markierungen wie CIP (Calf intestinal phosphatase) oder HRP (Horseraddish Peroxidase), fluoreszierende Moleküle, die bei Anregung durch Bestrahlung mit Licht bestimmter Wellenlänge ein detektierbares Signal erzeugen wie Texas Red, Cy3, FITC (Fluorescein Isothiocyanat), oder bekannten fluoreszierenden Proteinen. Die Auswahl geeigneter Markierungen entspricht ebenfalls dem fachmännischen Können. Geeignete markierte oder unmarkierte Erst- und Zweit-Antikörper, sowie deren Herstellung sind bekannter Stand der Technik, überdies sind derartige Antikörper durch verschiedene Anbieter kommerziell erhältlich. Erst- und Zweitantikörper sind beispielsweise durch Becton Dickinson, Pharmacia oder Santa Cruz Biotech erhältlich. Gemäß einer bevorzugten Aüsführungsform des vorstehenden Verfahrens erfolgt die Bestimmung der Menge des an das Polypeptid gebundenen Antikörpers durch die Bestimmung der Menge des auf dem Träger, vorzugsweise der Membran oder Platte verbleibenden Antikörpers nach Durchführung mindestens eines Waschschrittes. Gemäß einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen
Verfahrens, ist der an das Mittel gekoppelte Träger ein erster Träger, der einen ersten Signalerzeuger umfasst und das Polypeptid an einen zweiten Träger gekoppelt ist, der einen zweiten Signalerzeuger umfasst, wobei die zwei Signalerzeuger fähig sind, ein detektierbares Signal zu erzeugen, wenn sie sich in unmittelbarer Nähe zueinander befinden und die Bestimmung des Phosphorylierungszustandes anhand der
Bestimmung erfolgt, ob ein detektierbares Signal erzeugt wurde. Vorzugsweise sind die Träger hierbei Beads. Vorzugsweise ist das Mittel hier ein phosphospezifischer Antikörper. Der Träger kann dabei direkt oder indirekt mit dem Antikörper verbunden sein, vorzugsweise indirekt durch ProteinA, welches an den Träger gekoppelt ist. Der zweite Träger kann dabei direkt oder indirekt an das Polypeptid gebunden sein, vorzugsweise indirekt durch den Biotin-Anteil des biotinylierten Polypeptids; dies erfolgt vorzugsweise über an den Träger gekoppeltes Streptavidin. Ein Signalerzeuger kann dabei jede Art von Mittel oder Molekül sein, das geeignet ist, detektierbare Signale zu erzeugen; Beispiele umfassen Fluorophore, die nach Anregung durch Energieeinwirkung Licht emittieren, welches direkt oder nach Signalverstärkung durch geeignete Mittel, die im Stande der Technik bekannt sind, detektierbar ist. Die Signalerzeuger sind dabei im Rahmen der vorliegenden Erfindung so gewählt, dass nur dann ein Signal generiert wird, wenn eine direkte Interaktion des Mittels (also vorzugsweise des phosphospezifischen Antikörpers) mit dem Polypeptid erfolgt. Geeignete Träger und Signalerzeuger (z.B. in Form des ALPHAScreen™, oder LANCE™, Perkin-Elmer Life Sciences; HTRF™, CIS Bio International)) sind bekannt. Hierbei ist die unmittelbare Nähe der Träger zueinander ausschlaggebend für die Signalerzeugung. Es ist daher sehr überraschend, dass sich diese Art des Verfahrens zum Einsatz in Verbindung mit Polypeptiden eignet, obwohl diese deutlich größer als die im Stand der Technik verwendeten Peptide sind. Das Polypeptid ist im Rahmen der verschiedenen Gegenstände der vorliegenden Erfindung dabei vorzugsweise das natürliche Substrat des Enzyms, vorzugsweise in unverkürzter Länge.
Besonders geeignete Polypeptide umfassen alle Substrate der Insulinrezeptor Kinase. Besonders bevorzugt sind hierbei Polypeptide der Familie Insulin Rezeptor Substrat ' (IRS), vorzugsweise IRS-1 , 2, 3 oder 4 und besonders bevorzugt IRS-1 oder funktionelle Fragmente oder Derivate davon ist. Also Fragmente oder Derivate (bzw. Derivate von Fragmenten), die die Fähigkeit aufweisen, durch den Insulinrezeptor phosphoryliert zu werden. Weiterhin ist es bevorzugt, wenn das IRS humanes IRS ist. Desweiteren ist der Einsatz von IRS-1 , insbesondere humanes IRS-1 mit der Sequenz gemäß SEQ ID No.1 ist durch die Sequenz gemäß SEQ ID No.2 kodiertes humanes IRS-1 im Rahmen der verschiedenen Aspekte der vorliegenden Erfindung besonders bevorzugt. Die vorgenannten Polypeptide eignen sich dabei besonders zur Bestimmung der Fähigkeit des Insulinrezeptors, sie zu phosphorylieren. Ein bevorzugtes IRS-1 Fragment ist ein Polypeptid mit der Aminosäuresequenz gemäß SEQ ID No.3. Die verschiedenen Aspekte der Erfindung können auf unterschiedlicher Ebene zum Einsatz kommen. Zweckmäßig ist ihr Einsatz besonders bei der Identifizierung von Substanzen, die die Fähigkeit des Enzyms oder funktionellen Fragments oder Derivats davon, den Phosphorylierungszustand des Polypeptid zu modulieren, modifizieren. Geeignete analytische Verfahren oder Systeme, sogenannte Assays, die die Aktivität oder die Konzentration bzw. Menge bestimmter Zielmoleküle des Körpers (sogenannte „Targets", in diesem Fall den Phosphorylierungszustand des Polypeptids), als Parameter der Wirksamkeit potentieller Wirkstoffe messen, sind im Stande der Technik bekannt. Diese können beispielsweise in vitro Assays, also biochemische Assays mit isolierten oder teil-isolierten Komponenten, die zu einem Reaktionsgemisch zusammengesetzt werden, darstellen, anhand derer sich die Wirksamkeit potentieller Wirkstoffe messen lässt. Darüber hinaus können dies auch zelluläre Testsysteme (Assays) sein, in denen die Aktivität des Zielproteins (also vorliegend des Enzyms) und die Wirksamkeit potentieller Wirkstoffe auf die Aktivität dieses Zielmoleküs im zellulären Umfeld bestimmt werden kann.
Ein Assay ist dabei jede Art.analytischer Methode, anhand derer ein biologischer Prozess überwacht werden kann. Dabei werden herkömmlicherweise molekulare Abläufe und Signalkaskaden, die Teile physiologischer Stoffwechselwege und Regelmechanismen, aber auch pathologischer Zustände darstellen in zellulären oder biochemischen Systemen nachgestellt. Die pharmakologische Aktivität eines Wirkstoffes kann dann anhand seiner Fähigkeit, in diese Wege und Mechanismen einzugreifen, bestimmt werden.
Zum Einsatz im Rahmen der Wirkstoffindung, insbesondere des Hochdurchsatzscreenings nach Wirkstoffen, muss der Assay reproduzierbar sein und ist vorzugsweise auch skalierbar und robust (also wenig anfällig gegen äussere Einflüsse). Der Assay sollte vorzugsweise für das Hochdurchsatzscreening chemischer Substanzen nach ihrer Fähigkeit, sich auf die Aktivität von Zielmolekülen auszuwirken, geeignet sein. Die Art des Assays hängt dabei unter anderem von der Art des verwendeten Zielmoleküls (z.B. genauer Typ oder Art von biochemischem Grundmolekül., z.B. Polypeptid oder Polynukleotid) und dem "read out", d.h. die Parameter, anhand der die Aktivität des Zielmoleküls bestimmt wird, ab. Im Stand der Technik sind verschiedene Assaytypen bekannt und großteils auch kommerziell von gewerblichen Anbietern erhältlich.
Zur Messung der Interaktion zweier Bindungspartner geeignete Assays umfassen z.B. Radioisotopische oder Fluroreszierende Assays, z.B.Fluoreszenzpolarisierungsassays, wie z.B. kommerziell von Panvera, Perkin-Elmer Life Sciences (NEN, LANCE™, AlphaScreen™) oder CIS Bio International (HTRF™) erhältlich. Weitere Beispiele von Assays umfassen zelluläre Assays, in denen eine Zellinie stabil (induzierbar oder konstitutiv; chromosomal oder episomal) oder transient ein rekombinantes Protein nach Wunsch exprimiert. Diese Assays umfassen z.B. Reportergen Assays, in denen die Regulation eines bestimmten Promotors oder die Regulation eines Signaltransduktioήsweges oder eines Mitgliedes einer Signaltransduktionskaskade anhand der Aktivität eines Reporterenzyms gemessen wird, desen Expression unter der Kontrolle des betreffenden Promotors steht. Für diese Art von Assay ist es notwendig, eine rekombinante Zellinie zu generieren, die das Reportergen unter der Kontrolle eines definierten Promotors exprimiert, der selbst zur Untersuchung steht oder der durch die zu untersuchende Signaltransduktionskaskade reguliert wird. Geeignete Reporterenzyme sind dem zuständigen Fachmann allgemein bekannt und umfassen Glühwürmchen Luziferase, Renilla Luziferase (beide kommerziell z.B. durch Packard Reagents erhältlich), ß- Galaktosidase, etc. Die Auswahl geeigneter Zellinien ist dem zuständigen Fachmann bekannt und hängt u. a. vom Ziel des Assays oder dem „read out" ab. In der Regel sind dies Zellinien, die einfach zu kultivieren und zu transfizieren sind, so wie z.B. HeLA, COS, CHO oder NIH-3T3 Zellen. Zur Messung der Proteinphosphorylierung bzw. der Kinaseaktivität eignen sich z.B. die Fluoreszenzpolarisierung, z.B. kommerziell erhältlich durch Panvera, Homogeneous Time Resolved Fluorescence (HTRF™, Cis Bio International) oder LANCE™ Assays (Perkin-Elmer Life Sciences) oder der Amplified Luminescent Proximity Homogeneous Assay (ALPHAScreen™ von Perkin-Elmer Life Sciences). Die im Rahmen der vorliegenden Erfindung besonders zweckmäßige Messung der Kinaseaktivität mittels ALPHAScreen™ von Perkin-Elmer Life Sciences erfolgt beispielsweise, indem die zu untersuchende Kinase ein biotinyliertes Peptid in einem biochemischen Ansatz in Anwesenheit von ATP phosphoryliert. Das phosphorylierte Peptid wird dann durch einen spezifischen anti-Phospho Antikörper gebunden, an den Protein-A-konjugierte Akzeptorbeads oder mit geeigneten Zweitantikörpern versehene gekoppelt sind. Im selben Ansatz befinden sich Streptavidin-gekoppelte Donorbeads, die den Biotin Anteil des Peptids binden. Durch die Bindung an das Peptid kommen Akzeptor- und Donorbeads in unmittelbare Nähe, was eine Kaskade von chemischen Reaktionen in Gang setzt, die ein stark amplifiziertes, detektierbares Lumineszenzsignal generieren: Durch Laseranregung wird ein Photosensitizer im Donorbead angeregt, Umgebungssauerstoff in einen Singlet Status zu versetzen. Der Singulett Sauerstoff diffundiert dann zum Akzeptorbead , wo er ein Thioxenderivat anregt, welches so eine Chemilumineszenz mit Wellenlänge von 370nm abgibt, die ihrerseits weitere Fluorophore im Akzeptorbead anregt, Licht mit Wellenlängen von 520 bis 620 nm zu lumineszieren. Da die Anregung der Fluorophore durch den Singulettsauerstoff nur dann erfolgt, wenn sich Donor- und Akzeptorbead in enger Nähe befinden, werden nur dann detektierbare Signale generiert. Andere Arten von Assays und andere Arten des „read outs" sind dem Zuständigen Fachmann ebenfalls hinlänglich bekannt.
Hierbei ist besonders der Einsatz in Form von Hochdurchsatzverfahren (HTS, High Throughput Screen) bevorzugt, durch die in kürzester Zeit eine große Anzahl von Substanzen analysiert werden kann. Je nach Zielsetzung kann die Modifizierung der Modulierung dabei eine Inhibition oder Aktivierung der Modulierung durch das Enzym bedeuten. Die Art der Modifizierung umfasst dabei alle möglichen Einflüsse, die sich letztlich auf den Enzym-katalysierten Phosphorylierungszustand des Polypeptids auswirken, wie der Modifizierung der Enzym-Substrat Interaktion oder der Modifizierung der katalytischen Aktivität des Enzyms, aber auch (vorzugsweise bei der Analyse mittels zellulärer Reaktionsansätze) der Modifizierung der Enzymexpression, etc.
Ein weiterer Aspekt der Erfindung bezieht sich auf ein Verfahren zur Identifizierung von Substanzen, die die Fähigkeit eines Enzyms oder funktionellen Fragments oder Derivats davon, den Phosphorylierungszustand eines Polypeptids zu modulieren, modifizieren mit den Schritten a) Bestimmung der Fähigkeit des Enzyms oder funktionellen Fragments oder Derivats davon, den Phosphorylierungszustand des Polypeptids zu modulieren gemäß einem der vorstehend genannten erfindungsgemäßen Verfahren wobei dem Reaktionsansatz die zu testende Substanz nicht zugefügt ist, b) Bestimmung der Fähigkeit des Enzyms oder funktionellen Fragments oder . Derivats davon, den Phosphorylierungszustand des Polypeptids zu modulieren nach einem der vorstehend beschriebenen erfindungsgemäßen Verfahren, wobei dem Reaktionsansatz die zu testende Substanz zugefügt ist, c) Vergleich der Fähigkeit nach a) mit der nach b).
Die erfindungsgemäßen Verfahren eignen sich dabei insbesondere zur Identifizierung von pharmakologisch wirksamen Substanzen zur Behandlung des nicht Insulin- abhängigen Diabetes mellitus (NIDDM), in der Onkologie (IGFRK) oder zur Behandlung inflammatorischer Prozesse (IKK Kinase)
Die Erfindung wird nachfolgend anhand verschiedener Figuren und Beispiele nähere erläutert, ohne den Gegenstand der Erfindung dadurch einzuschränken.
Beispiel 1 :
Verwendetes IRS-1 Fragment
Für die Demonstration der Möglichkeit, ein Polypeptid Substrat aus dem Insulinsignalweg zu biotinylieren und dieses für die erfindungsgemäße Verwendungen und Verfahren einzusetzen, wurde ein 262 Aminosäuren großes Fragment aus dem humanen IRS-1 gewählt (aa516-aa777), welches zentrale potentielle Tyrosin- (fett) als auch Serinphosphorylierungsstellen (unterstrichen) beinhaltet (Siemeister et al.
J.Biol.Chem. 1995). Das Fragment beinhaltet fünf potentielle Tyrosin Phosphorylierungsstellen, die in Figur 3 hervorgehoben und nachfolgend mitsamt ihrer
Motive fett dargestellt sind.
516 -
DLDNRFRKRT HSAGTSPTIT HQKTPSQSSV ASIEEYTE M PAYPPGGGSG
GRLPGHRHSA FVPTRSYPEE GLEMHPLERR " GGHHRPDSST LHTDDGY P SPGVAPVPSG RKGSGDY P SPKSVSAPQQ IINPIRRHPQ RVDPNGYM M
SPSGGCSPDI GGGPSSSSSS SNAVPSGTSY GKLWTNGVGG HHSHVLPHPK PPVESSGGKL LPCTGDYMNM SPVGDSNTSS PSDCYYGPED PQHKPVLSYY SLPRSFKHTQ RP -777
Die Serine 612, 632, 662 und 731, welche vier mögliche Serinkinasen Phosphorylierungsstellen in YMXMSP Motiven darstellen, sind nahe der Tyrosin Phosphorylierungsstellen des Insulinrezeptors lokalisiert, die in Bindungsstellen für SH2 Somänen untergebracht sind. Die Mutation dieser Serin Reste zu Alanin führt zu einem Anstieg der IRS-1 -vermittelten Aktivität der Phosphatidyl-Insositol Trisphosphat- Kinase (PI3K),(Mothe et al. 1996), was darauf hindeutet, dass ihnen eine inhibierende Funktion zukommt. Es ist aber nicht auszuschließen, dass noch weitere Serinphosphorylierungsstellen vorhanden sind, die zur Zeit noch nicht bekannt sind. Beispiel 2:
Klonierung und Biotinylierung von hlRS-1-p30
Zur Untersuchung wurde die 262 Aminosäuren lange Domäne D516-P777 (hlRS-1- p30) des humanen IRS-1 zunächst in E-coli wie beschrieben in Siemeister et al., 1995 exprimiert. Die Expressionsvektoren wurden dabei durch Insertion des Polynukleotids mit der Sequenz gemäß SEQ ID No. 10 (cDNA Sequenz von hlRS-1-p30) in das Plasmid pET3d (kommerziell erhältlich unter der Bestellnummer 69421 bei Novagen) durch übliche Verfahren hergestellt. Dazu wurde zunächst der Leervektor mit den Enzymen Ncol (kommerziell erhältlich bei Röche Diagnostics GmbH Mannheim unter Bestellnummer 835315) und BamHI (kommerziell erhältlich bei Röche Diagnostics GmbH Mannheim unter Bestellnummer 656275) unter Standardbedingungen verdaut und unter Verwendung von Spin Columns (kommerziell erhältlich bei Qiagen, Hilden unter Bestellnummer 28104) aufgereinigt.
Die Biotinylierung erfolgte dabei auftragsgemäß durch den kommerziellen Anbieter N- Zyme, Darmstadt, Deutschland mittels gängiger Techniken. Die Expression der hlRS- 1-p30 Insulinrezeptor Fragments erfolgte dabei wie beschrieben in Siemeister et al., 1995. Zur Überprüfung des Expressionsergebnisses wurden Proteinextrakte aus E. coli (Stamm: E. coli BL21 , kommerziell erhältlich bei Novagen unter der Bestellnummer 69451-3) hergestellt, durch SDS-PAGE unter Standardbedingungen (siehe z.B. nachfolgend aufgeführte Standard Literatur) aufgetrennt und unter Anfärbung mit Coomassie Färbelösung nach Standardbedingungen (siehe z.B. nachfolgend aufgeführte Standard. Literatur) dargestellt. Die Aufreinigung von hlRS-1-p30 erfolgte ebenfalls nach Siemeister et. al. Die Biotinylierung von hlRS-1-p30 erfolgte enzymatisch unter Verwendung von Transglutaminase. Beispiel 3 ALPHAScreen™: Phosphorylierung von biotinyliertem IRS-1 Fragment durch Weizenkeimlektin-affinitätsgereinigten Insulinrezeptor aus Rattenleber. In dem Experiment, dessen Ergebnis in Figur 4 dargestellt ist, wurde Weizenkeimlektin-affinitätschromatografisch gereinigter Insulinrezeptor aus Rattenleber (WGA-IR, SEQACC Number NP_058767oder kommerziell erhältlich bei Sigma unter Bestellnummer 70543) mit verschiedenen Konzentrationen an humanem Insulin (z.B. kommerziell erhältlich bei Sigma unter Bestellnummer 14)266) und 85 nM biotinyliertem IRS Fragment für 10 Minuten bei 4°C in 50 mM Tris-Puffer, pH 7,4, 8 mM MgCI2, 2 mM MnCI2 inkubiert, woran sich eine 30 minütige Inkubation nach Zugabe von ATP (Endkonzentration 50μM) bei 30°C anschloss. Die Reaktion wurde anschliessend durch Zugabe von EDTA zu einer Endkonzentration von 20 mM abgestoppt und die Phosphorylierung von IRS-1 durch Verwendung ejnes direkt an den Akzeptor gekoppelten p-Tyr spezifischen Antikörpers (kommerziell erhältlich durchPerkin-Elmer Life Sciences unter Bestellnummer 6760601 C) detektiert, was in dem in Figur 4 dargestellten Readout resultierte. Mit Hilfe dieses Verfahrens konnte der EC50 für Insulin zu 10 nM bestimmt werden.
Beispiel 4
ALPHAScreen™: Phosphorylierung von biotinyliertem IRS-1 Fragment durch PKC und rekombinante Insulinrezeptorkinase.
Der ALPHAScreen™ von Perkin-Elmer Life Sciences ermöglicht die Detektion der Interaktion zwischen dem phosphorylierten IRS-1 Fragment und Antikörpern, die phosphorylierte Serin oder Tyrosin Reste erkennen (p-Ser / p-Tyr Antikörper). Das biotinylierte IRS-1 wird dabei an den Streptavidin Donor und der Antikörper durch Akzeptor-gekoppeltes Protein A oder einen geeigneten, an den Akzeptor gebundenen Zweitantikörper gebunden. Wenn eine Interaktion stattfindet, gelangt und bleibt der Akzeptor in der unmittelbaren Nähe des Donors, so dass Singulett Sauerstoffatome, die durch den Donor erzeugt werden, durch Diffusion zu chemilunineszenten Gruppen im Akzeptor Bead gelangen können, was ultimativ in der Emission detektierbaren Lichts resultiert.
Die in Form von Säulendiagrammen in Figur 5 A und B dargestellten in dem vorgenannten Assay generierten Lichtintensitäten (der sog. „Readout") wurden nach 30 minütiger Inkubation von IRS-1 mit Proteinkinase C und ATP und anschliessender Zugabe von p-Ser Antikörpern (kommerziell erhältlich bei Biosource, Belgien unter Bestellnummer 44-550) und weiterer Inkubation für 120 Minuten durch Messung mit einem Perkin-Elmer Fusion oder AlphaQuest Instrument detektiert und quantifiziert. Der Vergleich der erzeugten Lichtintensitäten in Anwesenheit und in Abwesenheit von PKC ist in Figur 11A dargestellt. Bei dem Experiment, dessen Ergebnis in Figur 11B dargestellt ist, wurde rekombinante Insulin Rezeptor Kinase (IRK, Aminosäure 941- (1343, NCBI Zugangsnummer NM_000208) durch Inkubation mit Polyiysin für 10 Minuten bei 30°C in 50 mM Tris-Puffer, pH 7,4, 8 mM MgCI2, 50μM ATP Reaktionspuffer aktiviert und anschliessend das IRK Substrat IRS zugegeben, woran sich eine 30 minütige Inkubation bei 30°C anschloss. Die Phosphorylierung von IRS-1 wurde unter Verwendung eines eines direkt an den Akzeptor gekoppelten p-Tyr spezifischen Antikörpers (kommerziell erhältlich durchPerkin-Elmer Life Sciences unter Bestellnummer 6760601 C) detektiert, was in dem in Figur 11 B dargestellten Readout resultierte.
Durch die vorgenannten Studien konnte erstmals demonstriert werden, dass" biotinylierte Polypeptide. durch Kinasen phosphoryliert werden können. Dies wurde anhand eines 28kDA großen Fragments des hlRS-1 demonstriert, das im biotinylierten Zustand durch die Serinkinase PKCδ und durch die Tyrosinkinase des Insulinrezeptors phosphoryliert werden kann. Die Detektion durch phosphospezifische Antikörper war dabei ebenfalls erfolgreich, ohne dass eine sterische Behinderung durch die Größe des Polypeptides in Verbindung mit dem Biotinrest die Detektionsreaktion störte. Dadurch konnte, basierend auf dem Prinzip des ALPHAScreens™, ein homogenes Assaysystem generiert werden, mit dem der Phosphorylierungszustand von Polypeptiden unter Nutzung der durch die Biotinylierung möglichen Aufreinigungs- und Detektionstechniken bestimmbar ist. Dieses Assay Prinzip wurde hier erstmals auf ein Proteinfragment der Größe eines Polypeptids (genauer 28kDa) angewandt. Dies ermöglicht die verbesserte Suche nach pharmalologisch wirksamen Substanzen, welche mit der Phosphorylierungs- und Dephosphorylierungsmaschinerie der Zelle interagieren / die Diagnose von phosphorylierungs-abhängigen Erkrankungen / die Identifizierung neuer Proteinkinasen für spezielle Polypeptide an großen, sogar strukturell intakten physiologischen Substraen, was die Spezifität der diesen Untersuchungen zugrunde liegenden Phosphorylierungen oder Dephosphorylierungen und somit die Aussagekraft der so generierten Daten wesentlich erhöht. In dem hier verwendeten Assaysystem war der Readout zudem nicht-radioaktiv, sondern lumineszent, was einen Vorteil für den Einsatz in High Throughput Screening (HTS) Verfahren darstellt. Der hier dargestellte Assay kann somit für das HTS aller den Phosphorylierungsstatus von Polypeptiden und Proteinen modulierenden Enzyme, wie Kinasen und Phosphatasen, zur Identifizierung neuartiger Wirkstoffe oder Verifizierung bekannter Wirkstoffe eingesetzt werden. Ebenso eignet er sich für andere Verfahren, wie die vorgenannten Verfahren zur Suche nach neuen Enzymen, die bestimmte Polypeptide phosphorylieren, so zum Beispiel neue IRS-1 phosphorylierende Kinasen in Ganzzellysaten.
Figurenbeschreibung Figur 1
Proteinsequenz von IRS 1 - IRS 4 (SEQ ID No. 1 bis 4). Die Sequenzzugangsnummern (NCBI Protein Database) der vier Familienmitglieder sind NM_005544 (IRS-1 hs), :M:007095 (IRS-2 hs), NM:032074 (IRS-3 rat), NM_003604 (IRS-4 hs).
Figur 2
Kodierende DNA-Sequenz von IRS 1 - IRS 4 (SEQ ID No. 5 bis 8). Die Sequenzzugangsnummern (NCBI Nucleotide Database der vier Familienmitglieder sind NM_005544 (IRS-1 hs), :M:007095 (IRS-2 hs), NM:032074 (IRS-3 rat), NM_003604 (IRS-4 hs).
Figur 3 Die 262 Aminosäuren umfassende Domäne des IRS-1 Proteins (hIRS-1-p30), welche für die vorliegenden Studien eingesetzt wurde. Die Serine 612, 632, 662 und 731 sind unterstrichen dargestellt. YXXM Tyrosin Phosphorylierungs Motive sind fett dargestellt.
Figur 4 Ergebnisse des ALPHAScreens unter Verwendung von Weizenkeimlektin- affinitätschromatografisch gereinigtem Insulinrezeptor
Figur 5
Ergebnisse des ALPHAScreens™
Figur 6
Übersichtsabbildung der Interaktionen von Insulinrezeptor, 1RS-1 und Serinkinasen
Figur 7 Übersichtsabbildung der möglichen molekularen Mechanismen der inhibitorisch wirksamen Serinphosphorylierung Literatur
White, M. F. (2002)
IRS proteins and the common path to diabetes. Am. J. Physiol. Endocrinol. Metab. 283, E413-422
Thirone AC, Carvalho CR, Saad MJ. (1999)
Growth hormone stimulates the tyrosine kinase activity of JAK2 and induces tyrosine phosphorylation of insulin receptor Substrates and Shc in rat tissues. Endocrinology 140, 55-62
Schmitz-Peiffer C, Craig DL, Biden TJ. (2002)
Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate. Ann. N. Y. Acad. Sei. 967, 146-157
Gao Z, Hwang D, Bataille F, Lefevre M, York D, Quon MJ, Ye J. (2002) Serine phosphorylation of insulin receptor Substrate 1 by inhibitor kappa B kinase complex. J. Biol. Chem. 277, 48115-48121
Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF. (2000) Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J. Biol. Chem. 275, 9047-9054
Sun XJ, Rothenberg P, Kahn CR, Backer JM, Araki E, Wilden PA, Cahill DA, Goldstein BJ, White MF. (1991)
Structure of the insulin receptor Substrate IRS-1 defines a unique Signal transduction protein.
Nature 352, 73-77 Mothe I, Van Obberghen E. (1996)
Phosphorylation of insulin receptor substrate-1 on multiple serine residues, 612, 632, 662, and 731 , modulates insulin action. J. Biol. Chem. 271 , 11222-11227 5 Tanasijevic MJ, Myers MG Jr, Thoma RS, Crimmins DL, White MF, Sacks DB. (1993) Phosphorylation of the insulin receptor Substrate IRS-1 by casein kinase II. J. Biol. Chem. 268, 18157-18166
10 Paz K, Liu YF, Shorer H, Hemi R, LeRoith D, Quan M, Kanety H, Seger R, Zick Y.
(1999)
Phosphorylation of insulin receptor substrate-1 (IRS-1) by protein kinase B positively regulates IRS-1 function.
J. Biol. Chem. 274, 28816-28822 15
Eldar-Finkelman H, Krebs EG. (1997)
Phosphorylation of insulin receptor Substrate 1 by glycogen synthase kinase 3 impairs insulin action.
Proc. Natl. Acad. Sei. U S A 94, 9660-9664 '20
Jakobsen SN, Hardie DG, Morrice N, Tornqvist HE. (2001 ) δ'-AMP-activated protein kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response to 5-aminoimidazole-4-carboxamide riboside.
J. Biol. Chem. 276, 46912-46916 25
Freund GG, Wittig JG, Mooney RA. (1995)
The PI3-kinase serine kinase phosphorylates its p85 subunit and IRS-1 in PI3- kinase/IRS-1 complexes.
Biochem Biophys Res Commun 206, 272-278 30 Le Marchand-Brustel Y. (1999)
Molecular mechanisms of insulin action in normal and insulin-resistant states.
Exp. Clin. Endocrinol. Diabetes 107, 126-132
Araki E, Sun XJ, Haag BL 3rd, Chuang LM, Zhang Y, Yang-Feng TL, White MF, Kahn
CR. (1993)
Human skeletal muscle insulin receptor substrate-1. Characterization of the cDNA, gene, and chromosomal localization.
Diabetes 42, 1041-1044
Siemeister G, al-Hasani H, Klein HW, Kellner S, Streicher R, Krone W, Muller-Wieland
D. (1995)
Recombinant human insulin receptor substrate-1 protein. Tyrosine phosphorylation and in vitro binding of insulin receptor kinase. J. Biol. Chem. 270, 4870-4874
Araki E, Lipes MA, Patti ME, Bruning JC, Haag B 3rd, Johnson RS, Kahn CR. (1994) Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature 372, 186-190.
Lavan BE, Lane WS, Lienhard GE. (1997)
The 60-kDa phosphotyrosine protein in insulin-treated adipocytes is a new member of the insulin receptor Substrate family. J. Biol. Chem. 272, 11439-11443
Lavan BE, Lane WS, Lienhard GE. (1997)
A novel 160-kDa phosphotyrosine protein in insulin-treated embryonic kidney cells is a new member of the insulin receptor Substrate family. J. Biol. Chem. 272, 21403-21407 De Fea K, Roth RA. (1997)
Protein kinase C modulation of insulin receptor substrate-1 tyrosine phosphorylation requires serine 612 Biochemistry 36, 12939-12947 Standardliteratur für Labormethoden
Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual. Second edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. 545 pp;
Current Protocols in Molecular Biology; regularly updated, e.g. Volume 2000; Wiley & Sons, Ine; Editors: Fred M. Ausubel, Roger Brent, Robert Eg. Kingston, David D. Moore, J.G. Seidman, John A. Smith, Kevin Struhl.
Current Protocols in Human Genetics; regularly uptdated; Wiley & Sons, Ine; Editors: Nicholas C. Dracopoli, Honathan L. Haines, Bruce R. Korf, Cynthia C. Morton, Christine E. Seidman, J.G. Seigman, Douglas R. Smith.
Current Protocols in Protein Science; regularly updated; Wiley & Sons, Ine; Editors: John E. Coligan, Ben M. Dünn, Hidde L. Ploegh, David W. Speicher, Paul T. Wingfield.
Molecular Biology of the Cell; third edition; Alberts, B., Bray, D., Lewis, J., Raff, M.,_ Roberts, K., Watson, J.D.; Garland Publishing, Inc. New York & London, 1994;
Short Protocols in Molecular Biology, 5th edition, by Frederick M. Ansubel (Editor), Roger Brent (Editor), Robert E. Kingston (Editor), David D. Moore (Editor), J.G. Seidman (Editor), John A. Smith (Editor), Kevin Struhl (Editor), October 2002, John Wiley & Sons, Inc., New York"
Materialien und Methoden Falls nicht anders dargestellt, stellen die genannten Verfahren dem zuständigen Fachmann bekannte Standardverfahren dar und können beispielsweise in der oben aufgeführten Literatur, insbesondere der Literatur zu Standardmethoden (im vorliegenden Text auch als Standardliteratur bezeichnet) entnommen werden. Abkürzungen
Für Aminosäuren (allgemein auch abgekürzt als AA oder AS) wurden der Drei- oder Ein- Buchstaben Code verwendet (s. auch die angegebene Standardliteratur); Für Nukleotide wurden die allgemein üblichen einbuchstabigen Abkürzungen verwendet (s. auch die angegebene Standardliteratur).

Claims

Patentansprüche
1. Verwendung eines Polypeptids zur Bestimmung der Fähigkeit eines Enzyms, eines funktionellen Fragments oder Derivats davon, den Phosphorylierungsstatus des Polypeptids zu modulieren, dadurch gekennzeichnet, dass das Polypeptid biotinyliert ist.
2. Verwendung gemäß Anspruch 1 zur Bestimmung der Fähigkeit eines Enzyms, das Polypeptid zu phosphorylieren.
3. Verwendung gemäß Anspruch 1 zur Bestimmung der Fähigkeit eines Enzyms, das Polypeptid zu dephosphorylieren.
4. Verfahren zur Bestimmung der Fähigkeit eines Enzyms, eines funktionellen Fragments oder Derivats davon, den Phosphorylierungsstatus eines biotinylierten Polypeptids zu modulieren.
5. Verfahren gemäß Anspruch 4 zur Bestimmung der Fähigkeit eines Enzyms, eines funktionellen Fragments oder Derivats davon, das Polypeptid zu phosphorylieren mit den Schritten a. In Kontakt Bringen des Enzyms oder funktionellen Fragments oder Derivats mit dem biotinylierten Polypeptid und Starten der Phosphoryiierungsreaktion in einem geeigneten Reaktionsansatz, b. In Kontakt Bringen des Reaktionsansatzes mit einem an einen Träger gekoppelten Mittel, das die Fähigkeit aufweist, an das biotinylierte
Polypeptid zu binden, c. Bestimmung des Phosphorylierungszustandes des an das Mittel gebundenen Polypeptids.
6. Verfahren gemäß Anspruch 4 zur Bestimmung der Fähigkeit eines Enzyms, eines funktionellen Fragments oder Derivats davon, das Polypeptid zu dephosphorylieren mit den Schritten a. In Kontakt Bringen des Enzyms oder funktionellen Fragments oder Derivats mit dem biotinylierten Polypeptid, welches mindestens einen Phosphatrest aufweist und Starten der Phosphoryiierungsreaktion in einem geeigneten Reaktionsansatz, b. In Kontakt Bringen des Reaktionsansatzes mit einem an einen Träger gekoppelten Mittel, das die Fähigkeit aufweist, an das biotinylierte Polypeptid zu binden, c. Bestimmung des Phosphorylierungszustandes des an das Mittel gebundenen Polypeptids.
7. Verfahren gemäß einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass der Träger eine Membran oder Platte ist.
8. Verfahren gemäß einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, dass das Mittel Streptavidin oder ein phosphospezifischer Antikörper ist.
9. Verfahren gemäß Anspruch 7 oder 8, dadurch gekennzeichnet, dass dem Reaktionsansatz radioaktiv markiertes γ32P-ATP zugefügt ist und die Bestimmung des Phosphorylierungszustandes durch Messung der auf der Membran oder Platte verbleibenden Radioaktivität nach Durchführung mindestens eines Waschschrittes erfolgt.
10.Verfahren gemäß einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, dass dem Reaktionsansatz ein Antikörper zugefügt wird, der fähig ist, spezifisch an das phosphorylierte Polypeptid zu binden und die Bestimmung des
Phosphorylierungszustandes durch Bestimmung der Menge des an das Polypeptid gebundenen Antikörpers erfolgt.
11.Verfahren gemäß Anspruch 10, dadurch gekennzeichnet, dass die Bestimmung der Menge des an das Polypeptid gebundenen Antikörpers durch die
Bestimmung der Menge des auf der Membran oder Platte verbleibenden Antikörpers nach Durchführung mindestens eines Waschschrittes erfolgt.
12. Verfahren gemäß Anspruch 10, dadurch gekennzeichnet, dass der an das Streptavidin gekoppelte Träger ein erster Träger ist, der einen ersten Signalerzeuger umfasst und das Polypeptid an einen zweiten Träger gekoppelt ist, der einen zweiten Signalerzeuger umfasst, wobei die zwei Signalerzeuger fähig sind, ein detektierbares Signal zu erzeugen, wenn sie sich in unmittelbarer
Nähe zueinander befinden und die Bestimmung des Phosphorylierungszustandes anhand der Bestimmung erfolgt, ob ein Signal erzeugt wurde.
13. Verwendung gemäß einem der Ansprüche 1 bis 3 oder Verfahren gemäß einem der Ansprüche 4 bis 12, dadurch gekennzeichnet, dass das Polypeptid eine Länge von 50 Aminosäuren und mehr, vorzugsweise 50 bis 300 hat.
14. Verwendung gemäß einem der Ansprüche 1 bis 3 oder Verfahren gemäß einem der Ansprüche 4 bis 12, dadurch gekennzeichnet, dass das Polypeptid eine
Größe von 1 kda und mehr, vorzugsweise 1 bis 100 kDa, besonders bevorzugt 10 bis 50 kDa und insbesondere 25 bis 35 kDa hat.
15. Verwendung gemäß einem der Ansprüche 1 bis 3 oder 14 oder Verfahren gemäß einem der Ansprüche 4, 5 oder 7 bis 14, dadurch gekennzeichnet dass das Enzym eine Kinase, vorzugsweise eine Tyrosin-Kinase ist.
16. Verwendung gemäß einem der Ansprüche 1 bis 3 oder 12 bis 15 oder Verfahren gemäß einem der Ansprüche 4 bis 15, dadurch gekennzeichnet, dass das Polypeptid das natürliche Substrat des Enzyms, vorzugsweise in unverkürzter Länge ist.
17. Verwendung gemäß einem der Ansprüche 1 bis 3 oder 12 bis 16 oder Verfahren gemäß einem der Ansprüche 4 bis 16, dadurch gekennzeichnet, dass das Polypeptid Insulin Rezeptor Substrat (IRS), vorzugsweise 1RS-1 , 2, 3 oder 4 und besonders bevorzugt IRS-1 oder ein funktionelles Fragment oder Derivat davon ist.
18. Verwendung oder Verfahren gemäß Anspruch 17, dadurch gekennzeichnet, dass das IRS-1 humanes IRS-1 mit der Sequenz gemäß SEQ ID No.1 ist oder durch die Sequenz gemäß SEQ ID No.2 kodiert wird.
19. Verwendung oder Verfahren gemäß Anspruch 18, dadurch gekennzeichnet, dass das IRS-1 Fragment die Aminosäuresequenz gemäß SEQ ID No.3 aufweist und vorzugsweise daraus besteht.
20. Verwendung gemäß einem der Ansprüche 1 bis 3 oder 12 bis 19 oder Verfahren gemäß einem der Ansprüche 4 bis 19, dadurch gekennzeichnet, dass das Enzym eine der folgenden Kinasen oder ein funktionelles Fragment oder Derivat davon ist: Insulinrezeptor, IGF-1 Rezeptor, trK-Rezeptor, EGF- Rezeptor, Casein Kinase II, Protein Kinase C, Protein Kinase B/Akt, Mitogen Aktivierte Protein Kinase (MAP Kinase), GSK-3, ERK oder JNK.
21. Verwendung gemäß einem der Ansprüche 1 bis 3 oder 12 bis 20 oder Verfahren gemäß einem der Ansprüche 4 bis 20 zur Identifizierung von Substanzen, die die Fähigkeit des Enzyms oder funktionellen Fragments oder Derivats davon, den Phosphorylierungszustand des Polypeptid zu modulieren, modifizieren.
22. Verfahren zur Identifizierung von Substanzen, die die Fähigkeit eines Enzyms oder funktionellen Fragments oder Derivats davon, den Phosphorylierungszustand eines Polypeptids zu modulieren, modifizieren mit den Schritten a. Bestimmung der Fähigkeit des Enzyms oder funktionellen Fragments oder Derivats davon, den Phosphorylierungszustand des Polypeptids zu modulieren nach einem Verfahren gemäß einem der Ansprüche 3 bis 21 , wobei dem Reaktionsansatz die zu testende Substanz nicht zugefügt ist, b. Bestimmung der Fähigkeit des Enzyms oder funktionellen Fragments oder Derivats davon, den Phosphorylierungszustand des Polypeptids zu modulieren nach einem Verfahren gemäß einem der Ansprüche 3 bis 21, wobei dem Reaktionsansatz die zu testende Substanz zugefügt ist, c. Vergleich der Fähigkeit nach a) mit der nach b).
23. Verwendung gemäß Anspruch 21 oder Verfahren gemäß einem der Ansprüche 21 oder 22 zur Identifizierung von pharmakologisch wirksamen Substanzen zur Behandlung des nicht Insulin-abhängigen Diabetes mellitus (NIDDM).
EP04729646A 2003-05-22 2004-04-27 Verwendung eines biotinylierten polypeptides zur bestimmung der aktivität von protein-phosphorylierenden enzymen Withdrawn EP1627073A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10323081A DE10323081A1 (de) 2003-05-22 2003-05-22 Verwendung eines Polypeptides
PCT/EP2004/004428 WO2004104220A2 (de) 2003-05-22 2004-04-27 Verwendung eines biotinylierten polypeptides zur bestimmung der aktivität von protein-phosphorylierenden enzymen

Publications (1)

Publication Number Publication Date
EP1627073A2 true EP1627073A2 (de) 2006-02-22

Family

ID=33441119

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04729646A Withdrawn EP1627073A2 (de) 2003-05-22 2004-04-27 Verwendung eines biotinylierten polypeptides zur bestimmung der aktivität von protein-phosphorylierenden enzymen

Country Status (15)

Country Link
US (1) US7732151B2 (de)
EP (1) EP1627073A2 (de)
JP (1) JP4740858B2 (de)
KR (1) KR20060015290A (de)
CN (1) CN100560732C (de)
AU (1) AU2004241327B2 (de)
BR (1) BRPI0410783A (de)
CA (1) CA2526697A1 (de)
DE (1) DE10323081A1 (de)
HK (1) HK1092840A1 (de)
IL (1) IL172008A (de)
MX (1) MXPA05012521A (de)
NO (1) NO20055990L (de)
RU (1) RU2395813C2 (de)
WO (1) WO2004104220A2 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015155738A2 (en) 2014-04-09 2015-10-15 Christopher Rudd Use of gsk-3 inhibitors or activators which modulate pd-1 or t-bet expression to modulate t cell immunity
CN113933463B (zh) * 2021-10-14 2024-04-02 丽江英煌集生物工程有限公司 一种玛咖多肽活性的快速分检装置及分检方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG63596A1 (en) * 1993-07-29 1999-03-30 Cor Therapeutics Inc Receptor function assays
US5763198A (en) * 1994-07-22 1998-06-09 Sugen, Inc. Screening assays for compounds
AU5965896A (en) * 1995-06-07 1996-12-30 Sugen, Inc. Screening assays for compounds
US5759787A (en) * 1996-08-26 1998-06-02 Tularik Inc. Kinase assay
AU6026698A (en) * 1997-01-15 1998-08-07 Telik, Inc. Modulators of insulin receptor activity
JP2001526380A (ja) * 1997-12-05 2001-12-18 ファルマシア・アンド・アップジョン・カンパニー プロテインキナーゼおよびホスファターゼ用の蛍光ベース−高処理量スクリーニングアッセイ
ATE497164T1 (de) * 1999-06-09 2011-02-15 Molecular Devices Inc Testverfahren zur messung der phosphorylierung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004104220A2 *

Also Published As

Publication number Publication date
AU2004241327B2 (en) 2010-03-25
CN100560732C (zh) 2009-11-18
AU2004241327A1 (en) 2004-12-02
CA2526697A1 (en) 2004-12-02
KR20060015290A (ko) 2006-02-16
JP4740858B2 (ja) 2011-08-03
DE10323081A1 (de) 2004-12-16
IL172008A (en) 2011-12-29
WO2004104220A3 (de) 2005-06-09
US20080020399A1 (en) 2008-01-24
CN1795273A (zh) 2006-06-28
HK1092840A1 (en) 2007-02-16
RU2395813C2 (ru) 2010-07-27
JP2007512802A (ja) 2007-05-24
MXPA05012521A (es) 2006-05-25
WO2004104220A2 (de) 2004-12-02
US7732151B2 (en) 2010-06-08
NO20055990L (no) 2006-02-14
RU2005140091A (ru) 2006-05-10
BRPI0410783A (pt) 2006-06-20

Similar Documents

Publication Publication Date Title
Hu et al. Site-specific interplay between O-GlcNAcylation and phosphorylation in cellular regulation
AU2003219838B2 (en) Compositions and method for regulation of calcium-dependent signalling in brain
CN102395886B (zh) 用于对修饰的肽进行定量的方法
DE602004013160T2 (de) Verfahren zur anwendung eines an lkb1/strad/mo25-komplexes
DE69535119T2 (de) Quantifizierung einer individuellen Proteinkinaseaktivität
DE69918123T2 (de) Verfahren und reagentiensatz zur erkennung von protein-protein wechselwirkungen
DE68924354T2 (de) Verfahren und zusammensetzungen zur früherkennung von behandlung der insulinabhängigen diabetes mellitus(iddm).
Gäde et al. Unique translational modification of an invertebrate neuropeptide: a phosphorylated member of the adipokinetic hormone peptide family
DE69918557T2 (de) Methoden zum aufsuchen von modulatoren der calcineurinaktivität
Kopp et al. Distribution of adrenaline-synthesizing enzyme activity in the human brain
DE60015319T2 (de) Test zur gleichzeitigen Messung von verschiedenen enzymischen Aktivitäten
EP1627073A2 (de) Verwendung eines biotinylierten polypeptides zur bestimmung der aktivität von protein-phosphorylierenden enzymen
DE60314395T2 (de) Verfahren zum messen von protein kinase und phosphatase aktivität
JPS63119499A (ja) インシユリン活性伝達子,その前駆体,及びその使用法
Johnson et al. Identification and functional characterization of protein kinase A-catalyzed phosphorylation of potassium channel Kv1. 2 at serine 449
WO2002066982A1 (de) Analyse von modifizierungen und demodifizierungen von proteinen mit ubiquintin-verwandten proteinen mittels fret (fluorescence resonance energy transfer)
EP1825271B1 (de) Verwendung der serum-/glucocorticoid regulierten kinase
Yu et al. Tau binds both subunits of calcineurin, and binding is impaired by calmodulin
DE60117591T2 (de) Verfahren zum Nachweis von Serin/Threonin-Kinase-Aktivität
DE60125783T2 (de) Verfahren zum nachweis von acetylase oder deacetylase-aktivität in einem immunoassay
DE60102218T2 (de) Biotin-peg-substrat für einen lipase-assay
Uemura et al. Dynamics of Ca2+/calmodulin-dependent protein kinase II following acute myocardial ischemia—translocation and autophosphorylation
DE102005020754B3 (de) Zelluläres Assayverfahren zur Identifizierung von PKCtheta-Inhibitoren
US7252944B2 (en) Methods and compositions for modulating cell proliferation
CN102803514A (zh) 涉及鉴定参与疼痛的化合物的方法和用途以及诊断痛觉的方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051222

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KANNT, AIMO

Inventor name: TENNAGELS, NORBERT

Inventor name: THUERING, HARALD

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20071217

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20111220