EP1595794B1 - Verfahren und Vorrichtung zum Evakuieren einer Kammer - Google Patents

Verfahren und Vorrichtung zum Evakuieren einer Kammer Download PDF

Info

Publication number
EP1595794B1
EP1595794B1 EP05009182A EP05009182A EP1595794B1 EP 1595794 B1 EP1595794 B1 EP 1595794B1 EP 05009182 A EP05009182 A EP 05009182A EP 05009182 A EP05009182 A EP 05009182A EP 1595794 B1 EP1595794 B1 EP 1595794B1
Authority
EP
European Patent Office
Prior art keywords
chamber
vacuum
valve
protective gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05009182A
Other languages
English (en)
French (fr)
Other versions
EP1595794A1 (de
Inventor
Felix Rudolf Bilz
Sascha Bilz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIS Vakuumtechnik GmbH
Original Assignee
BIS Vakuumtechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIS Vakuumtechnik GmbH filed Critical BIS Vakuumtechnik GmbH
Publication of EP1595794A1 publication Critical patent/EP1595794A1/de
Application granted granted Critical
Publication of EP1595794B1 publication Critical patent/EP1595794B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B31/00Packaging articles or materials under special atmospheric or gaseous conditions; Adding propellants to aerosol containers
    • B65B31/02Filling, closing, or filling and closing, containers or wrappers in chambers maintained under vacuum or superatmospheric pressure or containing a special atmosphere, e.g. of inert gas

Definitions

  • the invention relates to a method and a device for evacuating a fillable with inert gas chamber, in particular a sealing chamber of a packaging machine, as it is used primarily for packaging meat and sausage products.
  • Carbon dioxide CO 2
  • Nitrogen N 2
  • gas mixtures of these two components are often used in different compositions.
  • the fresh meat packaging under protective atmosphere with oxygen content is another process that compared to the pure vacuum packaging and the above packaging Under inert atmosphere (nitrogen) or nitrogen / carbon dioxide mixtures increasingly important.
  • An infeed belt feeds the machine into a set of shells.
  • the number of trays per batch depends on the capacity of a sealing chamber in which the trays are evacuated.
  • the product to be packed is inserted manually by personnel next to the inlet section.
  • the batch is transported to the sealing chamber.
  • From a film roll arranged above the sealing chamber the upper film is guided over the shells.
  • Two chamber halves (upper and lower tool) are closed pneumatically.
  • the sealing chamber is pre-evacuated to a certain pressure. This is followed by back-venting the sealing chamber with inert gas to atmospheric pressure. Even during the gassing process, the top film is sealed on the shell and punched out.
  • After opening a ventilation valve for pressure equalization with the environment the chamber tool is opened and the shells are transported to the outlet conveyor of the machine.
  • Statistical monitoring of the gas composition is done by sampling (non-destructive).
  • the disposal of the air in the shells before the fumigation (evacuation) can be done in principle by different process techniques.
  • a separate vacuum pump is operated on each packaging machine.
  • the pump is installed in the immediate vicinity of the sealing chamber, if possible, within the machine.
  • the required end pressures of over 50 mbar allow single-stage disposal of the sealed chambers by means of centralized vacuum pumps.
  • the evacuation takes place only by the pressure equalization with the buffer volume. Any number of machines can be connected to such a system.
  • the vacuum generators are connected to the packaging machines via two piping systems which simultaneously form the required buffer. They permanently evacuate the vacuum systems rough vacuum and fine vacuum, whose dynamic equilibrium pressure is at different levels.
  • the sealing chambers are connected to the vacuum control unit via suitable actuators.
  • a vacuum central system is for example in the EP 0 622 301 B1 shown.
  • the use of a vacuum control unit is recommended when pre-pressures of less than 10 mbar are required and more than about four packaging machines are to be connected to a vacuum system.
  • the U.S. Pat. No. 5,822,951 discloses an oxygen sensor for detecting the oxygen concentration in the atmosphere of a vacuum chamber.
  • the vacuum chamber is evacuated and then filled with inert gas. After filling with inert gas, generating an overpressure, a gas sample is withdrawn from the chamber and fed to the oxygen sensor to determine if the oxygen concentration in the protective gas filled package is low enough to meet the shelf life requirements of the product to meet.
  • the object of the present invention is to propose a method and a device for evacuating a chamber which can be filled with protective gas, in particular a sealing chamber of a packaging machine, wherein the concentration of the protective gas or a gas component of the protective gas flowing to the vacuum source can be reliably determined.
  • the concentration of at least one gas component of the protective gas in the atmosphere of the buffer volume In determining the concentration of at least one gas component of the protective gas in the atmosphere of the buffer volume, a reliable determination of the at least one gas component is possible. Since conventional sensors, in particular if the sensors has a measuring device for determining the oxygen concentration in gases, are highly pressure-dependent, the sensor must comprise a pressure measuring device, by means of which the signal of the measuring device for determining the oxygen concentration is adjusted. With strong fluctuations in pressure, it can take a few seconds before you can determine a reliable value.
  • the buffer volume ensures that the pressure fluctuation in the buffer volume during the pressure equalization between the buffer volume and the chamber is relatively low, so that a reliable value can be determined quickly in the analysis of the gas in the buffer volume.
  • the method is also suitable for individual disposal in which each machine has a own vacuum pump as a vacuum source.
  • the pressure curve when evacuating a volume by means of a vacuum pump behaves exponentially over time. This means that initially a very large pressure drop is achieved, whereas the pressure after initial pressure drop is reduced only very slowly.
  • the initial pressure equalization of the chamber with the buffer volume initially ensures a rapid pressure drop. Then, the residual pressure drop is achieved by means of a vacuum pump, which is much slower, so that the pressure-sensitive sensor is only slightly affected by pressure fluctuations and immediately delivers reliable values.
  • the buffer volume temporarily stores the gas that was initially evacuated from the chamber.
  • the chamber while determining the concentration of at least one gas component of the shielding gas in the atmosphere of the buffer volume, the chamber is temporarily connected to a vacuum source for evacuation.
  • a vacuum source for evacuation.
  • the vacuum source may comprise a vacuum reservoir, wherein continuously the concentration of at least one gas component of the protective gas in the atmosphere of the vacuum reservoir is determined.
  • the vacuum reservoir here is advantageously much larger than the volume of the chamber, as in conventional central vacuum systems, so that only very small pressure fluctuations in the vacuum reservoir occur with a pressure equalization between the chamber and the vacuum reservoir, so that the sensor continuously reproduces reliable values in the vacuum reservoir.
  • monitoring of the vacuum central system is ensured.
  • the protective gas used is gas having an oxygen concentration above the oxygen concentration of air, and when determining the concentration of at least one gas component of the protective gas, the oxygen concentration is determined.
  • the process is stopped when a predetermined oxygen concentration is exceeded.
  • the predetermined oxygen concentration is above the oxygen concentration of air.
  • the buffer volume can be evacuated by means of the vacuum pump, the concentration of at least one gas component of the shielding gas during the pre-evacuation the buffer volume of flowing gas is determined.
  • the gas flowing out of the chamber is reliably analyzed, whereupon the gas buffered in the buffer volume is reliably analyzed, since the pressure in the buffer volume corresponds to the pressure in the chamber after pressure equalization and thus, when the buffer volume is evacuated, a slow pressure drop also takes place, affecting the sensor only negligibly influenced.
  • the object is further encompassed by a device for evacuating a chamber which can be filled with protective gas, in particular a sealing chamber of a packaging machine a buffer volume connectable to the chamber and controlled such that the buffer volume is evacuated prior to connection to the chamber and then temporarily connected to the chamber for pre-evacuation thereof; a vacuum source connectable to evacuate the chamber and controlled so as to be temporarily connected thereto after pre-evacuating the chamber; a sensor for determining the concentration of at least one gas component of the protective gas in the atmosphere of the buffer volume or a supply line to the vacuum source, solved.
  • a device for evacuating a chamber which can be filled with protective gas, in particular a sealing chamber of a packaging machine a buffer volume connectable to the chamber and controlled such that the buffer volume is evacuated prior to connection to the chamber and then temporarily connected to the chamber for pre-evacuation thereof; a vacuum source connectable to evacuate the chamber and controlled so as to be temporarily connected thereto after pre-evacuating the chamber; a sensor for determining the concentration of
  • a protective gas source is provided, which is connectable to the chamber and is controlled so that it is temporarily connected after evacuation of the chamber with this.
  • the senor is arranged in the buffer volume and a separate from the buffer volume vacuum source is provided, wherein the vacuum source may have a vacuum reservoir.
  • the vacuum source comprises a vacuum reservoir whose volume is many times greater than the chamber volume and is evacuated by means of one or more central vacuum pumps.
  • further sensor for determining the concentration of at least one gas component of the protective gas may be arranged in the atmosphere of the vacuum reservoir.
  • the device may be provided such that a vacuum supply line for connecting the chamber to the vacuum source is provided, that a vacuum valve in the vacuum supply line for shutting off the same is provided, that a test chamber is provided which represents the buffer volume and connectable via a test line with the vacuum supply line is, wherein the test line between the vacuum valve and the chamber valve opens into the vacuum supply line, that a sensor for determining the concentration of at least one gas component of the protective gas in the atmosphere of the test chamber is provided that a test chamber valve is provided in the test line for shutting off the same and that Shielding gas valve in the protective gas supply line for shutting off the same and a controller for controlling the valve is provided.
  • a chamber valve in the vacuum supply line to shut off the same is provided.
  • the protective gas source can be connected to the chamber via a protective gas supply line.
  • the test chamber can additionally be connected via a scholarhuntzutechnisch with the vacuum supply line, the für Psychitosus .
  • the für Psychitosus opens between the vacuum valve and the vacuum source in the vacuum supply line.
  • a second test chamber valve for shutting off the für Psychitosus is provided.
  • the senor is provided in a supply line to the vacuum source, which is shown in the form of a vacuum pump.
  • the vacuum source which is shown in the form of a vacuum pump.
  • the object is further encompassed by a device for evacuating a chamber which can be filled with protective gas, in particular a sealing chamber of a packaging machine a buffer volume that is part of a vacuum source and that is connectable to evacuate the chamber and that is controlled such that the buffer volume is pre-evacuated prior to connection to the chamber and then temporarily connected to the chamber, a sensor for determining the concentration of at least one gas component of the protective gas in the atmosphere of the buffer volume of the vacuum source which is arranged in the buffer volume, dissolved.
  • a device for evacuating a chamber which can be filled with protective gas in particular a sealing chamber of a packaging machine a buffer volume that is part of a vacuum source and that is connectable to evacuate the chamber and that is controlled such that the buffer volume is pre-evacuated prior to connection to the chamber and then temporarily connected to the chamber, a sensor for determining the concentration of at least one gas component of the protective gas in the atmosphere of the buffer volume of the vacuum source which is arranged in the buffer volume, dissolved.
  • a protective gas source is provided, which is connectable to the chamber and is controlled so that it is temporarily connected after evacuation of the chamber with this.
  • the sensor preferably has an oxygen probe for determining the concentration of at least one gas component of the protective gas in the atmosphere.
  • FIG. 1 shows a vacuum central system 1, a first packaging machine 2 and a second packaging machine 3.
  • the central vacuum unit 1 is a two-stage vacuum central plant, the first packaging machine 2 disposed of one stage and the second packaging machine 3 is disposed of in two stages.
  • the first packaging machine 2 comprises a sealing chamber 4 for creating protective gas packaging.
  • the sealing chamber 4 usually comprises two mold halves, which can be hermetically sealed against each other and form a space that can be evacuated.
  • a lower film or a tray is arranged in the sealing chamber 4, in which the product to be packaged lies.
  • an upper film is arranged, which is welded to the lower film or the shell after evacuation and, if appropriate, after gasification with protective gas.
  • the sealing chamber 4 is connected via a vacuum feed line 5 to the central vacuum system 1.
  • a chamber valve 6 is provided for blocking the vacuum supply line 5.
  • a pressure transducer 7 is provided in order to determine the internal pressure of the sealing chamber 4 can.
  • the sealing chamber 4 is further connected via a protective gas supply line 8 with a protective gas source 9.
  • a protective gas source 9 Starting from the protective gas source 9, a pressure limiting valve 10, a pressure regulating valve 11 and a protective gas valve 12 in the form of a switching valve are provided in the protective gas supply line 8.
  • the sealing chamber 4 is connected to a venting / venting valve 13 for venting and venting the sealing chamber 4.
  • the central vacuum unit 1 comprises a rough vacuum reservoir 14 and a fine vacuum reservoir 15.
  • the vacuum reservoirs 14, 15 each have a volume which corresponds to a multiple of the volume of the sealing chamber 4.
  • In the rough vacuum reservoir 14 there is generally a pressure of 30 mbar to 40 mbar.
  • In the fine vacuum reservoir 15 there is usually a pressure of 1 mbar to 10 mbar.
  • a first sensor 26 is provided which comprises a first oxygen probe 27 and a first pressure transducer 28.
  • a second sensor 29 is provided, which has a second oxygen probe 30 and a second pressure transducer 31.
  • a lower film or a tray with the material to be packaged and a top film is first introduced into the opened sealing chamber 4. Then, the sealing chamber 4 is hermetically sealed, wherein the vacuum valve 6, the protective gas valve 12 and the vent valve 13 are initially closed. Then, the chamber valve 6 is opened, so that a pressure equalization between the sealing chamber 4 and the rough vacuum reservoir 14 (with which the sealing chamber 4 is connected) is produced, wherein the rough vacuum reservoir 14 serves as a buffer volume.
  • the rough vacuum reservoir 14 was previously evacuated by the vacuum pumps 16, 17 to a predetermined pressure level.
  • the chamber valve 6 is closed again, wherein the chamber valve 6 can be time-controlled or pressure-controlled. That is, either the pressure in the sealing chamber 4 is measured by means of the pressure transducer 7 and upon reaching a predetermined pressure level, the chamber valve 6 is closed or it is waited for a predetermined period of time.
  • the protective gas valve 12 is opened, so that the protective gas source 9 is connected to the sealing chamber 4.
  • the final pressure in the sealing chamber 4 can be regulated by means of the pressure regulating valve 11.
  • the protective gas valve 12 is closed again, wherein the protective gas valve 12 may be pressure-controlled.
  • the vent valve 13 is opened, so that a pressure equalization of the sealing chamber 4 takes place with the ambient pressure and the sealing chamber 4 can be opened to remove the packaging.
  • the second packaging machine 3 is constructed according to the first packaging machine 2, wherein matching components are provided with the same reference numerals. The difference is that the second packaging machine 3 is disposed of in two stages.
  • the vacuum supply line 5 splits in the direction of the central vacuum system 1 in a first arm 32 and a second arm 33, which can be separated by a first vacuum valve 34 and a second vacuum valve 35, respectively.
  • first a rough vacuum in the sealing chamber 4 can be achieved by opening the first vacuum valve 34, so that the sealing chamber 4 is connected to the rough vacuum reservoir 14.
  • the second vacuum valve 35 is opened, so that the sealing chamber 4 is connected to the fine vacuum reservoir 15.
  • the further sequence corresponds to the sequence of the first packaging machine 2.
  • FIG. 2 shows a vacuum central system 101, to which a first packaging machine 102 is connected.
  • the vacuum central plant 101 is like the vacuum central plant according to the embodiment of the FIG. 1 built up.
  • the first packaging machine 102 is similar to the first packaging machine according to the embodiment of FIG. 1 built up.
  • further packaging machines can also be connected to the vacuum central system 101.
  • Components associated with components of the embodiments according to FIG. 1 match, are provided with reference numerals, which are increased by 100. It is in this regard to the comments FIG. 1 directed.
  • the first packaging machine 102 differs from that according to FIG. 1 in that between the chamber valve 106 and the vacuum central system 101, a test chamber 136 is connected in parallel as a puller volume to the vacuum supply line 105.
  • the test chamber 136 is connected via a test line 137 with the vacuum supply line 105 is connected and opens between the chamber valve 106 and the junction with the vacuum central system 101 in the vacuum supply line 105.
  • the test chamber 136 is connected via a scholarschzu réelle 138 with the vacuum supply line 105, wherein the strigcrozu réelle 138 between the junction of the test line 137 and the connection point to the vacuum central system 101st opens into the vacuum supply line 105.
  • a first test chamber valve 139 is provided for shutting off the test line 137. Furthermore, a second test chamber valve 140 for shutting off the test chamber line 138 is provided in the test chamber feed line 138. In addition, a vacuum valve 141 is arranged between the two junctions of the test line 137 and the educacrozu effet 138.
  • a third sensor 142 is provided therein, which comprises a third oxygen probe 143 and a third pressure transducer 144, the third sensor 142 having the same function as the first sensor 126 and the second sensor 129.
  • the vacuum reservoirs 114, 115 of the vacuum central system 101 or, alternatively, only the test chamber 136 are monitored by sensors. Furthermore, it is possible to provide both cumulatively.
  • a lower film or a tray with the material to be packaged and a top film is first introduced into the opened sealing chamber 104. Then, the sealing chamber 104 is hermetically sealed, wherein the chamber valve 106, the shielding gas valve 112 and the venting / venting valve 113 are initially closed. Thereafter, the chamber valve 106 and the first test chamber valve 139 is opened, wherein the second test chamber valve 140 and the vacuum valve 141 remain closed. Since the packaging machine 102 is operated in a clocked manner, the test chamber 136 is evacuated from a previous working cycle, so that a pressure equalization takes place between the buffer volume in the form of the test chamber 136 and the sealing chamber 104. As a result, an atmosphere sample of the gas is taken from the sealing chamber 104.
  • the first test chamber valve 139 is closed, so that the test chamber 136 is sealed airtight. Furthermore, the vacuum valve 141 is opened, so that the sealing chamber 104 is connected to the vacuum central system 101 or to the rough vacuum reservoir 14, so that pressure equalization takes place between the rough vacuum reservoir 114 and the sealing chamber 104. Since, as already described for the previous embodiment, the volume of the large vacuum reservoir 114 is many times greater than the volume of the sealing chamber 104, only a negligible pressure fluctuation takes place in the rough vacuum reservoir 114.
  • the chamber valve 106 is closed by pressure either time-controlled or pressure-controlled by the pressure transducer 107. Then, the shielding gas valve 112 is opened, so that the shielding gas source 109 is connected to the seal chamber 104. In this case, the final pressure in the sealing chamber 104 can be regulated by means of the pressure regulating valve 111. Then the shielding gas valve 112 is closed again, wherein the shielding gas valve 112 may be time or pressure controlled. Subsequently, the venting / venting valve 113 is opened, so that a pressure equalization of the sealing chamber 104 takes place with the ambient pressure and the sealing chamber 104 can be opened again to remove the packaging.
  • the gas in the test chamber 136 is analyzed and the concentration of at least one gas component, usually oxygen, of the protective gas in the gas sample of the test chamber 136 determined. Since a high pressure fluctuation has occurred in the test chamber 136 due to the rapid pressure equalization between the test chamber 136 and the seal chamber 104, the third sensor 142 requires a certain amount of time to provide a reliable value. Since the test chamber 136 is disconnected from the system during the evacuation of the seal chamber 104 by means of the vacuum central equipment 101, the time for the determination of a reliable value is used to evacuate the seal chamber 104.
  • the process is aborted immediately.
  • the vacuum valve 141, the first test chamber valve 129 and the second test chamber valve 140 can be closed.
  • the valves 118, 119 of the vacuum pumps 116, 117 are immediately closed and the vent valves 124, 125 of the vacuum reservoirs 114, 115 are opened in order to prevent further penetration of the oxygen.
  • the remaining gas volume that has passed after the pressure equalization between the test chamber 136 and the sealing chamber 104 during evacuation of the sealing chamber 104 in the rough vacuum reservoir 114 is negligible compared to the volume of the rough vacuum reservoir 114, so that even with a supply of pure oxygen from the Sealing chamber 104 into the rough vacuum reservoir 114, the concentration of oxygen in the rough vacuum reservoir 114 does not exceed the limit. Therefore, the limit of the oxygen concentration at which the process is stopped may be higher in the test chamber than for the vacuum reservoirs 114, 115.
  • sensors 126, 129 in both the rough vacuum reservoir 114 and the fine vacuum reservoir 115 may be provided.
  • the second test chamber valve 140 is opened, the first test chamber valve 139 and the vacuum valve 141 remain closed, so that the test chamber 136 is connected to the rough vacuum reservoir 114 and a pressure equalization takes place, so that the test chamber 136 is again pre-evacuated.
  • the pressure in the test line 137 can be checked by means of a fourth pressure transducer 145 when the first test chamber valve 139, the closed vacuum valve 141 and the closed chamber valve 106 are closed. Occurs then during the filling of the chamber 104 with inert gas, a pressure increase, this is due to a defective chamber valve 106, so that an alarm can be displayed or the procedure aborted.
  • test chamber 136 is pre-evacuated in that, when the chamber valve 106 is closed, the first test chamber valve 139 and the vacuum valve 141 are opened.
  • FIG. 3 shows a packaging machine 202 with individual disposal and largely corresponds to the first packaging machine according to the embodiment according to FIG. 1 , Corresponding components are provided with reference numerals which are increased by the value 200. In this regard, the description is based on FIG. 1 directed.
  • FIG. 3 The embodiment according to FIG. 3 is different from that of FIG. 1 in that no vacuum central system 205 but a decentralized vacuum pump 245 is provided directly on the packaging machine 202.
  • the vacuum pump 245 is connected to the sealing chamber 204 via the vacuum feed line, wherein a vacuum valve 241 is provided between the vacuum pump 245 and the chamber valve 206.
  • a sensor 246 is provided which includes an oxygen probe 247 and a pressure transducer 248.
  • the sensor 246 corresponds to the sensors according to the FIGS. 1 and 2 ,
  • a buffer volume 249 is provided in the form of a buffer chamber, which is connected via a buffer volume supply line 251 to the vacuum supply line 205 and opens between the chamber valve 206 and the vacuum valve 241 in the vacuum line 205.
  • a buffer valve 250 for shutting off the buffer volume supply line 251 is provided in the buffer volume supply line 251 in the buffer volume supply line 251.
  • a lower foil or a shell with the material to be packaged and a top foil are introduced into the opened sealing chamber 204.
  • the sealing chamber 204 is hermetically sealed, wherein the chamber valve 206, the shielding gas valve 212 and the venting / venting valve 213 are initially closed.
  • the chamber valve 206 and the buffer valve 250 is opened, wherein the buffer volume 249 is still pre-evacuated by a previous process cycle. There is thus a pressure equalization between the sealing chamber 204 and the buffer volume 249 instead.
  • the buffer valve 250 is closed and the vacuum valve 241 is opened while the vacuum pump 245 is running, so that the sealing chamber 204 is further evacuated by means of the vacuum pump 245.
  • the gas flowing out of the seal chamber 204 is continuously analyzed with the sensor 246 to immediately detect an increase in the oxygen concentration.
  • the pressure over time runs in the form of an exponential function, ie, in an initial phase of evacuation, the pressure drops rapidly and further Evacuation progressively slower.
  • the initial pressure equalization between the buffer volume 249 and the sealing chamber 204 thus initially ensured a rapid pressure drop, wherein the buffer volume 249 temporarily stores gas emerging from the sealing chamber 204 without conveying it to the vacuum pump 245.
  • the further evacuation by means of the vacuum pump 245 already starts at a low pressure, so that no more large pressure fluctuations occur and a slow evacuation takes place.
  • the pressure variations are significantly less than initially so that the sensor 246 can continuously provide reliable values to shut off the vacuum pump 245 or close the vacuum valve 241 early enough.
  • the chamber valve 206 After evacuating the seal chamber 204, the chamber valve 206 is closed, whereupon the seal chamber 204 is filled with inert gas as in the aforementioned embodiments and then aerated. Meanwhile, the check valve 250 is opened so that the buffer volume 249 is also evacuated by the vacuum pump 245 with the vacuum valve 241 open. Since the pressure in the buffer volume 249 is also lower and corresponds to the pressure in the sealing chamber 204 after pressure equalization between the buffer volume 249 and the sealing chamber 204, no large pressure fluctuations occur when evacuating the buffer volume 249 with the vacuum pump 245, so that the sensor 246 continuously provides reliable values to shut down the vacuum pump 245 early enough or close the vacuum valve 241 early enough before the excessively high oxygen concentration gas reaches the vacuum pump 245. Thus, the buffer volume 249 is again sufficiently pre-evacuated to be able to be connected again after closing the vacuum valve 241 with the sealing chamber 204 in the next process cycle for a pressure equalization.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vacuum Packaging (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

  • Die Erfindung betrifft ein Verfahren sowie eine Vorrichtung zum Evakuieren einer mit Schutzgas befüllbaren Kammer, insbesondere einer Siegelkammer einer Verpackungsmaschine, wie sie vornehmlich zum Verpacken von Fleisch- und Wurstwaren eingesetzt wird.
  • Im Bereich der verpackten Fleisch- und Wurstwaren ist das Verpacken unter modifizierter Atmosphäre erforderlich, um eine möglichst lange Haltbarkeitsdauer zu erreichen. Kohlendioxid (CO2) wird häufig in Schutzgasverpackungen eingesetzt, da es bakteriostatisch und fungiostatisch, d.h. Bakterien- und Pilzwachstum hemmend, wirkt. Stickstoff (N2) wird zur Verdrängung des Luftsauerstoffes und als Stützgas eingesetzt. Da Stickstoff nur sehr langsam durch Kunststofffolien diffundiert, werden die Produkte mechanisch weniger belastet. In der fleischverarbeitenden Industrie werden oft Gasgemische aus diesen beiden Komponenten in unterschiedlichen Zusammensetzungen verwendet.
  • Die Frischfleischverpackung unter Schutzatmosphäre mit Sauerstoffanteil ist ein weiteres Verfahren, dass gegenüber der reinen Vakuumverpackung und der o.g. Verpackung unter inerter Atmosphäre (Stickstoff) bzw. Stickstoff/Kohlendioxid-Gemischen zunehmend an Bedeutung gewinnt.
  • Während sich der Einfluss des Sauerstoffes bei den meisten Lebensmitteln ungünstig auf die Qualität auswirkt, liegt beim Frischfleisch der Fall vor, dass zur Erhaltung der roten Fleischfarbe möglichst viel Sauerstoff zugeführt werden muss. Ohne Sauerstoff verfärbt sich das Protein Myoglobin (roter Farbstoff mit hoher Sauerstoffbindungsaffinität) rasch und meistens unwiderruflich dunkel. Eine sauerstoffangereicherte Schutzatmosphäre begünstigt die Bildung von Oxymyoglobin, wodurch die natürliche Fleischfarbe über die gesamte Haltbarkeitsdauer erhalten bleibt.
  • Zum Verpacken von Frischfleisch werden hauptsächlich Maschinen eingesetzt, die für das Versiegeln von Karton-, Aluminium-, oder Kunststoffschalen unter Schutzatmosphäre mit erhöhter Sauerstoffkonzentration entwickelt worden sind.
  • Über ein Einlaufband wird der Maschine eine bestimmte Menge von Schalen getaktet zugeführt. Die Anzahl der Schalen pro Charge richtet sich hierbei nach der Kapazität einer Siegelkammer, in der die Schalen evakuiert werden. Das Einlegen des zu verpackenden Produktes erfolgt manuell durch Personal neben der Einlaufstrecke. Nach Einlegen des Produktes wird die Charge in die Siegelkammer weitertransportiert. Von einer oberhalb der Siegelkammer angeordneten Folienrolle wird die Oberfolie über die Schalen geführt. Zwei Kammerhälften (Ober- und Unterwerkzeug) werden pneumatisch geschlossen. Die Siegelkammer wird auf einen bestimmten Druck vorevakuiert. Darauf folgt das Rückbelüften der Siegelkammer mit Schutzgas bis auf Atmosphärendruck. Noch während des Begasungsvorganges wird die Oberfolie auf der Schale gesiegelt und ausgestanzt. Nach Öffnen eines Be-/Entlüftungsventiles zum Druckausgleich mit der Umgebung wird das Kammerwerkzeug geöffnet und die Schalen werden zum Auslaufband der Maschine transportiert. Es erfolgt eine statistische Überwachung der Gaszusammensetzung durch Ziehen von Stichproben (nicht zerstörungsfrei).
  • Die Entsorgung der in den Schalen vor der Begasung befindlichen Luft (Evakuierung) kann grundsätzlich durch unterschiedliche Verfahrenstechniken erfolgen.
  • Bei der Einzelentsorgung wird an jeder Verpackungsmaschine eine eigene Vakuumpumpe betrieben. Um Volumen, das bei jedem Takt mit evakuiert werden muss, einzusparen und gleichzeitig Leistungsverluste zu minimieren, wird die Pumpe in unmittelbarer Nähe der Siegelkammer möglichst innerhalb der Maschine installiert.
  • Bei der Kombi-Entsorgung führt der Einsatz einer Beschleunigerpumpe (Rootsgebläse) in der Maschine in Kombination mit einer Vorvakuum-Erzeugerzentrale außerhalb des Verpackungsraumes verbunden mit einem entsprechenden Puffervolumen zu kürzeren Evakuierungszeiten. Die Entsorgung der Kammer erfolgt zunächst durch einen Druckausgleich mit dem Puffervolumen. Der Enddruck wird durch die Rootspumpe erreicht. Diese Methode wird in der Regel für zwei bis vier Verpackungsmaschinen und einem erforderlichen Enddruck von weniger als 10mbar eingesetzt.
  • Bei der Verbund-Entsorgung erlauben geforderte Enddrücke von über 50 mbar eine einstufige Entsorgung der Siegelkammern durch zentralisierte Vakuumpumpen. Die Evakuierung erfolgt lediglich durch den Druckausgleich mit dem Puffervolumen. Es können beliebig viele Maschinen an ein solches System angeschlossen werden.
  • Bei der Entsorgung durch eine Vakuumzentralanlage erfolgt die Evakuierung ausschließlich durch Druckausgleich von zwei Puffervolumina. Die Vakuumerzeuger sind über zwei Rohrleitungssysteme die gleichzeitig den benötigten Puffer bilden mit den Verpackungsmaschinen verbunden. Sie evakuieren permanent die Vakuumsysteme Grobvakuum und Feinvakuum, deren dynamischer Gleichgewichtsdruck auf unterschiedlichem Niveau liegt. Die Siegelkammern werden über geeignete Stellglieder an die Vakuumzentrale angeschlossen. Eine solche Vakuumzentralanlage ist beispielsweise in der EP 0 622 301 B1 gezeigt. Der Einsatz einer Vakuumzentrale empfiehlt sich, wenn Vordrücke kleiner 10 mbar gefordert sind und mehr als ca. vier Verpackungsmaschinen an ein Vakuumsystem angeschlossen werden sollen.
  • Bei herkömmlichen Verpackungsmaschinen kann es durch Störungen an den Schutzgas- und/oder Kammerventilen (z.B. Undichtigkeit oder fehlerhafte Ansteuerung) zu unerwünschten Schutzgasströmungen in das Vakuumsystem und damit in die Vakuumpumpen kommen. Konventionelle ölgedichtete Vakuumpumpen, die mit mineralischem Öl betrieben werde, sind zum Fördern von sauerstoffangereichertem Gas nicht geeignet, da es zu einer Entzündung des Schmiermittels in der Kompressionsphase kommen kann. Dies kann nur durch den Einsatz von sauerstofffesten Vakuumpumpen vermieden werden, wobei der präventive Einsatz von sauerstofffesten Vakuumpumpen jedoch eine äußerst kostenintensive Lösung darstellt. Der Einsatz von Sensoren zur Ermittlung der Konzentration an Schutzgas, dass im Falle eines Defekts in Richtung zu der Vakuumpumpe gefördert wird, ist bei den bekannten Maschinen nicht möglich, da diese Art von Sensoren stark druckschwankungsempfindlich sind und nach einer großen Druckschwankung einige Zeit benötigen, wieder zuverlässige Werte zu liefern.
  • Die US-A-5 822 951 offenbart einen Sauerstoffsensor zur Ermittlung der Sauerstoffkonzentration in der Atmosphäre einer Vakuumkammer. Hierbei wird die Vakuumkammer zurächst evakuiert und daraufhin mit Schutzgas befüllt. Nach dem Befüllen mit Schutzgas, wobei ein Überdruck erzeugt wird, wird eine Gasprobe aus der Kammer entnommen und dem Sauerstoffsensor zugeführt, um feststellen zu können, ob die Sauerstoffkonzentration in der mit Schutzgas befüllten Verpackung gering genug ist, um den Anforderungen an die Haltbarkeit des Produkts gerecht zu werden.
  • Aufgabe der vorliegenden Erfindung ist es, ein Verfahren und eine Vorrichtung zum Evakuieren einer mit Schutzgas befüllbaren Kammer, insbesondere einer Siegelkammer einer Verpackungsmaschine, vorzuschlagen, wobei die Konzentration des Schutzgases oder einer Gaskomponente des Schutzgases, das zur Vakuumquelle strömt, zuverlässig ermittelt werden kann.
  • Die Aufgabe wird erfindungsgemäß durch ein Verfahren zum Evakuieren einer mit Schutzgas befüllbaren Kammer, insbesondere einer Siegelkammer einer Verpackungsmaschine, mit folgenden Verfahrensschritten:
    • Evakuieren eines Puffervolumens mittels einer Vakuumquelle,
    • Verbinden des Puffervolumens mit der Kammer zur Erzielung eines Druckausgleichs zwischen dem Puffervolumen und der Kammer,
    • Trennen des Puffervolumens von der Kammer,
    • Ermitteln der Konzentration mindestens einer Gaskomponente des Schutzgases in der Atmosphäre des Puffervolumens oder
    • Verbinden der Kammer mit der Vakuumquelle zum weiteren Evakuieren der Kammer und Ermitteln der Konzentration mindestens einer Gaskomponente des Schutzgases in der Atmosphäre des in dem während des Evakuierens aus der Kammer strömenden Gases,
    gelöst.
  • Bei der Ermittlung der Konzentration mindestens einer Gaskomponente des Schutzgases in der Atmosphäre des Puffervolumens ist eine zuverlässige Ermittlung der mindestens einen Gaskomponente möglich. Da übliche Sensoren, insbesondere wenn der Sensoren ein Messgerät zur Ermittlung der Sauerstoffkonzentration in Gasen aufweist, stark druckabhängig sind, muss der Sensor ein Druckmessgerät umfassen, mittels dem das Signal des Messgerätes zur Ermittlung der Sauerstoffkonzentration abgeglichen wird. Bei starken Druckschwankungen können einige Sekunden vergehen, ehe man einen zuverlässigen Wert ermitteln kann. Das Puffervolumen sorgt dafür, dass beim Druckausgleich zwischen dem Puffervolumen und der Kammer die Druckschwankung im Puffervolumen verhältnismäßig gering ist, so dass bei der Analyse des Gases im Puffervolumen schnell ein zuverlässiger Wert ermittelt werden kann.
  • Durch das Verbinden der Kammer mit der Vakuumquelle zum Evakuieren der Kammer und Ermitteln der Konzentration mindestens einer Gaskomponente des Schutzgases in der Atmosphäre des in dem während des Evakuierens aus der Kammer strömenden Gases, eignet sich das Verfahren auch bei der Einzelentsorgung, bei der jede Maschine eine eigene Vakuumpumpe als Vakuumquelle aufweist. Der Druckverlauf beim Evakuieren eines Volumens mittels einer Vakuumpumpe verhält sich exponential über der Zeit. Das heißt, dass anfänglich ein sehr großer Druckabfall erziel wird wohingegen der Druck nach anfänglichem Druckabfall nur noch sehr langsam vermindert wird. Durch den anfänglichen Druckausgleich der Kammer mit dem Puffervolumen wir zunächst ein schneller Druckabfall gewährleistet. Daraufhin wird der restliche Druckabfall mittels einer Vakuumpumpe erzielt, wobei dies deutlich langsamer vonstatten geht, so dass der druckempfindliche Sensor nur geringfügig durch Druckschwankungen beeinflusst ist und umgehend zuverlässige Werte liefert. Das Puffervolumen speichert vorübergehend das Gas, das anfänglich aus der Kammer evakuiert wurde.
  • Nach dem vollständigen Evakuieren der Kammer wird diese mit Schutzgas befüllt.
  • Vorteilhafterweise wird während des Ermittelns der Konzentration mindestens einer Gaskomponente des Schutzgases in der Atmosphäre des Puffervolumens die Kammer zum Evakuieren mit einer Vakuumquelle zeitweise verbunden. Somit kann während der Zeit, die für das Evakuieren der Kammer erforderlich ist, abgewartet werden, bis ein zuverlässiges Signal vom Sensor ermittelt wird, ohne dass die Taktzeit des Verfahrens reduziert wird. Das Verfahren muss nicht zum Abwarten des zuverlässigen Signals ruhen. Insbesondere beim Einsatz von Vakuumzentralanlagen lässt sich somit eine hohe Taktfrequenz der einzelnen Maschinen erzielen sowie erkenne, an welcher Maschine ein Defekt aufgetreten ist.
  • Die Vakuumquelle kann ein Vakuumreservoir umfassen, wobei kontinuierlich die Konzentration mindestens einer Gaskomponente des Schutzgases in der Atmosphäre des Vakuumreservoirs ermittelt wird. Das Vakuumreservoir ist hierbei vorteilhafterweise wie bei üblichen Vakuumzentralanlagen um ein Vielfaches größer als das Volumen der Kammer, so dass bei einem Druckausgleich zwischen der Kammer und dem Vakuumreservoir nur sehr geringe Druckschwankungen im Vakuumreservoir auftreten, so dass der Sensor im Vakuumreservoir kontinuierlich zuverlässige Werte wiedergibt. Somit ist neben der Überwachung der einzelnen Maschinen eine Überwachung der Vakuumzentralanlage gewährleistet.
  • Vorzugsweise wird als Schutzgas Gas mit einer Sauerstoffkonzentration über der Sauerstoffkonzentration von Luft verwendet und beim Ermitteln der Konzentration mindestens einer Gaskomponente des Schutzgases die Sauerstoffkonzentration ermittelt.
  • Um ein Eindringen von Gas mit zu hoher Sauerstoffkonzentration in nicht sauerstofffesten Vakuumpumpen zu vermeiden, wird bei Überschreiten einer vorbestimmten Sauerstoffkonzentration das Verfahren abgebrochen. Hierbei liegt die vorbestimmte Sauerstoffkonzentration über der Sauerstoffkonzentration von Luft.
  • Ermitteln der Konzentration mindestens einer Gaskomponente des Schutzgases in der Atmosphäre des in dem während des Evakuierens aus der Kammer strömenden Gases kann nach dem Evakuieren der Kammer das Puffervolumen mittels der Vakuumpumpe evakuiert werden, wobei die Konzentration mindestens einer Gaskomponente des Schutzgases in dem während des Vorevakuierens aus dem Puffervolumen strömenden Gases ermittelt wird. Somit wird zunächst das aus der Kammer strömende Gas zuverlässig analysiert woraufhin das im Puffervolumen zwischengespeicherte Gas zuverlässig analysiert wird, da der Druck im Puffervolumen dem Druck in der Kammer nach dem Druckausgleich entspricht und somit beim Evakuieren des Puffervolumens ebenfalls ein langsamer Druckabfall stattfindet, der den Sensor nur vernachlässigbar beeinflusst.
  • Die Aufgabe wird ferner durch eine Vorrichtung zum Evakuieren einer mit Schutzgas befüllbaren Kammer, insbesondere einer Siegelkammer einer Verpackungsmaschine, umfassend
    ein Puffervolumen, das mit der Kammer verbindbar ist und derart gesteuert ist, dass das Puffervolumen vor dem Verbinden mit der Kammer evakuiert und daraufhin mit der Kammer zum Vorevakuieren derselben zeitweise verbunden ist,
    eine Vakuumquelle, die zum Evakuieren der Kammer mit dieser verbindbar ist und derart gesteuert ist, dass sie nach dem Vorevakuieren der Kammer zeitweise mit dieser verbunden ist, sowie
    ein Sensor zum Ermitteln der Konzentration mindestens einer Gaskomponente des Schutzgases in der Atmosphäre des Puffervolumens oder einer Zuleitung zur Vakuumquelle, gelöst.
  • Ferner ist eine Schutzgasquelle vorgesehen, die mit der Kammer verbindbar ist und derart gesteuert ist, dass sie nach dem Evakuieren der Kammer mit dieser zeitweise verbunden ist.
  • Gemäß einer Ausführungsform ist der Sensor im Puffervolumen angeordnet und eine vom Puffervolumen separate Vakuumquelle vorgesehen ist, wobei die Vakuumquelle ein Vakuumreservoir aufweisen kann. Diese Ausführungsform eignet sich für eine Vakuumzentralanlage, bei der die Vakuumquelle ein Vakuumreservoir umfasst, dessen Volumen um ein Vielfaches größer ist als das Kammervolumen und mittels einer oder mehrerer zentraler Vakuumpumpen evakuiert wird.
  • In dem Vakuumreservoir kann weiterer Sensor zum Ermitteln der Konzentration mindestens einer Gaskomponente des Schutzgases in der Atmosphäre des Vakuumreservoirs angeordnet sein.
  • Die Vorrichtung kann derart vorgesehen sein, dass eine Vakuumzuleitung zum Verbinden Kammer mit der Vakuumquelle vorgesehen ist, dass ein Vakuumventil in der Vakuumzuleitung zum Absperren derselben vorgesehen ist, dass eine Prüfkammer vorgesehen ist, die das Puffervolumen darstellt und die über eine Prüfleitung mit der Vakuumzuleitung verbindbar ist, wobei die Prüfleitung zwischen dem Vakuumventil und dem Kammerventil in die Vakuumzuleitung mündet, dass ein Sensor zur Ermittelung der Konzentration mindestens einer Gaskomponente des Schutzgases in der Atmosphäre der Prüfkammer vorgesehen ist, dass ein Prüfkammerventil in der Prüfleitung zum Absperren derselben vorgesehen ist und dass ein Schutzgasventil in der Schutzgaszuleitung zum Absperren derselben und eine Steuerung zum Steuern der Ventil vorgesehen ist.
  • Zwischen dem Vakuumventil und der Kammer kann ein Kammerventil in der Vakuumzuleitung zum Absperren derselben vorgesehen ist. Ferner ist die Schutzgasquelle über eine Schutzgaszuleitung mit der Kammer verbindbar.
  • Die Prüfkammer kann zusätzlich über eine Prüfkammerzuleitung mit der Vakuumzuleitung verbindbar ist, wobei die Prüfkammerzuleitung zwischen dem Vakuumventil und der Vakuumquelle in die Vakuumzuleitung mündet. In der Prüfkammerzuleitung ist ein zweites Prüfkammerventil zum Absperren der Prüfkammerzuleitung vorgesehen.
  • Gemäß einer weiteren Ausführungsform ist der Sensor in einer Zuleitung zur Vakuumquelle, die in Form einer Vakuumpumpe dargestellt ist, vorgesehen. Somit eignet sich diese Ausführungsform für eine Einzelentsorgung, bei der jeder Maschine eine eigene Vakuumpumpe vorgesehen ist.
  • Die Aufgabe wird ferner durch eine Vorrichtung zum Evakuieren einer mit Schutzgas befüllbaren Kammer, insbesondere einer Siegelkammer einer Verpackungsmaschine, umfassend
    ein Puffervolumen, das Bestandteil einer Vakuumquelle ist und das zum Evakuieren der Kammer mit dieser verbindbar ist und derart gesteuert ist, dass das Puffervolumen vor dem Verbinden mit der Kammer vorevakuiert und daraufhin mit der Kammer zeitweise verbunden ist,
    ein Sensor zum Ermitteln der Konzentration mindestens einer Gaskomponente des Schutzgases in der Atmosphäre des Puffervolumens der Vakuumquelle der im Puffervolumen angeordnet ist, gelöst.
  • Vorzugsweise ist eine Schutzgasquelle vorgesehen, die mit der Kammer verbindbar ist und derart gesteuert ist, dass sie nach dem Evakuieren der Kammer mit dieser zeitweise verbunden ist.
  • Der Sensor weist zum Ermitteln der Konzentration mindestens einer Gaskomponente des Schutzgases in der Atmosphäre vorzugsweise eine Sauerstoffsonde auf.
  • Bevorzugte Ausführungsbeispiele werden im Folgenden anhand der Zeichnungen näher erläutert. Hierin zeigt
  • Figur 1
    eine Skizze einer Vakuumzentralanlage, in der zweie Verpackungsmaschinen angeschlossen sind, mit einer in-situ Sauerstoffzentralüberwachung in ein Puffervolumen der Vakuumzentraleanlage;
    Figur 2
    eine Skizze einer Vakuumzentralanlage, der eine Verpackungsmaschine an geschlossen ist, mit einer Sauerstoffzentralüberwachung in einem Puffervolumen der Vakuumzentralanlage und einer extraktive Sauerststoffüberwachung an der Verpackungsmaschine und
    Figur 3
    eine Skizze einer Verpackungsmaschine mit Einzelentsorgung und einer extraktiven Sauerstoffüberwachung an der Verpackungsmaschine.
  • Figur 1 zeigt eine Vakuumzentralanlage 1, eine erste Verpackungsmaschine 2 sowie eine zweite Verpackungsmaschine 3. Wie noch später erläutert wird handelt es sich bei der Vakuumzentralanlage 1 um eine zweistufige Vakuumzentralanlage, wobei die erste Verpackungsmaschine 2 einstufig entsorgt und die zweite Verpackungsmaschine 3 zweistufig entsorgt wird.
  • Die erste Verpackungsmaschine 2 umfasst eine Siegelkammer 4 zum Erstellen von Schutzgasverpackungen. Die Siegelkammer 4 umfasst in der Regel zwei Werkzeughälften, die gegeneinander luftdicht verschlossen werden können und einen Raum bilden, der evakuiert werden kann. Zum Verpacken wird in der Siegelkammer 4 eine Unterfolie oder eine Schale angeordnet, in der das zu verpackende Gut liegt. Über der Unterfolie oder der Schale wird eine Oberfolie angeordnet, die nach dem Evakuieren und ggf. nach dem Begasen mit Schutzgas auf der Unterfolie bzw. der Schale verschweißt wird.
  • Die Siegelkammer 4 ist über eine Vakuumzuleitung 5 mit der Vakuumzentralanlage 1 verbunden. In der Vakuumzuleitung 5 ist ein Kammerventil 6 zum Sperren der Vakuumzuleitung 5 vorgesehen. In der Siegelkammer 4 ist ein Druckmessumformer 7 vorgesehen, um den Innendruck der Siegelkammer 4 bestimmen zu können.
  • Die Siegelkammer 4 ist ferner über eine Schutzgaszuleitung 8 mit einer Schutzgasquelle 9 verbunden. Ausgehend von der Schutzgasquelle 9 sind in der Schutzgaszuleitung 8 ein Druckbegrenzungsventil 10, ein Druckregelventil 11 und ein Schutzgasventil 12 in Form eines Schaltventils vorgesehen.
  • Die Siegelkammer 4 ist mit einem Be-/Entlüftungsventil 13 zum Belüften und Entlüften der Siegelkammer 4 verbunden.
  • Die Vakuumzentralanlage 1 umfasst ein Grobvakuumreservoir 14 und eine Feinvakuumreservoir 15. Die Vakuumreservoire 14, 15 weisen jeweils ein Volumen auf, dass einem Vielfachen des Volumens der Siegelkammer 4 entspricht. In dem Grobvakuumreservoir 14 herrscht in der Regel ein Druck von 30 mbar bis 40 mbar. In dem Feinvakuumreservoir 15 herrscht in der Regel ein Druck von 1 mbar bis 10 mbar.
  • Zum Evakuieren des Grobvakuumreservoirs 14 sind zwei Vakuumpumpen 16, 17 vorgesehen, die über Schaltventile 18, 19 mit dem Grobvakuumreservoir 14 verbunden sind. Zum Evakuieren des Feinvakuumreservoirs 15 ist dieses mit dem Grobvakuumreservoir 14 über eine Verbindungsleitung 20 verbunden, wobei innerhalb der Verbindungsleitung 20 zwei Vakuumpumpen 21, 22 vorgesehen sind, die über ein Schaltventil 23 mit dem Feinvakuumreservoir 15 verbunden werden können. Zum Wiederbelüften der Vakuumreservoire 14, 15 weisen diese jeweils ein Belüftungsventil 24, 25 auf. Ferner ist in dem Grobvakuumreservoir 14 ein erster Sensor 26 vorgesehen, der eine erste Sauerstoffsonde 27 und einen ersten Druckmessumformer 28 umfasst. In dem Feinvakuumreservoir 15 ist ein zweiter Sensor 29 vorgesehen, der eine zweite Sauerstoffsonde 30 und einen zweiten Druckmessumformer 31 aufweist.
  • Beim Schutzgasverpacken wird zunächst eine Unterfolie oder eine Schale mit dem zu verpackenden Gut sowie eine Oberfolie in die geöffnete Siegelkammer 4 eingebracht. Daraufhin wird die Siegelkammer 4 luftdicht verschlossen, wobei das Vakuumventil 6, das Schutzgasventil 12 sowie das Belüftungsventil 13 zunächst geschlossen sind. Daraufhin wird das Kammerventil 6 geöffnet, so dass ein Druckausgleich zwischen der Siegelkammer 4 und dem Grobvakuumreservoir 14 (mit welchem die Siegelkammer 4 verbunden ist) hergestellt wird, wobei das Grobvakuumreservoir 14 als Puffervolumen dient. Das Grobvakuumreservoir 14 wurde zuvor mittels der Vakuumpumpen 16, 17 auf ein vorbestimmtes Druckniveau evakuiert. Da das Volumen des Grobvakuumreservoirs 14 um ein Vielfaches größer ist als das der Siegelkammer 4, findet bei dem Druckausgleich nur eine vernachlässigbare Druckschwankung im Grobvakuumreservoir 14 statt, so dass der erste Sensor 26 kontinuierlich zuverlässige Werte liefern kann. Bei größeren Druckschwankungen würde sich ein Überschwingen des Messsignals ergeben, so dass eine gewisse Zeit abgewartet werden müsste, um ein zuverlässiges Signal zu erlangen.
  • Danach wird das Kammerventil 6 wieder geschlossen, wobei das Kammerventil 6 zeitgesteuert oder druckgesteuert sein kann. Das heißt, entweder wird der Druck in der Siegelkammer 4 mittels des Druckmessumformers 7 gemessen und bei Erreichen eines vorbestimmten Druckniveaus das Kammerventil 6 geschlossen oder es wird eine vorbestimmte Zeitdauer abgewartet.
  • Im folgenden wird das Schutzgasventil 12 geöffnet, so dass die Schutzgasquelle 9 mit der Siegelkammer 4 verbunden ist. Hierbei lässt sich mittels des Druckregelventils 11 der Enddruck in der Siegelkammer 4 regulieren. Daraufhin wird das Schutzgasventil 12 wieder geschlossen, wobei das Schutzgasventil 12 druckgesteuert sein kann. Im Anschluss daran wird das Belüftungsventil 13 geöffnet, so dass ein Druckausgleich der Siegelkammer 4 mit dem Umgebungsdruck stattfindet und die Siegelkammer 4 geöffnet werden kann, um die Verpackung zu entnehmen.
  • Zum Verpacken von Frischfleisch und Wurstwaren kommt häufig ein Schutzgas mit einer Sauerstoffkonzentration über der von Luft zum Einsatz. Damit bei einer Leckage am Kammerventil 6 oder am Schutzgasventil 12 kein Sauerstoff zu den Vakuumpumpen 16, 17 gelangen kann, wodurch ein Brand an den Vakuumpumpen 16, 17 verursacht werden könnte, wird die Sauerstoffkonzentration in dem Grobvakuumreservoir 14 kontinuierlich gemessen. Sollte die Sauerstoffkonzentration einen vorbestimmten Wert überschreiten werden umgehend die Ventile 18, 19 der Vakuumpumpen 16, 17 geschlossen und die Belüftungsventile 24, 25 der Vakuumreservoirs 14, 15 geöffnet, um ein weiteres Vordringen des Sauerstoffs zu vermeiden.
  • Die zweite Verpackungsmaschine 3 ist entsprechend der erste Verpackungsmaschine 2 aufgebaut, wobei übereinstimmende Bauteile mit den gleichen Bezugszeichen versehen sind. Der Unterschied besteht darin, dass die zweite Verpackungsmaschine 3 zweistufig entsorgt wird. Die Vakuumzuleitung 5 spaltet sich in Richtung zur Vakuumzentralanlage 1 in einen ersten Arm 32 und einen zweiten Arm 33 auf, die jeweils durch ein erstes Vakuumventil 34 und ein zweites Vakuumventil 35 getrennt werden können. Somit lässt sich zunächst ein Grobvakuum in der Siegelkammer 4 erzielen, indem das erste Vakuumventil 34 geöffnet wird, so dass die Siegelkammer 4 mit dem Grobvakuumreservoir 14 verbunden ist. Nach Schließen des ersten Vakuumventils 34 wird das zweite Vakuumventil 35 geöffnet, so dass die Siegelkammer 4 mit dem Feinvakuumreservoir 15 verbunden ist. Der weitere Ablauf entspricht dem Ablauf der ersten Verpackungsmaschine 2.
  • Bei dieser Anordnung kann ein Leck in den Zuleitungen zu den Schutzgasquellen 9, 9' detektiert werden. Es lässt sich jedoch nicht feststellen, an welcher Verpackungsmaschine der Defekt aufgetreten ist, so dass sämtliche Verpackungsmaschinen an der Vakuumzentralanlage 1 gestoppt werden müssen.
  • Figur 2 zeigt eine Vakuumzentralanlage 101, an die eine erste Verpackungsmaschine 102 angeschlossen ist. Die Vakuumzentralanlage 101 ist wie die Vakuumzentralanlage gemäß der Ausführungsform der Figur 1 aufgebaut. Ferner ist die erste Verpackungsmaschine 102 ähnlich der ersten Verpackungsmaschine gemäß der Ausführungsform nach Figur 1 aufgebaut. Neben der ersten Verpackungsmaschine 102 können auch weitere Verpackungsmaschinen an der Vakuumzentralanlage 101 angeschlossen sein. Bauteile, die mit Bauteilen der Ausführungsformen gemäß Figur 1 übereinstimmen, sind mit Bezugszeichen versehen, die um Wert 100 erhöht sind. Es wird diesbezüglich auf die Ausführungen zu Figur 1 verwiesen.
  • Die erste Verpackungsmaschine 102 unterscheidet sich von derjenigen gemäß der Figur 1 dadurch, dass zwischen dem Kammerventil 106 und der Vakuumzentralanlage 101 eine Prüfkammer 136 als Pullervolumen zur Vakuumzuleitung 105 parallel geschaltet ist. Die Prüfkammer 136 ist über eine Prüfleitung 137 mit der Vakuumzuleitung 105 verbunden und mündet zwischen dem Kammerventil 106 und der Einmündung zur Vakuumzentralanlage 101 in die Vakuumzuleitung 105. Ferner ist die Prüfkammer 136 über eine Prüfkammerzuleitung 138 mit der Vakuumzuleitung 105 verbunden, wobei die Prüfkammerzuleitung 138 zwischen der Einmündung der Prüfleitung 137 und der Verbindungsstelle zur Vakuumzentralanlage 101 in die Vakuumzuleitung 105 einmündet. In der Prüfleitung 137 ist ein erstes Prüfkammerventil 139 zum Absperren der Prüfleitung 137 vorgesehen. Ferner ist in der Prüfkammerzuleitung 138 ein zweites Prüfkammerventil 140 zum Absperren der Prüfkammerleitung 138 vorgesehen. Zudem ist zwischen den beiden Einmündungen der Prüfleitung 137 und der Prüfkammerzuleitung 138 ein Vakuumventil 141 angeordnet.
  • Zum Ermitteln mindestens einer Gaskomponente eines Schutzgases in der Atmosphäre der Prüfkammer 136 ist in dieser ein dritter Sensor 142 vorgesehen, der eine dritte Sauerstoffsonde 143 und einen dritten Druckmessumformer 144 umfast, wobei der dritte Sensor 142 die gleiche funktionsweise aufweist wie der erste Sensor 126 und der zweite Sensor 129. Grundsätzlich können bei der Figur 2 gezeigten Ausführungsform entweder die Vakuumreservoire 114, 115 der Vakuumzentralanlage 101 oder alternativ dazu lediglich die Prüfkammer 136 mit Sensoren überwacht werden. Ferner ist es möglich beides kumulativ vorzusehen.
  • Beim Schutzgasverpacken wird zunächst eine Unterfolie oder eine Schale mit dem zu verpackenden Gut sowie eine Oberfolie in die geöffnete Siegelkammer 104 eingebracht. Daraufhin wird die Siegelkammer 104 luftdicht verschlossen, wobei das Kammerventil 106, das Schutzgasventil 112 sowie das Be-/Entlüftungsventil 113 zunächst geschlossen sind. Daraufhin wird das Kammerventil 106 sowie das erste Prüfkammerventil 139 geöffnet, wobei das zweite Prüfkammerventil 140 und das Vakuumventil 141 geschlossen bleiben. Da die Verpackungsmaschine 102 getaktet betrieben wird, ist die Prüfkammer 136 von einem vorherigen Arbeitstakt evakuiert, so dass ein Druckausgleich zwischen dem Puffervolumen in Form der Prüfkammer 136 und der Siegelkammer 104 stattfindet. Hierdurch wird eine Atmosphärenprobe des Gases aus der Siegelkammer 104 entnommen.
  • Im Anschluss daran wird das erste Prüfkammerventil 139 geschlossen, so dass die Prüfkammer 136 luftdicht abgeschlossen ist. Ferner wird das Vakuumventil 141 geöffnet, so dass die Siegelkammer 104 mit der Vakuumzentralanlage 101 bzw. mit dem Grobvakuumreservoir 14 verbunden ist, so dass zwischen dem Grobvakuumreservoir 114 und der Siegelkammer 104 ein Druckausgleich stattfindet. Da, wie bereits zur vorherigen Ausführungsform beschrieben, das Volumen des Großvakuumreservoirs 114 um ein Vielfaches größer ist als das Volumen der Siegelkammer 104, findet im Grobvakuumreservoir 114 nur eine vernachlässigbare Druckschwankung statt.
  • Im weiteren Verlauf des Verfahrens wird das Kammerventil 106 entweder zeitgesteuert oder durch den Druckmessumformer 107 druckgesteuert geschlossen. Daraufhin wird das Schutzgasventil 112 geöffnet, so dass die Schutzgasquelle 109 mit der Siegelkammer 104 verbunden ist. Hierbei lässt sich mittels des Druckregelventils 111 der Enddruck in der Siegelkammer 104 regulieren. Daraufhin wird das Schutzgasventil 112 wieder geschlossen, wobei das Schutzgasventil 112 zeit- oder druckgesteuert sein kann. Im Anschluss daran wird das Be-/Entlüftungsventil 113 geöffnet, so dass ein Druckausgleich der Siegelkammer 104 mit dem Umgebungsdruck stattfindet und die Siegelkammer 104 wieder geöffnet werden kann, um die Verpackung zu entnehmen.
  • Während der Zeit die benötigt wird, um die Siegelkammer 104 mittels der Vakuumzentralanlage 101 zu evakuieren und die Siegelkammer 104 mit Schutzgas zu befüllen, wird das in der Prüfkammer 136 befindliche Gas analysiert und die Konzentration zumindest einer Gaskomponente, in der Regel Sauerstoff, des Schutzgases in der Gasprobe der Prüfkammer 136 ermittelt. Da aufgrund des raschen Druckausgleichs zwischen der Prüfkammer 136 und der Siegelkammer 104 eine hohe Druckschwankung in der Prüfkammer 136 aufgetreten ist, benötigt der dritte Sensor 142 eine gewisse Zeitspanne, bis er einen zuverlässigen Wert liefert. Da die Prüfkammer 136 während des Evakuierens der Siegelkammer 104 mittels der Vakuumzentralanlage 101 vom System getrennt ist, wird die Zeit für die Ermittlung eines zuverlässigen Wertes dafür genutzt, die Siegelkammer 104 zu evakuieren.
  • Sollte eine zu hohe Sauerstoffkonzentration in der Prüfkammer 136 ermittelt werden, wird das Verfahren umgehend abgebrochen. Hierbei können das Vakuumventil 141, das erste Prüfkammerventil 129 und zweite Prüfkammerventil 140 geschlossen werden. Ferner werden umgehend die Ventile 118, 119 der Vakuumpumpen 116, 117 geschlossen und die Belüftungsventile 124, 125 der Vakuumreservoirs 114, 115 geöffnet, um ein weiteres Vordringen des Sauerstoffs zu vermeiden.
  • Das restliche Gasvolumen, dass nach dem Druckausgleich zwischen der Prüfkammer 136 und der Siegelkammer 104 beim Evakuieren der Siegelkammer 104 in das Grobvakuumreservoir 114 gelangt ist, ist im Vergleich zum Volumen des Grobvakuumreservoirs 114 vernachlässigbar gering, so dass selbst bei einer Zuleitung von reinem Sauerstoff aus der Siegelkammer 104 in das Grobvakuumreservoir 114 die Konzentration an Sauerstoff in dem Grobvakuumreservoir 114 nicht den Grenzwert nicht überschreitet. Daher kann der Grenzwert der Sauerstoffkonzentration, bei der das Verfahren abgebrochen wird, in der Prüfkammer höher sein als für die Vakuumreservoire 114, 115.
  • Es können sowohl im Grobvakuumreservoir 114 als auch im Feinvakuumreservoir 115 Sensoren 126, 129 vorgesehen sein.
  • Nach dem die Siegelkammer 104 mit Schutzgas befüllt wurde oder währenddessen die Siegelkammer 104 mit Schutzgas befüllt wird, wird das zweite Prüfkammerventil 140 geöffnet, wobei das erste Prüfkammerventil 139 und das Vakuumventil 141 geschlossen bleiben, so dass die Prüfkammer 136 mit dem Grobvakuumreservoir 114 verbunden ist und ein Druckausgleich stattfindet, so dass die Prüfkammer 136 wieder vorevakuiert ist.
  • Während des Vorevakuierens der Prüfkammer 136 kann bei geschlossenem ersten Prüfkammerventil 139, geschlossenem Vakuumventil 141 und geschlossenem Kammerventil 106 mittels eines vierten Druckmessumwandlers 145 der Druck in der Prüfleitung 137 überprüft werden. Tritt dann während des Befüllens der Kammer 104 mit Schutzgas ein Druckanstieg auf, ist dies auf ein defektes Kammerventil 106 zurückzuführen, so dass ein Alarm angezeigt oder das Verfahren abgebrochen werden kann.
  • Wenn keine Druckmessung in der Prüfleitung 137 stattfinden soll, können der Druckmessumwandler 145, die Prüfkammerzuleitung 138 und das zweite Prüfkammerventil 140 weggelassen werden. In diesem Fall wird die Prüfkammer 136 dadurch vorevakuiert, dass bei geschlossenem Kammerventil 106 das erste Prüfkammerventil 139 sowie das Vakuumventil 141 geöffnet werden.
  • In gleicher Weise kann eine weitere Verpackungsmaschine entsprechend der zweiten Verpackungsmaschine gemäß Figur 1 betrieben werden und zweistufig entsorgt werden.
  • Ein Verfahrensablauf kann beispielsweise wie folgt ablaufen:
  • Schritt 1:
    erstes Prüfkammerventil 139 wird geöffnet
    Kammerventil 106 wird geöffnet
    Gas aus Siegelkammer 104 strömt in Prüfkammer 136 (zeitgesteuert)
    Schritt 2:
    erstes Prüfkammerventil 139 wird geschlossen
    Verzögerungszeit läuft ab
    Sauerstoffkonzentration in der Prüfkammer 136 wird gemessen
    Schritt 3:
    Vakuumventil 141 wird geöffnet
    Restgas aus Siegelkammer 104 wird durch Grobvakuumreservoir 114 entsorgt (druck- oder zeitgesteuert)
    Schritt 4:
    Vakuumventil 141 wird geschlossen
    Kammerventil 106 wird geschlossen
    Verzögerungszeit läuft ab
    Schritt 5:
    erstes Prüfkammerventil 139 wird geöffnet,
    Schutzgasventil 112 wird geöffnet
    Ende Sauerstoffkonzentrationsmessung
    Schutzgas strömt in Siegelkammer 104 (druckgesteuert)
    Druckanstieg nach erfolgtem Druckausgleich in Prüfkammer 136 bis zu den geschlossenen Ventilen zweites Prüfkammerventil 140, Vakuumventil 141 und Kammerventil 106 wird überwacht
    Schritt 6:
    Schutzgasventil 112 wird geschlossen
    Verzögerungszeit läuft ab
    Schritt 7:
    erstes Prüfkammerventil 139 wird geschlossen
    zweites Prüfkammerventil 140 wird geöffnet
    Be-/Entlüftungsventil 113 wird geöffnet
    Ende Druckanstiegsmessung
    Prüfgas aus Prüfkammer 136 wird durch Grobvakuumreservoir 114 entsorgt
    Druckausgleich der Siegelkammer 104 mit der Umgebung
    Schritt 8:
    zweites Prüfkammerventil 140 wird geschlossen
    Be-/Entlüftungsventil 113 wird geschlossen
    Verzögerungszeit läuft ab
  • Figur 3 zeigt eine Verpackungsmaschine 202 mit Einzelentsorgung und entspricht zu großen Teilen der ersten Verpackungsmaschine gemäß der Ausführungsform nach Figur 1. Übereinstimmende Bauteile sind mit Bezugszeichen versehen, die um den Wert 200 erhöht sind. Diesbezüglich wird auf die Beschreibung auf Figur 1 verwiesen.
  • Die Ausführungsform gemäß Figur 3 unterschiedet sich von derjenigen von Figur 1 dadurch, dass keine Vakuumzentralanlage 205 sondern eine dezentrale Vakuumpumpe 245 direkt an der Verpackungsmaschine 202 vorgesehen ist. Die Vakuumpumpe 245 ist über die Vakuumzuleitung mit der Siegelkammer 204 verbunden, wobei zwischen der Vakuumpumpe 245 und dem Kammerventil 206 ein Vakuumventil 241 vorgesehen ist. Ferner ist zwischen Vakuumventil 241 und der Vakuumpumpe 245 eine Sensor 246 vorgesehen, der eine Sauerstoffsonde 247 und ein Druckmessumwandler 248 umfasst. Der Sensor 246 entspricht den Sensoren gemäß der Figuren 1 und 2.
  • Ferner ist ein Puffervolumen 249 in Form von einer Pufferkammer vorgesehen, die über eine Puffervolumenzuleitung 251 mit der Vakuumzuleitung 205 verbunden ist und zwischen dem Kammerventil 206 und dem Vakuumventil 241 in die Vakuumleitung 205 mündet. In der Puffervolumenzuleitung 251 ist ein Pufferventil 250 zum Absperren der Puffervolumenzuleitung 251 vorgesehen.
  • Beim Vakuumverpacken wird wie bei den anderen Ausführungsform zunächst eine Unterfolie oder eine Schale mit dem zu verpackenden Gut sowie eine Oberfolie in die geöffnete Siegelkammer 204 eingebracht. Daraufhin wird die Siegelkammer 204 luftdicht verschlossen, wobei das Kammerventil 206, das Schutzgasventil 212 sowie das Be-/Entlüftungsventil 213 zunächst geschlossen sind. Daraufhin wird das Kammerventil 206 sowie das Pufferventil 250 geöffnet, wobei das Puffervolumen 249 noch von einem vorherigen Verfahrenstakt vorevakuiert ist. Es findet somit ein Druckausgleich zwischen der Siegelkammer 204 und dem Puffervolumen 249 statt. Daraufhin wird das Pufferventil 250 geschlossen und das Vakuumventil 241 bei laufender Vakuumpumpe 245 geöffnet, so dass die Siegelkammer 204 mittels der Vakuumpumpe 245 weiter evakuiert wird. Hierbei wird das aus der Siegelkammer 204 ausströmende Gas kontinuierlich mit dem Sensor 246 analysiert, um sofort eine Erhöhung der Sauerstoffkonzentration zu ermitteln.
  • Grundsätzlich verläuft der Druck über der Zeit in Form einer Exponentialfunktion, d.h. in einer Anfangsphase des Evakuierens fällt der Druck schnell ab und im weiteren Verlauf des Evakuierens immer langsamer. Durch den anfänglichen Druckausgleich zwischen dem Puffervolumen 249 und der Siegelkammer 204 wurde somit zunächst ein schneller Druckabfall gewährleistet, wobei das Puffervolumen 249 dass aus der Siegelkammer 204 austretende Gas zwischenspeichert, ohne es zur Vakuumpumpe 245 zu fördern. Somit besteht keine Gefahr, dass bei einer anfänglichen starken Druckschwankung der Sensor 246 nicht schnell genug anspricht und nicht schnell genug zuverlässige Werte liefert, um die Maschine im Falle einer überhöhten Sauerstoffkonzentration früh genug anzuschalten bevor es die Vakuumpumpe erreicht. Das weitere Evakuieren mittels der Vakuumpumpe 245 beginnt bereits bei einem niedrigen Druck, so dass keine großen Druckschwankungen mehr auftreten und ein langsames Evakuieren stattfindet. Die Druckschwankungen sind deutlich geringer als anfangs, so dass der Sensor 246 kontinuierlich zuverlässige Werte liefern kann, um früh genug die Vakuumpumpe 245 abzustellen oder das Vakuumventil 241 zu schließen.
  • Nach dem Evakuieren der Siegelkammer 204 wird das Kammerventil 206 geschlossen, woraufhin die Siegelkammer 204 wie bei den vorangenannten Ausführungsformen mit Schutzgas befüllt und daraufhin belüftet wird. Während dessen wird das Prüfventil 250 geöffnet, so dass das Puffervolumen 249 ebenfalls mittels der Vakuumpumpe 245 bei geöffneten Vakuumventil 241 evakuiert wird. Da der Druck in dem Puffervolumen 249 ebenfalls geringer ist und dem Druck in der Siegelkammer 204 nach dem Druckausgleich zwischen dem Puffervolumen 249 und der Siegelkammer 204 entspricht, finden ebenfalls keine großen Druckschwankungen beim Evakuieren des Puffervolumens 249 mit der Vakuumpumpe 245 statt, so dass der Sensor 246 kontinuierlich zuverlässige Werte liefert, um die Vakuumpumpe 245 früh genug abschalten zu können oder das Vakuumventil 241 früh genug schließen zu können bevor Gas mit überhöhter Sauerstoffkonzentration die Vakuumpumpe 245 erreicht. Somit ist auch das Puffervolumen 249 wieder ausreichend vorevakuiert, um nach dem Schließen des Vakuumventils 241 wieder mit der Siegelkammer 204 im nächsten Verfahrenstakt für ein Druckausgleich verbunden werden zu können.
  • Ein Verfahrensablauf kann beispielsweise wie folgt ablaufen:
  • Schritt 1:
    Vakuumventil 241 wird geöffnet
    Gas aus Siegelkammer 204 strömt in Puffervolumen 249 (zeitgesteuert)
    Schritt 2:
    Pufferventil 240 wird geschlossen
    Verzögerungszeit läuft ab
    Schritt 3:
    Vakuumventil 241 wird geöffnet
    Restgas aus Siegelkammer 204 wird durch Vakuumpumpe 245 entsorgt (druck- oder zeitgesteuert)
    Sauerstoffkonzentration wird gemessen
    Schritt 4:
    Vakuumventil 241 wird geschlossen
    Verzögerungszeit läuft ab
    Schritt 5:
    Pufferventil 240 wird geöffnet
    Schutzgasventil 212 wird geöffnet
    Schutzgas strömt in Siegelkammer 204 (druckgesteuert)
    Schritt 6:
    Schutzgasventil 212 wird geschlossen
    Verzögerungszeit läuft ab
    Schritt 7:
    Be-/Entlüftungsventil 213 wird geöffnet
    Druckausgleich der Siegelkammer 204 mit der Umgebung
    Schritt 8:
    Be-/Entlüftungsventil 213 wird geschlossen
    Verzögerungszeit läuft ab
    Ende Sauerstoffkonzentrationsmessung
    Bezugszeichenliste
  • 1, 101
    Vakuumzentralanlage
    2, 102, 202
    erste Verpackungsmaschine
    3
    zweite Verpackungsmaschine
    4, 104, 204
    Siegelkammer
    5, 105, 205
    Vakuumzuleitung
    6, 106, 206
    Kammerventil
    7, 107, 207
    Druckmessumformer
    8, 108, 208
    Schutzgaszuleitung
    9, 109, 209
    Schutzgasquelle
    10, 110, 210
    Druckbegrenzungsventil
    11, 111,211
    Druckregelventil
    12, 112,212
    Schutzgasventil
    13, 113,213
    Be-/Entlüftungsventil
    14, 114
    Grobvakuumreservoir
    15, 115
    Feinvakuumreservoir
    16, 116
    Vakuumpumpe
    17, 117
    Vakuumpumpe
    18, 118
    Schaltventil
    19, 119
    Schaltventil
    20, 120
    Verbindungsleitung
    21, 121
    Vakuumpumpe
    22, 122
    Vakuumpumpe
    23, 123
    Schaltventil
    24, 124
    Belüftungsventil
    25, 125
    Belüftungsventil
    26, 126
    erster Sensor
    27, 127
    erste Sauerstoffsonde
    28, 128
    erster Druckmessumformer
    29, 129
    zweiter Sensor
    30, 130
    zweite Sauerstoffsonde
    31, 131
    zweiter Druckmessumformer
    32
    erster Arm
    33
    zweiter Arm
    34
    erstes Vakuumventil
    35
    zweites Vakuumventil
    136
    Prüfkammer
    137
    Prüfleitung
    138
    Prüfkammerzuleitung
    139
    erstes Prüfkammerventil
    140
    zweites Prüfkammerventil
    141,241
    Vakuumventil
    142
    dritter Sensor
    143
    dritte Sauerstoffsonde
    144
    dritter Druckmessumformer
    145
    vierter Druckmessumformer
    245
    Vakuumpumpe
    246
    Sensor
    247
    Sauerstoffsonde
    248
    Druckmessumwandler
    249
    Puffervolumen
    250
    Pufferventil
    251
    Puffervolumenzuleitung

Claims (21)

  1. Verfahren zum Evakuieren einer mit Schutzgas befüllbaren Kammer (4, 104, 204), insbesondere einer Siegelkammer einer Verpackungsmaschine (2, 102, 202, 3, 103, 203), mit folgenden Verfahrensschritten:
    - Evakuieren eines Puffervolumens (14, 15, 114. 115., 136, 249) mittels einer Vakuumquelle (1, 101, 245),
    - Verbinden des Puffervolumens (14, 15, 114, 115, 136, 249) mit der Kammer (4, 104, 204) zur Erzielung eines Druckausgleichs zwischen dem Puffervolumen (14, 15, 114, 115, 136, 249) und der Kammer (4, 104, 204),
    - Trennen des Puffervolumens (14, 15, 114, 115, 136, 249) von der Kammer (4, 104, 204),
    - Ermitteln der Konzentration mindestens einer Gaskomponente des Schutzgases in der Atmosphäre des Puffervolumens (14, 15, 114, 115, 136) oder
    - Verbinden der Kammer (204) mit der Vakuumquelle (245) zum weiteren Evakuieren der Kammer (204) und Ermitteln der Konzentration mindestens einer Gaskomponente des Schutzgases in der Atmosphäre des in dem während des Evakuierens aus der Kammer (204) strömenden Gases.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass nach dem vollständigen Evakuieren der Kammer (4, 104, 204) diese mit Schutzgas befüllt wird.
  3. Verfahren nach einem der Ansprüche 1 oder 2,
    dadurch gekennzeichnet,
    dass die Kammer (104) zum Evakuieren mit der Vakuumquelle (101) während des Ermittelns der Konzentration mindestens einer Gaskomponente des Schutzgases in der Atmosphäre des Puffervolumens (136) zeitweise verbunden wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass die Vakuumquelle ein Vakuumreservoir (114, 115) umfasst und
    dass kontinuierlich die Konzentration mindestens einer Gaskomponente des Schutzgases in der Atmosphäre des Vakuumreservoirs (114, 115) ermittelt wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    dass als Schutzgas ein Gas mit einer Sauerstoffkonzentration über der Sauerstoffkonzentration von Luft verwendet wird und
    dass beim Ermitteln der Konzentration mindestens einer Gaskomponente des Schutzgases die Sauerstoffkonzentration ermittelt wird.
  6. Verfahren nach Anspruch 5,
    dadurch gekennzeichnet,
    dass bei Überschreiten einer vorbestimmten Sauerstoffkonzentration das Verfahren abgebrochen wird.
  7. Verfahren nach Anspruch 6,
    dadurch gekennzeichnet,
    dass die vorbestimmte Sauerstoffkonzentration über der Sauerstoffkonzentration von Luft liegt.
  8. Verfahren nach einem der Ansprüche 1 oder 2,
    dadurch gekennzeichnet,
    dass nach dem Evakuieren der Kammer (204) diese von der Vakuumquelle (245) getrennt wird und das Puffervolumen (249) zum Evakuieren mit der Vakuumquelle (245) verbunden wird und dass die Konzentration mindestens einer Gaskomponente des Schutzgases in dem während des Evakuierens aus dem Puffervolumen (249) strömenden Gases ermittelt wird.
  9. Vorrichtung zum Evakuieren einer mit Schutzgas befüllbaren Kammer (104, 204), insbesondere einer Siegelkammer einer Verpackungsmaschine (102, 202), umfassend
    ein Puffervolumen (136, 249), das mit der Kammer (104, 204) verbindbar ist und derart gesteuert ist, dass das Puffervolumen (136, 249) vor dem Verbinden mit der Kammer (104, 204) evakuiert und daraufhin mit der Kammer (104, 204) zum Vorevakuieren derselben zeitweise verbunden ist,
    eine Vakuumquelle (101, 245), die zum Evakuieren der Kammer (104, 204) mit dieser verbindbar ist und derart gesteuert ist, dass sie nach dem Vorevakuieren der Kammer (104, 204) zeitweise mit dieser verbunden ist, sowie
    ein Sensor (142, 246) zum Ermitteln der Konzentration mindestens einer Gaskomponente des Schutzgases in der Atmosphäre des Puffervolumens (136) oder einer Zuleitung (205) zur Vakuumquelle (245).
  10. Vorrichtung nach Anspruch 9,
    dadurch gekennzeichnet,
    dass eine Schutzgasquelle (109, 209) vorgesehen ist, die mit der Kammer (104, 204) verbindbar ist und derart gesteuert ist, dass sie nach dem Evakuieren der Kammer (104, 204) mit dieser zeitweise verbunden ist.
  11. Vorrichtung nach einem der Ansprüche 9 oder 10,
    dadurch gekennzeichnet,
    dass der Sensor (142) im Puffervolumen (136) angeordnet ist und
    dass eine vom Puffervolumen (136) separate Vakuumquelle (101) vorgesehen ist.
  12. Vorrichtung nach Anspruch 11,
    dadurch gekennzeichnet,
    dass die Vakuumquelle (101) zumindest ein Vakuumreservoir (114, 115) umfasst.
  13. Vorrichtung nach Anspruch 12,
    dadurch gekennzeichnet,
    dass in dem Vakuumreservoir (114, 115) ein weiterer Sensor (126, 129) zum Ermitteln der Konzentration mindestens einer Gaskomponente des Schutzgases in der Atmosphäre des Vakuumreservoirs (114, 115) angeordnet ist.
  14. Vorrichtung nach einem der Ansprüche 9 bis 13,
    dadurch gekennzeichnet,
    dass eine Vakuumzuleitung (105) zum Verbinden Kammer (104) mit der Vakuumquelle (101) vorgesehen ist,
    dass ein Vakuumventil (141) in der Vakuumzuleitung (105) zum Absperren derselben vorgesehen ist,
    dass eine Prüfkammer (136) vorgesehen ist, die das Puffervolumen darstellt und die über eine Prüfleitung (137) mit der Vakuumzuleitung (105) verbindbar ist, wobei die Prüfleitung (137) zwischen dem Vakuumventil (141) und dem Kammerventil (106) in die Vakuumzuleitung (105) mündet,
    dass ein Sensor (142) zur Ermittelung der Konzentration mindestens einer Gaskomponente des Schutzgases in der Atmosphäre der Prüfkammer (136) vorgesehen ist,
    dass ein Prüfkammerventil (139) in der Prüfleitung (137) zum Absperren derselben vorgesehen ist und
    dass ein Schutzgasventil (112) in der Schutzgaszuleitung (108) zum Absperren derselben und eine Steuerung zum Steuern der Ventil vorgesehen ist.
  15. Vorrichtung nach Anspruch 14,
    dadurch gekennzeichnet,
    dass ein Kammerventil (106) in der Vakuumzuleitung (105) zwischen dem Vakuumventil (141) und der Kammer (104) zum Absperren der Vakuumzuleitung (105) vorgesehen ist.
  16. Vorrichtung nach einem der Ansprüche 14 oder 15,
    dadurch gekennzeichnet,
    dass die Schutzgasquelle (109) über eine Schutzgaszuleitung (108) mit der Kammer (104) verbindbar ist.
  17. Vorrichtung nach einem der Ansprüche 14 bis 16,
    dadurch gekennzeichnet,
    dass die Prüfkammer (136) über eine Prüfkammerzuleitung (138) mit der Vakuumzuleitung (105) verbindbar ist, wobei die Prüfkammerzuleitung (138) zwischen dem Vakuumventil (141) und der Vakuumquelle (101) in die Vakuumzuleitung (105) mündet, und
    dass in der Prüfkammerzuleitung (138) ein zweites Prüfkammerventil (140) zum Absperren der Prüfkammerzuleitung (138) vorgesehen ist.
  18. Vorrichtung nach einem der Ansprüche 9 oder 10,
    dadurch gekennzeichnet,
    dass der Sensor (246) in einer Zuleitung (205) zur Vakuumquelle, die in Form einer Vakuumpumpe (245) dargestellt ist, vorgesehen ist.
  19. Vorrichtung zum Evakuieren einer mit Schutzgas befüllbaren Kammer (104, 204), insbesondere einer Siegelkammer einer Verpackungsmaschine (102, 202), umfassend
    ein Puffervolumen (14, 15), das Bestandteil einer Vakuumquelle (1) ist und das zum Evakuieren der Kammer (4) mit dieser verbindbar ist und derart gesteuert ist, dass das Puffervolumen (14, 15) vor dem Verbinden mit der Kammer (4) vorevakuiert und daraufhin mit der Kammer (4) zeitweise verbunden ist,
    ein Sensor (26, 29) zum Ermitteln der Konzentration mindestens einer Gaskomponente des Schutzgases in der Atmosphäre des Puffervolumens (14, 15) der Vakuumquelle (1) der im Puffervolumen (14, 15) angeordnet ist.
  20. Vorrichtung nach Anspruch 19,
    dadurch gekennzeichnet,
    dass eine Schutzgasquelle (9) vorgesehen ist, die mit der Kammer (4) verbindbar ist und derart gesteuert ist, dass sie nach dem Evakuieren der Kammer (4) mit dieser zeitweise verbunden ist.
  21. Vorrichtung nach einem der Ansprüche 9 bis 20,
    dadurch gekennzeichnet,
    dass der Sensor (26, 29, 126, 129, 142, 246) zum Ermitteln der Konzentration mindestens einer Gaskomponente des Schutzgases in der Atmosphäre eine Sauerstoffsonde (27, 30, 127, 130, 143, 247) umfasst.
EP05009182A 2004-05-14 2005-04-27 Verfahren und Vorrichtung zum Evakuieren einer Kammer Not-in-force EP1595794B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004024480A DE102004024480A1 (de) 2004-05-14 2004-05-14 Verfahren und Vorrichtung zum Evakuieren einer Kammer
DE102004024480 2004-05-14

Publications (2)

Publication Number Publication Date
EP1595794A1 EP1595794A1 (de) 2005-11-16
EP1595794B1 true EP1595794B1 (de) 2008-10-08

Family

ID=34935797

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05009182A Not-in-force EP1595794B1 (de) 2004-05-14 2005-04-27 Verfahren und Vorrichtung zum Evakuieren einer Kammer

Country Status (4)

Country Link
EP (1) EP1595794B1 (de)
AT (1) ATE410364T1 (de)
DE (2) DE102004024480A1 (de)
DK (1) DK1595794T3 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010055438A1 (de) 2010-12-21 2012-06-21 Multivac Sepp Haggenmüller Gmbh & Co. Kg Verpackungsmaschine und Verfahren zum Erzeugen einer Vakuumverpackung
DE102011111188A1 (de) * 2011-08-25 2013-02-28 Khs Gmbh Vakuumeinrichtung für Anlagen zur Behandlung von Behältern, Anlage zur Behandlung von Behältern sowie Verfahren zur Steuerung einer Vakuumeirichtung
DE102011122769A1 (de) 2011-10-29 2013-05-02 Messer Austria Gmbh Schutzgas zum Verpacken von Fleisch- und Wurstwaren
EP3459866B1 (de) * 2013-04-24 2024-03-27 GEA Food Solutions Germany GmbH Verfahren zum evakuieren einer kammer
WO2017102541A1 (de) * 2015-12-14 2017-06-22 Gea Food Solutions Germany Gmbh Verpackungsmaschine und verfahren zur herstellung von vakuumierten verpackungen
DE102018100224A1 (de) * 2018-01-08 2019-07-11 Multivac Sepp Haggenmüller Se & Co. Kg Verpackungsmaschine mit Druckregelvorrichtung und Verfahren
DE102018110227A1 (de) * 2018-04-27 2019-10-31 Multivac Sepp Haggenmüller Se & Co. Kg Verpackungsmaschine zum Verpacken von Produkten in Kunststoffverpackungen
CN115041070A (zh) * 2022-05-27 2022-09-13 中材锂膜有限公司 一种用于物料生产的密闭式气体平衡系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2829889A1 (de) * 1978-07-07 1980-01-24 Leybold Heraeus Gmbh & Co Kg Verfahren und vorrichtung zur wiederholten evakuierung abgeschlossener volumina
DE3411917A1 (de) * 1984-03-30 1985-10-03 Multivac Sepp Haggenmüller KG, 8941 Wolfertschwenden Verfahren und vorrichtung zum verpacken von gegenstaenden
DE4314052C1 (de) * 1993-04-29 1994-11-10 Rudolf Christoph Bilz Evakuiereinrichtung
DE19500692C2 (de) * 1995-01-12 1998-09-10 Felix Rudolf Bilz Anlage zur Druckabsenkung in den Arbeitskammern mehrerer an eine Vakuumzentralanlage angeschlossener Verbraucher
US5822951A (en) * 1997-11-06 1998-10-20 Modern Controls, Inc. Apparatus and method for sampling gas in product packages

Also Published As

Publication number Publication date
ATE410364T1 (de) 2008-10-15
DE502005005582D1 (de) 2008-11-20
DE102004024480A1 (de) 2005-12-08
DK1595794T3 (da) 2009-04-14
EP1595794A1 (de) 2005-11-16

Similar Documents

Publication Publication Date Title
EP1595794B1 (de) Verfahren und Vorrichtung zum Evakuieren einer Kammer
DE69110706T2 (de) Leckermittlungsvorrichtung zur on-line-Messung der Dichtigkeit einer Verpackung.
DE69726271T2 (de) Verfahren zur bearbeitung eines produktes und installation zur leckaufspürung
EP0619015B1 (de) Verfahren zur prüfung eines behältnisses, prüfanordnung, verwendung
DE602004013199T2 (de) System und verfahren zur bestimmung der lecksicherheit eines objekts
EP2994736A1 (de) Dichtheitsprüfanordnung und dichtheitsprüfverfahren
DE69623171T2 (de) Leckprüfverfahren und -vorrichtung für mindestens eine flexibele Verpackung
EP1393044A1 (de) Verfahren und vorrichtung zum bestimmen der permeation einer barriereschicht
EP0255648A2 (de) Verfahren und Vorrichtung zur Konservierung von in einem Behälter eingeschlossener Ware
DE69611080T2 (de) Vorrichtung und Verfahren zum Entfernen von Sauerstoff aus Lebensmittelverpackungen
EP0459335A2 (de) Verwendung eines Verfahrens und einer Anordnung zur Leckageprüfung
DE2507347A1 (de) Verfahren und einrichtung zum erfassen von leckstellen eines mit wasserhaltigem gut gefuellten luftdichten behaelters
DE3936163C2 (de)
EP3795532A1 (de) Verfahren und vorrichtung zum befüllen eines behälters mit einem füllprodukt
EP3587286B1 (de) Verfahren zur prozessparameterbestimmung an einer verpackungsmaschine
DE19942185A1 (de) Verfahren und Vorrichtung zur Ermittlung von Leckage- oder Nutzvolumen- oder -massenströmen
EP2914944B1 (de) Verfahren zur prüfung einer dichtheitsprüfanlage
DE68904097T2 (de) Verfahren zur dichtigkeitspruefung einer verpackung.
DE3340353C2 (de)
DE3517155C2 (de) Verfahren und Vorrichtung zum Prüfen von Zigaretten
EP3560845B1 (de) Verpackungsmaschine und verfahren zum verpacken von produkten in kunststoffverpackungen
DE3439778A1 (de) Vorrichtung und verfahren zur entnahme von gas aus dosen o.dgl. packungen
EP1309843A1 (de) Verfahren und vorrichtung zur dichtheitsprüfung eines gasgenerators
DE2441123A1 (de) Verfahren zur dichtigkeitspruefung von gegenstaenden
DE19805236A1 (de) Verfahren und Vorrichtung zur Ermittlung des Volumens eines festen Körpers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BIS VAKUUMTECHNIK GMBH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FELIX RUDOLF BILZ

Inventor name: SASCHA BILZ

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BILZ SASCHA

Inventor name: BILZ, FELIX RUDOLF

17P Request for examination filed

Effective date: 20060407

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BILZ, FELIX RUDOLF

Inventor name: BILZ, SASCHA

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BILZ, FELIX RUDOLF

Inventor name: BILZ, SASCHA

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070611

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005005582

Country of ref document: DE

Date of ref document: 20081120

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081008

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081008

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090119

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090208

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081008

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090218

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081008

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081008

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081008

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081008

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090108

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081008

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081008

26N No opposition filed

Effective date: 20090709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081008

BERE Be: lapsed

Owner name: BIS VAKUUMTECHNIK G.M.B.H.

Effective date: 20090430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090427

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20091101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091222

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090427

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100623

Year of fee payment: 6

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090427

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111101

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005005582

Country of ref document: DE

Effective date: 20111101