EP1558778B1 - Simplified method for making rolled al-zn-mg alloy products, and resulting products - Google Patents

Simplified method for making rolled al-zn-mg alloy products, and resulting products Download PDF

Info

Publication number
EP1558778B1
EP1558778B1 EP03767916A EP03767916A EP1558778B1 EP 1558778 B1 EP1558778 B1 EP 1558778B1 EP 03767916 A EP03767916 A EP 03767916A EP 03767916 A EP03767916 A EP 03767916A EP 1558778 B1 EP1558778 B1 EP 1558778B1
Authority
EP
European Patent Office
Prior art keywords
temperature
alloy
mpa
sheet
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03767916A
Other languages
German (de)
French (fr)
Other versions
EP1558778A1 (en
Inventor
Ronan Dif
Jean-Christophe Ehrstrom
Bernard Grange
Vincent Hochenedel
Hervé Ribes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Alcan Rhenalu SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcan Rhenalu SAS filed Critical Alcan Rhenalu SAS
Publication of EP1558778A1 publication Critical patent/EP1558778A1/en
Application granted granted Critical
Publication of EP1558778B1 publication Critical patent/EP1558778B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent

Definitions

  • the present invention relates to Al-Zn-Mg type alloys with high mechanical strength, and more particularly alloys intended for welded constructions such as structures used in the field of shipbuilding, automobile bodywork, industrial vehicle and fixed or mobile tanks.
  • aluminum alloys of the 5xxx series (5056, 5083, 5383, 5086, 5186, 5182, 5054 ...) and 6xxx (6082, 6005A ”).
  • the weldable low-copper 7xxx alloys (such as 7020, 7108 7) are also suitable for producing welded parts as they have very good mechanical properties, even after welding. These alloys, however, are subject to problems of laminar corrosion (in the T4 state and in the affected area of the welds) and corrosion corrosion under stress (in the T6 state).
  • Alloys in the 5xxx family are usually used in H1x (hardened), H2x (hardened and then restored), H3x (hardened and stabilized) or O (annealed) states.
  • the choice of the metallurgical state depends on the compromise between mechanical strength, corrosion resistance and formability that is aimed for a given use.
  • the 7xxx alloys (Al-Zn-Mg) are said to be "structurally hardened", which means that they acquire their mechanical properties by precipitation of the additive elements (Zn, Mg).
  • the person skilled in the art knows that in order to obtain these mechanical properties, the hot transformation by rolling or spinning is followed by dissolution in solution, quenching and an income. These operations, carried out in the majority of cases separately, are respectively intended to dissolve the alloying elements, to maintain them in the form of super-saturated solid solution at room temperature, and finally to precipitate them in a controlled manner.
  • the alloys of the 6xxx (Al-Mg-Si) and 7xxx (Al-Zn-Mg) families are generally used in the reclaimed state.
  • the income giving the maximum mechanical strength is designated T6, when the shaping by rolling or spinning is followed by a separate dissolution and quenching.
  • the parameters that govern the user's choice are essentially the static mechanical characteristics, that is to say the breaking strength R m , the elastic limit R p0,2 , and the
  • the other parameters that come into play, depending on the specific needs of the intended application, are the mechanical characteristics of the welded joint, the corrosion resistance (laminating and stress) of the sheet and welded joint, fatigue strength of sheet and welded joint, resistance to crack propagation, toughness, dimensional stability after cutting or welding, resistance to abrasion. For each intended use, it is necessary to find a suitable compromise between these different properties.
  • the patent GB 1 419 491 (British Aluminum) discloses a weldable alloy containing 3.5 - 5.5% zinc, 0.7 - 3.0% magnesium, 0.05 - 0.30% zirconium, optionally up to 0.05% each of chromium and manganese, up to 0.10% iron, up to 0.075% silicon, and up to 0.25% copper.
  • the patent FR 1 501 662 (Ve occidentale Aluminum-Werke Aktiengesellschaft) discloses a weldable alloy of composition Zn 5.78% Mg 1.62% Mn 0.24% Cr 0.13% Cu 0.02% Zr 0.17% used in the form of sheets with a thickness of 4 mm, after being dissolved for one hour at 480 ° C., quenched with water and returned in two stages (24 hours at 120 ° C. and then 2 hours at 180 ° C.) , for the manufacture of shields.
  • the patent US 5,061,327 discloses a method of manufacturing an aluminum alloy rolled product comprising casting a plate, homogenizing, hot rolling, reheating the blank to a temperature of between 260 ° C and 582 ° C, its rapid cooling, a precipitation treatment at a temperature between 93 ° C and 288 ° C, and then cold rolling or hot rolling at a temperature not exceeding 288 ° C.
  • the problem to which the present invention tries to respond is first of all to improve the compromise of certain properties of Al-Zn-Mg alloys in the form of sheets or strips, namely the compromise between the mechanical characteristics (determined on the metal base and welded joint), and corrosion resistance (laminar corrosion and stress corrosion). Moreover, we seek to produce these products with a manufacturing range that is as simple and reliable as possible, allowing them to be manufactured with as little manufacturing cost as possible.
  • the first object of the present invention defined in claim 1 is a process for producing an intermediate laminated product of Al-Zn-Mg type aluminum alloy, comprising the following steps: a) a plate containing (in mass percents) is produced by semi-continuous casting Mg 0.5-2.0 Mn ⁇ 1.0 Zn 3.0 - 9.0 If ⁇ 0.50 Fe ⁇ 0.50 Cu ⁇ 0.50 Ti ⁇ 0.15 Zr ⁇ 0.20 Cr ⁇ 0.50 the rest of the aluminum with its inevitable impurities, in which Zn / Mg>1.7; b) the said plate is subjected to homogenization and / or reheating at a temperature T 1 , chosen such that 500 ° C ⁇ T 1 ⁇ (T S -20 ° C), where T S represents the burning temperature of l 'alloy, c) performing a first hot rolling step comprising one or more rolling passes on a hot rolling mill, the inlet temperature T 2 being chosen such that (T 1 - 60 ° C) ⁇ T 2 ⁇ (T
  • a second object defined in claim 11 is a product obtainable by the method according to the invention.
  • a third object defined in claims 14 to 19 is the use of the product obtained by the process according to the invention for the manufacture of welded constructions.
  • Another object defined in claims 22 and 24 is the welded construction made with at least two products obtainable by the process according to the invention, characterized in that its elastic limit R p0,2 in the welded joint between two of said products is at least 200 MPa.
  • the crack propagation rate da / dN is determined according to the ASTM E647 standard, the damage tolerance K R according to the ASTM E 561 standard, the resistance to exfoliating corrosion (also called laminar corrosion) is determined according to the ASTM G34 standard ( Exco test) or ASTM G85-A3 (Swaat test); for these tests, as well as for even more specific tests, additional information is given below in the description and in the examples.
  • the Applicant has surprisingly found that it is possible to manufacture 7xxx alloy rolled products which show a very good compromise of properties, in particular in the welded state, using a simplified process, in which the dissolution, quenching and tempering are carried out during hot rolling by rolling.
  • the process according to the invention can be carried out on Al-Zn-Mg alloys in a wide range of chemical composition: Zn 3.0 - 9.0%, Mg 0.5 - 2.0%, the alloy may also contain Mn ⁇ 1.0%, Si ⁇ 0.50%, Fe ⁇ 0.50%, Cu ⁇ 0.50%, Cr ⁇ 0.50%, Ti ⁇ 0.15%, Zr ⁇ 0.20 %, as well as the inevitable impurities.
  • the magnesium content must be between 0.5 and 2.0% and preferably between 0.7 and 1.5%. Below 0.5%, mechanical properties are obtained which are unsatisfactory for many applications, and above 2.0% there is a deterioration in the corrosion resistance of the alloy. Moreover, above 2.0% magnesium, the quenchability of the alloy is no longer satisfactory, which affects the efficiency of the process according to the invention.
  • the manganese content must be less than 1.0% and preferably less than 0.60%, to limit the sensitivity to flaky corrosion and to maintain good quenchability. A content not exceeding 0.20% is preferred.
  • the zinc content must be between 3.0 and 9.0%, and preferably between 4.0 and 6.0%. Below 3.0%, the mechanical characteristics are too low to be of technical interest, and above 9.0% there is a deterioration of the corrosion resistance of the alloy, as well as degradation of the quenchability.
  • the ratio Zn / Mg must be greater than 1.7 to allow to remain in the composition field which benefits from the structural hardening.
  • the silicon content must be less than 0.50% in order not to deteriorate the corrosion behavior or the tear resistance. For these same reasons, the iron content must also be less than 0.50%.
  • the copper content must be less than 0.50% and preferably less than 0.25%, which makes it possible to limit the sensitivity to pitting corrosion and to maintain good quenchability.
  • the chromium content must be less than 0.50%, which makes it possible to limit the sensitivity to flaky corrosion and to maintain good quenchability.
  • the titanium content must be less than 0.15% and that in zirconium less than 0.20%, in order to avoid the formation of harmful primary phases; for Zr it is preferred not to exceed 0.15%.
  • Hardness is understood here to mean the ability of an alloy to be quenched in a fairly wide range of quenching speeds.
  • An alloy said to be easily quenchable is therefore an alloy for which the cooling rate during quenching does not have a strong influence on the properties of use (such as strength or corrosion resistance).
  • the burn temperature T s is a quantity known to those skilled in the art, which determines it for example directly by calorimetry on a raw sample of casting, or by thermodynamic calculation taking into account the phase diagrams.
  • the temperatures T 2 and T 5 correspond to the temperature of the surface (usually the upper surface) of the plate or strip measured just before entering the hot rolling mill; the execution of this measurement can be done according to the methods known to those skilled in the art.
  • the temperature T 3 is chosen such that (T 1 -100 ° C) ⁇ T 3 ⁇ (T 1 - 30 ° C).
  • T 2 is chosen such that (T 1 - 30 ° C) ⁇ T 2 ⁇ (T 1 - 5 ° C).
  • T 6 is chosen such that (T 5 - 150 ° C) ⁇ T 6 ⁇ (T 5 - 50 ° C).
  • the temperature T 3 it is preferable to choose the temperature T 3 so that it is greater than the solvus temperature of the alloy.
  • the solvus temperature is determined by those skilled in the art using differential calorimetry. Keeping T 3 above the solvus temperature makes it possible to minimize the coarse precipitation of MgZn 2 phases. It is preferred that these phases are formed in a controlled manner in the form of fine precipitated during winding or after winding. The control of the temperature T 3 is therefore particularly critical.
  • the temperature T 4 is also a critical parameter of the process.
  • the temperature must not fall below the specified value.
  • the inlet temperature to the hot rolling mill during step (e), which is advantageously carried out on a tandem mill be substantially equal to the temperature of the strip after cooling, which requires either a sufficiently fast transfer of the strip from one mill to another, or, preferably, an in-line process.
  • the steps b), c) d) and e) are carried out in line, that is to say a given volume of metal element (in the form of a plate of rolling or rolled strip) goes from one stage to another without intermediate storage likely to lead to an uncontrolled drop in temperature which would require intermediate heating.
  • the process according to the invention is based on a precise evolution of the temperature during steps b), c), d) and e); the figure 1 illustrates an embodiment of the invention.
  • the cooling in step (d) can be done by any means ensuring sufficiently rapid cooling, such as: immersion, sprinkling, forced convection, or a combination of these means.
  • immersion, sprinkling, forced convection or a combination of these means.
  • natural convection cooling as the only means is not fast enough, whether in tape or coil. In general, at this stage of the process, coil cooling does not give satisfactory results.
  • the coil can be allowed to cool.
  • the product from step (e) can be subjected to other operations such as cold rolling, income, or cutting.
  • the intermediate rolled product according to the invention with a cold work hardening of between 1% and 9%, and / or with a complementary heat treatment comprising one or more steps at temperatures of between 80 ° C. and 250 ° C., said complementary heat treatment which can intervene before, after or during said cold work-hardening.
  • the process according to the invention is designed so as to be able to carry out in line three heat treatment operations which are usually carried out separately: the dissolving (carried out according to the invention during the first hot rolling step), quenching (performed according to the invention during the cooling of the strip), the income (made according to the invention during cooling of the coil). More particularly, the method according to the invention can be conducted so that it is not necessary to heat the product once it has entered the reversible hot rolling mill, each step of said process being at a temperature lower than the previous one. This saves energy.
  • the intermediate rolled product obtained by the process according to the invention can be used as it is, that is to say without subjecting it to other process steps which modify its metallurgical state; this is preferable. If necessary, it may be subjected to other process steps that change its metallurgical state, such as cold rolling.
  • the method according to the invention can sometimes lead, for a given alloy, to static mechanical characteristics slightly worse. On the other hand, in some cases, it leads to an improvement of the damage tolerance, as well as an improvement of the resistance to corrosion, especially after welding. This has been found in particular for a restricted composition domain, as will be explained later.
  • the compromise of properties that is obtained with the process according to the invention is at least as interesting as that obtained by a conventional manufacturing process, in which solution, quenching and tempering are carried out separately. and which leads to the T6 state.
  • the process according to the invention is much simpler and less expensive than the known processes. It advantageously leads to an intermediate product whose thickness is between 3 mm and 12 mm; above 12 mm, the winding becomes technically difficult, and below 3 mm, besides the technical difficulties of hot rolling in this zone of thickness, the band is likely to cool too much.
  • a preferred composition range for carrying out the process according to the invention is characterized by Zn 4.0 - 6.0, Mg 0.7 - 1.5, Mn ⁇ 0.60 and preferably Cu ⁇ 0.25. Alloys exhibiting good quenchability are preferred, and among these alloys, alloys 7020, 7003, 7004, 7005, 7008, 7011, 7018, 7022 and 7108 are preferred.
  • the Al-Zn-Mg alloy products according to the invention can be welded by all known welding processes, such as MIG or TIG welding, friction welding, laser welding, electron beam welding. Welding tests were carried out on X-chamfered plates welded by semi-automatic smooth-flow MIG welding with a 5183 alloy filler wire. The welding was carried out in the direction perpendicular to the rolling. The mechanical tests on the welded specimens were carried out according to a method recommended by Det Norske Veritas (DNV) in their document "Rules for classification of Ships - Newbuildings - Materials and Welding - Part 2 Chapter 3: Welding" of January 1996.
  • DNV Det Norske Veritas
  • the width of the tensile test piece is 25 mm
  • the cord is symmetrically leveled and the useful length of the specimen and the length of the extensometer used is given by (W + 2.e) where the parameter W designates the width of the bead and the parameter e designates the thickness of the specimen.
  • the Applicant has found that the MIG welding of the products according to the invention leads to welded joints characterized by a greater yield strength and rupture limit than with an alloy manufactured according to a conventional range. (T6).
  • T6 a conventional range for mechanically welded constructions, that is to say the constructions in which the welded zone has a structural role, is surprising insofar as the static properties of the unwelded metal are rather weaker than at T6.
  • the corrosion resistance of the base metal and welded joints was evaluated using SWAAT and EXCO tests.
  • the SWAAT test makes it possible to evaluate the resistance to corrosion (especially in flaky corrosion) of aluminum alloys in general. Since the method according to the present invention leads to a product with a highly fiber-reinforced structure, it is important to ensure that said product is resistant to exfoliating corrosion, which develops mainly on products showing a fiber structure.
  • the SWAAT test is described in Annex A3 of ASTM G85. This is a cyclic test. Each cycle, lasting two hours, consists of a humidification phase of 90 minutes (relative humidity of 98%) and a 30-minute spraying period, of a compound solution (for one liter) of salt.
  • the EXCO test which lasts 96 hours, is described in ASTM G34. It is primarily intended to establish the laminar corrosion resistance of aluminum alloys containing copper, but may also be suitable for AI-Zn-Mg alloys (see J.Marthinussen, S.Grjotheim, "Qualification of new aluminum alloys"). , 3 rd International Forum on Aluminum Ships, Haugesund, Norway, May 1998).
  • test pieces were used, one side of which was protected by an adhesive aluminum strip (in order to attack only the other side) and the face to be attacked was either left as it was it is machined to half thickness on half the surface of the sample, and left full thickness on the other half.
  • the diagrams of the test pieces used for each test are given to the figures 2 (laminar corrosion) and 3 (stress corrosion).
  • the product according to the invention has a resistance in flaky corrosion equivalent to that obtained for the standard product (alloy identical or neighboring T6 state).
  • a particularly preferred product according to the invention contains between 4.0 and 6.0% of zinc, between 0.7 and 1.5% of magnesium, less than 0.60%, and even more preferably less than 0.20%. of manganese, and less than 0.25% of copper.
  • Such a product shows a loss of mass of less than 1 g / dm 2 in the 100-day SWAT test (100 cycles) and less than 5.5 g / dm 2 in the 96-hour EXCO test before income or after income. corresponding at most to 15 h at 140 ° C.
  • the resistance to stress corrosion has been characterized using the Slow Strain Rate Testing method, described for example in the ASTM G129 standard. This test is faster and more discriminating than the methods of determining the stress of the non-breaking stress corrosion stress.
  • the principle of the slow traction test schematized in figure 4 , consists in comparing the tensile properties in an inert medium (laboratory air) and in an aggressive medium. The decrease in static mechanical properties in a corrosive environment corresponds to the sensitivity to stress corrosion.
  • the most sensitive tensile test characteristics are elongation at break A and maximum stress (at necking) R m . The elongation at break, which is a much more discriminating quantity than the maximum stress, was used.
  • the critical aspects of the slow tensile test are the selection of the tensile specimen, the rate of deformation and the corrosive solution.
  • Regarding the speed of stress it is recognized, especially on Al-Zn-Mg alloys (see the article "Stress Corrosion of Al-5Zn-1.2Mg Crystals in 30g / l NaCl Medium" by T. Magnin and C.
  • the process according to the invention makes it possible to obtain products which, for a domain of restricted composition with respect to the composition domain in which the process according to the invention can be implemented, namely Zn 4, 0 - 6.0%, Mg 0.7-1.5%, Mn ⁇ 0.60%, and Cu ⁇ 0.25%, have new microstructural characteristics. These microstructural characteristics lead to particularly advantageous use properties, and in particular to better resistance to corrosion.
  • the MgZn 2 precipitates at the grain boundaries have an average size greater than 150 nm, and preferably between 200 and 400 nm, whereas this size does not exceed 80 nm in the products according to the state of the technical.
  • the MgZn 2 type hardening precipitates are much coarser in a product according to the invention than in a comparable product according to the prior art.
  • the quenching is not as fast as in a conventional method with solution in a furnace followed by a separate quenching. It is clear that the method according to the invention makes it possible to avoid a certain precipitation of coarse phases from the temperature T 4 .
  • the product obtained by the process according to the invention has a fibered granular structure, that is to say grains whose thickness or whose thickness / length ratio is significantly lower than for the products according to the state. of the technique.
  • the grains have a size in the direction of the thickness (short-through) of less than 30 ⁇ m, preferably less than 15 ⁇ m and even more preferably less than 10 ⁇ m, and a length / thickness ratio of more than 60, and preferably of more than 100, whereas for a comparable product according to the state of the art, the grains have a size in the direction of the thickness (transverse-short) greater than 60 ⁇ m and a length / thickness ratio much less than 40.
  • the sheets and strips resulting from the process according to the present invention can be advantageously used for the construction of automobile parts, industrial vehicles, road or rail tanks, and for construction in the maritime environment.
  • All sheets and strips resulting from the process according to the present invention are particularly suitable for welded construction; they can be welded by all known welding processes which are suitable for this type of alloys.
  • Sheet metal according to the invention can be welded to one another, or to other sheets of aluminum or aluminum alloy, using a suitable filler wire.
  • a yield strength (measured as described above) of at least 200 MPa. In a preferred embodiment, this value is at least 220 MPa.
  • the breaking strength of the welded joint is at least 250 MPa, and in a preferred embodiment of at least 280 MPa, and preferably at least 300 MPa, measured after a maturation of at least one month.
  • a thermally affected zone which exhibits a hardness of at least 100 HV, preferably from minus 110 HV, and even more preferably at least 115 HV; this hardness is at least as great as that of the base plates which has the least hardness.
  • the Applicant has found that the product obtained by the process according to the invention, in the field of preferred composition (Zn 4.0 - 6.0%, Mg 0.7 - 1.5%, Mn ⁇ 0 , 60%), shows a higher resistance to abrasion by sand than comparable products. It notes that this resistance to abrasion does not depend in a simple way on the mechanical characteristics of the product, nor its hardness nor its ductility. The fiber structure in the TC direction seems to favor the resistance to abrasion by sand. For this property of use, the superiority of the product resulting from the process according to the invention is due to the combination between a particular fiber structure, inaccessible with the known processes, and the level of mechanical characteristics that its composition confers on it.
  • the sand abrasion resistance of the product obtainable by the process according to the invention expressed in the form of mass loss during a test described in Example 10 below. is less than 0.20 g, and preferably less than 0.19 g for an exposed flat surface of dimensions 15 x 10 mm.
  • the product according to the invention has good properties of damage tolerance. It can be used as structural element in aeronautical construction.
  • the product according to the invention and in particular that which belongs to the restricted composition range defined by Zn 4.0 - 6.0%, Mg 0.7 - 1.5%, Mn ⁇ 0.60%, is thus suitable. to be used as a structural element to meet specific requirements for damage tolerance (toughness, resistance to crack propagation) in fatigue).
  • structural element or “structural element” of a mechanical construction a mechanical part whose failure is likely to endanger the safety of said construction, its users, its users or others.
  • these structural elements include the elements that make up the fuselage (such as fuselage skin (fuselage skin in English), stiffeners or stringers, bulkheads, fuselage (circumferential frames)), the wings (such as the wing skin), the stiffeners (stringers or stiffeners), the ribs (ribs) and spars) and the empennage, as well as the floor beams, seat rails and doors.
  • the present invention relates only to structural elements that can be made from rolled sheets. More particularly, the product according to the invention is suitable for use as a fuselage coating sheet, in conventional assembly (especially riveted) or welded assembly.
  • the process according to the invention thus makes it possible to obtain a novel product having an advantageous combination of properties, such as mechanical strength, damage tolerance, weldability, resistance to exfoliating corrosion and stress corrosion, abrasion resistance, which is particularly suitable for use as a structural element in mechanical engineering.
  • it is suitable for use in industrial vehicles, as well as in equipment for storing, transporting or handling granular products, such as skips, tanks or conveyors.
  • the method according to the invention is particularly simple and fast; its operating cost is lower than that of the processes according to the state of the art likely to lead to products with comparable properties of use.
  • Examples 1 and 2 belong to the state of the art.
  • Examples 3, 4, 8 and 9 correspond to the invention.
  • Each of Examples 5, 6, 7, 9 and 10 compares the invention with the state of the art.
  • This example corresponds to a transformation range according to the state of the art.
  • Two plates A and B were prepared by semi-continuous casting. Their composition is indicated in Table 2.
  • the chemical analysis of the elements was carried out by X-ray fluorescence (for Zn and Mg elements) and by spark spectroscopy (other elements) on a pawn obtained from liquid metal taken from the casting channel.
  • the rolling plates were reheated for 22 hours at 530 ° C and hot rolled as soon as they reached a temperature of 515 ° C at the oven exit.
  • the hot-rolled strips were wound to a thickness of 6 mm, the process being conducted so that the temperature, measured on the banks of the coil after the complete winding (at mid-thickness of the winding) is between 265 ° C and 275 ° C, this value being the average between 2 measurements made at both sides of the coil.
  • the coils were cut and a portion of the sheets obtained was cold rolled to a thickness of 4 mm.
  • Table 2 Alloy mg Zn mn Yes Fe Cu Zr Ti Cr AT 1.20 4.48 0.12 0.12 0.21 0.10 0.12 0,036 0.25 B 1.15 4.95 0.006 0.04 0.10 0.13 0.11 0,011 0.05
  • the products in the T4 state have been characterized only in flaky corrosion (EXCO and SWAAT tests) because it is known (see in particular the article "Stress corrosion corrosion susceptibility of aluminum alloy 7020 welded sheets" by MC Reboul, B. Dubost and M. Lashermes, published in Corrosion Science, Vol 25, No. 11, p. 999-1018, 1985 ) that it is the most sensitive state to flaky corrosion for Al-Zn-Mg alloys.
  • the yield strength was measured in the Longitudinal direction and the resistance to flaky corrosion (loss of mass after SWAAT test on full thickness test specimen or machined test on half of its surface ) has been evaluated.
  • the sensitivity to stress corrosion has been determined in both directions only in the T6 state because it is known (see the article by Reboul et al., Cited above) that this is the most sensitive state. stress corrosion.
  • the results are given in Tables 3 and 4.
  • Example 2 The sheets from Example 1, rolled to 6 mm and put into solution at 560 ° C., designated ACH and BCH, were welded in the T6 state.
  • the weld was made in the Travers-Long direction, with an X chamfer, by a smooth-running semi-automatic MIG process, with a 5183 alloy filler wire (Mg 4.81%, Mn 0.651%, Ti 0.120%, Si 0.035%, Fe 0.130%, Zn 0.001%, Cu 0.001%, Cr 0.075%) of 1.2mm diameter, supplied by Soudure Auto constitutitie.
  • Tensile specimens (width 25 mm, symmetrically trimmed bead, effective length of test piece and length of extensometer equal to (W + 2 e) where W is the width of the bead and the thickness of the test piece) were taken in the long direction, perpendicular to the weld, so that the seal is in the middle.
  • the Characterization was made 19, 31 and 90 days after welding, because the skilled person knows that for this type of alloys, the mechanical properties after welding increase sharply during the first weeks of maturation. Test specimens machined at mid-thickness on half of their surface were also subjected to SWAAT and EXCO tests.
  • the alloy according to composition B has less advantageous mechanical properties after welding than the alloy according to composition A. After welding, the resistance in flaky corrosion of the two alloys is degraded with respect to the behavior of the base metal.
  • a plate C was prepared by semicontinuous casting. Its composition is identical to that of the plate B resulting from example 1.
  • the plate was hot rolled after reheating for 13 hours at 550 ° C. (time at the stage) followed by a rolling bearing at 540 ° C.
  • the first step reversible mill, brought the plate to a thickness of 15.5 mm, the exit temperature of the mill being about 490 ° C.
  • the rolled plate was then cooled by spraying and natural convection to a temperature of about 260 ° C. At this temperature, it was fed into a tandem mill (3 cages), rolled to the final thickness of 6 mm, and wound.
  • the winding temperature of the coil measured as in Example 1, is about 150 ° C. Once cooled naturally, the coil was discharged into sheets. These were hovered and did not undergo any other deformation operation.
  • the sheets obtained were characterized in terms of manufacturing (static mechanical characteristics Long and Travers-Long direction, stress corrosion and stress) and after welding (static mechanical characteristics, flaking corrosion). .
  • the welding was carried out simultaneously with the welding of Example 2, and according to the same method. Test specimens machined at half thickness on half of their surface were subjected to SWAAT and EXCO tests. The results are collated in Tables 7 and 8 (non-welded sheets) and in Table 9 (welded sheets).
  • the raw sheet (not welded) according to the invention has a lower resistance to flake corrosion than that of the sheet BCH, manufactured from the same composition but with a much more complex manufacturing process. On the other hand, its corrosion resistance under stress is equivalent.
  • the sheet according to the invention After welding, the sheet according to the invention has a mechanical strength very much greater than that of ACH and BCH sheets developed with a method according to the prior art. Its resistance to flaky corrosion on welded joint is equivalent.
  • the method according to the invention performs the winding at a temperature of about 120 ° C lower than the method according to the state of the art of Example 1.
  • Example 3 The sheet marked "C” derived from Example 3 was subjected to additional heat treatments of the tempered type at a temperature of 140 ° C. The samples thus obtained were then characterized as in Example 3 (static mechanical characteristics L direction and laminating corrosion). The results are summarized in Table 10 and on figure 5 (the black dots and the black line correspond to the elastic limit, and the bars to mass loss during the SWAAT test).
  • Table 10 Heat treatment R p0.2 (L) [MPa] R m (L) [MPa] A% (L) [%] Mass loss ⁇ m in g / dm 2 Rating in flaky corrosion SWAAT 100 cycles EXCO 96h SWAAT 100 cycles No (" VS ") 305 344 14.4 0.85 5.1 EA 3h 140 ° C.
  • microstructure of samples ACH, BCH, BFH and C of Examples 1, 2 and 3 was characterized by scanning electron microscopy with field emission cannon (FEG-SEM, in BSE (backscattered electron) mode, acceleration voltage 15 kV, diaphragm 30 ⁇ m, working distance 10 mm, polished to L-TC sampling direction with Pt / Pd conductive deposition) and transmission electron microscopy (TEM, L-TL sampling direction, slide preparation by double jet electrochemical thinning with 30% HNO 3 in methanol at -35 ° C with a potential of 20 V). All samples were taken at mid-thickness of the plate.
  • FEG-SEM field emission cannon
  • BSE backscattered electron
  • TEM transmission electron microscopy
  • HZ heat-affected zone
  • the heat-affected zone has a hardness greater than that of the base metal for sheet C produced by the process according to the invention, which is quite unusual.
  • the thickness of the test pieces is indicated in Table 12.
  • the test makes it possible to define the curve R of the material, giving the tear resistance K R as a function of the extension of the crack ⁇ a.
  • the results are summarized in Table 13 and on Figure 7 .
  • the product according to the invention shows a better toughness in plane stress K R than a known reference product, whereas the crack propagation speed da / dN (TL) at the high ⁇ K values is substantially comparable.
  • the temperature T s was 603 ° C. (value obtained by numerical calculation).
  • the final thickness of the strip was 6 mm, its width 2400 mm.
  • the final product shows no recrystallization.
  • a fibered microstructure is observed at mid-thickness, with a grain thickness of the order of 10 ⁇ m.
  • Corrosion resistance evaluated by the EXCO test, was EA at the surface and at mid-thickness.
  • the corrosion resistance evaluated by the SWAAT test, was P at the surface and at mid-thickness, and the mass loss was 0.52 g / dm 2 at the surface and 0.17 g / dm 2 at mid-thickness.
  • the temperature T S for the alloy U was 600 ° C. (value obtained by numerical calculation).
  • the thickness of the strips U3 and U4 was 6 mm, that of the strips U1, U2 and S2 8 mm.
  • microstructure and the abrasion resistance of different sheets obtained by the process according to the invention (reference 7108 F7) and according to the state of the art (marks 5086 H24, 5186 H24, 5383 H34, 7020 T6, 7075 T6 and 7108 T6).
  • Table 19 gathers results concerning the mechanical characteristics and the microstructure of these sheets.
  • the material 7108 T6 had the composition of the alloy B of Example 2, and was close to the BCH material.
  • the material 7108 F7 has the same composition B of Example 2.
  • the abrasion resistance has been characterized using an original device that reproduces the conditions such as they may occur for example when loading, transporting and unloading sand in a bucket.
  • This test consists in measuring the loss of mass of a sample subjected to a vertical movement back and forth in a tank filled with sand.
  • the diameter of the tank is about 30 cm, the height of the sand about 30 cm.
  • the sample holder is fixed on a vertical rod connected to a double-acting jack which ensures the vertical movement of the rod back and forth.
  • the sample holder is in the form of a pyramid with a 45 ° angle. This is the tip of the pyramid that plunges into the sand.
  • the samples to be tested are embedded in the faces of the pyramid so that their surface is tangent to that of the corresponding face of the pyramid; it is the face corresponding to the L-TL plane (dimension 15 x 10 mm) which is exposed to the sand.
  • the depth of penetration of the sample into the sand was 200 mm.
  • weight loss values given are the average of three tests; the confidence interval is in the range of ⁇ 0.01 to 0.02 g; this underlines the good repeatability of this test.
  • Table 19 shows the very particular microstructure of the product obtained by the process according to the present invention, by comparing the two alloy products 7108, one (reference T6) obtained according to a known method, the other (reference F7) according to the process which is the subject of the present invention.
  • Table 20 shows the effect of this microstructure on abrasion resistance. It is immediately apparent that the product according to the invention is more resistant to abrasion than the standard product 5086 H24. This highlights its good suitability for use in industrial vehicles, as well as storage and handling equipment for granular products, such as skips, tanks, or conveyors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Metal Rolling (AREA)
  • Powder Metallurgy (AREA)
  • Laminated Bodies (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

The production of an aluminum alloy intermediate product comprises: (a) the semi-continuous casting of plate of an Al-Zn-Mg alloy; (b) subjecting the plate to a homogenization or reheating at a temperature (T1), where 500 degrees C at most T1 at most (Ts-20 degrees C) where Ts is the burning temperature; (c) effecting a first stage of hot rolling with one or more passes at an inlet temperature (T2) where (T1-30 degrees C) at most T2 at most(T1-5 degrees C) and an outlet temperature (T3) where (T1-100 degrees C) at most T3 at most (T1-30 degrees C); (d) rapidly cooling the strip from the hot rolling stage to a temperature (T4); (e) effecting a second hot rolling stage in a tandem mill at an inlet temperature (T5), where T5 at most T4 and 200 degrees C at most T5 at most 300 degrees C and rolling so that the coiling temperature (T) is such that (T5-150 degrees C) at most T6 at most (T5-50 degrees C). Independent claims are also included for: (a) an aluminum alloy product obtained by this method; (b) welded constructions incorporating this product

Description

Domaine technique de l'inventionTechnical field of the invention

La présente invention concerne les alliages de type AI-Zn-Mg à haute résistance mécanique, et plus particulièrement les alliages destinés à des constructions soudées telles que les structures employées dans le domaine de la construction navale, de la carrosserie automobile, du véhicule industriel et des réservoirs fixes ou mobiles.The present invention relates to Al-Zn-Mg type alloys with high mechanical strength, and more particularly alloys intended for welded constructions such as structures used in the field of shipbuilding, automobile bodywork, industrial vehicle and fixed or mobile tanks.

Etat de la techniqueState of the art

Pour la fabrication de structures soudées, on emploie habituellement des alliages d'aluminium des séries 5xxx (5056, 5083, 5383, 5086, 5186, 5182, 5054...) et 6xxx (6082, 6005A...). Les alliages 7xxx à basse teneur en cuivre, soudables (tels que 7020, 7108...) sont également adaptés pour la réalisation de pièces soudées dans la mesure où ils présentent de très bonnes propriétés mécaniques, y compris après soudage. Ces alliages sont cependant sujets à des problèmes de corrosion feuilletante (à l'état T4 et dans la zone affectée des soudures) et de corrosion sous contrainte (à l'état T6).For the manufacture of welded structures, aluminum alloys of the 5xxx series (5056, 5083, 5383, 5086, 5186, 5182, 5054 ...) and 6xxx (6082, 6005A ...) are usually used. The weldable low-copper 7xxx alloys (such as 7020, 7108 ...) are also suitable for producing welded parts as they have very good mechanical properties, even after welding. These alloys, however, are subject to problems of laminar corrosion (in the T4 state and in the affected area of the welds) and corrosion corrosion under stress (in the T6 state).

Les alliages de la famille 5xxx (Al-Mg) sont habituellement employés aux états H1x (écrouis), H2x (écrouis puis restaurés), H3x (écrouis et stabilisés) ou O (recuit). Le choix de l'état métallurgique dépend du compromis entre résistance mécanique, résistance à la corrosion et formabilité que l'on vise pour une utilisation donnée.Alloys in the 5xxx family (Al-Mg) are usually used in H1x (hardened), H2x (hardened and then restored), H3x (hardened and stabilized) or O (annealed) states. The choice of the metallurgical state depends on the compromise between mechanical strength, corrosion resistance and formability that is aimed for a given use.

Les alliages 7xxx (Al-Zn-Mg) sont dits "à durcissement structural", ce qui signifie qu'ils acquièrent leurs propriétés mécaniques par précipitation des éléments d'addition (Zn, Mg). L'homme du métier sait que, pour obtenir ces propriétés mécaniques, la transformation à chaud par laminage ou filage est suivie d'une mise en solution, d'une trempe et d'un revenu. Ces opérations, réalisées dans la majorité des cas de façon séparée, ont respectivement pour but de dissoudre les éléments d'alliage, de les maintenir sous forme de solution solide sursaturée à température ambiante, et enfin de les précipiter de façon contrôlée.The 7xxx alloys (Al-Zn-Mg) are said to be "structurally hardened", which means that they acquire their mechanical properties by precipitation of the additive elements (Zn, Mg). The person skilled in the art knows that in order to obtain these mechanical properties, the hot transformation by rolling or spinning is followed by dissolution in solution, quenching and an income. These operations, carried out in the majority of cases separately, are respectively intended to dissolve the alloying elements, to maintain them in the form of super-saturated solid solution at room temperature, and finally to precipitate them in a controlled manner.

Les alliages des familles 6xxx (Al-Mg-Si) et 7xxx (Al-Zn-Mg) sont généralement employés à l'état revenu. Dans le cas des produits sous forme de tôles ou bandes, le revenu donnant le maximum de résistance mécanique est désigné T6, lorsque la mise en forme par laminage ou filage est suivie d'une mise en solution séparée et d'une trempe.The alloys of the 6xxx (Al-Mg-Si) and 7xxx (Al-Zn-Mg) families are generally used in the reclaimed state. In the case of products in the form of sheets or strips, the income giving the maximum mechanical strength is designated T6, when the shaping by rolling or spinning is followed by a separate dissolution and quenching.

Pour le dimensionnement d'une structure, les paramètres qui gouvernent le choix de l'utilisateur sont essentiellement les caractéristiques mécaniques statiques, c'est-à-dire la résistance à la rupture Rm, la limite élastique Rp0,2, et l'allongement à la rupture A. D'autres paramètres qui entrent en jeu, en fonction des besoins spécifiques de l'application visée, sont les caractéristiques mécaniques du joint soudé, la résistance à la corrosion (feuilletante et sous contrainte) de la tôle et du joint soudé, la résistance à la fatigue de la tôle et du joint soudé, la résistance à la propagation de fissures, la ténacité, la stabilité dimensionnelle après découpe ou soudage, la résistance à l'abrasion. Pour chaque utilisation visée, il faut trouver un compromis adapté entre ces différentes propriétés.For the dimensioning of a structure, the parameters that govern the user's choice are essentially the static mechanical characteristics, that is to say the breaking strength R m , the elastic limit R p0,2 , and the The other parameters that come into play, depending on the specific needs of the intended application, are the mechanical characteristics of the welded joint, the corrosion resistance (laminating and stress) of the sheet and welded joint, fatigue strength of sheet and welded joint, resistance to crack propagation, toughness, dimensional stability after cutting or welding, resistance to abrasion. For each intended use, it is necessary to find a suitable compromise between these different properties.

La possibilité de produire industriellement des produits laminés de qualité régulière avec un procédé de fabrication aussi simple que possible et un coût de production aussi bas que possible est également un facteur important pour le choix du matériau.The ability to industrially produce regular quality rolled products with as simple a manufacturing process as possible and a production cost as low as possible is also an important factor in the choice of material.

Pour les alliages 7xxx (Al-Zn-Mg), l'état de la technique propose plusieurs voies pour améliorer le compromis de propriétés.For 7xxx alloys (Al-Zn-Mg), the state of the art offers several ways to improve the property compromise.

Le brevet GB 1 419 491 (British Aluminium) divulgue un alliage soudable contenant 3,5 - 5,5 % de zinc, 0,7 - 3,0 % de magnésium, 0,05 - 0,30 % de zirconium, optionnellement jusqu'à 0,05 % chacun de chrome et manganèse, jusqu'à 0,10 % de fer, jusqu'à 0,075 % de silicium, et jusqu'à 0,25 % de cuivre.The patent GB 1 419 491 (British Aluminum) discloses a weldable alloy containing 3.5 - 5.5% zinc, 0.7 - 3.0% magnesium, 0.05 - 0.30% zirconium, optionally up to 0.05% each of chromium and manganese, up to 0.10% iron, up to 0.075% silicon, and up to 0.25% copper.

L'article « New weldable AlZnMg alloys » de B.J. Young, paru dans Light Metals Industry, novembre 1963, mentionne deux alliages de composition : Zn 5,0 % Mg 1,25 % Mn 0,5 % Cr 0,15 % Cu 0,4 % et Zn 4,5 % Mg 1,2 % Mn 0,3 % Cr 0,2 %. BJ Young's article "New weldable AlZnMg alloys", published in Light Metals Industry, November 1963, mentions two compositional alloys: Zn 5.0% Mg 1.25% Mn 0.5% Cr 0.15% Cu 0.4% and Zn 4.5% 1.2% Mg Mn 0.3% Cr 0.2%.

L'article mentionne l'utilisation de ce type d'alliages pour bennes de camion et construction maritime.The article mentions the use of this type of alloys for truck tippers and marine construction.

Le brevet FR 1 501 662 (Vereinigte Aluminium-Werke Aktiengesellschaft) décrit un alliage soudable de composition Zn 5,78 % Mg 1,62 % Mn 0,24 % Cr 0,13 % Cu 0,02 % Zr 0,17 % utilisé sous forme de tôles d'épaisseur de 4 mm, après mise en solution pendant une heure à 480° C, trempe à l'eau et revenu en deux étapes (24 heures à 120 °C, puis 2 heures à 180 °C), pour la fabrication de blindages.The patent FR 1 501 662 (Vereinigte Aluminum-Werke Aktiengesellschaft) discloses a weldable alloy of composition Zn 5.78% Mg 1.62% Mn 0.24% Cr 0.13% Cu 0.02% Zr 0.17% used in the form of sheets with a thickness of 4 mm, after being dissolved for one hour at 480 ° C., quenched with water and returned in two stages (24 hours at 120 ° C. and then 2 hours at 180 ° C.) , for the manufacture of shields.

Le brevet US 5,061,327 (Aluminum Company of America) décrit un procédé de fabrication d'un produit laminé en alliage d'aluminium comportant la coulée d'une plaque, l'homogénéisation, le laminage à chaud, le réchauffage de l'ébauche à une température comprise entre 260 °C et 582 °C, son refroidissement rapide, un traitement de précipitation à une température comprise entre 93 °C et 288 °C, puis le laminage à froid ou à chaud à une température ne dépassant pas 288 °C.The patent US 5,061,327 (Aluminum Company of America) discloses a method of manufacturing an aluminum alloy rolled product comprising casting a plate, homogenizing, hot rolling, reheating the blank to a temperature of between 260 ° C and 582 ° C, its rapid cooling, a precipitation treatment at a temperature between 93 ° C and 288 ° C, and then cold rolling or hot rolling at a temperature not exceeding 288 ° C.

Le document US-B-6 302 973 divulgue un procédé d'élaboration d'un produit laminé intermédiaire en alliage d'aluminium de type Al-Zn-Mg avec une composition en pourcentage pondéral: Mg 0,5 - 1,5%; Zn 0,1 - 3,8%; Si 0,05 - 1,5%; Mn 0,2 - 0,8%; Zr 0,05 - 0,25%; Cr 0,3% max.; Cu < 0,3%; Fe 0,5% max.; Ag 0,4% max.; Ti 0,2% max.; reste Al et impuretés inévitable, le procédé comprenant:

  • une homogénéisation à une température comprise entre 400 et 600°C;
  • un laminage à chaud à une température comprise entre 350 et 600°C, ledit laminage à chaud comprenant un premier et un deuxième laminage à chaud jusqu'à environ 10 mm; et
  • un laminage à froid.
The document US-B-6,302,973 discloses a process for producing an Al-Zn-Mg aluminum alloy intermediate rolled product with a weight percent composition: Mg 0.5 - 1.5%; Zn 0.1 - 3.8%; If 0.05 - 1.5%; Mn 0.2 - 0.8%; Zr 0.05 - 0.25%; Cr 0.3% max .; Cu <0.3%; Fe 0.5% max .; Ag 0.4% max .; Ti 0.2% max .; Al remains and unavoidable impurities, the method comprising:
  • homogenization at a temperature between 400 and 600 ° C;
  • hot rolling at a temperature between 350 and 600 ° C, said hot rolling comprising first and second hot rolling to about 10 mm; and
  • cold rolling.

Problème poséProblem

Le problème auquel essaye de répondre la présente invention est tout d'abord d'améliorer le compromis de certaines propriétés d'alliages Al-Zn-Mg sous formes de tôles ou bandes, à savoir le compromis entre les caractéristiques mécaniques (déterminé sur le métal de base et sur le joint soudé), et la résistance à la corrosion (corrosion feuilletante et corrosion sous contrainte). Par ailleurs, on cherche à réaliser ces produits avec une gamme de fabrication aussi simple et fiable que possible, permettant de les fabriquer avec un coût de fabrication aussi bas que possible.The problem to which the present invention tries to respond is first of all to improve the compromise of certain properties of Al-Zn-Mg alloys in the form of sheets or strips, namely the compromise between the mechanical characteristics (determined on the metal base and welded joint), and corrosion resistance (laminar corrosion and stress corrosion). Moreover, we seek to produce these products with a manufacturing range that is as simple and reliable as possible, allowing them to be manufactured with as little manufacturing cost as possible.

Objet de l'inventionObject of the invention

Le premier objet de la présente invention défini à la revendication 1 est un procédé d'élaboration d'un produit laminé intermédiaire en alliage d'aluminium de type Al-Zn-Mg, comprenant les étapes suivantes :
a) on élabore par coulée semi-continue une plaque contenant (en pourcents massiques) Mg 0,5-2,0 Mn < 1,0 Zn 3,0 - 9,0 Si < 0,50 Fe < 0,50 Cu < 0,50 Ti < 0,15 Zr < 0,20 Cr < 0,50 le reste de l'aluminium avec ses inévitables impuretés, dans laquelle Zn/Mg > 1,7 ;
b) on soumet ladite plaque à une homogénéisation et / ou à un réchauffage à une température T1, choisie telle que 500°C ≤ T1 ≤ (TS - 20°C), où TS représente la température de brûlure de l'alliage,
c) on effectue une première étape de laminage à chaud comprenant une ou plusieurs passes de laminage sur un laminoir à chaud, la température d'entrée T2 étant choisie telle que (T1 - 60°C) ≤ T2 ≤ (T1 - 5 °C), et le procédé de laminage étant conduit d'une façon à ce que la température de sortie T3 soit telle que (T1 - 150°C) ≤ T3 ≤ (T1 - 30 °C) et T3 < T2 ;
d) on refroidit la bande issue de ladite première étape de laminage à chaud par un moyen approprié à une température T4 ;
e) on effectue une seconde étape de laminage à chaud de ladite bande sur un laminoir tandem, la température d'entrée T5 étant choisie telle que T5 ≤ T4 et 200°C ≤ T5 ≤ 300°C, et le procédé de laminage étant conduit de façon à ce que la température de bobinage T6 soit telle que (T5 -150°C) ≤ T6 ≤ (T5 - 20 °C).
The first object of the present invention defined in claim 1 is a process for producing an intermediate laminated product of Al-Zn-Mg type aluminum alloy, comprising the following steps:
a) a plate containing (in mass percents) is produced by semi-continuous casting Mg 0.5-2.0 Mn <1.0 Zn 3.0 - 9.0 If <0.50 Fe <0.50 Cu <0.50 Ti <0.15 Zr <0.20 Cr <0.50 the rest of the aluminum with its inevitable impurities, in which Zn / Mg>1.7;
b) the said plate is subjected to homogenization and / or reheating at a temperature T 1 , chosen such that 500 ° C ≤ T 1 ≤ (T S -20 ° C), where T S represents the burning temperature of l 'alloy,
c) performing a first hot rolling step comprising one or more rolling passes on a hot rolling mill, the inlet temperature T 2 being chosen such that (T 1 - 60 ° C) ≤ T 2 ≤ (T 1 - 5 ° C), and the rolling process being conducted in such a way that the outlet temperature T 3 is such that (T 1 - 150 ° C) ≤ T 3 ≤ (T 1 - 30 ° C) and T 3 <T 2 ;
d) cooling the strip from said first hot rolling step by appropriate means at a temperature T 4 ;
e) a second step of hot rolling of said strip is carried out on a tandem mill, the inlet temperature T 5 being chosen such that T 5 ≤ T 4 and 200 ° C ≤ T 5 ≤ 300 ° C, and the process rolling mill being conducted so that the winding temperature T 6 is such that (T 5 -150 ° C) ≤ T 6 ≤ (T 5 - 20 ° C).

Un deuxième objet défini à la revendication 11 est un produit susceptible d'être obtenu par le procédé selon l'invention.A second object defined in claim 11 is a product obtainable by the method according to the invention.

Un troisième objet défini aux revendications 14 à 19 est l'utilisation du produit obtenu par le procédé selon l'invention pour la fabrication de constructions soudées.A third object defined in claims 14 to 19 is the use of the product obtained by the process according to the invention for the manufacture of welded constructions.

Un autre objet défini aux revendications 22 et 24 est la construction soudée réalisée avec au moins deux produits susceptibles d'être obtenus par le procédé selon l'invention, caractérisée en ce que sa limite d'élasticité Rp0,2 dans le joint soudé entre deux desdits produits est d'au moins 200 MPa.Another object defined in claims 22 and 24 is the welded construction made with at least two products obtainable by the process according to the invention, characterized in that its elastic limit R p0,2 in the welded joint between two of said products is at least 200 MPa.

Description des figuresDescription of figures

  • La figure 1 présente une gamme de fabrication typique dans un diagramme temps - température. Les repères chiffrés correspondent aux différentes étapes de procédé :
    1. (1) Première étape de laminage à chaud
    2. (2) Refroidissement
    3. (3) Deuxième étape de laminage à chaud
    4. (4) Bobinage et refroidissement en bobine
    The figure 1 presents a typical manufacturing range in a time - temperature diagram. The cipher marks correspond to the different process steps:
    1. (1) First stage of hot rolling
    2. (2) Cooling
    3. (3) Second stage of hot rolling
    4. (4) Coil winding and cooling
  • La figure 2 présente les éprouvettes employées pour les essais de corrosion feuilletante.The figure 2 presents the specimens used for the flaky corrosion tests.
  • La figure 3 présente les éprouvettes employées pour les essais de corrosion sous contrainte. Les cotes sont données en millimètres.The figure 3 presents the test pieces used for the stress corrosion tests. The dimensions are given in millimeters.
  • La figure 4 donne le principe de l'essai de traction lente (corrosion sous contrainte).The figure 4 gives the principle of the slow tensile test (stress corrosion).
  • La figure 5 compare la limite d'élasticité au sens L (points noirs reliés par la courbe noire) et la perte de masse lors d'un essai de corrosion feuilletante (barres) pour un produit intermédiaire selon l'invention et cinq traitements thermiques différents dudit produit intermédiaire.The figure 5 compares the limit of elasticity in the direction L (black points connected by the black curve) and the loss of mass during a flaky corrosion test (bars) for an intermediate product according to the invention and five different heat treatments of said intermediate product .
  • La figure 6 compare la microdureté Vickers dans la zone soudée pour trois différents échantillons soudés.The figure 6 compares the Vickers microhardness in the weld zone for three different welded samples.
  • La figure 7 compare la résistance à la déchirure Kr en fonction de l'extension de la fissure (« delta a », ce qui signifie Δ a) pour six tôles différentes.The figure 7 compares the tear strength Kr as a function of the extension of the crack ("delta a", which means Δ a) for six different sheets.
  • La figure 8 compare la vitesse de propagation de fissures da/dn d'une tôle selon l'invention avec une tôle selon l'état de la technique.The figure 8 compares the speed of crack propagation da / dn of a sheet according to the invention with a sheet according to the state of the art.
Description détaillée de l'inventionDetailed description of the invention

Sauf mention contraire, toutes les indications relatives à la composition chimique des alliages sont exprimées en pourcent massique. Par conséquent, dans une expression mathématique, « 0,4 Zn » signifie : 0,4 fois la teneur en zinc, exprimée en pourcent massique ; cela s'applique mutatis mutandis aux autres éléments chimiques. La désignation des alliages suit les règles the The Aluminum Association, connues de l'homme du métier. Les états métallurgiques sont définis dans la norme européenne EN 515. La composition chimique d'alliages d'aluminium normalisés est définie par exemple dans la norme EN 573-3. Sauf mention contraire, les caractéristiques mécaniques statiques, c'est-à-dire la résistance à la rupture Rm, la limite élastique Rp0,2, et l'allongement à la rupture A, des tôles métalliques sont déterminées par un essai de traction selon la norme EN 10002-1, l'endroit et le sens du prélèvement des éprouvettes étant définis dans la norme EN 485-1.Unless stated otherwise, all the information relating to the chemical composition of the alloys is expressed in percent by weight. Therefore, in a mathematical expression, "0.4 Zn" means: 0.4 times the zinc content, expressed in mass percent; this applies mutatis mutandis to other chemical elements. The designation of the alloys follows the rules of The Aluminum Association, known to those skilled in the art. The metallurgical states are defined in the European standard EN 515. The chemical composition of standardized aluminum alloys is defined for example in the standard EN 573-3. Unless otherwise stated, the static mechanical characteristics, ie the tensile strength R m , the yield strength R p0,2 , and the elongation at break A, of the metal sheets are determined by means of a tensile test. traction in accordance with EN 10002-1, the location and direction of specimen collection being defined in EN 485-1.

La vitesse de propagation de fissures da/dN est déterminée selon la norme ASTM E647, la tolérance aux dommages KR selon la norme ASTM E 561, la résistance à la corrosion exfoliante (appelée aussi corrosion feuilletante) est déterminée selon la norme ASTM G34 (essai Exco) ou ASTM G85-A3 (essai Swaat) ; pour ces essais, ainsi que pour des essais encore plus spécifiques, des informations complémentaires sont données ci-dessous dans la description et dans les exemples.The crack propagation rate da / dN is determined according to the ASTM E647 standard, the damage tolerance K R according to the ASTM E 561 standard, the resistance to exfoliating corrosion (also called laminar corrosion) is determined according to the ASTM G34 standard ( Exco test) or ASTM G85-A3 (Swaat test); for these tests, as well as for even more specific tests, additional information is given below in the description and in the examples.

La demanderesse a trouvé de façon surprenante qu'on peut fabriquer des produits laminés en alliage 7xxx qui montrent un très bon compromis de propriétés, notamment à l'état soudé, à l'aide d'un procédé simplifié, dans lequel la mise en solution, la trempe et le revenu sont réalisés au cours de la transformation à chaud par laminage.The Applicant has surprisingly found that it is possible to manufacture 7xxx alloy rolled products which show a very good compromise of properties, in particular in the welded state, using a simplified process, in which the dissolution, quenching and tempering are carried out during hot rolling by rolling.

Le procédé selon l'invention peut être mis en oeuvre sur des alliages Al-Zn-Mg dans une large gamme de composition chimique : Zn 3,0 - 9,0 %, Mg 0,5 - 2,0 %, l'alliage pouvant également contenir Mn < 1,0 %, Si < 0,50 %, Fe < 0,50 %, Cu < 0,50 %, Cr < 0,50 %, Ti < 0,15 %, Zr < 0,20 % , ainsi que les inévitables impuretés.The process according to the invention can be carried out on Al-Zn-Mg alloys in a wide range of chemical composition: Zn 3.0 - 9.0%, Mg 0.5 - 2.0%, the alloy may also contain Mn <1.0%, Si <0.50%, Fe <0.50%, Cu <0.50%, Cr <0.50%, Ti <0.15%, Zr <0.20 %, as well as the inevitable impurities.

La teneur en magnésium doit être comprise entre 0,5 et 2,0 % et préférentiellement entre 0,7 et 1,5 %. Au-dessous de 0,5 %, on obtient des propriétés mécaniques qui ne sont pas satisfaisantes pour beaucoup d'applications, et au-dessus de 2,0 %, on constate une détérioration de la résistance à la corrosion de l'alliage. Par ailleurs, au-dessus de 2,0 % de magnésium, la trempabilité de l'alliage n'est plus satisfaisante, ce qui nuit à l'efficacité du procédé selon l'invention.The magnesium content must be between 0.5 and 2.0% and preferably between 0.7 and 1.5%. Below 0.5%, mechanical properties are obtained which are unsatisfactory for many applications, and above 2.0% there is a deterioration in the corrosion resistance of the alloy. Moreover, above 2.0% magnesium, the quenchability of the alloy is no longer satisfactory, which affects the efficiency of the process according to the invention.

La teneur en manganèse doit être inférieure à 1,0 % et préférentiellement inférieure à 0,60 %, pour limiter la sensibilité à la corrosion feuilletante et pour conserver une bonne trempabilité. Une teneur ne dépassant pas 0,20% est préférée.The manganese content must be less than 1.0% and preferably less than 0.60%, to limit the sensitivity to flaky corrosion and to maintain good quenchability. A content not exceeding 0.20% is preferred.

La teneur en zinc doit être comprise entre 3,0 et 9,0 %, et préférentiellement comprise entre 4,0 et 6,0 %. Au-dessous de 3,0 %, les caractéristiques mécaniques sont trop faibles pour présenter un intérêt technique, et au-dessus de 9,0 %, on constate une détérioration de la résistance à la corrosion de l'alliage, ainsi qu'une dégradation de la trempabilité.The zinc content must be between 3.0 and 9.0%, and preferably between 4.0 and 6.0%. Below 3.0%, the mechanical characteristics are too low to be of technical interest, and above 9.0% there is a deterioration of the corrosion resistance of the alloy, as well as degradation of the quenchability.

Le rapport Zn/Mg doit être supérieur à 1,7 pour permettre rester dans le domaine de composition qui bénéficie du durcissement structural.The ratio Zn / Mg must be greater than 1.7 to allow to remain in the composition field which benefits from the structural hardening.

La teneur en silicium doit être inférieure à 0,50 % afin de ne pas détériorer le comportement en corrosion ni la résistance à la déchirure. Pour ces mêmes raisons, la teneur en fer doit être également inférieure à 0,50 %.The silicon content must be less than 0.50% in order not to deteriorate the corrosion behavior or the tear resistance. For these same reasons, the iron content must also be less than 0.50%.

La teneur en cuivre doit être inférieure à 0,50 % et préférentiellement inférieure à 0,25%, ce qui permet de limiter la sensibilité à la corrosion par piqûres et de conserver une bonne trempabilité. La teneur en chrome doit être inférieure à 0,50 %, ce qui permet de limiter la sensibilité à la corrosion feuilletante et de conserver une bonne trempabilité. La teneur en titane doit être inférieure à 0,15 % et celle en zirconium inférieure à 0,20 %, afin d'éviter la formation de phases primaires néfastes ; pour le Zr, on préfère ne pas dépasser 0,15 %.The copper content must be less than 0.50% and preferably less than 0.25%, which makes it possible to limit the sensitivity to pitting corrosion and to maintain good quenchability. The chromium content must be less than 0.50%, which makes it possible to limit the sensitivity to flaky corrosion and to maintain good quenchability. The titanium content must be less than 0.15% and that in zirconium less than 0.20%, in order to avoid the formation of harmful primary phases; for Zr it is preferred not to exceed 0.15%.

L'ajout d'un ou plusieurs éléments choisis dans le groupe formé par Sc, Y, La, Dy, Ho, Er, Tm, Lu, Hf, Yb est avantageux ; leur concentration ne devrait pas dépasser les valeurs suivantes :

  • Sc < 0,50 % et préférentiellement < 0,20 %
  • Y < 0,34 % et préférentiellement < 0,17 %
  • La < 0,10 % et préférentiellement < 0,05 %
  • Dy < 0,10 % et préférentiellement < 0,05 %
  • Ho < 0,10 % et préférentiellement < 0,05 %
  • Er < 0,10 % et préférentiellement < 0,05 %
  • Tm < 0,10 % et préférentiellement < 0,05 %
  • Lu < 0,10 % et préférentiellement < 0,05 %
  • Hf < 1,20 % et préférentiellement < 0,50 %
  • Yb < 0,50 % et préférentiellement < 0,25 %
The addition of one or more elements selected from the group consisting of Sc, Y, La, Dy, Ho, Er, Tm, Lu, Hf, Yb is advantageous; their concentration should not exceed the following values:
  • Sc <0.50% and preferentially <0.20%
  • Y <0.34% and preferentially <0.17%
  • <0.10% and preferentially <0.05%
  • Dy <0.10% and preferentially <0.05%
  • Ho <0.10% and preferentially <0.05%
  • Er <0.10% and preferentially <0.05%
  • Tm <0.10% and preferentially <0.05%
  • <0.10% and preferentially <0.05%
  • Hf <1.20% and preferentially <0.50%
  • Yb <0.50% and preferentially <0.25%

On entend ici par « trempabilité » l'aptitude d'un alliage à être trempé dans un domaine assez large de vitesses de trempe. Un alliage dit facilement trempable est donc un alliage pour lequel la vitesse de refroidissement au cours de la trempe n'influe pas fortement sur les propriétés d'usage (telles que la résistance mécanique ou la résistance à la corrosion)."Hardenability" is understood here to mean the ability of an alloy to be quenched in a fairly wide range of quenching speeds. An alloy said to be easily quenchable is therefore an alloy for which the cooling rate during quenching does not have a strong influence on the properties of use (such as strength or corrosion resistance).

Le procédé selon l'invention comporte les étapes suivantes :

  1. (a) La coulée d'une plaque de laminage en alliage d'aluminium selon l'une des méthodes connues, ledit alliage ayant la composition indiqué ci-dessus ;
  2. (b) L'homogénéisation ou le réchauffage de cette plaque de laminage à une température T1 comprise entre 500°C et (TS - 20°C), où TS représente la température de brûlure de l'alliage, pour une durée suffisante pour homogénéiser l'alliage et l'amener à une température convenable pour la suite du procédé ;
  3. (c) Une première étape de laminage à chaud de ladite plaque, typiquement à l'aide d'un laminoir réversible, à une température d'entrée T2 telle que (T1 - 60°C) ≤ T2 ≤ (T1 - 5 °C), et le procédé de laminage étant conduit d'une façon à ce que la température de sortie T3 soit telle que (T1 - 150°C) ≤ T3 ≤ (T1 - 30 °C) et T3 < T2 ;
  4. (d) Le refroidissement de la bande issue de ladite première étape de laminage par un moyen approprié à une température T4 ;
  5. (e) Une seconde étape de laminage à chaud de ladite bande, typiquement à l'aide d'un laminoir tandem, la température d'entrée T5 étant choisie telle que T5 ≤ T4 et 200°C ≤ T5 ≤ 300°C, et le procédé de laminage étant conduit de façon à ce que la température de bobinage T6 soit telle que (T5 - 150°C) ≤ T6 ≤ (T5 - 20 °C).
The process according to the invention comprises the following steps:
  1. (a) casting an aluminum alloy rolling plate according to one of the known methods, said alloy having the composition indicated above;
  2. (b) homogenizing or reheating said rolling plate at a temperature T 1 of between 500 ° C. and (T S -20 ° C.), where T S represents the burning temperature of the alloy, for a period of time sufficient to homogenize the alloy and bring it to a suitable temperature for the rest of the process;
  3. (c) A first step of hot rolling said plate, typically using a reversible mill, at an inlet temperature T 2 such that (T 1 - 60 ° C) ≤ T 2 ≤ (T 1 - 5 ° C), and the rolling process being conducted in such a way that the outlet temperature T 3 is such that (T 1 - 150 ° C) ≤ T 3 ≤ (T 1 - 30 ° C) and T 3 <T 2 ;
  4. (d) cooling the strip from said first rolling step by appropriate means at a temperature T 4 ;
  5. (e) A second step of hot rolling said strip, typically using a tandem mill, the inlet temperature T 5 being chosen such that T 5 ≤ T 4 and 200 ° C ≤ T 5 ≤ 300 ° C, and the rolling method being conducted so that the winding temperature T 6 is such that (T 5 - 150 ° C) ≤ T 6 ≤ (T 5 - 20 ° C).

La température de brûlure Ts est une grandeur connue de l'homme du métier, qui la détermine par exemple de manière directe par calorimétrie sur un échantillon brut de coulée, ou encore par calcul thermodynamique prenant en compte les diagrammes de phases. Les températures T2 et T5 correspondent à la température de la surface (le plus souvent de la surface supérieure) de la plaque ou bande mesurée juste avant son entrée dans le laminoir à chaud ; l'exécution de cette mesure peut se faire selon les méthodes connues de l'homme du métier.The burn temperature T s is a quantity known to those skilled in the art, which determines it for example directly by calorimetry on a raw sample of casting, or by thermodynamic calculation taking into account the phase diagrams. The temperatures T 2 and T 5 correspond to the temperature of the surface (usually the upper surface) of the plate or strip measured just before entering the hot rolling mill; the execution of this measurement can be done according to the methods known to those skilled in the art.

Dans un mode d'exécution avantageux, la température T3 est choisie telle que (T1-100°C) ≤ T3 ≤ (T1 - 30 °C). Dans un autre mode d'exécution avantageux, T2 est choisi tel que (T1 - 30°C) ≤ T2 ≤ (T1 - 5 °C). Dans un autre mode d'exécution avantageux, T6 est choisi tel que (T5 - 150°C) ≤ T6 ≤ (T5 - 50 °C).In an advantageous embodiment, the temperature T 3 is chosen such that (T 1 -100 ° C) ≤ T 3 ≤ (T 1 - 30 ° C). In another advantageous embodiment, T 2 is chosen such that (T 1 - 30 ° C) ≤ T 2 ≤ (T 1 - 5 ° C). In another advantageous embodiment, T 6 is chosen such that (T 5 - 150 ° C) ≤ T 6 ≤ (T 5 - 50 ° C).

Il est préférable de choisir la température T3 de manière à ce qu'elle soit supérieure à la température de solvus de l'alliage. La température de solvus est déterminée par l'homme du métier à l'aide de la calorimétrie différentielle. Maintenir T3 au-dessus de la température de solvus permet de minimiser la précipitation grossière des phases de type MgZn2. Il est préféré que ces phases soient formées de manière contrôlée sous forme de fins précipités lors du bobinage ou après le bobinage. Le contrôle de la température T3 est donc particulièrement critique. La température T4 est également un paramètre critique du procédé.It is preferable to choose the temperature T 3 so that it is greater than the solvus temperature of the alloy. The solvus temperature is determined by those skilled in the art using differential calorimetry. Keeping T 3 above the solvus temperature makes it possible to minimize the coarse precipitation of MgZn 2 phases. It is preferred that these phases are formed in a controlled manner in the form of fine precipitated during winding or after winding. The control of the temperature T 3 is therefore particularly critical. The temperature T 4 is also a critical parameter of the process.

Entre les étapes b) et c), c) et d), et d) et e), la température ne doit pas descendre au-dessous de la valeur spécifiée. En particulier, il est souhaitable que la température d'entrée au laminoir à chaud lors de l'étape (e), qui est effectuée de manière avantageuse sur un laminoir tandem, soit sensiblement égale à la température de la bande après refroidissement, ce qui nécessite soit un transfert suffisamment rapide de la bande d'un laminoir à l'autre, soit, de façon préférée, un procédé en ligne. Dans une réalisation préférée du procédé selon l'invention, les étapes b), c) d) et e) sont effectuées en ligne, c'est-à-dire qu'un élément de volume de métal donné (sous forme de plaque de laminage ou de bande laminée) passe d'une étape à l'autre sans stockage intermédiaire susceptible de conduire à une baisse incontrôlée de sa température qui nécessiterait un réchauffage intermédiaire. En effet, le procédé selon l'invention est basé sur une évolution précise de la température au cours des étapes b), c), d) et e) ; la figure 1 illustre un mode de réalisation de l'invention.Between steps b) and c), c) and d), and d) and e), the temperature must not fall below the specified value. In particular, it is desirable that the inlet temperature to the hot rolling mill during step (e), which is advantageously carried out on a tandem mill, be substantially equal to the temperature of the strip after cooling, which requires either a sufficiently fast transfer of the strip from one mill to another, or, preferably, an in-line process. In a preferred embodiment of the method according to the invention, the steps b), c) d) and e) are carried out in line, that is to say a given volume of metal element (in the form of a plate of rolling or rolled strip) goes from one stage to another without intermediate storage likely to lead to an uncontrolled drop in temperature which would require intermediate heating. Indeed, the process according to the invention is based on a precise evolution of the temperature during steps b), c), d) and e); the figure 1 illustrates an embodiment of the invention.

Le refroidissement à l'étape (d) peut se faire par tout moyen assurant un refroidissement suffisamment rapide, tel que : l'immersion, l'aspersion, la convection forcée, ou une combinaison de ces moyens. A titre d'exemple, le passage de la bande à travers une cellule de trempe par aspersion, suivie du passage à travers un caisson de trempe par convection naturelle ou forcée, suivi d'un passage à travers une seconde cellule de trempe par aspersion donne de bons résultats. En revanche, le refroidissement pas convection naturelle comme seul moyen n'est pas assez rapide, que ce soit en bande ou en bobine. D'une manière générale, à ce stade du procédé, le refroidissement en bobine ne donne pas de résultats satisfaisants.The cooling in step (d) can be done by any means ensuring sufficiently rapid cooling, such as: immersion, sprinkling, forced convection, or a combination of these means. For example, passage of the web through a quenching cell, followed by passage through a quench box by natural or forced convection, followed by passage through a second quenching cell by spraying good results. On the other hand, natural convection cooling as the only means is not fast enough, whether in tape or coil. In general, at this stage of the process, coil cooling does not give satisfactory results.

Après le bobinage (étape e)), on peut laisser refroidir la bobine. Le produit issue de l'étape (e) peut être soumis à d'autres opérations telles que le laminage à froid, le revenu, ou le découpage. Dans une réalisation avantageuse de l'invention, on soumet le produit laminé intermédiaire selon l'invention à un écrouissage à froid compris entre 1 % et 9 %, et / ou à un traitement thermique complémentaire comprenant un ou plusieurs paliers à des températures comprises entre 80 °C et 250 °C, ledit traitement thermique complémentaire pouvant intervenir avant, après ou au cours dudit écrouissage à froid.After winding (step e)), the coil can be allowed to cool. The product from step (e) can be subjected to other operations such as cold rolling, income, or cutting. In an advantageous embodiment of the invention, the intermediate rolled product according to the invention with a cold work hardening of between 1% and 9%, and / or with a complementary heat treatment comprising one or more steps at temperatures of between 80 ° C. and 250 ° C., said complementary heat treatment which can intervene before, after or during said cold work-hardening.

Le procédé selon l'invention est conçu de façon à pouvoir effectuer en ligne trois opérations de traitement thermique qui sont habituellement effectuées séparément : la mise en solution (effectuée selon l'invention au cours de la première étape de laminage à chaud), la trempe (effectué selon l'invention lors du refroidissement de la bande), le revenu (effectué selon l'invention lors du refroidissement de la bobine). Plus particulièrement, le procédé selon l'invention peut être conduit de façon à ce qu'il ne soit pas nécessaire de réchauffer le produit une fois qu'il est entré dans le laminoir à chaud réversible, chaque étape dudit procédé se situant à une température plus basse que la précédente. Cela permet d'économiser de l'énergie. Le produit laminé intermédiaire obtenu par le procédé selon l'invention peut être utilisé tel quel, c'est-à-dire sans le soumettre à d'autres étapes de procédé qui modifient son état métallurgique ; cela est préférable. Si nécessaire, il peut être soumis à d'autres étapes de procédé qui modifient son état métallurgique, tel qu'un laminage à froid.The process according to the invention is designed so as to be able to carry out in line three heat treatment operations which are usually carried out separately: the dissolving (carried out according to the invention during the first hot rolling step), quenching (performed according to the invention during the cooling of the strip), the income (made according to the invention during cooling of the coil). More particularly, the method according to the invention can be conducted so that it is not necessary to heat the product once it has entered the reversible hot rolling mill, each step of said process being at a temperature lower than the previous one. This saves energy. The intermediate rolled product obtained by the process according to the invention can be used as it is, that is to say without subjecting it to other process steps which modify its metallurgical state; this is preferable. If necessary, it may be subjected to other process steps that change its metallurgical state, such as cold rolling.

Par rapport à un procédé qui effectue ces trois étapes séparément, le procédé selon l'invention peut conduire parfois, pour un alliage donné, à des caractéristiques mécaniques statiques légèrement moins bonnes. En revanche, dans certains cas, il conduit à une amélioration de la tolérance aux dommages, ainsi qu'à une amélioration de la résistance à la corrosion, surtout après le soudage. Ceci a été constaté en particulier pour un domaine de composition restreint, comme il sera expliqué par la suite. Le compromis de propriétés que l'on obtient avec le procédé selon l'invention est au moins aussi intéressant que celui que l'on obtient par un procédé de fabrication classique, dans lequel la mise en solution, la trempe et le revenu sont effectué séparément et qui conduit à l'état T6. En revanche, le procédé selon l'invention est beaucoup plus simple et moins coûteux que les procédés connus. Il conduit avantageusement à un produit intermédiaire dont l'épaisseur est comprise entre 3 mm et 12 mm ; au-dessus de 12 mm, le bobinage devient techniquement difficile, et au-dessous de 3 mm, outre les difficultés techniques du laminage à chaud dans cette zone d'épaisseur, la bande risque de se refroidir trop.Compared to a process that performs these three steps separately, the method according to the invention can sometimes lead, for a given alloy, to static mechanical characteristics slightly worse. On the other hand, in some cases, it leads to an improvement of the damage tolerance, as well as an improvement of the resistance to corrosion, especially after welding. This has been found in particular for a restricted composition domain, as will be explained later. The compromise of properties that is obtained with the process according to the invention is at least as interesting as that obtained by a conventional manufacturing process, in which solution, quenching and tempering are carried out separately. and which leads to the T6 state. On the other hand, the process according to the invention is much simpler and less expensive than the known processes. It advantageously leads to an intermediate product whose thickness is between 3 mm and 12 mm; above 12 mm, the winding becomes technically difficult, and below 3 mm, besides the technical difficulties of hot rolling in this zone of thickness, the band is likely to cool too much.

Comme cela sera expliqué ci-dessous, un domaine de composition préféré pour la mise en oeuvre du procédé selon l'invention est caractérisé par Zn 4,0 - 6,0 , Mg 0,7 - 1,5, Mn < 0,60, et préférentiellement Cu < 0,25. Des alliages montrant une bonne trempabilité sont préférés, et parmi ces alliages on préfère les alliages 7020, 7003, 7004, 7005, 7008, 7011, 7018, 7022 et 7108.As will be explained below, a preferred composition range for carrying out the process according to the invention is characterized by Zn 4.0 - 6.0, Mg 0.7 - 1.5, Mn <0.60 and preferably Cu <0.25. Alloys exhibiting good quenchability are preferred, and among these alloys, alloys 7020, 7003, 7004, 7005, 7008, 7011, 7018, 7022 and 7108 are preferred.

Une mise en oeuvre particulièrement avantageuse du procédé selon l'invention se fait sur un alliage de type 7108 avec : T1 = 550 °C, T2 = 540 °C, T3 = 490 °C, T4 = 270 °C, T5 = 270 °C, T6 = 150 °C.A particularly advantageous implementation of the process according to the invention is carried out on a type 7108 alloy with: T 1 = 550 ° C, T 2 = 540 ° C, T 3 = 490 ° C, T 4 = 270 ° C, T 5 = 270 ° C, T 6 = 150 ° C.

Les produits en alliages Al-Zn-Mg selon l'invention peuvent être soudés par tous les procédés de soudage connus, tels que le soudage MIG ou TIG, le soudage par friction, le soudage par laser, le soudage par faisceau d'électrons. Des essais de soudage ont été effectués sur des tôles avec un chanfrein en X, soudées par soudage MIG semi-automatique en courant lisse, avec un fil d'apport en alliage 5183. Le soudage a été effectué dans le sens perpendiculaire au laminage. Les essais mécaniques sur les éprouvette soudées ont été effectués selon une méthode préconisée par la société Det Norske Veritas (DNV) dans leur document « Rules for classification of Ships - Newbuildings - Materials and Welding - Part 2 Chapter 3 : Welding » de janvier 1996. Selon cette méthode, la largeur de l'éprouvette de traction est de 25 mm, le cordon est arasé symétriquement et la longueur utile de l'éprouvette ainsi que la longueur de l'extensomètre utilisé est donnée par (W+2.e) où le paramètre W désigne la largeur du cordon et le paramètre e désigne l'épaisseur de l'éprouvette.The Al-Zn-Mg alloy products according to the invention can be welded by all known welding processes, such as MIG or TIG welding, friction welding, laser welding, electron beam welding. Welding tests were carried out on X-chamfered plates welded by semi-automatic smooth-flow MIG welding with a 5183 alloy filler wire. The welding was carried out in the direction perpendicular to the rolling. The mechanical tests on the welded specimens were carried out according to a method recommended by Det Norske Veritas (DNV) in their document "Rules for classification of Ships - Newbuildings - Materials and Welding - Part 2 Chapter 3: Welding" of January 1996. According to this method, the width of the tensile test piece is 25 mm, the cord is symmetrically leveled and the useful length of the specimen and the length of the extensometer used is given by (W + 2.e) where the parameter W designates the width of the bead and the parameter e designates the thickness of the specimen.

Plus particulièrement, la demanderesse a constaté que le soudage MIG des produits selon l'invention conduit a des joints soudés caractérisés par une limite élastique et une limite à rupture plus grandes qu'avec un alliage fabriqué selon une gamme classique (T6). Ce résultat, qui se traduit par un net avantage pour les constructions mécano-soudées, c'est-à-dire les constructions dans lesquelles la zone soudée exerce un rôle structural, est surprenant dans la mesure où les propriétés statiques du métal non soudé sont plutôt plus faibles qu'à l'état T6.More particularly, the Applicant has found that the MIG welding of the products according to the invention leads to welded joints characterized by a greater yield strength and rupture limit than with an alloy manufactured according to a conventional range. (T6). This result, which is reflected in a clear advantage for mechanically welded constructions, that is to say the constructions in which the welded zone has a structural role, is surprising insofar as the static properties of the unwelded metal are rather weaker than at T6.

La résistance à la corrosion du métal de base et des joints soudés a été évaluée à l'aide des essais SWAAT et EXCO. L'essai SWAAT permet l'évaluation de la tenue en corrosion (notamment en corrosion feuilletante) des alliages d'aluminium de façon générale. Puisque le procédé selon la présente invention conduit à un produit avec une structure fortement fibrée, il est important de s'assurer que ledit produit résiste bien à la corrosion exfoliante, qui se développe principalement sur des produits montrant une structure fibrée. L'essai SWAAT est décrit dans l'annexe A3 de la norme ASTM G85. Il s'agit d'un essai cyclique. Chaque cycle, d'une durée de deux heures, consiste en une phase d'humidification de 90 minutes (humidité relative de 98%) et une période d'aspersion de trente minutes, d'une solution composée (pour un litre) de sel pour eau de mer artificielle (voir le tableau 1 pour la composition, qui est conforme à la norme ASTM D1141) et de 10ml d'acide acétique glacial. Le pH de cette solution est compris entre 2,8 et 3,0. La température pendant toute la durée d'un cycle est comprise entre 48°C et 50°C. Dans cet essai, les échantillons à tester sont inclinés de 15° à 30° par rapport à la verticale. L'essai a été effectué avec une durée de 100 cycles. Tableau 1 : composition du sel pour eau de mer artificielle NaCl MgCl2 Na2SO4 CaCl2 KCl NaHCO3 KBr H3BO3 SrCl2 NaF g/l 24,53 5,20 4,09 1,16 0,69 0,20 0,10 0,027 0,025 0,003 The corrosion resistance of the base metal and welded joints was evaluated using SWAAT and EXCO tests. The SWAAT test makes it possible to evaluate the resistance to corrosion (especially in flaky corrosion) of aluminum alloys in general. Since the method according to the present invention leads to a product with a highly fiber-reinforced structure, it is important to ensure that said product is resistant to exfoliating corrosion, which develops mainly on products showing a fiber structure. The SWAAT test is described in Annex A3 of ASTM G85. This is a cyclic test. Each cycle, lasting two hours, consists of a humidification phase of 90 minutes (relative humidity of 98%) and a 30-minute spraying period, of a compound solution (for one liter) of salt. for artificial seawater (see Table 1 for composition, which complies with ASTM D1141) and 10ml of glacial acetic acid. The pH of this solution is between 2.8 and 3.0. The temperature throughout the cycle is between 48 ° C and 50 ° C. In this test, the samples to be tested are inclined at 15 ° to 30 ° with respect to the vertical. The test was carried out with a duration of 100 cycles. Table 1: Salt Composition for Artificial Seawater NaCl MgCl 2 Na 2 SO 4 CaCl 2 KCI NaHCO 3 KBr H 3 BO 3 SrCl 2 NaF g / l 24.53 5.20 4.09 1.16 0.69 0.20 0.10 0,027 0,025 0,003

L'essai EXCO, d'une durée de 96 heures, est décrit dans la norme ASTM G34. Il est principalement destiné à établir la résistance à la corrosion feuilletante des alliages d'aluminium contenant du cuivre, mais peut également convenir pour les alliages AI-Zn-Mg (voir J.Marthinussen, S.Grjotheim, « Qualification of new aluminium alloys », 3rd International Forum on Aluminium Ships, Haugesund, Norvège, Mai 1998).The EXCO test, which lasts 96 hours, is described in ASTM G34. It is primarily intended to establish the laminar corrosion resistance of aluminum alloys containing copper, but may also be suitable for AI-Zn-Mg alloys (see J.Marthinussen, S.Grjotheim, "Qualification of new aluminum alloys"). , 3 rd International Forum on Aluminum Ships, Haugesund, Norway, May 1998).

Pour ces deux types d'essai, des éprouvettes rectangulaires ont été utilisés, dont une face était protégée par une bande d'aluminium adhésive (afin de n'attaquer que l'autre face) et dont la face à attaquer était soit laissée telle quelle, soit usinée jusqu'à mi-épaisseur sur la moitié de la surface de l'échantillon, et laissée pleine épaisseur sur l'autre moitié. Les schémas des éprouvettes utilisées pour chacun des essais sont donnés aux figures 2 (corrosion feuilletante) et 3 (corrosion sous contrainte).For these two types of test, rectangular test pieces were used, one side of which was protected by an adhesive aluminum strip (in order to attack only the other side) and the face to be attacked was either left as it was it is machined to half thickness on half the surface of the sample, and left full thickness on the other half. The diagrams of the test pieces used for each test are given to the figures 2 (laminar corrosion) and 3 (stress corrosion).

La demanderesse a constaté que le produit selon l'invention présentait une tenue en corrosion feuilletante équivalente à celle que l'on obtient pour le produit standard (alliage identique ou voisin à l'état T6).The Applicant has found that the product according to the invention has a resistance in flaky corrosion equivalent to that obtained for the standard product (alloy identical or neighboring T6 state).

Un produit particulièrement préféré selon l'invention contient entre 4,0 et 6,0 % de zinc, entre 0,7 et 1,5 % de magnésium, moins de 0,60 % , et encore plus préférentiellement moins de 0,20 % de manganèse, et moins de 0,25 % de cuivre. Un tel produit montre une perte de masse de moins de 1 g/dm2 lors du testeSWAAT (100 cycles), et de moins de 5,5 g/dm2 lors du test EXCO (96 h), avant revenu ou après un revenu correspondant au plus à 15 h à 140 °C.A particularly preferred product according to the invention contains between 4.0 and 6.0% of zinc, between 0.7 and 1.5% of magnesium, less than 0.60%, and even more preferably less than 0.20%. of manganese, and less than 0.25% of copper. Such a product shows a loss of mass of less than 1 g / dm 2 in the 100-day SWAT test (100 cycles) and less than 5.5 g / dm 2 in the 96-hour EXCO test before income or after income. corresponding at most to 15 h at 140 ° C.

La résistance à la corrosion sous contrainte a été caractérisée à l'aide de la méthode de la traction lente (« Slow Strain Rate Testing »), décrite par exemple dans la norme ASTM G 129. Cet essai est plus rapide et plus discriminant que les méthodes consistant à déterminer la contrainte du seuil de non rupture en corrosion sous contrainte. Le principe de l'essai en traction lente, schématisé en figure 4, consiste à comparer les propriétés de traction en milieu inerte (air du laboratoire) et en milieu agressif. La baisse des propriétés mécaniques statiques en milieu corrosif correspond à la sensibilité à la corrosion sous contrainte. Les caractéristiques de l'essai de traction les plus sensibles sont l'allongement à rupture A et la contrainte maximale (à striction) Rm. On a utilisé l'allongement à rupture, qui est une grandeur nettement plus discriminante que la contrainte maximale. Il est toutefois nécessaire de s'assurer que la diminution des caractéristiques mécaniques statiques correspond effectivement à de la corrosion sous contrainte, définie comme action synergique et simultanée de la sollicitation mécanique et de l'environnement. Il a donc été suggéré d'effectuer également des essais de traction en milieu inerte (air du laboratoire), après une pré-exposition préalable de l'éprouvette, sans contrainte, au milieu agressif, pendant la même durée que l'essai de traction effectué dans ce milieu. La sensibilité à la corrosion sous contrainte est alors définie à l'aide d'un indice I défini comme : I = A % Pr e - Expo - A % MilieuAgressif A % MilieuInerte

Figure imgb0001
The resistance to stress corrosion has been characterized using the Slow Strain Rate Testing method, described for example in the ASTM G129 standard. This test is faster and more discriminating than the methods of determining the stress of the non-breaking stress corrosion stress. The principle of the slow traction test, schematized in figure 4 , consists in comparing the tensile properties in an inert medium (laboratory air) and in an aggressive medium. The decrease in static mechanical properties in a corrosive environment corresponds to the sensitivity to stress corrosion. The most sensitive tensile test characteristics are elongation at break A and maximum stress (at necking) R m . The elongation at break, which is a much more discriminating quantity than the maximum stress, was used. It is however necessary to ensure that the reduction of the static mechanical characteristics corresponds effectively to stress corrosion, defined as synergistic and simultaneous action of the mechanical stress. and the environment. It has therefore been suggested to also carry out tensile tests in an inert medium (laboratory air), after a preliminary pre-exposure of the specimen, without stress, to the aggressive medium, for the same duration as the tensile test. performed in this medium. The sensitivity to stress corrosion is then defined using an index I defined as: I = AT % Pr e - Expo - AT % MilieuAgressif AT % MilieuInerte
Figure imgb0001

Les aspects critiques de l'essai de traction lente concernent le choix de l'éprouvette de traction, de la vitesse de déformation et de la solution corrosive. Une éprouvette de forme échancrée avec un rayon de courbure de 100 mm, ce qui permet de localiser la déformation et de rendre l'essai encore plus sévère, a été utilisée. Elle a été prélevée dans le sens Long ou Travers-Long. Concernant la vitesse de sollicitation, il est reconnu, notamment sur les alliages Al-Zn-Mg (voir l'article « Corrosion sous contrainte de cristaux Al-5Zn-1,2Mg en milieu NaCl 30 g/l » par T. Magnin et C. Dubessy, paru dans les Mémoires et Etudes Scientifiques Revue de Métallurgie, octobre 1985, pages 559 - 567 ), qu'une vitesse trop rapide ne permet pas aux phénomènes de corrosion sous contrainte de se développer, mais qu'une vitesse trop lente masque la corrosion sous contrainte. Dans un essai préliminaire, la demanderesse a déterminé la vitesse de déformation de 5.10-7 s-1 (correspondant à une vitesse de déplacement de la traverse de 4,5.10-4 mm/min) qui permet de maximiser les effets de la corrosion sous contrainte ; c'est cette vitesse qui a été ensuite choisie pour l'essai. Concernant l'environnement agressif à utiliser, le même type de problème se pose dans la mesure où un milieu trop agressif masque la corrosion sous contrainte, mais où un environnement trop peu sévère ne permet pas de mettre en évidence de phénomène de corrosion. En vue de se rapprocher des conditions réelles d'utilisation, mais aussi de maximiser les effets de corrosion sous contrainte, on a utilisé pour cet essai une solution d'eau de mer synthétique (voir spécification ASTM D1141, avec composition rappelée dans le tableau 1). Pour chaque cas, trois éprouvettes au moins ont été testées.The critical aspects of the slow tensile test are the selection of the tensile specimen, the rate of deformation and the corrosive solution. A scalloped specimen with a radius of curvature of 100 mm, which makes it possible to locate the deformation and make the test even more severe, was used. It was taken in the direction Long or Travers-Long. Regarding the speed of stress, it is recognized, especially on Al-Zn-Mg alloys (see the article "Stress Corrosion of Al-5Zn-1.2Mg Crystals in 30g / l NaCl Medium" by T. Magnin and C. Dubessy, published in the Mémoires et Etudes Scientifiques Revue de Metallurgie, October 1985, pages 559-567 ), that too fast a speed does not allow the phenomena of corrosion under stress to develop, but that a speed too slow mask the corrosion under stress. In a preliminary test, the Applicant has determined the deformation rate of 5.10 -7 s -1 (corresponding to a traversing speed of the crossbar of 4.5 × 10 -4 mm / min) which makes it possible to maximize the effects of corrosion under constraint; it was this speed which was then chosen for the test. Regarding the aggressive environment to use, the same type of problem arises insofar as a too aggressive environment masks the corrosion under stress, but where a too mild environment does not allow to highlight corrosion phenomenon. In order to get closer to the real conditions of use, but also to maximize the effects of stress corrosion, a synthetic seawater solution was used for this test (see specification ASTM D1141, with composition recalled in Table 1). ). For each case, at least three test pieces were tested.

La demanderesse a trouvé que le procédé selon l'invention permet d'obtenir des produits qui, pour un domaine de composition restreint par rapport au domaine de composition dans lequel le procédé selon l'invention peut être mis en oeuvre, à savoir Zn 4,0 - 6,0 %, Mg 0,7-1,5 %, Mn < 0,60 %, et Cu < 0,25 %, ont des caractéristiques microstructurales nouvelles. Ces caractéristiques microstructurales conduisent à des propriétés d'usage particulièrement intéressantes, et notamment à une meilleure résistance à la corrosion.The applicant has found that the process according to the invention makes it possible to obtain products which, for a domain of restricted composition with respect to the composition domain in which the process according to the invention can be implemented, namely Zn 4, 0 - 6.0%, Mg 0.7-1.5%, Mn <0.60%, and Cu <0.25%, have new microstructural characteristics. These microstructural characteristics lead to particularly advantageous use properties, and in particular to better resistance to corrosion.

Dans ces produits selon l'invention, la largeur de la zone exempte de précipités (PFZ = precipitation-free zone) aux joints de grains est supérieure à 100 nm, préférentiellement comprise entre 100 à 150 nm, et encore plus préférentiellement de 120 à 140 nm ; cette largeur est bien supérieure à celle des produits comparables selon l'état de la technique (c'est à dire de même composition, même épaisseur et obtenus selon un procédé standard T6), pour lesquels cette valeur ne dépasse pas 60 nm. On constate également que les précipités de type MgZn2 aux joints de grains ont une taille moyenne supérieure à 150 nm, et préférentiellement comprise entre 200 et 400 nm, alors que cette taille ne dépasse pas 80 nm dans les produits selon l'état de la technique. Par ailleurs, les précipités durcissants de type MgZn2 sont nettement plus grossiers dans un produit selon l'invention que dans un produit comparable selon l'art antérieur. Cela indique que dans le procédé selon l'invention, la trempe n'est pas aussi rapide que dans un procédé classique avec mise en solution dans un four suivie d'une trempe séparée. Il est clair que le procédé selon l'invention ne permet d'éviter une certaine précipitation de phases grossières à partir de la température T4. Cependant, il faut veiller lors de l'exécution du procédé selon l'invention à ce que la vitesse de trempe soit suffisamment élevée, et d'obtenir la précipitation à une température aussi bas que possible. Lesdites phases ne doivent pas précipiter massivement à une température comprise entre T4 et T5.In these products according to the invention, the width of the zone free of precipitates (PFZ = precipitation-free zone) at the grain boundaries is greater than 100 nm, preferably between 100 to 150 nm, and even more preferably from 120 to 140 nm. nm; this width is much greater than that of comparable products according to the state of the art (that is to say of the same composition, same thickness and obtained according to a standard method T6), for which this value does not exceed 60 nm. It is also noted that the MgZn 2 precipitates at the grain boundaries have an average size greater than 150 nm, and preferably between 200 and 400 nm, whereas this size does not exceed 80 nm in the products according to the state of the technical. Moreover, the MgZn 2 type hardening precipitates are much coarser in a product according to the invention than in a comparable product according to the prior art. This indicates that in the process according to the invention the quenching is not as fast as in a conventional method with solution in a furnace followed by a separate quenching. It is clear that the method according to the invention makes it possible to avoid a certain precipitation of coarse phases from the temperature T 4 . However, care should be taken in carrying out the process according to the invention that the quenching rate is sufficiently high, and to obtain the precipitation at a temperature as low as possible. Said phases must not precipitate massively at a temperature between T 4 and T 5 .

Ces analyses microstructurales quantitatives ont été effectuées par microscopie électronique à transmission avec une tension d'accélération de 120 kV sur des échantillons prélevées à mi-épaisseur dans le sens L-TL et amincies électrolytiquement par double jet dans un mélange 30 % HNO3 + méthanol à -35 °C sous une tension de 20 V.These quantitative microstructural analyzes were carried out by transmission electron microscopy with an acceleration voltage of 120 kV on samples taken at mid-thickness in the L-TL direction and electrolytically quenched by double jet in a 30% HNO 3 + methanol mixture. at -35 ° C under a voltage of 20 V.

On constate également que le produit obtenu par le procédé selon l'invention présente une structure granulaire fibrée, c'est à dire des grains dont l'épaisseur ou dont le rapport épaisseur / longueur est nettement plus faible que pour les produits selon l'état de la technique. A titre indicatif, pour un produit selon l'invention, les grains ont une taille dans le sens de l'épaisseur (travers-court) de moins de 30 µm, préférablement moins de 15 µm et encore plus préférablement moins de 10 µm, et un rapport longueur/épaisseur de plus de 60, et préférentiellement de plus que 100, alors que pour un produit comparable selon l'état de la technique, les grains ont une taille dans le sens de l'épaisseur (travers-court) supérieure à 60 µm et un rapport longueur/épaisseur nettement inférieur à 40.It is also noted that the product obtained by the process according to the invention has a fibered granular structure, that is to say grains whose thickness or whose thickness / length ratio is significantly lower than for the products according to the state. of the technique. As an indication, for a product according to the invention, the grains have a size in the direction of the thickness (short-through) of less than 30 μm, preferably less than 15 μm and even more preferably less than 10 μm, and a length / thickness ratio of more than 60, and preferably of more than 100, whereas for a comparable product according to the state of the art, the grains have a size in the direction of the thickness (transverse-short) greater than 60 μm and a length / thickness ratio much less than 40.

Les tôles et bandes issues du procédé selon la présente invention, et notamment celles basées sur le domaine restreint de composition défini par Zn 4,0 - 6,0 %, Mg 0,7 - 1,5 %, Mn < 0,60 %, et préférentiellement Cu < 0,25 %, peuvent être avantageusement utilisés pour la construction de pièces d'automobiles, de véhicules industriels, de citernes routières ou ferroviaires, et pour la construction en milieu maritime.The sheets and strips resulting from the process according to the present invention, and in particular those based on the restricted area of composition defined by Zn 4.0 - 6.0%, Mg 0.7 - 1.5%, Mn <0.60% , and preferably Cu <0.25%, can be advantageously used for the construction of automobile parts, industrial vehicles, road or rail tanks, and for construction in the maritime environment.

Toutes les tôles et bandes issues du procédé selon la présente invention se prêtent particulièrement bien à la construction soudée ; elles peuvent être soudées par tous les procédés de soudage connus qui conviennent à ce type d'alliages. On peut souder des tôles selon l'invention entre elles, ou avec d'autres tôles en aluminium ou alliage d'aluminium, en utilisant un fil d'apport approprié. En soudant deux ou plusieurs tôles selon l'invention, il est possible d'obtenir des constructions présentant, après soudage, une limite d'élasticité (mesurée comme décrit ci-dessus) d'au moins 200 MPa. Dans une réalisation préférée, cette valeur est d'au moins 220 MPa. La résistance à la rupture du joint soudé est d'au moins 250 MPa, et dans une réalisation préférée d'au moins 280 MPa, et préférentiellement d'au moins 300 MPa, mesurée après une maturation d'au moins un mois. Dans une réalisation préférée, on obtient une zone affectée thermiquement qui montre une dureté d'au moins 100 HV, préférentiellement d'au moins 110 HV, et encore plus préférentiellement d'au moins 115 HV ; cette dureté est au moins aussi grande que celle des tôles de base qui a la dureté la moins élevée.All sheets and strips resulting from the process according to the present invention are particularly suitable for welded construction; they can be welded by all known welding processes which are suitable for this type of alloys. Sheet metal according to the invention can be welded to one another, or to other sheets of aluminum or aluminum alloy, using a suitable filler wire. By welding two or more sheets according to the invention, it is possible to obtain constructions having, after welding, a yield strength (measured as described above) of at least 200 MPa. In a preferred embodiment, this value is at least 220 MPa. The breaking strength of the welded joint is at least 250 MPa, and in a preferred embodiment of at least 280 MPa, and preferably at least 300 MPa, measured after a maturation of at least one month. In a preferred embodiment, a thermally affected zone is obtained which exhibits a hardness of at least 100 HV, preferably from minus 110 HV, and even more preferably at least 115 HV; this hardness is at least as great as that of the base plates which has the least hardness.

De manière surprenante, la demanderesse a constaté que le produit obtenu par le procédé selon l'invention, dans le domaine de composition préférentiel (Zn 4,0 - 6,0% , Mg 0,7 - 1,5% , Mn < 0,60 %), montre une résistance plus élevée à l'abrasion par le sable que les produits comparables. Elle constate que cette résistance à l'abrasion ne dépend pas de manière simple des caractéristiques mécaniques du produit, ni de sa dureté, ni de sa ductilité. La structure fibrée dans le sens TC semble favoriser la résistance à l'abrasion par le sable. Pour cette propriété d'usage, la supériorité du produit issu du procédé selon l'invention tient à la combinaison entre une structure fibrée particulière, inaccessible avec les procédés connus, et le niveau de caractéristiques mécaniques que lui confère sa composition. La demanderesse a trouvé que la résistance à l'abrasion par le sable du produit susceptible d'être obtenu par le procédé selon l'invention, exprimée sous forme de perte de masse lors d'un essai décrit dans l'exemple 10 ci-dessous, est inférieure à 0,20 g, et préférentiellement inférieure à 0,19 g pour une surface plane exposée de dimensions 15 x 10 mm.Surprisingly, the Applicant has found that the product obtained by the process according to the invention, in the field of preferred composition (Zn 4.0 - 6.0%, Mg 0.7 - 1.5%, Mn <0 , 60%), shows a higher resistance to abrasion by sand than comparable products. It notes that this resistance to abrasion does not depend in a simple way on the mechanical characteristics of the product, nor its hardness nor its ductility. The fiber structure in the TC direction seems to favor the resistance to abrasion by sand. For this property of use, the superiority of the product resulting from the process according to the invention is due to the combination between a particular fiber structure, inaccessible with the known processes, and the level of mechanical characteristics that its composition confers on it. The Applicant has found that the sand abrasion resistance of the product obtainable by the process according to the invention, expressed in the form of mass loss during a test described in Example 10 below. is less than 0.20 g, and preferably less than 0.19 g for an exposed flat surface of dimensions 15 x 10 mm.

Le produit selon l'invention a de bonnes propriétés de tolérance au dommage. Il peut être utilisé comme élément structural en construction aéronautique. Dans une réalisation préférée de l'invention, le produit montre une ténacité en contrainte plane KR au sens T-L, mesurée selon la norme ASTM E561 sur des éprouvettes de type CCT de largeur w = 760 mm et de longueur de fissure initiale 2a0 = 253 mm, d'au moins 165 MPa√m pour un Δaeff de 60 mm, et préférentiellement d'au moins 175 MPa√m. Sa résistance à la propagation de fissures en fatigue est comparable à celle des tôles utilisées actuellement comme revêtement de fuselage.The product according to the invention has good properties of damage tolerance. It can be used as structural element in aeronautical construction. In a preferred embodiment of the invention, the product shows a tensile toughness K R in the TL sense, measured according to ASTM E561 standard on CCT type specimens of width w = 760 mm and initial crack length 2a 0 = 253 mm, of at least 165 MPa√m for a Δa eff of 60 mm, and preferably of at least 175 MPa√m. Its resistance to the propagation of fatigue cracks is comparable to that of sheet metal currently used as a fuselage coating.

Le produit selon l'invention, et en particulier celui qui appartient au domaine de composition restreint défini par Zn 4,0 - 6,0 %, Mg 0,7 - 1,5 %, Mn < 0,60 %, est ainsi apte à être utilisé comme élément structural devant répondre à des exigences particulières en tolérance au dommage (ténacité, résistance à la propagation de fissures en fatigue). On appelle ici « élément de structure » ou « élément structural » d'une construction mécanique une pièce mécanique dont la défaillance est susceptible de mettre en danger la sécurité de ladite construction, de ses utilisateurs, des ses usagers ou d'autrui. Pour un avion, ces éléments de structure comprennent notamment les éléments qui composent le fuselage (tels que la peau de fuselage (fuselage skin en anglais), les raidisseurs ou lisses de fuselage (stringers), les cloisons étanches (bulkheads), les cadres de fuselage (circumferential frames)), les ailes (tels que la peau de voilure (wing skin), les raidisseurs (stringers ou stiffeners), les nervures (ribs) et longerons (spars)) et l'empennage, ainsi que les profilés de plancher (floor beams), les rails de sièges (seat tracks) et les portes. Bien évidemment, la présente invention ne concerne que les éléments de structure pouvant être fabriqués à partir de tôles laminées. Plus particulièrement, le produit selon l'invention est apte à être employé comme tôle de revêtement de fuselage, en assemblage classique (notamment riveté) ou en assemblage soudé.The product according to the invention, and in particular that which belongs to the restricted composition range defined by Zn 4.0 - 6.0%, Mg 0.7 - 1.5%, Mn <0.60%, is thus suitable. to be used as a structural element to meet specific requirements for damage tolerance (toughness, resistance to crack propagation) in fatigue). Here is called "structural element" or "structural element" of a mechanical construction a mechanical part whose failure is likely to endanger the safety of said construction, its users, its users or others. For an aircraft, these structural elements include the elements that make up the fuselage (such as fuselage skin (fuselage skin in English), stiffeners or stringers, bulkheads, fuselage (circumferential frames)), the wings (such as the wing skin), the stiffeners (stringers or stiffeners), the ribs (ribs) and spars) and the empennage, as well as the floor beams, seat rails and doors. Of course, the present invention relates only to structural elements that can be made from rolled sheets. More particularly, the product according to the invention is suitable for use as a fuselage coating sheet, in conventional assembly (especially riveted) or welded assembly.

Le procédé selon l'invention permet donc d'obtenir un produit nouveau doté d'une combinaison avantageuse de propriétés, telles que la résistance mécanique, la tolérance aux dommages, la soudabilité, la résistance à la corrosion exfoliante et à la corrosion sous contrainte, la résistance à l'abrasion, qui est particulièrement apte à être utilisé comme élément de structure en construction mécanique. En particulier, il est apte à l'utilisation dans des véhicules industriels, ainsi que dans des équipements de stockage, de transport ou de manutention de produits granuleux, tels que bennes, réservoirs ou convoyeurs.The process according to the invention thus makes it possible to obtain a novel product having an advantageous combination of properties, such as mechanical strength, damage tolerance, weldability, resistance to exfoliating corrosion and stress corrosion, abrasion resistance, which is particularly suitable for use as a structural element in mechanical engineering. In particular, it is suitable for use in industrial vehicles, as well as in equipment for storing, transporting or handling granular products, such as skips, tanks or conveyors.

Par ailleurs, le procédé selon l'invention est particulièrement simple et rapide ; son coût d'exploitation est plus bas que celui des procédés selon l'état de la technique susceptibles de conduire à des produits présentant des propriétés d'usage comparables.Moreover, the method according to the invention is particularly simple and fast; its operating cost is lower than that of the processes according to the state of the art likely to lead to products with comparable properties of use.

L'invention sera mieux comprise à l'aide des exemples, qui n'ont toutefois pas de caractère limitatif. Les exemples 1 et 2 appartiennent à l'état de la technique. Les exemples 3, 4, 8 et 9 correspondent à l'invention. Chacun des exemples 5, 6, 7, 9 et 10 compare l'invention à l'état de la technique.The invention will be better understood with the aid of the examples, which are however not limiting in nature. Examples 1 and 2 belong to the state of the art. Examples 3, 4, 8 and 9 correspond to the invention. Each of Examples 5, 6, 7, 9 and 10 compares the invention with the state of the art.

Exemplesexamples Exemple 1 : Example 1

Cet exemple correspond à une gamme de transformation selon l'état de la technique. On a élaboré par coulée semi-continue deux plaques A et B. Leur composition est indiquée au tableau 2. L'analyse chimique des éléments a été effectué par fluorescence X (pour éléments Zn et Mg) et spectroscopie à étincelle (autres éléments) sur un pion obtenu à partir de métal liquide prélevé dans le chenal de coulée.This example corresponds to a transformation range according to the state of the art. Two plates A and B were prepared by semi-continuous casting. Their composition is indicated in Table 2. The chemical analysis of the elements was carried out by X-ray fluorescence (for Zn and Mg elements) and by spark spectroscopy (other elements) on a pawn obtained from liquid metal taken from the casting channel.

Les plaques de laminage ont été réchauffées pendant 22 heures à 530°C et laminées à chaud dès qu'elle avaient atteintes, en sortie du four, une température de 515°C. Les bandes laminées à chaud ont été bobinées à l'épaisseur 6 mm, le procédé étant conduit de façon à ce que la température, mesurée sur les rives de la bobine après l'enroulement complet (à mi-épaisseur de l'enroulement) soit comprise entre 265°C et 275°C, cette valeur étant la moyenne entre 2 mesures effectuées aux deux côtes de la bobine. Après laminage à chaud, les bobines ont été débitées et une partie des tôles obtenues a été laminée à froid jusqu'à l'épaisseur 4 mm. Tableau 2 Alliage Mg Zn Mn Si Fe Cu Zr Ti Cr A 1,20 4,48 0,12 0,12 0,21 0,10 0,12 0,036 0,25 B 1,15 4,95 0,006 0,04 0,10 0,13 0,11 0,011 0,05 The rolling plates were reheated for 22 hours at 530 ° C and hot rolled as soon as they reached a temperature of 515 ° C at the oven exit. The hot-rolled strips were wound to a thickness of 6 mm, the process being conducted so that the temperature, measured on the banks of the coil after the complete winding (at mid-thickness of the winding) is between 265 ° C and 275 ° C, this value being the average between 2 measurements made at both sides of the coil. After hot rolling, the coils were cut and a portion of the sheets obtained was cold rolled to a thickness of 4 mm. Table 2 Alloy mg Zn mn Yes Fe Cu Zr Ti Cr AT 1.20 4.48 0.12 0.12 0.21 0.10 0.12 0,036 0.25 B 1.15 4.95 0.006 0.04 0.10 0.13 0.11 0,011 0.05

Après laminage, toutes les tôles ont été mises en solution en four à air pendant 40 minutes à des températures comprises entre 460°C et 560°C, trempées à l'eau et tractionnées d'environ 2%. Une partie des produits ainsi obtenus a été caractérisée tel quel, à l'état T4, ce qui correspond à la Zone Affectée Thermiquement des soudures. L'autre partie a été soumise à un traitement de revenu T6 comprenant un palier de 4 heures à 100°C suivi d'un palier de 24 heures à 140°C.After rolling, all the sheets were dissolved in an air oven for 40 minutes at temperatures between 460 ° C and 560 ° C, quenched with water and fractionated by about 2%. Part of the products thus obtained was characterized as such, in the T4 state, which corresponds to the heat-affected zone of the welds. The other part was subjected to a T6 tempering treatment comprising a 4 hour stage at 100.degree. C. followed by a 24 hour stage at 140.degree.

Les produits à l'état T4 ont été caractérisés uniquement en corrosion feuilletante (tests EXCO et SWAAT) car il est connu (voir notamment l'article « The stress corrosion susceptibility of aluminum alloy 7020 welded sheets » par M.C. Reboul, B. Dubost et M. Lashermes, paru dans la revue Corrosion Science, vol 25, no 11, p. 999-1018, 1985 ) que c'est l'état le plus sensible à la corrosion feuilletante pour les alliages Al-Zn-Mg. Sur les produits à l'état T6, la limite élastique a été mesurée en sens Travers-Long et la tenue à la corrosion feuilletante (perte de masse après test SWAAT sur éprouvette pleine épaisseur ou sur éprouvette usinée à coeur sur la moitié de sa surface) a été évaluée. La sensibilité à la corrosion sous contrainte a été déterminée dans les deux directions, uniquement à l'état T6 car il est connu (voir l'article de Reboul et al. cité ci-dessus) que c'est l'état le plus sensible à la corrosion sous contrainte. Les résultats sont donnés dans les tableaux 3 et 4. La première lettre du repère de la tôle désigne la composition, la seconde la gamme de laminage (C = chaud à 6 mm, F = chaud + froid à 4 mm) et la dernière la température de mise en solution (B = basse à 500°C, H = haute à 560°C). Tableau 3 Repère Tôle Epaisseur
[mm]
Mise en solution Rp0,2 (TL) Etat T6
[MPa]
Test SWAAT Usinée sur moitié
[Δm en g/dm2]
Test SWAAT Pleine épaisseur
[Δm en g/dm2]
T4 T6 T4 T6
ACB 6mm 500°C 359 1.15 1.08 1.44 0.52 ACH 560°C 362 0.80 0.76 1.24 0.56 AFB 4mm 500°C 362 Non caractérisé 1.14 0.30 AFH 560°C 362 1.10 0.58 BCB 6mm 500°C 362 0.65 0.68 1.10 0.36 BCH 560°C 375 0.47 0.48 0.66 0.30 BFB 4mm 500°C 362 Non caractérisé 0.74 0.32 BFH 560°C 365 0.52 0.32
The products in the T4 state have been characterized only in flaky corrosion (EXCO and SWAAT tests) because it is known (see in particular the article "Stress corrosion corrosion susceptibility of aluminum alloy 7020 welded sheets" by MC Reboul, B. Dubost and M. Lashermes, published in Corrosion Science, Vol 25, No. 11, p. 999-1018, 1985 ) that it is the most sensitive state to flaky corrosion for Al-Zn-Mg alloys. On products in the T6 state, the yield strength was measured in the Longitudinal direction and the resistance to flaky corrosion (loss of mass after SWAAT test on full thickness test specimen or machined test on half of its surface ) has been evaluated. The sensitivity to stress corrosion has been determined in both directions only in the T6 state because it is known (see the article by Reboul et al., Cited above) that this is the most sensitive state. stress corrosion. The results are given in Tables 3 and 4. The first letter of the reference of the sheet designates the composition, the second the rolling range (C = hot to 6 mm, F = hot + cold to 4 mm) and the last the solution temperature (B = low at 500 ° C, H = high at 560 ° C). Table 3 Sheet metal Thickness
[Mm]
Dissolution R p0,2 (TL) State T6
[MPa]
SWAAT Test Half Machined
[Δm in g / dm 2 ]
Full thickness SWAAT test
[Δm in g / dm 2 ]
T4 T6 T4 T6
CBA 6mm 500 ° C 359 1.15 1.08 1.44 0.52 ACH 560 ° C 362 0.80 0.76 1.24 0.56 AFB 4mm 500 ° C 362 Not characterized 1.14 0.30 AFH 560 ° C 362 1.10 0.58 BCB 6mm 500 ° C 362 0.65 0.68 1.10 0.36 BCH 560 ° C 375 0.47 0.48 0.66 0.30 BFB 4mm 500 ° C 362 Not characterized 0.74 0.32 BFH 560 ° C 365 0.52 0.32

On observe que la sensibilité à la corrosion feuilletante est plus faible pour l'alliage selon la composition B (à procédé d'élaboration et conditions d'essai identiques). Cette sensibilité est nettement plus forte à l'état T4 qu'à l'état T6. Elle diminue lorsque la température de mise en solution augmente ou lorsque l'alliage subit une étape de laminage à froid. Tableau 4 Tôle Epaisseur
[mm]
Mise en
solution
Sens de
sollicitation
A%
Air Labo
A%
Eau de Mer
A%
Pré-Expo
I = Indice
de CSC
ACB 6mm 500°C Long 16.2 14.9 15.8 5.5% Travers 15.1 14.7 15.1 2.6% ACH 560°C Long 16.7 15.1 16.3 7.2% Travers 14.7 13.4 14.5 7.5% AFB 4mm 500°C Long 17.0 15.3 16.1 4.7% AFH 560°C Long 16.2 15.5 16.4 5.5% BCB 6mm 500°C Long 16.1 14.2 16.1 11.8% Travers 17.0 15.6 16.8 7.0% BCH 560°C Long 15.2 13.1 15.1 13.1% Travers 16. 0 12.8 16.0 20.0% BFB 4mm 500°C Long 15.2 13.7 15.3 10.5% BFH 560°C Long 15.2 12.2 15.2 19.7%
It is observed that the sensitivity to the flaky corrosion is lower for the alloy according to the composition B (process of elaboration and identical test conditions). This sensitivity is much stronger in the T4 state than in the T6 state. It decreases when the dissolution temperature increases or when the alloy undergoes a cold rolling step. Table 4 sheet metal Thickness
[Mm]
Implementation
solution
Direction of
solicitation
AT%
Air Labo
AT%
Sea water
AT%
Pre-Expo
I = Index
of CSC
CBA 6mm 500 ° C Long 16.2 14.9 15.8 5.5% Travers 15.1 14.7 15.1 2.6% ACH 560 ° C Long 16.7 15.1 16.3 7.2% Travers 14.7 13.4 14.5 7.5% AFB 4mm 500 ° C Long 17.0 15.3 16.1 4.7% AFH 560 ° C Long 16.2 15.5 16.4 5.5% BCB 6mm 500 ° C Long 16.1 14.2 16.1 11.8% Travers 17.0 15.6 16.8 7.0% BCH 560 ° C Long 15.2 13.1 15.1 13.1% Travers 16. 0 12.8 16.0 20.0% BFB 4mm 500 ° C Long 15.2 13.7 15.3 10.5% BFH 560 ° C Long 15.2 12.2 15.2 19.7%

On observe que la sensibilité à la corrosion sous contrainte (CSC) est plus élevée pour l'alliage selon la composition B. Cette sensibilité augmente avec la température de mise en solution.It is observed that the sensitivity to stress corrosion (SCC) is higher for the alloy according to the composition B. This sensitivity increases with the dissolution temperature.

Exemple 2 : Example 2

Les tôles issues de l'exemple 1, laminées à 6 mm et mises en solution à 560°C, désignées ACH et BCH, ont été soudées à l'état T6. La soudure s'est faite dans le sens Travers-Long, avec un chanfrein en X, par un procédé MIG semi-automatique en courant lisse, avec un fil d'apport en alliage 5183 (Mg 4,81 %, Mn 0,651 %, Ti 0,120 %, Si 0,035 %, Fe 0,130 %, Zn 0,001 %, Cu 0,001 %, Cr 0,075 %) de diamètre 1,2mm, fourni par la société Soudure Autogène Française.The sheets from Example 1, rolled to 6 mm and put into solution at 560 ° C., designated ACH and BCH, were welded in the T6 state. The weld was made in the Travers-Long direction, with an X chamfer, by a smooth-running semi-automatic MIG process, with a 5183 alloy filler wire (Mg 4.81%, Mn 0.651%, Ti 0.120%, Si 0.035%, Fe 0.130%, Zn 0.001%, Cu 0.001%, Cr 0.075%) of 1.2mm diameter, supplied by Soudure Autogène Française.

Les éprouvettes de traction (largeur 25 mm, cordon arasé symétriquement, longueur utile de l'éprouvette et longueur de l'extensomètre égales à (W+2 e) où W désigne le largeur du cordon et e l'épaisseur de l'éprouvette) ont été prélevées dans le sens long, perpendiculairement à la soudure, de façon à ce que le joint se trouve au milieu. La caractérisation s'est faite 19, 31 et 90 jours après soudage, car l'homme du métier sait que pour ce type d'alliages, les propriétés mécaniques après soudage augmentent fortement durant les premières semaines de maturation. Des éprouvettes usinées à mi-épaisseur sur la moitié de leur surface ont été également soumises aux tests SWAAT et EXCO. Les résultats sont présentés dans les tableaux 5 (pour les propriétés sur le métal de base à l'état T6) et 6 (propriétés sur le métal soudé). Tableau 5 Tôle Rp0,2 (L)
[MPa]
Rm (L)
[MPa]
A% (L)
[%]
Perte de masse Δm
[g/dm2]
Cotation en corrosion
feuilletante
SWAAT
100 cycles
EXCO
96h
SWAAT
100 cycles
EXCO
96h
ACH 351 378 17 0.76 4.68 EA EA BCH 351 376 16.9 0.48 3.25 Pc Pc
Tableau 6 Tôle Rp0,2
[MPa]
Rm
[MPa]
Rp0,2
[MPa]
Rm
[MPa]
Rp0,2
[MPa]
Rm
[MPa]
Cotation de la zone soudée
19 jours après soudage 31 jours après soudage 90 jours après soudage SWAAT 100 cycles EXCO 96h
ACH 216 346 219 354 236 358 EB EB BCH 194 321 197 325 218 328 EB EB
Tensile specimens (width 25 mm, symmetrically trimmed bead, effective length of test piece and length of extensometer equal to (W + 2 e) where W is the width of the bead and the thickness of the test piece) were taken in the long direction, perpendicular to the weld, so that the seal is in the middle. The Characterization was made 19, 31 and 90 days after welding, because the skilled person knows that for this type of alloys, the mechanical properties after welding increase sharply during the first weeks of maturation. Test specimens machined at mid-thickness on half of their surface were also subjected to SWAAT and EXCO tests. The results are shown in Tables 5 (for the properties on the base metal in the T6 state) and 6 (properties on the welded metal). Table 5 sheet metal R p0.2 (L)
[MPa]
R m (L)
[MPa]
A% (L)
[%]
Mass loss Δm
[g / dm 2 ]
Corrosion rating
exfoliation
SWAAT
100 cycles
EXCO
96h
SWAAT
100 cycles
EXCO
96h
ACH 351 378 17 0.76 4.68 EA EA BCH 351 376 16.9 0.48 3.25 pc pc
sheet metal R p0,2
[MPa]
R m
[MPa]
R p0,2
[MPa]
R m
[MPa]
R p0,2
[MPa]
R m
[MPa]
Dimensioning of the welded zone
19 days after welding 31 days after welding 90 days after welding SWAAT 100 cycles EXCO 96h
ACH 216 346 219 354 236 358 EB EB BCH 194 321 197 325 218 328 EB EB

On constate que l'alliage selon la composition B présente des propriétés mécaniques après soudage moins intéressantes que l'alliage selon la composition A. Après soudage, la résistance en corrosion feuilletante des deux alliages est dégradée par rapport au comportement du métal de base.It can be seen that the alloy according to composition B has less advantageous mechanical properties after welding than the alloy according to composition A. After welding, the resistance in flaky corrosion of the two alloys is degraded with respect to the behavior of the base metal.

Exemple 3 : Example 3

Cet exemple correspond à la présente invention. On a élaboré par coulée semicontinue une plaque C. Sa composition est identique à celle de la plaque B issue de l'exemple 1. La plaque a été laminée à chaud, après un réchauffage de 13 heures à 550°C (durée au palier) suivi d'un palier de laminage à 540°C. La première étape, au laminoir réversible, a amené la plaque à une épaisseur de 15,5 mm, la température de sortie du laminoir étant d'environ 490°C. La plaque laminée a ensuite été refroidie par aspersion et par convection naturelle jusqu'à une température de l'ordre de 260°C. A cette température, elle a été entrée dans un laminoir tandem (3 cages), laminée jusqu'à l'épaisseur finale de 6 mm, et bobinée. La température d'enroulement de la bobine, mesurée comme dans l'exemple 1, est de 150°C environ. Une fois refroidie naturellement, la bobine a été débitée en tôles. Celles ci ont été planées et n'ont subi aucune autre opération de déformation.This example corresponds to the present invention. A plate C was prepared by semicontinuous casting. Its composition is identical to that of the plate B resulting from example 1. The plate was hot rolled after reheating for 13 hours at 550 ° C. (time at the stage) followed by a rolling bearing at 540 ° C. The first step, reversible mill, brought the plate to a thickness of 15.5 mm, the exit temperature of the mill being about 490 ° C. The rolled plate was then cooled by spraying and natural convection to a temperature of about 260 ° C. At this temperature, it was fed into a tandem mill (3 cages), rolled to the final thickness of 6 mm, and wound. The winding temperature of the coil, measured as in Example 1, is about 150 ° C. Once cooled naturally, the coil was discharged into sheets. These were hovered and did not undergo any other deformation operation.

Comme aux exemples 1 et 2, les tôles obtenues (repère « C ») ont été caractérisées brutes de fabrication (caractéristiques mécaniques statiques sens Long et Travers-Long, corrosion feuilletante et sous contrainte) et après soudage (caractéristiques mécaniques statiques, corrosion feuilletante). Le soudage a été effectué simultanément au soudage de l'exemple 2, et selon la même méthode. Des éprouvettes usinées à mi-épaisseur sur la moitié de leur surface ont été soumises aux tests SWAAT et EXCO. Les résultats sont rassemblés dans les Tableaux 7 et 8 (tôles non soudées) et dans le Tableau 9 (tôles soudées). Tableau 7 Repère Tôle Rp0,2
[MPa]
Rm
[MPa]
A%
[%]
Perte de masse Δm en
g/dm2
Cotation en corrosion feuilletante
SWAAT
100 cycles
EXCO
96h
SWAAT
100 cycles
EXCO
96h
C 305 (L) 344 (L) 14.4 (L) 0.85 5.1 EA EA/EB 330 (TL) 356 (TL) 13.3 (TL)
Tableau 8 Repère Tôle Epaisseur
[mm]
Sens de sollicitation A%
Air Labo
A%
Eau de Mer
A%
Pré-Expo
I = Indice
de CSC
C 6 mm Travers 13.1 10.8 13.5 20%
Tableau 9 Tôle Rp0,2
[MPa]
Rm
[MPa]
Rp0,2
[MPa]
Rm
[MPa]
Rp0,2
[MPa]
Rm
[MPa]
Cotation de la zone soudée
19 jours après soudage 31 jours après soudage 90 jours après soudage SWAAT
100 cycles
EXCO
96h
C 223 338 235 338 245 340 EB EB
As in Examples 1 and 2, the sheets obtained (reference "C") were characterized in terms of manufacturing (static mechanical characteristics Long and Travers-Long direction, stress corrosion and stress) and after welding (static mechanical characteristics, flaking corrosion). . The welding was carried out simultaneously with the welding of Example 2, and according to the same method. Test specimens machined at half thickness on half of their surface were subjected to SWAAT and EXCO tests. The results are collated in Tables 7 and 8 (non-welded sheets) and in Table 9 (welded sheets). Table 7 Sheet metal R p0,2
[MPa]
R m
[MPa]
AT%
[%]
Mass loss Δm in
g / dm 2
Rating in flaky corrosion
SWAAT
100 cycles
EXCO
96h
SWAAT
100 cycles
EXCO
96h
VS 305 (L) 344 (L) 14.4 (L) 0.85 5.1 EA EA / EB 330 (TL) 356 (TL) 13.3 (TL)
Sheet metal Thickness
[Mm]
Solicitation direction AT%
Air Labo
AT%
Sea water
AT%
Pre-Expo
I = Index
of CSC
VS 6 mm Travers 13.1 10.8 13.5 20%
sheet metal R p0,2
[MPa]
R m
[MPa]
R p0,2
[MPa]
R m
[MPa]
R p0,2
[MPa]
R m
[MPa]
Dimensioning of the welded zone
19 days after welding 31 days after welding 90 days after welding SWAAT
100 cycles
EXCO
96h
VS 223 338 235 338 245 340 EB EB

La tôle brute (non soudée) selon l'invention présente une résistance à la corrosion feuilletante inférieure à celle de la tôle BCH, fabriquée à partir de la même composition mais avec un procédé de fabrication beaucoup plus complexe. En revanche, sa résistance en corrosion sous contrainte est équivalente.The raw sheet (not welded) according to the invention has a lower resistance to flake corrosion than that of the sheet BCH, manufactured from the same composition but with a much more complex manufacturing process. On the other hand, its corrosion resistance under stress is equivalent.

Après soudage, la tôle selon l'invention présente une résistance mécanique très nettement supérieure à celle des tôles ACH et BCH élaborées avec un procédé selon l'art antérieur. Sa résistance à la corrosion feuilletante sur joint soudé est équivalente.After welding, the sheet according to the invention has a mechanical strength very much greater than that of ACH and BCH sheets developed with a method according to the prior art. Its resistance to flaky corrosion on welded joint is equivalent.

On constate que le procédé selon l'invention effectue le bobinage à une température d'environ 120 °C inférieure au procédé selon l'état de la technique de l'exemple 1.It is found that the method according to the invention performs the winding at a temperature of about 120 ° C lower than the method according to the state of the art of Example 1.

Exemple 4 :Example 4

La tôle repérée « C » issue de l'exemple 3 a été soumise a des traitements thermiques complémentaires de type revenu à une température de 140°C. Les échantillons ainsi obtenus ont ensuite été caractérisés comme dans l'exemple 3 (caractéristiques mécaniques statiques sens L et corrosion feuilletante). Les résultats sont rassemblés au tableau 10 et sur la figure 5 (les points noirs et la ligne noire correspondent à la limite d'élasticité, et les barres à la perte de masse lors de l'essai SWAAT). Tableau 10 Traitement thermique Rp0,2 (L)
[MPa]
Rm (L)
[MPa]
A% (L)
[%]
Perte de masse Δm en
g/dm2
Cotation en corrosion feuilletante
SWAAT
100 cycles
EXCO
96h
SWAAT
100 cycles
Aucun
(« C »)
305 344 14.4 0.85 5.1 EA
3h 140°C 299 336 15.1 0.97 5.0 EA 6h 140°C 294 332 15.3 0.89 5.2 Pc/EA 9h 140°C 297 335 15.3 0.69 4.0 Pc/EA 12h 140°C 293 332 15.3 0.71 4.1 Pc/EA 15h 140°C 289 330 15.5 0.67 3.8 Pc
The sheet marked "C" derived from Example 3 was subjected to additional heat treatments of the tempered type at a temperature of 140 ° C. The samples thus obtained were then characterized as in Example 3 (static mechanical characteristics L direction and laminating corrosion). The results are summarized in Table 10 and on figure 5 (the black dots and the black line correspond to the elastic limit, and the bars to mass loss during the SWAAT test). Table 10 Heat treatment R p0.2 (L)
[MPa]
R m (L)
[MPa]
A% (L)
[%]
Mass loss Δm in
g / dm 2
Rating in flaky corrosion
SWAAT
100 cycles
EXCO
96h
SWAAT
100 cycles
No
(" VS ")
305 344 14.4 0.85 5.1 EA
3h 140 ° C. 299 336 15.1 0.97 5.0 EA 6h 140 ° C. 294 332 15.3 0.89 5.2 Pc / EA 9h 140 ° C 297 335 15.3 0.69 4.0 Pc / EA 12h 140 ° C 293 332 15.3 0.71 4.1 Pc / EA 15h 140 ° C 289 330 15.5 0.67 3.8 pc

Ce résultat montre que le comportement en corrosion feuilletante du produit selon l'invention peut être très sensiblement amélioré par un simple traitement complémentaire de revenu ou bien par une température de bobinage légèrement plus élevée, et ce probablement sans dégradation des propriétés mécaniques après soudage.This result shows that the flaky corrosion behavior of the product according to the invention can be very substantially improved by a simple supplementary treatment of income or by a slightly higher winding temperature, and this probably without degradation of the mechanical properties after welding.

Exemple 5 : Example 5

La microstructure des échantillons ACH, BCH, BFH et C des exemples 1, 2 et 3 a été caractérisée par microscopie électronique à balayage avec canon à émission de champ (FEG-SEM, en mode BSE (électrons rétrodiffusés), tension d'accélération 15 kV, diaphragme 30 µm, distance de travail 10 mm, effectué sur coupe polie au sens de prélèvement L-TC avec dépôt conducteur Pt/Pd) et par microscopie électronique à transmission (TEM, sens de prélèvement L-TL, préparation de lames par amincissement électrochimique à double jet avec 30 % HNO3 dans du méthanol à -35°C avec un potentiel de 20 V). Tous les échantillons étaient prélevées à mi-épaisseur de la tôle.The microstructure of samples ACH, BCH, BFH and C of Examples 1, 2 and 3 was characterized by scanning electron microscopy with field emission cannon (FEG-SEM, in BSE (backscattered electron) mode, acceleration voltage 15 kV, diaphragm 30 μm, working distance 10 mm, polished to L-TC sampling direction with Pt / Pd conductive deposition) and transmission electron microscopy (TEM, L-TL sampling direction, slide preparation by double jet electrochemical thinning with 30% HNO 3 in methanol at -35 ° C with a potential of 20 V). All samples were taken at mid-thickness of the plate.

On observe des différences importantes entre les échantillons ACH, BCH et BFH d'une part, et l'échantillon C d'autre part :

  • La largeur de la zone exempte de précipités (PFZ = precipitation-free zone) aux joints de grains est de l'ordre de 25 à 35 nm dans les échantillons ACH, BCH et BFH, alors qu'elle est de l'ordre de 120 à 140 nm dans l'échantillon C.
  • Les précipités de type MgZn2 aux joints de grains ont une taille moyenne de l'ordre de 30 à 60 nm dans les échantillons ACH, BCH et BFH, alors qu'ils ont une taille moyenne comprise entre 200 et 400 nm dans l'échantillon C.
There are significant differences between the ACH, BCH and BFH samples on the one hand, and the C sample on the other hand:
  • The width of the zone free from precipitates (PFZ = precipitation-free zone) at the grain boundaries is of the order of 25 to 35 nm in the samples ACH, BCH and BFH, whereas it is of the order of 120 at 140 nm in sample C.
  • The MgZn 2 precipitates at the grain boundaries have an average size of the order of 30 to 60 nm in the ACH, BCH and BFH samples, whereas they have an average size of between 200 and 400 nm in the sample vs.

Exemple 6 :Example 6

Une tôle ACH, une tôle BCH (élaborées comme décrit dans l'exemple 1) et une tôle C (élaborée selon l'invention comme décrit dans l'exemple 3) ont été soudées dans le sens TL (Travers-Long) comme décrit dans les exemples 2 et 3. Sur une coupe polie à travers le joint soudé (plan TC-L), on a ensuite déterminé la microdureté du joint par des mesures successives disposées sur une droite perpendiculaire au joint. On trouve les valeurs indiquées sur le tableau 11 et la figure 6. Le paramètre Dist [mm] indique la distance du point de mesure par rapport au coeur du cordon de soudure. Les valeurs de dureté sont données en Hv (Dureté Vickers). Tableau 11 Dist -19 -18 -17 -16 -15 -14 -12 -11 -10 -9 -8 -7 -6,5 ACH 128 125 129 128 125 124 127 113 120 114 115 111 113 BCH 125 123 130 126 131 124 123 121 107 109 111 104 114 C 107 114 113 116 109 110 104 104 107 105 102 103 104 Dist -6 -5,5 -5 -4,5 -4 -3,5 -3 -2,5 -2 -1,5 -1 -0,5 0 ACH 112 110 110 109 109 107 113 112 111 118 111 110 107 BCH 109 109 109 112 110 108 106 109 107 111 105 75 74 C 112 121 119 118 118 119 118 111 110 115 118 94 87 Dist 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 7 ACH 110 108 113 113 117 120 125 114 112 111 115 119 118 BCH 81 77 109 105 106 99 109 109 115 107 104 108 112 C 88 89 115 111 112 115 116 119 120 123 122 117 101 Dist 8 9 10 11 12 13 14 15 16 17 18 ACH 123 127 133 125 139 140 135 134 BCH 111 117 107 128 124 134 131 135 129 130 135 C 102 104 103 108 105 109 104 109 105 106 109 An ACH sheet, a BCH sheet (made as described in Example 1) and a sheet C (made according to the invention as described in Example 3) were welded in the TL (Travers-Long) direction as described in FIG. Examples 2 and 3. On a polished section through the welded joint (TC-L plane), the microhardness of the joint was then determined by successive measurements arranged on a straight line perpendicular to the joint. The values shown in Table 11 and the figure 6 . The parameter Dist [mm] indicates the distance from the measuring point to the core of the weld seam. The hardness values are given in Hv (Hardness Vickers). Table 11 dist -19 -18 -17 -16 -15 -14 -12 -11 -10 -9 -8 -7 -6.5 ACH 128 125 129 128 125 124 127 113 120 114 115 111 113 BCH 125 123 130 126 131 124 123 121 107 109 111 104 114 VS 107 114 113 116 109 110 104 104 107 105 102 103 104 dist -6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 ACH 112 110 110 109 109 107 113 112 111 118 111 110 107 BCH 109 109 109 112 110 108 106 109 107 111 105 75 74 VS 112 121 119 118 118 119 118 111 110 115 118 94 87 dist 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 7 ACH 110 108 113 113 117 120 125 114 112 111 115 119 118 BCH 81 77 109 105 106 99 109 109 115 107 104 108 112 VS 88 89 115 111 112 115 116 119 120 123 122 117 101 dist 8 9 10 11 12 13 14 15 16 17 18 ACH 123 127 133 125 139 140 135 134 BCH 111 117 107 128 124 134 131 135 129 130 135 VS 102 104 103 108 105 109 104 109 105 106 109

On constate une influence du procédé de fabrication de la tôle de base sur les caractéristiques du joint soudé obtenu avec cette tôle de base : un joint soudé élaboré avec une tôle C, fabriquée par le procédé selon l'invention, montre une dureté nettement plus élevée dans la zone affectée thermiquement (HAZ = heat-affected zone) du joint de soudure (Dist = [-5,5 , -1,5] et [+1,5, +5,5]) qu'un joint soudé élaboré avec une tôle BCH, de même composition mais fabriquée selon un procédé connu. Par ailleurs, la zone affectée thermiquement présente une dureté supérieure à celle du métal de base pour la tôle C fabriquée par le procédé selon l'invention, ce qui est tout à fait inhabituel.An influence of the method of manufacture of the base plate on the characteristics of the welded joint obtained with this base sheet: a welded joint made with a sheet C, manufactured by the method according to the invention, shows a significantly higher hardness in the heat-affected zone (HAZ = heat-affected zone) of the weld joint (Dist = [-5.5, -1.5] and [+1.5, +5.5]) that an elaborate welded joint with a BCH sheet, of the same composition but manufactured according to a known method. Furthermore, the heat-affected zone has a hardness greater than that of the base metal for sheet C produced by the process according to the invention, which is quite unusual.

Exemple 7 :Example 7

On a préparé des tôles en alliage 6056 plaquées des deux faces avec l'alliage 1300, selon le procédé décrit dans l'exemple 3 de la demande de brevet EP 1 170 118 A1 . La composition chimique de l'âme en 6056 est donnée au tableau 12. On compare ces produits avec la tôle C de l'exemple 3 de la présente demande brevet.6056 sheets coated on both sides with alloy 1300 were prepared according to the method described in example 3 of the patent application. EP 1 170 118 A1 . The chemical composition of the core 6056 is given in Table 12. These products are compared with the sheet C of Example 3 of the present patent application.

On a déterminé la ténacité en contrainte plane au sens T-L selon la norme ASTM E561 sur des éprouvettes de type CCT de largeur w = 760 mm et de longueur de fissure initiale 2a0 = 253 mm. L'épaisseur des éprouvettes est indiquée dans le tableau 12. L'essai permet de définir la courbe R du matériau, donnant la résistance à la déchirure KR en fonction de l'extension de la fissure Δa. Les résultats sont rassemblés dans le Tableau 13 et sur la Figure 7.The plane TL stress toughness according to ASTM E561 was determined on CCT type specimens of width w = 760 mm and initial crack length 2a 0 = 253 mm. The thickness of the test pieces is indicated in Table 12. The test makes it possible to define the curve R of the material, giving the tear resistance K R as a function of the extension of the crack Δa. The results are summarized in Table 13 and on Figure 7 .

On a également déterminé la vitesse de propagation de fissures da/dn selon la norme ASTM E 647 au sens T-L pour R = 0,1 sur une éprouvette de type CCT de largueur w = 400 mm avec une longueur de fissure initiale 2a0 = 4 mm, à une fréquence f = 3 Hz. Les éprouvettes étaient taillées dans la pleine épaisseur des tôles. Les résultats sont rassemblés sur la Figure 8. Tableau 12 Tôle Fe
[%]
Si
[%]
Cu
[%]
Mn
[%]
Epaisseur tôle
plaquée [mm]
Epaisseur éprouvette
courbe R [mm]
6056-1 0,14 1,01 0,61 0,55 4,5 4,5 6056-2 0,07 0,83 0,66 0,60 3,2 3,2 6056-3 0,07 0,83 0,66 0,60 3,2 3,2 6056-4 0,12 0,85 0,67 0,59 7 5,5 (*) 6056-5 0,12 0,85 0,67 0,59 7 5,5 (*) NOTE : teneur en Zr 0,1 % et teneur en Mg 0,7 % pour toutes les cinq tôles.
(*) Obtenu par usinage symétrique
Tableau 13 tôle C 6056-1 6056-2 6056-3 6056-4 6056-5 Δaeff[mm] Ténacité en contrainte plane KR [MPa√m] 10 87 90 81 88 86 82 20 117 109 106 111 105 99 30 138 121 124 128 117 110 40 156 130 139 141 124 118 50 170 137 152 153 129 125 60 182 163 164 133 131 70 193 173 173 135 136 80 203 183 182 136 140
The crack propagation rate da / dn according to ASTM standard E 647 in the TL sense was also determined for R = 0.1 on a CCT test piece of width w = 400 mm with an initial crack length 2a0 = 4 mm. , at a frequency f = 3 Hz. The specimens were cut in the full thickness of the sheets. The results are gathered on the Figure 8 . Table 12 sheet metal Fe
[%]
Yes
[%]
Cu
[%]
mn
[%]
Sheet thickness
plated [mm]
Thickness
curve R [mm]
6056-1 0.14 1.01 0.61 0.55 4.5 4.5 6056-2 0.07 0.83 0.66 0.60 3.2 3.2 6056-3 0.07 0.83 0.66 0.60 3.2 3.2 6056-4 0.12 0.85 0.67 0.59 7 5.5 (*) 6056-5 0.12 0.85 0.67 0.59 7 5.5 (*) NOTE: 0.1% Zr content and 0.7% Mg content for all five sheets.
(*) Obtained by symmetrical machining
sheet metal VS 6056-1 6056-2 6056-3 6056-4 6056-5 Δa eff [mm] Toughness in plane stress K R [MPa√m] 10 87 90 81 88 86 82 20 117 109 106 111 105 99 30 138 121 124 128 117 110 40 156 130 139 141 124 118 50 170 137 152 153 129 125 60 182 163 164 133 131 70 193 173 173 135 136 80 203 183 182 136 140

On constate que le produit selon l'invention montre une meilleure ténacité en contrainte plane KR qu'un produit de référence connu, alors que la vitesse de propagation de fissures da/dN (T-L) aux valeurs de ΔK élevées est sensiblement comparable.It can be seen that the product according to the invention shows a better toughness in plane stress K R than a known reference product, whereas the crack propagation speed da / dN (TL) at the high ΔK values is substantially comparable.

Exemple 8 : Example 8

On a élaboré selon le procédé de la présente invention un alliage dont composition est indiquée dans le tableau 14. Tableau 14 Alliage Mg Zn Mn Si Fe Cu Zr Ti Cr S 1,23 5,00 0,01 0,03 0,09 0,01 0,14 0,03 0,002 According to the process of the present invention, an alloy whose composition is indicated in Table 14 was produced. Table 14 Alloy mg Zn mn Yes Fe Cu Zr Ti Cr S 1.23 5.00 0.01 0.03 0.09 0.01 0.14 0.03 0,002

Les paramètres essentiels du procédé, appelé ici S1, étaient :

  • T1 = 550°C, T2 = 520 °C, T4 = 267 °C, T5 = 267 °C, T6 = 210 °C
The essential parameters of the process, called here S1, were:
  • T 1 = 550 ° C, T 2 = 520 ° C, T 4 = 267 ° C, T 5 = 267 ° C, T 6 = 210 ° C

La température Ts était de 603°C (valeur obtenue par calcul numérique). L'épaisseur finale de la bande était de 6 mm, sa largeur 2400 mm.The temperature T s was 603 ° C. (value obtained by numerical calculation). The final thickness of the strip was 6 mm, its width 2400 mm.

On constate que la produit final ne montre aucune recristallisation. Dans le plan L/TC, on observe à mi-épaisseur une microstructure fibrée, avec une épaisseur des grains de l'ordre de 10 µm.It can be seen that the final product shows no recrystallization. In the L / TC plane, a fibered microstructure is observed at mid-thickness, with a grain thickness of the order of 10 μm.

Des tôles représentatives, débitées en pleine largeur au milieu de la bobine, montraient à mi-largeur les caractéristiques mécaniques indiquées sur le tableau 15 : Tableau 15 Rp0,2 (L)
[MPa]
Rm (L)
[MPa]
A% (L)
[%]
Rp0,2 (TL)
[MPa]
Rm (TL)
[MPa]
A% (TL)
[%]
275 236 15,9 279 249 16,4
Representative sheets, delivered at full width in the middle of the coil, showed at mid-width the mechanical characteristics indicated in Table 15: Table 15 R p0.2 (L)
[MPa]
R m (L)
[MPa]
A% (L)
[%]
R p0.2 (TL)
[MPa]
R m (TL)
[MPa]
A% (TL)
[%]
275 236 15.9 279 249 16.4

résistance à la corrosion, évaluée par l'essai EXCO, était de EA en surface et à mi-épaisseur. La résistance à la corrosion, évaluée par l'essai SWAAT, était de P en surface et à mi-épaisseur, et la perte de masse était de 0,52 g/dm2 en surface et de 0,17 g/dm2 à mi-épaisseur.Corrosion resistance, evaluated by the EXCO test, was EA at the surface and at mid-thickness. The corrosion resistance, evaluated by the SWAAT test, was P at the surface and at mid-thickness, and the mass loss was 0.52 g / dm 2 at the surface and 0.17 g / dm 2 at mid-thickness.

Exemple 9 : Example 9

On a élaboré selon le procédé de la présente invention un alliage dont composition est indiquée dans le tableau 16. Tableau 16 Alliage Mg Zn Mn Si Fe Cu Zr Ti Cr U 1,23 5,07 0,19 0,05 0,12 0,07 0,10 0,03 0,002 According to the process of the present invention, an alloy whose composition is indicated in Table 16 was prepared. Table 16 Alloy mg Zn mn Yes Fe Cu Zr Ti Cr U 1.23 5.07 0.19 0.05 0.12 0.07 0.10 0.03 0,002

Quatre bobines (largeur 2415 mm) ont été préparées avec des conditions de transformation différentes. En plus, une bobine de composition S (appelée ici S2) selon l'exemple 8 a été transformée (largeur 1500 mm).Four coils (width 2415 mm) were prepared with different processing conditions. In addition, a coil of composition S (here called S2) according to Example 8 has been transformed (width 1500 mm).

Les paramètres essentiels du procédé étaient (toutes les températures en °C): Tableau 17 bobine T1 T2 T3 T4 T5 T6 U1 550 528 435 277 277 240 U2 550 508 445 256 256 220 U3 550 517 405 289 289 200 U4 550 499 430 264 264 200 S2 550 535 460 272 272 155 The essential parameters of the process were (all temperatures in ° C): Table 17 coil T 1 T 2 T 3 T 4 T 5 T 6 U1 550 528 435 277 277 240 U2 550 508 445 256 256 220 U3 550 517 405 289 289 200 U4 550 499 430 264 264 200 S2 550 535 460 272 272 155

La température TS pour l'alliage U était de 600°C (valeur obtenue par calcul numérique). L'épaisseur des bandes U3 et U4 était de 6 mm, celle des bandes U1, U2 et S2 de 8 mm.The temperature T S for the alloy U was 600 ° C. (value obtained by numerical calculation). The thickness of the strips U3 and U4 was 6 mm, that of the strips U1, U2 and S2 8 mm.

Des tôles représentatives, débitées en pleine largeur au milieu de la bobine, montraient à mi-largeur les caractéristiques mécaniques indiquées sur le tableau 18 : Tableau 18 bobine Rp0,2 (L)
[MPa]
Rm (L)
[MPa]
A% (L)
[%]
U1 298 265 13,5 U2 358 335 11,4 U3 317 294 13,2 U4 352 334 13,4 S2 332 307 11,9
Representative sheets, cut at full width in the middle of the coil, showed at mid-width the mechanical characteristics indicated in Table 18: Table 18 coil R p0.2 (L)
[MPa]
R m (L)
[MPa]
A% (L)
[%]
U1 298 265 13.5 U2 358 335 11.4 U3 317 294 13.2 U4 352 334 13.4 S2 332 307 11.9

Exemple 10 : Example 10

On a comparé la microstructure et la résistance à l'abrasion de différentes tôles obtenues par le procédé selon l'invention (repère 7108 F7) et selon l'état de la technique (repères 5086 H24, 5186 H24, 5383 H34, 7020 T6, 7075 T6 et 7108 T6). Le tableau 19 rassemble des résultats concernant les caractéristiques mécaniques et la microstructure de ces tôles. Tableau 19 Repère Rp0,2 (L) Rm (L) A% (L) Dureté Longueur moyenne du grain
[µm]
[MPa] [MPa] [%] (HV) Sens TC Sens L Sens TL
5086 H24 254 327 17 92 10 300 150 5186 H24 270 335 17 94 19 200 110 5383 H34 279 374 18 105 8 190 165 7020 T6 335 371 15 132 33 200 220 7075 T6 541 607 11 191 24 220 155 7108 T6 360 395 17,5 125 100 390 320 7108 F7 305 344 14,5 112 8 500 290
The microstructure and the abrasion resistance of different sheets obtained by the process according to the invention (reference 7108 F7) and according to the state of the art (marks 5086 H24, 5186 H24, 5383 H34, 7020 T6, 7075 T6 and 7108 T6). Table 19 gathers results concerning the mechanical characteristics and the microstructure of these sheets. Table 19 landmark R p0.2 (L) R m (L) A% (L) Hardness Average grain length
[.Mu.m]
[MPa] [MPa] [%] (H V) TC sense Meaning L TL direction
5086 H24 254 327 17 92 10 300 150 5186 H24 270 335 17 94 19 200 110 5383 H34 279 374 18 105 8 190 165 7020 T6 335 371 15 132 33 200 220 7075 T6 541 607 11 191 24 220 155 7108 T6 360 395 17.5 125 100 390 320 7108 F7 305 344 14.5 112 8 500 290

Le matériau 7108 T6 avait la composition de l'alliage B de l'exemple 2, et était proche du matériau BCH. Le matériau 7108 F7 a la même composition B de l'exemple 2.The material 7108 T6 had the composition of the alloy B of Example 2, and was close to the BCH material. The material 7108 F7 has the same composition B of Example 2.

La résistance à l'abrasion a été caractérisée à l'aide d'un dispositif original qui reproduit les conditions telles qu'elles peuvent se présenter par exemple lors du chargement, du transport et du déchargement de sable dans une benne. Cet essai consiste à mesurer la perte de masse d'un échantillon soumis à un mouvement vertical de va-et-vient dans un réservoir rempli de sable. Le diamètre du réservoir est d'environ 30 cm, la hauteur du sable d'environ 30 cm. Le porte-échantillon est fixé sur une tige verticale reliée à un vérin à double-effet qui assure le mouvement vertical de va-et-vient de la tige. Le porte-échantillon se présente sous la forme d'une pyramide avec un angle de 45°. C'est la pointe de la pyramide qui plonge dans le sable. Les échantillons à tester, de dimension 15 x 10 x 5 mm, sont encastrés dans les faces de la pyramide de manière à ce que leur surface soit tangente à celle de la face correspondante de la pyramide ; c'est la face correspondant au plan L-TL (dimension 15 x 10 mm) qui est exposée au sable. La profondeur de pénétration de l'échantillon dans le sable était de 200 mm.The abrasion resistance has been characterized using an original device that reproduces the conditions such as they may occur for example when loading, transporting and unloading sand in a bucket. This test consists in measuring the loss of mass of a sample subjected to a vertical movement back and forth in a tank filled with sand. The diameter of the tank is about 30 cm, the height of the sand about 30 cm. The sample holder is fixed on a vertical rod connected to a double-acting jack which ensures the vertical movement of the rod back and forth. The sample holder is in the form of a pyramid with a 45 ° angle. This is the tip of the pyramid that plunges into the sand. The samples to be tested, of dimension 15 x 10 x 5 mm, are embedded in the faces of the pyramid so that their surface is tangent to that of the corresponding face of the pyramid; it is the face corresponding to the L-TL plane (dimension 15 x 10 mm) which is exposed to the sand. The depth of penetration of the sample into the sand was 200 mm.

Le même mode opératoire a été utilisé pour tous les échantillons. Il implique le dégraissage à l'acétone de l'échantillon, le remplissage du réservoir avec la même quantité du même sable normalisé (sable selon NF EN 196-1), l'arrêt de la machine tous les 1000 cycles et remplacement du sable usé par du sable neuf, le pesage des échantillons tous les 2000 cycles (précédé d'un nettoyage à l'acétone et à l'air comprimé), l'arrêt de l'essai après 10 000 cycles. Les résultats sont donnés dans le tableau 20 : Tableau 20 Repère Face testée Perte de masse [g] à 10 000 cycles 5086 H24 Brute 0,198 5186 H24 Brute 0,233 5383 H34 Brute 0,193 7020 T6 Brute 0,252 7075 T6 Brute 0,225 7108 T6 Usinée 0,199 7108 F7 Usinée 0,175 The same procedure was used for all samples. It involves the acetone degreasing of the sample, the filling of the tank with the same amount of the same standardized sand (sand according to NF EN 196-1), the stopping of the machine every 1000 cycles and replacement of the used sand by new sand, weighing samples every 2000 cycles (preceded by cleaning with acetone and compressed air), stopping the test after 10,000 cycles. The results are given in Table 20: Table 20 landmark Face tested Loss of mass [g] at 10,000 cycles 5086 H24 Brute 0.198 5186 H24 Brute 0.233 5383 H34 Brute 0,193 7020 T6 Brute 0.252 7075 T6 Brute 0,225 7108 T6 machined 0.199 7108 F7 machined 0,175

Les valeurs de perte de masse indiquées sont la moyenne entre trois essais ; l'intervalle de confiance est de l'ordre de ± 0,01 à 0,02 g ; cela souligne la bonne répétabilité de cet essai.The weight loss values given are the average of three tests; the confidence interval is in the range of ± 0.01 to 0.02 g; this underlines the good repeatability of this test.

Le tableau 19 montre la microstructure très particulière du produit obtenu par le procédé selon la présente invention, en comparant les deux produits en alliage 7108, l'un (repère T6) obtenu selon un procédé connu, l'autre (repère F7) selon le procédé qui fait l'objet de la présente invention. Le tableau 20 montre l'effet de cette microstructure sur la résistance à l'abrasion. On voit immédiatement que le produit selon l'invention résiste mieux à l'abrasion que le produit standard 5086 H24. Cela souligne sa bonne aptitude à l'utilisation dans des véhicules industriels, ainsi que dans des équipements de stockage et de manutention de produits granuleux, tels que bennes, réservoirs, ou convoyeurs.Table 19 shows the very particular microstructure of the product obtained by the process according to the present invention, by comparing the two alloy products 7108, one (reference T6) obtained according to a known method, the other (reference F7) according to the process which is the subject of the present invention. Table 20 shows the effect of this microstructure on abrasion resistance. It is immediately apparent that the product according to the invention is more resistant to abrasion than the standard product 5086 H24. This highlights its good suitability for use in industrial vehicles, as well as storage and handling equipment for granular products, such as skips, tanks, or conveyors.

Claims (27)

  1. Process for generating an intermediate laminated product in an aluminium alloy of the Al-Zn-Mg type, including the following steps:
    a) by semi-continuous casting a plate is generated containing (in percentages per unit mass)
    Mg 0.5 - 2.0 Mn < 1.0 Zn 3.0 - 9.0 Si < 0.50
    Fe< 0.50 Cu < 0.50 Ti < 0.15 Zr < 0.20
    Cr < 0.50
    the remainder of the aluminium with its inevitable impurities, in which Zn/Mg > 1.7;
    b) said plate is subjected to homogenisation or reheating to a temperature T1, selected so that 500°C ≤ T1 ≤ (Ts - 20°C), where Ts is the alloy incipient melting temperature,
    c) an initial hot-rolling step is carried out including one or more roll runs on a hot rolling mill, the input temperature T2 being selected such that (T1 - 60°C) ≤ T2 ≤ (T1 - 5°C), and the rolling process being conducted in such a way that the output temperature T3 is such that (T1 - 150°C) ≤ T3 ≤ (T1 - 30°C) and T3 ≤ T2;
    d) the strip emerging from said initial hot-rolling step is cooled to a temperature T4;
    e) a second step of hot-rolling said strip is carried out, the input temperature T5 being selected such that T5 ≤ T4 and 200°C ≤ T5 ≤ 300°C, and the rolling process being conducted in such a way that the coiling temperature T6 is such that (T5 - 150°C) ≤ T6 ≤ (T5 - 20°C).
  2. Process according to claim 1, characterised in that the zinc content of the alloy is between 4.0 and 6.0%, the Mg content is between 0.7 and 1.5%, and the Mn content is less than 0.60%.
  3. Process according to claim 2, characterised in that Cu < 0.25%.
  4. Process according to claim 2, characterised in that the alloy is chosen from the group formed by the alloys 7020, 7108, 7003, 7004, 7005, 7008, 7011, 7022.
  5. Process according to any one of claims 1 to 3, characterised in that the alloy additionally contains one or more elements chosen from the group formed by Sc, Y, La, Dy, Ho, Er, Tm, Lu, Hf, Yb with a concentration not exceeding the following values:
    Sc < 0.50% and preferably < 0.20%,
    Y < 0.34% and preferably < 0.17%,
    La, Dy, Ho, Er, Tm, Lu < 0.10% each and preferably < 0.05% each,
    Hf < 1.20% and preferably < 0.50%,
    Yb < 0.50% and preferably < 0.25%.
  6. Process according to any one of claims 1 to 5, characterised in that said intermediate laminated product has a thickness between 3 mm and 12 mm.
  7. Process according to any one of claims 1 to 6, characterised in that said intermediate laminated product is subjected to cold working between 1% and 9%, and/or to an additional heat treatment including one or more points at temperatures between 80°C and 250°C, said additional heat treatment being able to occur before, after or during said cold working.
  8. Process according to any one of claims 1 to 7, characterised in that the temperature T3 is such that (T1 - 100°C) ≤ T3 ≤ (T1 - 30°C) and/or in that the temperature T2 is such that (T1 - 30°C) ≤ T2 ≤ (T1 - 5°C).
  9. Process according to any one of claims 1 to 8, characterised in that the temperature T3 is greater than the solvus temperature of the alloy.
  10. Process according to any one of claims 1 to 9, characterised in that the alloy is 7108 alloy and the temperatures T1 to T6 are respectively T1 = 550°C, T2 = 540°C, T3 = 490°C, T4 = 270°C, T5 = 270°C, T6 = 150°C.
  11. Sheet or plate having a thickness comprised between 3 mm and 12 mm which can be obtained via the process according to any one of claims 1 to 10, characterised in that its yield strength Rp0,2 is at least 250 Mpa, its fracture strength Rm is at least 280 MPa, and its elongation at fracture is at least 8%, in that its zinc content is comprised between 4.0 and 6.0%, its Mg content is comprised between 0.7 and 1.5%, its Mn content is less than 0.60% (and preferentially less than 0.25%), its copper content is less than 0.25%, in that grain boundary precipitates of the type MgZn2 have an average size higher than 150 nm, and preferentially comprised between 200 nm and 400 nm, and in that it has a fibred structure characterized by a ratio length / thickness of the grains of more than 60, and preferentially of more than 100 with grains having in the short-transverse direction a thickness of less than 30 µm, preferentially of less than 15 µm, and even more preferentially of less than 10 µm.
  12. Sheet or plate according to claim 11, characterised in that its yield strength Rp0,2 is at least 290 MPa and that its fracture strength Rm is at least 330 MPa.
  13. Sheet or plate according to any one of claims 11 or 12, characterised in that the width of the precipitation-free zones at the grain boundaries is more than 100 nm, preferably between 100 nm and 150 nm, and even more preferably from 120 nm to 140 nm.
  14. Use of a sheet or plate according to any one of claims 11 to 13 to manufacture welded constructions.
  15. Use of a sheet or plate according to any one of claims 11 to 13 to build road or rail tankers.
  16. Use of a sheet or plate according to any one of claims 11 to 13 to build industrial vehicles.
  17. Use of a laminated product according to any one of claims 11 to 13 to build equipment for storage, transport or handling of granulous products, such as buckets, tanks or conveyors.
  18. Use of a sheet or plate according to any one of claims 11 to 13 to manufacture motor vehicle parts.
  19. Use of a sheet or plate according to any one of claims 11 to 13 as a structural component in aeronautical construction.
  20. Use according to claim 19, wherein said structural component is a fuselage facing sheet.
  21. Use according to any one of claims 14 to 20, wherein at least two of said structural components are assembled by welding.
  22. Welded construction made with at least two sheets or plates according to any one of claims 11 to 13, characterised in that its yield strength Rp0,2 in the welded joint between two of said products is at least 200 MPa.
  23. Welded construction according to claim 22, wherein the yield strength Rp0,2 in the welded joint between two of said products is at least 220 MPa.
  24. Welded construction made with at least two sheets or plates according to any one of claims 11 to 13, characterised in that its fracture strength Rm in the welded joint between two of said products is at least 250 MPa.
  25. Welded construction according to claim 24, wherein the fracture strength Rm in the welded joint between two of said products is at least 300 MPa.
  26. Welded construction according to any one of claims 22 to 25, wherein the hardness in the heat-affected zone is greater than or equal to 100 HV, preferably greater than or equal to 110 HV, and even more preferably greater than or equal to 115 HV.
  27. Welded construction according to claim 26, wherein the hardness in the heat-affected zone is at least as high as the hardness of that of the base sheet with the lowest hardness.
EP03767916A 2002-11-06 2003-11-06 Simplified method for making rolled al-zn-mg alloy products, and resulting products Expired - Lifetime EP1558778B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0213859 2002-11-06
FR0213859A FR2846669B1 (en) 2002-11-06 2002-11-06 PROCESS FOR THE SIMPLIFIED MANUFACTURE OF LAMINATED PRODUCTS OF A1-Zn-Mg ALLOYS AND PRODUCTS OBTAINED THEREBY
PCT/FR2003/003312 WO2004044256A1 (en) 2002-11-06 2003-11-06 Simplified method for making rolled al-zn-mg alloy products, and resulting products

Publications (2)

Publication Number Publication Date
EP1558778A1 EP1558778A1 (en) 2005-08-03
EP1558778B1 true EP1558778B1 (en) 2008-11-05

Family

ID=32104485

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03767916A Expired - Lifetime EP1558778B1 (en) 2002-11-06 2003-11-06 Simplified method for making rolled al-zn-mg alloy products, and resulting products

Country Status (11)

Country Link
US (1) US7780802B2 (en)
EP (1) EP1558778B1 (en)
JP (1) JP2006505695A (en)
AT (1) ATE413477T1 (en)
AU (1) AU2003292348A1 (en)
CA (1) CA2504931C (en)
DE (1) DE60324581D1 (en)
ES (1) ES2314255T3 (en)
FR (1) FR2846669B1 (en)
RU (1) RU2326182C2 (en)
WO (1) WO2004044256A1 (en)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050034794A1 (en) * 2003-04-10 2005-02-17 Rinze Benedictus High strength Al-Zn alloy and method for producing such an alloy product
RU2353693C2 (en) * 2003-04-10 2009-04-27 Корус Алюминиум Вальцпродукте Гмбх ALLOY Al-Zn-Mg-Cu
US7260972B2 (en) * 2004-03-10 2007-08-28 General Motors Corporation Method for production of stamped sheet metal panels
US20050238528A1 (en) * 2004-04-22 2005-10-27 Lin Jen C Heat treatable Al-Zn-Mg-Cu alloy for aerospace and automotive castings
US20060000094A1 (en) * 2004-07-01 2006-01-05 Garesche Carl E Forged aluminum vehicle wheel and associated method of manufacture and alloy
US7883591B2 (en) 2004-10-05 2011-02-08 Aleris Aluminum Koblenz Gmbh High-strength, high toughness Al-Zn alloy product and method for producing such product
ES2292075T5 (en) 2005-01-19 2010-12-17 Otto Fuchs Kg ALUMINUM ALLOY NOT SENSITIVE TO BRUSH COOLING, AS WELL AS A PROCEDURE FOR MANUFACTURING A SEMI-FINISHED PRODUCT FROM THIS ALLOY.
US20070204937A1 (en) * 2005-07-21 2007-09-06 Aleris Koblenz Aluminum Gmbh Wrought aluminium aa7000-series alloy product and method of producing said product
CN101243196B (en) * 2005-07-21 2011-01-12 阿勒里斯铝业科布伦茨有限公司 A wrought aluminum aa7000-series alloy product and method of producing said product
US20070151636A1 (en) * 2005-07-21 2007-07-05 Corus Aluminium Walzprodukte Gmbh Wrought aluminium AA7000-series alloy product and method of producing said product
FR2907467B1 (en) 2006-07-07 2011-06-10 Aleris Aluminum Koblenz Gmbh PROCESS FOR MANUFACTURING ALUMINUM ALLOY PRODUCTS OF THE AA2000 SERIES AND PRODUCTS MANUFACTURED THEREBY
US8608876B2 (en) 2006-07-07 2013-12-17 Aleris Aluminum Koblenz Gmbh AA7000-series aluminum alloy products and a method of manufacturing thereof
EP2592170B1 (en) * 2010-06-11 2019-01-02 Showa Denko K.K. Method for producing al alloy joined body
WO2012016027A1 (en) * 2010-07-30 2012-02-02 Alcoa Inc. Multi-alloy assembly having corrosion resistance and method of making the same
CA2810250A1 (en) 2010-09-08 2012-03-15 Alcoa Inc. Improved aluminum-lithium alloys, and methods for producing the same
EP2479305A1 (en) * 2011-01-21 2012-07-25 Aleris Aluminum Duffel BVBA Method of manufacturing a structural automotive part made from a rolled Al-Zn alloy
RU2468107C1 (en) * 2011-04-20 2012-11-27 Открытое акционерное общество "Всероссийский институт легких сплавов" (ОАО "ВИЛС") High-strength deformable alloy based on aluminium with lower density and method of its processing
JP5023232B1 (en) 2011-06-23 2012-09-12 住友軽金属工業株式会社 High strength aluminum alloy material and manufacturing method thereof
JP5285170B2 (en) * 2011-11-07 2013-09-11 住友軽金属工業株式会社 High strength aluminum alloy material and manufacturing method thereof
RU2489217C1 (en) * 2011-12-27 2013-08-10 Открытое акционерное общество "Всероссийский институт легких сплавов" (ОАО "ВИЛС") Method of sheets production from heat-hardened aluminium alloys alloyed with scandium and zirconium
WO2013172910A2 (en) 2012-03-07 2013-11-21 Alcoa Inc. Improved 2xxx aluminum alloys, and methods for producing the same
JP6223669B2 (en) * 2012-09-20 2017-11-01 株式会社神戸製鋼所 Aluminum alloy sheet for automobile parts
JP6223670B2 (en) * 2012-09-20 2017-11-01 株式会社神戸製鋼所 Aluminum alloy sheet for automobile parts
US9587298B2 (en) 2013-02-19 2017-03-07 Arconic Inc. Heat treatable aluminum alloys having magnesium and zinc and methods for producing the same
US9315885B2 (en) * 2013-03-09 2016-04-19 Alcoa Inc. Heat treatable aluminum alloys having magnesium and zinc and methods for producing the same
JP6344923B2 (en) 2014-01-29 2018-06-20 株式会社Uacj High strength aluminum alloy and manufacturing method thereof
RU2569275C1 (en) * 2014-11-10 2015-11-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Plate from high-strength aluminium alloy and method of its production
CN104831134A (en) * 2015-04-30 2015-08-12 广西南南铝加工有限公司 Medium strength and high toughness Al-Zn-Mg alloy
ES2781097T3 (en) * 2015-05-08 2020-08-28 Novelis Inc Shock heat treatment of aluminum alloy items
MX2019001802A (en) 2016-08-26 2019-07-04 Shape Corp Warm forming process and apparatus for transverse bending of an extruded aluminum beam to warm form a vehicle structural component.
WO2018075353A1 (en) 2016-10-17 2018-04-26 Novelis Inc. Metal sheet with tailored properties
WO2018078527A1 (en) 2016-10-24 2018-05-03 Shape Corp. Multi-stage aluminum alloy forming and thermal processing method for the production of vehicle components
KR102457529B1 (en) * 2017-03-07 2022-10-21 엘지전자 주식회사 Aluminum alloy
CN109457147B (en) * 2018-12-28 2020-10-20 辽宁忠旺集团有限公司 Aluminum packing belt and production process thereof
CN111411272B (en) * 2020-03-23 2021-10-01 西安交通大学 Al-Zn-Mg series aluminum alloy welding wire for electric arc additive manufacturing and preparation method thereof
JPWO2021193841A1 (en) * 2020-03-26 2021-09-30
US20230134532A1 (en) * 2020-03-26 2023-05-04 Uacj Corporation Aluminum alloy bare material for member to be brazed and aluminum alloy clad material for member to be brazed
JP7140892B1 (en) * 2021-06-28 2022-09-21 株式会社神戸製鋼所 Aluminum alloy extruded material and manufacturing method thereof
CN113564434B (en) * 2021-08-12 2022-03-22 四川福蓉科技股份公司 7-series aluminum alloy and preparation method thereof
CN114990396B (en) * 2022-07-11 2023-02-24 上海交通大学 Ultrahigh-strength 7000 series aluminum alloy material and preparation method and application thereof
CN116219238A (en) * 2022-12-26 2023-06-06 江苏中天科技股份有限公司 Aluminum alloy conductor wire rod and preparation method and application thereof
CN116219239A (en) * 2023-01-04 2023-06-06 福建煜雄科技有限公司 Anti-fatigue composite metal material and preparation method thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1483324C2 (en) 1965-12-02 1975-04-24 Vereinigte Aluminium-Werke Ag, 5300 Bonn Use of AIZnMg alloys with low notch sensitivity
US3694272A (en) * 1970-12-24 1972-09-26 Kaiser Aluminium Chem Corp Method for forming aluminum sheet
GB1419491A (en) 1971-11-01 1975-12-31 British Aluminium Co Ltd Aluminium alloy
JPS5221966B2 (en) * 1971-12-29 1977-06-14
US3945861A (en) * 1975-04-21 1976-03-23 Aluminum Company Of America High strength automobile bumper alloy
JPS57161045A (en) * 1981-03-31 1982-10-04 Sumitomo Light Metal Ind Ltd Fine-grain high-strength aluminum alloy material and its manufacture
JPS619561A (en) * 1984-06-25 1986-01-17 Mitsubishi Alum Co Ltd Manufacture of al alloy plate having superior hot formability
US4988394A (en) * 1988-10-12 1991-01-29 Aluminum Company Of America Method of producing unrecrystallized thin gauge aluminum products by heat treating and further working
US5061327A (en) * 1990-04-02 1991-10-29 Aluminum Company Of America Method of producing unrecrystallized aluminum products by heat treating and further working
EP0544758A1 (en) * 1990-08-22 1993-06-09 Comalco Aluminium, Ltd. Aluminium alloy suitable for can making
GB9200622D0 (en) * 1992-01-13 1992-03-11 Duley Walter W Improved means of co2 laser welding of a1 7075
US5655593A (en) * 1995-09-18 1997-08-12 Kaiser Aluminum & Chemical Corp. Method of manufacturing aluminum alloy sheet
JP3735407B2 (en) 1996-04-02 2006-01-18 アイシン軽金属株式会社 High strength aluminum alloy
JPH116044A (en) 1997-06-13 1999-01-12 Aisin Keikinzoku Kk High strength/high toughness aluminum alloy
US6302973B1 (en) * 1997-08-04 2001-10-16 Corus Aluminium Walzprodukte Gmbh High strength Al-Mg-Zn-Si alloy for welded structures and brazing application
JPH11302763A (en) * 1998-04-23 1999-11-02 Aisin Keikinzoku Co Ltd High strength aluminum alloy excellent in stress corrosion cracking resistance
JP3926934B2 (en) * 1998-10-15 2007-06-06 株式会社神戸製鋼所 Aluminum alloy plate
JP4818509B2 (en) * 2000-12-04 2011-11-16 新日本製鐵株式会社 Paint bake hardening and press forming aluminum alloy plate and method for producing the same

Also Published As

Publication number Publication date
JP2006505695A (en) 2006-02-16
WO2004044256A1 (en) 2004-05-27
RU2005117168A (en) 2006-01-20
FR2846669B1 (en) 2005-07-22
EP1558778A1 (en) 2005-08-03
AU2003292348A1 (en) 2004-06-03
FR2846669A1 (en) 2004-05-07
ES2314255T3 (en) 2009-03-16
CA2504931A1 (en) 2004-05-27
CA2504931C (en) 2011-10-04
US7780802B2 (en) 2010-08-24
US20060016523A1 (en) 2006-01-26
ATE413477T1 (en) 2008-11-15
RU2326182C2 (en) 2008-06-10
DE60324581D1 (en) 2008-12-18

Similar Documents

Publication Publication Date Title
EP1558778B1 (en) Simplified method for making rolled al-zn-mg alloy products, and resulting products
EP1488018B1 (en) Al-mg alloy products for a welded construction
EP1799391B1 (en) Welded structural element comprising at least two aluminium alloy parts which have different metallurgical states, and method of producing such a element
EP1170118B1 (en) Aluminium alloy plated sheets for structural aircraft elements
Mutombo et al. Corrosion fatigue behaviour of aluminium alloy 6061-T651 welded using fully automatic gas metal arc welding and ER5183 filler alloy
FR2841263A1 (en) PROCESS FOR PRODUCING A HIGH-STRENGTH BALANCED AL-Mg-Si ALLAGEN PRODUCT, AND WELDABLE PRODUCT AND AIRCRAFT COATING MATERIAL OBTAINED BY SUCH A METHOD
EP1382698B1 (en) Wrought product in Al-Cu-Mg alloy for aircraft structural element
CA1285791C (en) Ferritic stainless steel sheet or strip, namely for exhaust systems
EP2981632B1 (en) Thin sheets made of an aluminium-copper-lithium alloy for producing airplane fuselages
EP1995336A1 (en) Low-density steel with good suitability for stamping
EP0823489A1 (en) AlMgMn alloy product for welded structures with improved corrosion resistance
EP1544315B1 (en) Wrought product in the form of a rolled plate and structural part for aircraft in Al-Zn-Cu-Mg alloy
EP3384060B1 (en) Highly rigid thin sheet metal for car body
EP3824110A1 (en) Process for manufacturing thin sheets made of 7xxx aluminum alloy suitable for shaping and assembly
EP3411508B1 (en) Thick al - cu - li - alloy sheets having improved fatigue properties
EP3555331B1 (en) Aluminium alloy for laser welding without filler wire
KR20180095116A (en) Aluminum alloy sheet
Novakova et al. Influence of the Welding Process on the Change of Mechanical Properties in the HAZ of Welds at Alloy AW 6005 and Possibilities of Their Renewal by Heat Treatment
JP3123682B2 (en) High strength aluminum alloy material for welding
WO2022263782A1 (en) Strip made of 6xxx alloy and manufacturing process
Abd Razak et al. Effect of heat treatment on corrosion behaviour of welded AA6061 aluminium alloy in seawater
Buglacki et al. Properties of welded aluminium alloy joints used in shipbuilding
Piprani et al. Fatigue Life Estimation of Pre-corroded Aluminium Alloy
JP2005034896A (en) Filler metal for welding aluminum alloy and method for welding aluminum alloy material using this

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050428

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20061212

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCAN RHENALU

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: WILLIAM BLANC & CIE CONSEILS EN PROPRIETE INDUSTRI

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60324581

Country of ref document: DE

Date of ref document: 20081218

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2314255

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

BERE Be: lapsed

Owner name: ALCAN RHENALU

Effective date: 20081130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090205

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090205

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090406

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

26N No opposition filed

Effective date: 20090806

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: ALCAN RHENALU

Free format text: ALCAN RHENALU#7, PLACE DU CHANCELIER ADENAUER#75116 PARIS (FR) -TRANSFER TO- ALCAN RHENALU#7, PLACE DU CHANCELIER ADENAUER#75116 PARIS (FR)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081106

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090506

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090206

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NOVAGRAAF SWITZERLAND SA;CHEMIN DE L'ECHO 3;1213 ONEX (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: CONSTELLIUM FRANCE, FR

Effective date: 20111123

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: NOVAGRAAF INTERNATIONAL SA

Ref country code: CH

Ref legal event code: PUE

Owner name: CONSTELLIUM FRANCE SAS

Free format text: ALCAN RHENALU#7, PLACE DU CHANCELIER ADENAUER#75116 PARIS (FR) -TRANSFER TO- CONSTELLIUM FRANCE SAS#40-44, RUE WASHINGTON#75008 PARIS (FR)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60324581

Country of ref document: DE

Representative=s name: BEETZ & PARTNER PATENT- UND RECHTSANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60324581

Country of ref document: DE

Owner name: CONSTELLIUM FRANCE, FR

Free format text: FORMER OWNER: ALCAN RHENALU, PARIS, FR

Effective date: 20120622

Ref country code: DE

Ref legal event code: R082

Ref document number: 60324581

Country of ref document: DE

Representative=s name: BEETZ & PARTNER PATENT- UND RECHTSANWAELTE, DE

Effective date: 20120622

Ref country code: DE

Ref legal event code: R082

Ref document number: 60324581

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENTANWAELTE, DE

Effective date: 20120622

Ref country code: DE

Ref legal event code: R081

Ref document number: 60324581

Country of ref document: DE

Owner name: CONSTELLIUM ISSOIRE, FR

Free format text: FORMER OWNER: ALCAN RHENALU, PARIS, FR

Effective date: 20120622

Ref country code: DE

Ref legal event code: R082

Ref document number: 60324581

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENT- UND RECHTSANWAELTE, DE

Effective date: 20120622

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: CONSTELLIUM FRANCE

Effective date: 20130205

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: CONSTELLIUM ISSOIRE, FR

Effective date: 20150915

Ref country code: FR

Ref legal event code: CA

Effective date: 20150915

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: CONSTELLIUM ISSOIRE, FR

Free format text: FORMER OWNER: CONSTELLIUM FRANCE SAS, FR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60324581

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENTANWAELTE, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 60324581

Country of ref document: DE

Owner name: CONSTELLIUM ISSOIRE, FR

Free format text: FORMER OWNER: CONSTELLIUM FRANCE, PARIS, FR

Ref country code: DE

Ref legal event code: R082

Ref document number: 60324581

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENT- UND RECHTSANWAELTE, DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: CONSTELLIUM ISSOIRE

Effective date: 20161010

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191127

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20191202

Year of fee payment: 17

Ref country code: FR

Payment date: 20191125

Year of fee payment: 17

Ref country code: IT

Payment date: 20191125

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20191203

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191127

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60324581

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201106

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201107