EP1531267A2 - Pumping device using thermal-transpiration micropumps - Google Patents

Pumping device using thermal-transpiration micropumps Download PDF

Info

Publication number
EP1531267A2
EP1531267A2 EP04292591A EP04292591A EP1531267A2 EP 1531267 A2 EP1531267 A2 EP 1531267A2 EP 04292591 A EP04292591 A EP 04292591A EP 04292591 A EP04292591 A EP 04292591A EP 1531267 A2 EP1531267 A2 EP 1531267A2
Authority
EP
European Patent Office
Prior art keywords
micropumps
pumping device
heating element
cavities
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04292591A
Other languages
German (de)
French (fr)
Other versions
EP1531267B1 (en
EP1531267A3 (en
Inventor
Roland Bernard
Hisanori Kambara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel CIT SA
Alcatel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel CIT SA, Alcatel SA filed Critical Alcatel CIT SA
Publication of EP1531267A2 publication Critical patent/EP1531267A2/en
Publication of EP1531267A3 publication Critical patent/EP1531267A3/en
Application granted granted Critical
Publication of EP1531267B1 publication Critical patent/EP1531267B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/20Other positive-displacement pumps
    • F04B19/24Pumping by heat expansion of pumped fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/006Micropumps

Definitions

  • the present invention relates to pumping devices thermal transpiration micropumps to generate and maintain low gas pressures in low volume speakers.
  • micropumps must be very small, and they must have an appropriate vacuum generation capacity, or at least vacuum conservation. That is, they must be able to produce a sufficient compression ratio, and sufficient gas flow.
  • micropumps require the production of channels whose dimensions are small enough to be comparable with the free path medium of gaseous molecules to be compressed.
  • the average free path of molecules is of the order of a few microns. It then becomes possible to achieve channels of satisfactory size thanks to systems technology microelectronic mechanical devices (MEMS).
  • MEMS microelectronic mechanical devices
  • Channels and cavities can be made by deep etching on the surface of a semiconductor wafer. The cavities are then closed by a glass plate applied with sealingly on the surface of the semiconductor wafer.
  • the pressure in a chamber or in a mini-environment enclosure is controlled by providing a valve of mechanical regulation at the inlet of the pump, to adapt the conductance of the pipe according to the pumping conditions that we want to obtain.
  • This structure has the disadvantage of adding an element to the system, and the parts mechanical movements that make up the valve can generate harmful contaminations due to friction between mechanical parts.
  • a device for pumping by micropumps with thermal transpiration allows to avoid these disadvantages, provided you can order pumping capabilities of the device.
  • a first problem is then to feed and control in a simple way and effective the elementary cells of micropumps with thermal transpiration, in a way that allows to control the pumping capacities without adding a control valve.
  • the multiplication of the number of connected elementary micropumps in the device requires particular control means, allowing the easy management of all the elementary micropumps.
  • the object of the invention is to achieve a particular control simple and efficient device consisting of a large number of micropumps, so to control the general pumping function of elementary micropumps without addition of a regulating valve.
  • a second problem is related to the realization of the hot spring at one ends of each channel connecting two successive cavities.
  • the compression ratio is directly related to the efficiency of this source hot, which determines the ratio of temperatures at both ends of the channel.
  • the hot source of a micropump with thermal transpiration is achieved by integrating, into the glass plate superior, a heating element in the form of a parallelepiped bar resistive material, constituting an electrical resistance that can be supplied by an external source of energy.
  • the heating element in the form of a bar must achieve a temperature clearly in the central zone of the bar because the temperature decreases when approaching the end of the bar that is adjacent to the entrance to the canal.
  • Another aspect of the invention is thus to increase the efficiency of the micropumps while reducing the risk of degradation due to excessive temperature in the central zone of the hot springs of the micropump.
  • the invention aims to achieve a optimal efficiency of the micropump while reducing energy consumption.
  • a third problem is that the necessary multiplication of the number elementary micropumps leads to proportionally increase the volume total occupied by the pumping device.
  • the invention therefore aims at reducing the overall volume of the pumping device, for a given number of elementary micropumps to thermal transpiration.
  • line control drivers are accessible for the electrical connection along a first edge of the substrate, and Column control drivers are accessible for connection electric according to a second edge of the substrate.
  • control means which control selectively the line control drivers and the drivers of column control, so as to control each micropump individually individual micropumps network.
  • Various interface circuits may be used between the drivers of line control and column control drivers to power from distinctly a heating element of the micropump placed at the intersection of the line and column.
  • each heating element is of type electrical resistance
  • the heating element can be connected to the terminals of a power supply in series with a transistor itself controlled by an AND gate whose inputs are respectively connected to a control conductor corresponding line and to a column control driver corresponding.
  • the simultaneous power supply of the line control driver and of the column control driver ensures the unblocking of the transistor for feed the heating element.
  • each element heating is controlled by a flip-flop itself arranged for switch to simultaneous reception of control pulse signals from of a corresponding line control driver and a driver of corresponding column command.
  • one or more lines of micropumps are connected serially in series to form a subset series, and several serial subsets can be connected aeraulically in parallel.
  • a pumping device can use individual micropumps with thermal transpiration in which the element heating is arranged to prevent overheating of certain areas of the channel to be heated, performing a temperature distribution substantially regular depending on the length of the channel section to be heated.
  • micropumps have a heating element arranged to equitably distribute the heating depending on the length of the channel section to be heated, so as to achieve a substantially regular temperature distribution according to the length of the channel to be heated.
  • the heating element is of the type electrical resistance and comprises at least two current conducting areas placed in two successive zones longitudinally spaced one of the other in the channel section to be heated.
  • the heating element of the type electrical resistance is a resistive range having a central hole.
  • the heating element is of the type electrical resistance in the form of heating cord wound in double flat spiral.
  • the heating element may advantageously be the heating zone of an element Peltier effect.
  • the invention proposes to increase the integration of the cavities.
  • a first idea is then to give the cavities a shape more easily integrable, and to place the cavities relative to one another way that reduces their total footprint.
  • Integration can first be horizontal, by several lines of micropumps side by side.
  • Integration may, in alternative or in addition, be vertical, by several layers of elemental micropumps.
  • the invention proposes to provide, in the pumping device, that at least some of the micropumps have a cavity whose section goes into reducing from the entrance to the exit, and providing that cavities of shapes similar are nested head to tail to reduce their common footprint in cross section.
  • the cross section of the cavity at its entrance, is large enough for the gaseous molecules lose their molecular displacement regime to the high temperature provided by the adjacent heating element, and then adopt a displacement regime in viscous medium, and it is necessary to ensure simultaneously that the molecules still preserve their regime of displacement in medium viscous at the other end of the cavity whose section is smaller but whose the temperature is lower.
  • the invention thus takes advantage of the progressive reduction the average free path of the molecules when the temperature decreases of the entry towards the exit of the cavity, and consequently reduces the cross section of the cavity, ensuring that the cross section of the cavity remains at all points considered along its length, large enough for the molecules aerated gases have a displacement regime in a viscous medium.
  • the cavities have a thickness constant and a width that decreases from their entry to their exit, and the cavities are nested side by side head to tail to reduce their overall size in the transverse direction.
  • the thickness of the cavities can go into decreasing from their entrance to their exit.
  • Multilayer integration can be achieved by providing that a substrate slice is treated on both sides to make two layers of cavities.
  • the two layers of cavities have thicknesses that are decreasing from entry to exit, and that Cavities are nested head-to-tail in the thickness of the substrate.
  • the means to increase the efficiency of micropumps by reducing the risk of thermal degradation constitute a second invention which can be used either in combination or independently of other means described in this patent application.
  • the means to reduce the total volume of pumping constitute a third invention which can be used either in combination, either independently of the other means described in this patent application.
  • Figure 1 illustrates four elementary micropumps, designated by the respective reference numerals 1, 1a, 1b and 1c, which each consist of as the micropump 1, a cavity 2, a channel 3, and a heating element 4 disposed in contact with the channel 3 in the vicinity of its connection to the cavity 2.
  • Channel 3 constitutes the input channel of the elementary micropump 1, and is connected to the inlet 2a of the cavity 2.
  • the cavity 2 has an output 2b which is connected to an output channel 3a which itself constitutes the input channel of the second elementary micropump 1a.
  • the inlet channel 3 has a cross section sufficiently small so that the gaseous molecules that run through it move according to a molecular diet.
  • the cavity 2 has a cross section large enough for the molecules it contains to move according to a viscous medium regime.
  • the channel must have a section of the order of a few microns.
  • the cavity 2 may have a cross section of some tens of microns.
  • Such shapes can be made in a substrate in semiconductor by etching, then closing by means of a glass plate applied to the etched substrate.
  • the heating element 4 may be made for example by a deposit of silicon nitrate with thermooxidation, made on the glass plate.
  • Figure 2 illustrates a larger micropump network, realized in a common semiconductor substrate 5, by etching the satisfactory number of cavities and associated channels, with corresponding heating elements placed at appropriate places, ie adjacent to the entrances of the cavities such as cavity 2.
  • micropump 1 consisting of the cavity 2, the channel 3 and the heating element 4.
  • the micropumps network is arranged according to a multiplicity of lines A, B, C ... D each consisting of a series of several elementary micropumps such as micropumps 1, 6, 7, 8 and 9 of line A, thus constituting columns a, b ... c and d.
  • Each line A, B, C ... D is associated with a control conductor respective line 10A, 10B, 10C ... 10D.
  • Each column a, b ... c, d is associated to a respective column driver 11a, 11b ... 11c, 11d.
  • Each heating element such as the heating element 4 of the micropump 1 at the intersection of line A and column a is controlled by simultaneous solicitation of the line control conductor 10A and the corresponding column driver 11a.
  • the line control conductors 10A, 10B, 10C, ... 10D are accessible for a connection along a first edge of the substrate 5.
  • the column control drivers 11a, 11b ... 11c and 11d are accessible for a connection along a second edge of the substrate 5.
  • a control device can selectively supplying the line control conductors 10A, 10B, 10C, ... 10D and the column drivers 11a, 11b ... 11c and 11d, for control at will the heating elements located at the intersections of each line and each column. This allows you to individually order each elementary micropump, so as to give the micropump network desired properties of compression ratio and flow rate or pumping rate.
  • each heating element such as the element 4
  • a flip-flop electronic circuit whose tilting is controlled by simultaneous impulse supply from the command line line 10A and the column control line 11a.
  • the flip-flop then controls the power supply of the heating element 4 from a external source of electrical energy.
  • FIG. 3 A simplified control mode is illustrated in Figure 3.
  • the heating element 4 is connected in series, between the positive terminals 12 and negative 13 of a power supply, in series with a transistor 14 whose base 15 is connected to the output of an AND gate 16 whose two inputs are connected respectively to the line control conductor 10A and to the driver of column control 11a.
  • Transistor 14 turns on, to power the heating element 4, when one and the other of the line control drivers 10A and 11a column are at an appropriate potential to produce failover of the AND gate 16 which unblocks the transistor 14.
  • FIGS. 4 to 7, illustrate the means for to improve the efficiency of elementary micropumps.
  • Figure 4 illustrates the temperature distribution in a source hot heat pump micropump consisting of a resistive bar 4 cuboid.
  • the dashed line shows the variation in temperature, ordered, according to the longitudinal position considered along the canal, in abscissa.
  • the temperature varies according to the zone considered bar of resistive material along channel 3 ( Figure 1): the temperature is not uniform but has a sinusoidal distribution, with a slow increase in the vicinity of the upstream end 4a of the bar 4, then a rapid increase up to a maximum M at the center 4c of the bar 4, followed by a rapid decrease itself followed by a more gradual decrease in the vicinity of the downstream end 4b of the bar 4.
  • This sinusoidal temperature distribution results in particular from a generally unequal distribution of electrical current that propagates in the bar 4 in a direction generally perpendicular to the longitudinal axis of the channel.
  • the electric current chooses the shortest way to go from a terminal to the other, and this shortest way passes essentially through the center 4c of the bar 4, which maximizes the central temperature at the summit M.
  • this traditional parallelepipedal bar structure with rectangular section produces a relatively reduced temperature in the vicinity of the downstream end 4b of the bar 4, which end is closest to the cavity 2 following.
  • the determining element to obtain a maximum compression ratio of a thermal transpiration pump lies in the ratio of temperatures to the downstream end of the channel 3, or inlet orifice in the cavity 2, and the temperature in the cavity 2. It is therefore understood that the resistive bar with rectangular section of the heating element 4 illustrated in Figure 4 does not provide a report optimal temperature, or requires then to increase excessively the temperature of the summit M at the center 4c of the bar 4.
  • the idea according to the invention is then to modify the temperature distribution along the heating element, so that the temperature in the vicinity of the downstream end 4b of the heating element is not much lower than the temperature in central part and in the other parts of the heating element.
  • This is expected that the heating element can produce a higher temperature at neighborhood of the downstream end of channel 3, without this requiring to increase for as much the temperature in the other parts of the heating element.
  • the power consumption can be minimized, and risk of degradation of the elements by excessive temperature in the center of the heating element.
  • FIG. 1 A first embodiment is illustrated in FIG. the heating element is formed by three successive heating elements 41, 42, 43, placed across the channel 3 and offset longitudinally along the channel.
  • the Figure 5 shows the temperature distribution in the presence of the three elements heating elements 41, 42 and 43. There is a better regularity of the temperature in function of the longitudinal zone considered of the canal.
  • a variant may consist to provide only two heating elements, realizing a heating section more short in channel 3.
  • FIG. 6 illustrates another embodiment of heating element 4, having a central cavity 4e devoid of resistive element, and thus promoting the passage of electric current in the vicinity of the upstream ends 4a and 4b downstream of the heating element 4. This reduces the temperature reached in the center of the the heating element 4.
  • FIG. 7 shows another embodiment of the heating element 4, consisting of a strip of resistive material wound in double flat spiral. We avoids favoring the passage of electric current in the center of the element heating 4, which reduces the overheating effect in the center of the heating element 4.
  • the heating element 4 must produce heating over a sufficient length of the channel 3 to ensure contact satisfactory with the gas molecules that pass through the channel. It is indeed necessary that the heating element 4 can sufficiently heat the molecules to that they are agitated and present the appropriate high temperature before entering in cavity 2 which follows. This is why the heating element 4 can not not have a reduced length, concentrated in the immediate vicinity of the inlet of the cavity 2, but that it must instead extend upstream in the channel 3 in a sufficient length.
  • the heating element 4 has been described like an electrical resistance.
  • the heating element 4 is the part of a Peltier effect torque, while the cooling element of the couple to Peltier effect can be placed next to the cavity 2 of the micropump, or view of the upstream part of canal 3.
  • FIG. 8 illustrates a first embodiment in which the cavities have a constant thickness but a width that is decreasing since their entrance to their exit.
  • the figure thus shows four micropumps elementary 1, 1a, 1b and 1c, in which we find, as in the embodiment of FIG. 1, a cavity 2, an inlet channel 3, a heating element 4, and an output channel 3a, the cavity being connected to the respective channels by its entrance 2a and by its exit 2b.
  • FIG. 9 illustrates the assembly of FIG. 8, shown seen from the side in cut according to plan I-I.
  • the two cavities 2 and 2c are on both figures beside.
  • cavities 2 and 2c are made by etching in a substrate 5, and the cavities are then closed by a plate of glass 17 reported on the etched substrate 5.
  • cavities 2 and 2c have a constant thickness.
  • the cavities such as the cavity 2 have a width that decreases since their entry 2a to their output 2b.
  • the progressive reduction of width can be regular, for to form a generally triangular cavity 2 as illustrated in FIG.
  • the adoption of such a cavity shape 2 is made possible by the fact that the gas temperature decreases gradually from the inlet 2a of the cavity 2 to the outlet 2b of the same cavity 2, the average free path of the molecules descending simultaneously with the temperature, so that the width of the cavity 2 remains, in all longitudinal positions considered, significantly greater than free path of molecules, which ensures that the molecules are move in the cavity 2 in a displacement regime in a viscous medium.
  • FIG. 10 illustrates, in cross-section, an improvement of the previous embodiment.
  • the substrate 5 is etched on its two opposite sides, to constitute, on a first face, the cavities 2 and 2c previous, and to constitute, on the opposite face, two cavities 21 and 21c. Both faces are closed by respective glass plates 17 and 171. it doubles the number of elementary micropumps per unit area of substrate 5.
  • This embodiment however leads to an increase of the thickness of the device.
  • FIG. 11 illustrated in longitudinal section, does not change the width of the cavity, but its depth to achieve a cavity 2 of variable cross section.
  • FIG. 12 an embodiment is illustrated which combines with both the idea of depth variation according to Figure 11 with micropumps elements 1 and 1a in series, the idea of the superposition of two layers according to the 10 with a substrate 5 etched on both sides and engaged between two glass plates 17 and 171, and the idea of nesting the cavities according to FIG. 8.
  • the cavities 2 and 21 are nested head to tail, which reduces the thickness overall of the assembly compared with the embodiment of FIG. 10.
  • the density that is to say the number of elementary micropumps in a given surface of the substrate 5, and also in a given volume of substrate 5.
  • the number of micropumps can to be increased by a factor close to 4, which leads to proportionally the pumping speed.

Abstract

The device has heat transpiration micropumps (1, 6-9) placed on a semiconductor substrate (5) in several rows (A-D) and columns (a-d). Each micropump has a channel (3) and a heating unit (4) connected in series with a transistor whose base is connected to an output of an AND gate whose respective inputs are connected to a row control conductor and a column control conductor.

Description

La présente invention concerne les dispositifs de pompage par micropompes à transpiration thermique permettant de générer et de maintenir des pressions gazeuses faibles dans des enceintes de faible volume.The present invention relates to pumping devices thermal transpiration micropumps to generate and maintain low gas pressures in low volume speakers.

Dans l'industrie du semi-conducteur, par exemple, des systèmes de manutention de substrats sont actuellement utilisés pour isoler ces substrats et éviter leur contact avec des agents contaminants qui, même en faible quantité, sont encore présents dans les salles blanches. On a notamment imaginé d'introduire chaque substrat dans un boítier dont l'atmosphère intérieure est maintenue à faible pression par une micropompe, réalisant un ensemble autonome portable.In the semiconductor industry, for example, handling of substrates are currently used to isolate these substrates and avoid contact with contaminants which, even in small quantities, are still present in the clean rooms. In particular, we have thought of introducing each substrate in a housing whose interior atmosphere is kept low pressure by a micropump, realizing a portable autonomous assembly.

Ces micropompes doivent être de très petite taille, et elles doivent présenter une capacité appropriée de génération de vide, ou au moins de conservation de vide. C'est-à-dire qu'elles doivent être capables de produire un taux de compression suffisant, et un débit gazeux suffisant.These micropumps must be very small, and they must have an appropriate vacuum generation capacity, or at least vacuum conservation. That is, they must be able to produce a sufficient compression ratio, and sufficient gas flow.

On a également imaginé d'utiliser, comme micropompe, un réseau de micropompes fonctionnant par effet de transpiration thermique.It has also been imagined to use, as a micropump, a network of micropumps operating by thermal transpiration effect.

Selon l'effet de transpiration thermique, mis en évidence par Knudsen dans les années 1900, lorsque deux grands volumes sont reliés par un canal de dimension transversale très faible, dont le rayon est inférieur au libre parcours moyen des molécules gazeuses présentes, et lorsque les extrémités du canal sont à des températures différentes, une différence de pression s'établit entre les deux grands volumes. Dans le canal de petite dimension, les molécules se déplacent selon un régime moléculaire, et il en résulte que les pressions diffèrent aux deux extrémités du canal par suite de la différence des températures. En régime moléculaire, lorsque l'équilibre thermique est atteint, les pressions aux deux extrémités du canal sont telles que le rapport est égal à la racine carrée du rapport des températures correspondantes.According to the effect of thermal transpiration, highlighted by Knudsen in the 1900s, when two large volumes were connected by a canal of very small transverse dimension, whose radius is less than the free path medium of the gaseous molecules present, and when the ends of the channel are at different temperatures, a pressure difference is established between the two large volumes. In the small channel, molecules move according to a molecular regime, and as a result the pressures differ at both ends of the channel due to the difference in temperatures. In regime molecular weight, when the thermal equilibrium is reached, the pressures at both channel ends are such that the ratio is equal to the square root of the ratio corresponding temperatures.

Lorsque les molécules atteignent le grand volume adjacent à l'extrémité chaude du canal, leur déplacement ne suit plus le régime moléculaire, mais suit le régime d'un milieu visqueux. De la sorte, à l'extrémité chaude du canal, les molécules s'échappent du canal et pénètrent dans le grand volume adjacent, et ne retournent pas dans le canal. Cela produit un effet de pompage, selon le taux de compression pouvant atteindre la racine carrée du rapport des températures.When the molecules reach the large volume adjacent to the end channel, their displacement no longer follows the molecular regime, but follows the regime of a viscous medium. In this way, at the hot end of the canal, the molecules escape from the channel and enter the adjacent large volume, and do not do not go back into the channel. This produces a pumping effect, depending on the rate of compression up to the square root of the temperature ratio.

On sait qu'un taux de compression significatif peut être réalisé en connectant aérauliquement un grand nombre d'étages de micropompes à transpiration thermique. En théorie, le taux de compression globale de N étages est le produit des N taux de compression individuels.It is known that a significant compression ratio can be achieved in aeraulically connecting a large number of stages of micropumps to thermal transpiration. In theory, the overall compression ratio of N stages is the product of the N individual compression ratios.

Ces micropompes nécessitent de réaliser des canaux dont les dimensions sont suffisamment petites pour être comparables avec le libre parcours moyen des molécules gazeuses à comprimer. Le libre parcours moyen des molécules augmentant lorsque la pression diminue, on comprend que les canaux pourront être d'autant plus gros que la pression régnant à l'intérieur de la pompe est faible. Dans le domaine des pressions que l'on rencontre dans l'industrie des semi-conducteurs pour la manutention de substrats, le libre parcours moyen des molécules est de l'ordre de quelques microns. Il devient alors possible de réaliser des canaux de dimension satisfaisante grâce à la technologie des systèmes mécaniques microélectroniques (MEMS). Les canaux et cavités peuvent être réalisés par une gravure profonde sur la surface d'une plaquette de semi-conducteur. Les cavités sont ensuite fermées par une plaque de verre appliquée de manière étanche sur la surface de la plaquette de semi-conducteur.These micropumps require the production of channels whose dimensions are small enough to be comparable with the free path medium of gaseous molecules to be compressed. The average free path of the molecules increasing when the pressure decreases, it is understood that the channels may be even larger than the pressure inside the pump is weak. In the area of pressure in the semi-conductors for the handling of substrates, the average free path of molecules is of the order of a few microns. It then becomes possible to achieve channels of satisfactory size thanks to systems technology microelectronic mechanical devices (MEMS). Channels and cavities can be made by deep etching on the surface of a semiconductor wafer. The cavities are then closed by a glass plate applied with sealingly on the surface of the semiconductor wafer.

Mais on rencontre plusieurs problèmes pour obtenir des taux de compression suffisants, et des débits suffisants, compatibles avec les applications envisagées. En effet, il faut pour cela combiner un grand nombre de micropompes à transpiration thermique connectées aérauliquement les unes aux autres, et alimentées électriquement pour échauffer l'une des extrémités de chaque canal reliant les cavités successives. Or on a besoin d'adapter les capacités de pompage en fonction des conditions d'utilisation.But there are several problems with getting rates of sufficient compression, and sufficient bit rates, compatible with the applications considered. Indeed, it requires to combine a large number of micropumps with thermal transpiration connected aeraulically to each other, and electrically powered to heat one end of each channel connecting the successive cavities. But we need to adapt the pumping capacities depending on the conditions of use.

A cet égard, de façon classique, la pression dans une chambre ou dans une enceinte de mini-environnement est commandée en prévoyant une vanne de régulation mécanique à l'entrée de la pompe, pour adapter la conductance de la canalisation en fonction de conditions de pompage que l'on veut obtenir. Cette structure a l'inconvénient d'ajouter un élément au système, et les pièces mécaniques en mouvement qui composent la vanne peuvent générer des contaminations néfastes à cause de la friction entre les pièces mécaniques.In this respect, in a conventional manner, the pressure in a chamber or in a mini-environment enclosure is controlled by providing a valve of mechanical regulation at the inlet of the pump, to adapt the conductance of the pipe according to the pumping conditions that we want to obtain. This structure has the disadvantage of adding an element to the system, and the parts mechanical movements that make up the valve can generate harmful contaminations due to friction between mechanical parts.

Un dispositif de pompage par micropompes à transpiration thermique permet alors d'éviter ces inconvénients, à condition de pouvoir commander les capacités de pompage du dispositif.A device for pumping by micropumps with thermal transpiration allows to avoid these disadvantages, provided you can order pumping capabilities of the device.

Un premier problème est alors d'alimenter et de piloter de façon simple et efficace les cellules élémentaires de micropompes à transpiration thermique, d'une façon qui permette de commander les capacités de pompage sans ajout d'une vanne de régulation. A first problem is then to feed and control in a simple way and effective the elementary cells of micropumps with thermal transpiration, in a way that allows to control the pumping capacities without adding a control valve.

La multiplication du nombre de micropompes élémentaires connectées dans le dispositif nécessite des moyens particuliers de commande, permettant la gestion aisée de l'ensemble des micropompes élémentaires.The multiplication of the number of connected elementary micropumps in the device requires particular control means, allowing the easy management of all the elementary micropumps.

L'invention vise pour cela à réaliser une commande particulièrement simple et efficace d'un dispositif composé d'un grand nombre de micropompes, afin de piloter la fonction générale de pompage des micropompes élémentaires sans ajout d'une vanne de régulation.The object of the invention is to achieve a particular control simple and efficient device consisting of a large number of micropumps, so to control the general pumping function of elementary micropumps without addition of a regulating valve.

Il faut à la fois piloter le débit des micropompes, et le taux de compression du dispositif, de façon à piloter la pression d'un mini-environnement auquel est raccordé le dispositif de pompage.It is necessary at the same time to control the flow of the micropumps, and the rate of compression of the device, so as to control the pressure of a mini-environment to which the pumping device is connected.

Un second problème est lié à la réalisation de la source chaude à l'une des extrémités de chaque canal reliant deux cavités successives. On comprend que le taux de compression est directement lié à l'efficacité de cette source chaude, qui détermine le rapport des températures aux deux extrémités du canal.A second problem is related to the realization of the hot spring at one ends of each channel connecting two successive cavities. We understand that the compression ratio is directly related to the efficiency of this source hot, which determines the ratio of temperatures at both ends of the channel.

Dans une configuration habituelle, la source chaude d'une micropompe à transpiration thermique est réalisée en intégrant, dans la plaque de verre supérieure, un élément chauffant en forme de barreau parallélépipédique de matériau résistif, constituant une résistance électrique que l'on peut alimenter par une source d'énergie extérieure.In a typical configuration, the hot source of a micropump with thermal transpiration is achieved by integrating, into the glass plate superior, a heating element in the form of a parallelepiped bar resistive material, constituting an electrical resistance that can be supplied by an external source of energy.

Le problème est que, pour obtenir une température appropriée à l'entrée du canal, c'est-à-dire à la frontière avec la cavité adjacente de la micropompe, l'élément chauffant en forme de barreau doit réaliser une température nettement supérieure dans la zone centrale du barreau, car la température décroít lorsqu'on s'approche de l'extrémité du barreau qui est adjacente à l'entrée du canal.The problem is that to get a proper temperature at the entrance the channel, that is to say on the border with the adjacent cavity of the micropump, the heating element in the form of a bar must achieve a temperature clearly in the central zone of the bar because the temperature decreases when approaching the end of the bar that is adjacent to the entrance to the canal.

Il en résulte non seulement une augmentation excessive de la consommation d'énergie, mais également un risque de dégradation des matériaux au voisinage de la zone centrale de l'élément chauffant.This results not only in an excessive increase in energy consumption, but also a risk of material degradation in the vicinity of the central zone of the heating element.

A l'inverse, si l'on veut réduire le risque de dégradation dans la zone centrale de l'élément chauffant, la température de la source chaude à la frontière entre le canal et la cavité adjacente de la micropompe est insuffisante, et l'efficacité de la pompe se trouve diminuée.Conversely, if we want to reduce the risk of degradation in the area central heating element, the temperature of the hot spring at the border between the channel and the adjacent cavity of the micropump is insufficient, and the efficiency pump is decreased.

Un autre aspect de l'invention est ainsi d'augmenter l'efficacité des micropompes tout en réduisant le risque de dégradation dû à un excès de température dans la zone centrale des sources chaudes de la micropompe.Another aspect of the invention is thus to increase the efficiency of the micropumps while reducing the risk of degradation due to excessive temperature in the central zone of the hot springs of the micropump.

Simultanément, selon cet autre aspect, l'invention vise à réaliser une efficacité optimale de la micropompe tout en réduisant la consommation d'énergie. At the same time, according to this other aspect, the invention aims to achieve a optimal efficiency of the micropump while reducing energy consumption.

Un troisième problème est que la multiplication nécessaire du nombre des micropompes élémentaires conduit à augmenter proportionnellement le volume total occupé par le dispositif de pompage.A third problem is that the necessary multiplication of the number elementary micropumps leads to proportionally increase the volume total occupied by the pumping device.

Avec des cavités de forme parallélépipédique, telles qu'imaginées jusqu'à présent, le volume total du dispositif de pompage peut devenir excessif par rapport à la place disponible dans les applications envisagées.With parallelepiped shaped cavities, as imagined so far, the total volume of the pumping device can become excessive by report instead available in the intended applications.

Selon un autre aspect, l'invention vise donc à réduire le volume global du dispositif de pompage, pour un nombre donné de micropompes élémentaires à transpiration thermique.According to another aspect, the invention therefore aims at reducing the overall volume of the pumping device, for a given number of elementary micropumps to thermal transpiration.

Pour piloter de façon simple et efficace un dispositif de pompage à grand nombre de micropompes élémentaires à transpiration thermique, l'invention propose un dispositif de pompage par micropompes à transpiration thermique, dans lequel :

  • les micropompes à transpiration thermique comprennent chacune au moins une cavité ayant une entrée raccordée à un canal d'entrée de petite section transversale, et ayant une sortie raccordée à un canal de sortie, et comprennent un élément chauffant pour chauffer le tronçon de canal d'entrée adjacent à la cavité, une pluralité de telles micropompes étant connectées aérauliquement en série,
  • les micropompes sont réparties, sur un substrat, en une pluralité de lignes composées chacune d'une pluralité de micropompes constituant ainsi une pluralité de colonnes,
  • les éléments chauffants respectifs des micropompes sont pilotés chacun par la commande appropriée d'un conducteur de commande de ligne et d'un conducteur de commande de colonne.
To control in a simple and effective manner a pumping device with a large number of elementary micropumps with thermal transpiration, the invention proposes a device for pumping by thermal transpiration micropumps, in which:
  • the thermal transpiration micropumps each comprise at least one cavity having an input connected to a small cross section input channel, and having an output connected to an output channel, and comprise a heating element for heating the channel section of an inlet adjacent to the cavity, a plurality of such micropumps being connected aeraulically in series,
  • the micropumps are distributed, on a substrate, in a plurality of lines each composed of a plurality of micropumps constituting a plurality of columns,
  • the respective heating elements of the micropumps are each controlled by the appropriate control of a line driver and a column driver.

En pratique, on peut prévoir que les conducteurs de commande de ligne sont accessibles pour la connexion électrique selon un premier bord du substrat, et les conducteurs de commande de colonne sont accessibles pour la connexion électrique selon un second bord du substrat.In practice, it can be expected that line control drivers are accessible for the electrical connection along a first edge of the substrate, and Column control drivers are accessible for connection electric according to a second edge of the substrate.

Grâce à cette disposition en matrice des micropompes élémentaires, on peut avantageusement prévoir des moyens de commande qui pilotent sélectivement les conducteurs de commande de ligne et les conducteurs de commande de colonne, de façon à piloter individuellement chaque micropompe individuelle du réseau de micropompes.Thanks to this matrix arrangement of the elementary micropumps, one can advantageously provide control means which control selectively the line control drivers and the drivers of column control, so as to control each micropump individually individual micropumps network.

Divers circuits d'interface peuvent être utilisés entre les conducteurs de commande de ligne et les conducteurs de commande de colonne pour alimenter de façon distincte un élément chauffant de la micropompe placée à l'intersection de la ligne et de la colonne. Various interface circuits may be used between the drivers of line control and column control drivers to power from distinctly a heating element of the micropump placed at the intersection of the line and column.

Par exemple, dans le cas où chaque élément chauffant est de type résistance électrique, l'élément chauffant peut être connecté aux bornes d'une alimentation électrique en série avec un transistor lui-même piloté par une porte ET dont les entrées sont connectées respectivement à un conducteur de commande de ligne correspondant et à un conducteur de commande de colonne correspondant. L'alimentation simultanée du conducteur de commande de ligne et du conducteur de commande de colonne assure le déblocage du transistor pour alimenter l'élément chauffant.For example, in the case where each heating element is of type electrical resistance, the heating element can be connected to the terminals of a power supply in series with a transistor itself controlled by an AND gate whose inputs are respectively connected to a control conductor corresponding line and to a column control driver corresponding. The simultaneous power supply of the line control driver and of the column control driver ensures the unblocking of the transistor for feed the heating element.

En alternative, on peut avantageusement prévoir que chaque élément chauffant est commandé par une bascule bistable elle-même agencée pour basculer à réception simultanée de signaux impulsionnels de commande provenant d'un conducteur de commande de ligne correspondant et d'un conducteur de commande de colonne correspondant.Alternatively, one can advantageously predict that each element heating is controlled by a flip-flop itself arranged for switch to simultaneous reception of control pulse signals from of a corresponding line control driver and a driver of corresponding column command.

Pour obtenir un fort taux de compression, on peut connecter toute les micropompes élémentaires en série les unes derrière les autres.To obtain a high compression ratio, you can connect all the elementary micropumps in series one behind the other.

Il peut toutefois être avantageux d'obtenir simultanément un débit volumique suffisant. Dans ce cas, on peut prévoir qu'une ou plusieurs lignes de micropompes sont connectées aérauliquement en série pour constituer un sous-ensemble série, et plusieurs sous-ensembles série peuvent être connectés aérauliquement en parallèle.However, it may be advantageous to simultaneously obtain a debit sufficient volume. In this case, one or more lines of micropumps are connected serially in series to form a subset series, and several serial subsets can be connected aeraulically in parallel.

Dans le but d'augmenter l'efficacité des micropompes individuelles tout en réduisant le risque de dégradation thermique, et tout en réduisant la consommation d'énergie, un dispositif de pompage selon l'invention peut utiliser des micropompes individuelles à transpiration thermique dans lesquelles l'élément chauffant est agencé pour éviter une surchauffe de certaines zones du tronçon de canal devant être chauffé, en réalisant une distribution de température sensiblement régulière selon la longueur du tronçon de canal devant être chauffé.In order to increase the efficiency of individual micropumps reducing the risk of thermal degradation, while reducing the energy consumption, a pumping device according to the invention can use individual micropumps with thermal transpiration in which the element heating is arranged to prevent overheating of certain areas of the channel to be heated, performing a temperature distribution substantially regular depending on the length of the channel section to be heated.

En pratique, on peut prévoir que certaines au moins des micropompes ont un élément chauffant agencé pour répartir de manière équitable l'échauffement selon la longueur du tronçon de canal devant être chauffé, de façon à réaliser une distribution de température sensiblement régulière selon la longueur de tronçon de canal devant être chauffé.In practice, it can be expected that at least some micropumps have a heating element arranged to equitably distribute the heating depending on the length of the channel section to be heated, so as to achieve a substantially regular temperature distribution according to the length of the channel to be heated.

Selon un premier mode de réalisation, l'élément chauffant est de type résistance électrique et comprend au moins deux zones conductrices du courant électrique placées en deux zones successives longitudinalement espacées l'une de l'autre dans le tronçon de canal devant être chauffé. According to a first embodiment, the heating element is of the type electrical resistance and comprises at least two current conducting areas placed in two successive zones longitudinally spaced one of the other in the channel section to be heated.

Selon un second mode de réalisation, l'élément chauffant de type résistance électrique est une plage résistive comportant un trou central.According to a second embodiment, the heating element of the type electrical resistance is a resistive range having a central hole.

Selon un troisième mode de réalisation, l'élément chauffant est de type résistance électrique en forme de cordon chauffant enroulé en double spirale plate.According to a third embodiment, the heating element is of the type electrical resistance in the form of heating cord wound in double flat spiral.

En alternative ou en complément de tous ces modes de réalisation, l'élément chauffant peut avantageusement être la zone chauffante d'un élément à effet Peltier.As an alternative or in addition to all these embodiments, the heating element may advantageously be the heating zone of an element Peltier effect.

Pour résoudre le troisième problème, c'est-à-dire dans le but de réduire le volume total du dispositif de pompage à micropompes à transpiration thermique, l'invention propose d'augmenter l'intégration des cavités.To solve the third problem, that is, in order to reduce the total volume of the pumping device with micropumps with thermal transpiration, the invention proposes to increase the integration of the cavities.

Une première idée consiste alors à donner aux cavités une forme plus aisément intégrable, et à placer les cavités les unes par rapport aux autres d'une façon qui réduit leur encombrement total.A first idea is then to give the cavities a shape more easily integrable, and to place the cavities relative to one another way that reduces their total footprint.

L'intégration peut tout d'abord être horizontale, par plusieurs lignes de micropompes côte à côte.Integration can first be horizontal, by several lines of micropumps side by side.

L'intégration peut, en alternative ou en complément, être verticale, par plusieurs couches de micropompes élémentaires.Integration may, in alternative or in addition, be vertical, by several layers of elemental micropumps.

Ainsi, l'invention propose de prévoir, dans le dispositif de pompage, que certaines au moins des micropompes ont une cavité dont la section va en se réduisant depuis l'entrée vers la sortie, et en prévoyant que des cavités de formes similaires sont imbriquées tête bêche pour réduire leur encombrement commun en section transversale.Thus, the invention proposes to provide, in the pumping device, that at least some of the micropumps have a cavity whose section goes into reducing from the entrance to the exit, and providing that cavities of shapes similar are nested head to tail to reduce their common footprint in cross section.

Avec de telles cavités à section variable, il faut toutefois s'assurer que la section transversale de la cavité, à son entrée, soit suffisamment grande pour que les molécules gazeuses perdent leur régime de déplacement de type moléculaire à la température élevée assurée par l'élément chauffant adjacent, et adoptent alors un régime de déplacement en milieu visqueux, et il faut s'assurer simultanément que les molécules conservent encore leur régime de déplacement en milieu visqueux à l'autre extrémité de la cavité dont la section est plus réduite mais dont la température est plus basse. L'invention met ainsi à profit la réduction progressive du libre parcours moyen des molécules lorsque la température décroít de l'entrée vers la sortie de la cavité, et réduit en conséquence la section transversale de la cavité, en s'assurant que la section transversale de la cavité reste en tout point considéré le long de sa longueur, suffisamment grande pour que les molécules gazeuses aient un régime de déplacement en milieu visqueux.With such cavities with variable cross sections, however, it must be ensured that the cross section of the cavity, at its entrance, is large enough for the gaseous molecules lose their molecular displacement regime to the high temperature provided by the adjacent heating element, and then adopt a displacement regime in viscous medium, and it is necessary to ensure simultaneously that the molecules still preserve their regime of displacement in medium viscous at the other end of the cavity whose section is smaller but whose the temperature is lower. The invention thus takes advantage of the progressive reduction the average free path of the molecules when the temperature decreases of the entry towards the exit of the cavity, and consequently reduces the cross section of the cavity, ensuring that the cross section of the cavity remains at all points considered along its length, large enough for the molecules aerated gases have a displacement regime in a viscous medium.

Selon un premier mode de réalisation, les cavités ont une épaisseur constante et une largeur qui va en décroissant depuis leur entrée vers leur sortie, et les cavités sont imbriquées côte à côte tête bêche pour réduire leur encombrement global dans la direction transversale.According to a first embodiment, the cavities have a thickness constant and a width that decreases from their entry to their exit, and the cavities are nested side by side head to tail to reduce their overall size in the transverse direction.

En alternative ou en complément, l'épaisseur des cavités peut aller en décroissant depuis leur entrée vers leur sortie.As an alternative or in addition, the thickness of the cavities can go into decreasing from their entrance to their exit.

Une intégration multicouche peut être réalisée en prévoyant qu'une tranche de substrat est traitée sur ses deux faces pour réaliser deux couches de cavités.Multilayer integration can be achieved by providing that a substrate slice is treated on both sides to make two layers of cavities.

De préférence, on prévoit alors que les deux couches de cavités ont des épaisseurs qui vont en décroissant depuis leur entrée vers leur sortie, et que les cavités sont imbriquées tête bêche dans l'épaisseur du substrat.Preferably, it is then expected that the two layers of cavities have thicknesses that are decreasing from entry to exit, and that Cavities are nested head-to-tail in the thickness of the substrate.

On comprendra que les moyens particuliers de commande, visant à réaliser un pilotage simple et efficace d'un grand nombre de micropompes, constituent une première invention qui peut être utilisée soit en combinaison, soit indépendamment des autres moyens décrits dans la présente demande de brevet.It will be understood that the particular means of order, aimed at achieve a simple and efficient piloting of a large number of micropumps, constitute a first invention which can be used either in combination or independently of the other means described in this patent application.

De même, les moyens visant à augmenter l'efficacité des micropompes en réduisant le risque de dégradation thermique constituent une seconde invention qui peut être utilisée soit en combinaison, soit indépendamment des autres moyens décrits dans la présente demande de brevet.Similarly, the means to increase the efficiency of micropumps by reducing the risk of thermal degradation constitute a second invention which can be used either in combination or independently of other means described in this patent application.

Et enfin, les moyens visant à diminuer le volume total du dispositif de pompage constituent une troisième invention qui peut être utilisée soit en combinaison, soit indépendamment des autres moyens décrits dans la présente demande de brevet.And finally, the means to reduce the total volume of pumping constitute a third invention which can be used either in combination, either independently of the other means described in this patent application.

D'autres objets, caractéristiques et avantages de la présente invention ressortiront de la description suivante de modes de réalisation particuliers, faite en relation avec les figures jointes, parmi lesquelles:

  • la figure 1 illustre quatre micropompes élémentaires à transpiration thermique ;
  • la figure 2 illustre un réseau de micropompes plus étendu, disposé selon une configuration matricielle sur un même substrat ;
  • la figure 3 illustre un mode de réalisation possible d'une commande d'éléments chauffants de type résistance électrique pour une commande matricielle dans un réseau de la figure 2 ;
  • la figure 4 illustre la répartition sinusoïdale de la température le long d'un tronçon de canal chauffé par un barreau parallélépipédique de matériau résistif ;
  • la figure 5 illustre la répartition de température pour une structure de source chaude en forme de trois barreaux parallèles ;
  • la figure 6 illustre une autre forme de source chaude à barreau parallélépipédique comportant un évidement central ;
  • la figure 7 illustre une autre structure de source chaude en forme de cordon chauffant enroulé en double spirale plate ;
  • la figure 8 illustre un mode de réalisation dans lequel les cavités ont une épaisseur constante mais une largeur qui va en décroissant depuis leur entrée vers leur sortie, avec une disposition tête bêche ;
  • la figure 9 illustre les cavités de la figure 1, vues en coupe verticale selon le plan I-I de la figure 8 ;
  • la figure 10 illustre, en coupe verticale, un mode de réalisation à substrat traité sur ses deux faces pour réaliser deux couches de cavités ;
  • la figure 11 illustre un autre mode de réalisation dans lequel la profondeur des cavités varie de façon régulière en se réduisant depuis l'entrée vers la sortie ; et
  • la figure 12 illustre l'imbrication possible de deux couches de cavités à profondeurs variables.
Other objects, features and advantages of the present invention will become apparent from the following description of particular embodiments, with reference to the accompanying drawings, in which:
  • FIG. 1 illustrates four elemental micropumps with thermal transpiration;
  • FIG. 2 illustrates a larger micropump network arranged in a matrix configuration on the same substrate;
  • FIG. 3 illustrates a possible embodiment of a control of electric resistance heating elements for matrix control in a network of FIG. 2;
  • FIG. 4 illustrates the sinusoidal distribution of the temperature along a channel section heated by a parallelepipedal bar of resistive material;
  • Figure 5 illustrates the temperature distribution for a hot spring structure in the form of three parallel bars;
  • FIG. 6 illustrates another form of hot source with a parallelepipedal bar comprising a central recess;
  • Figure 7 illustrates another hot-spring shaped heating cord structure wound in a double flat spiral;
  • FIG. 8 illustrates an embodiment in which the cavities have a constant thickness but a width which decreases from their entry to their exit, with a head-to-tail arrangement;
  • FIG. 9 illustrates the cavities of FIG. 1, seen in vertical section along plane II of FIG. 8;
  • Figure 10 illustrates, in vertical section, a substrate embodiment treated on both sides to produce two layers of cavities;
  • Figure 11 illustrates another embodiment in which the depth of the cavities varies steadily from the inlet to the outlet; and
  • FIG. 12 illustrates the possible nesting of two layers of cavities with variable depths.

La figure 1 illustre quatre micropompes élémentaires, désignées par les références numériques respectives 1, 1a, 1b et 1c, qui sont constituées chacune, comme la micropompe 1, d'une cavité 2, d'un canal 3, et d'un élément chauffant 4 disposé au contact du canal 3 au voisinage de son raccordement à la cavité 2.Figure 1 illustrates four elementary micropumps, designated by the respective reference numerals 1, 1a, 1b and 1c, which each consist of as the micropump 1, a cavity 2, a channel 3, and a heating element 4 disposed in contact with the channel 3 in the vicinity of its connection to the cavity 2.

Le canal 3 constitue le canal d'entrée de la micropompe élémentaire 1, et se raccorde à l'entrée 2a de la cavité 2.Channel 3 constitutes the input channel of the elementary micropump 1, and is connected to the inlet 2a of the cavity 2.

La cavité 2 comporte une sortie 2b qui est raccordée à un canal de sortie 3a qui constitue lui-même le canal d'entrée de la seconde micropompe élémentaire 1a.The cavity 2 has an output 2b which is connected to an output channel 3a which itself constitutes the input channel of the second elementary micropump 1a.

Le canal d'entrée 3 présente une section transversale suffisamment petite pour que les molécules gazeuses qui le parcourent se déplacent selon un régime moléculaire. Par contre, la cavité 2 présente une section transversale suffisamment grande pour que les molécules qu'elle contient se déplacent selon un régime de milieu visqueux.The inlet channel 3 has a cross section sufficiently small so that the gaseous molecules that run through it move according to a molecular diet. On the other hand, the cavity 2 has a cross section large enough for the molecules it contains to move according to a viscous medium regime.

Aux basses pressions auxquelles sont destinées à fonctionner les micropompes à transpiration thermique, le canal doit avoir une section de l'ordre de quelques microns. La cavité 2 peut avoir une section transversale de quelques dizaines de microns. De telles formes peuvent être réalisées dans un substrat en semi-conducteur par gravure, puis fermeture au moyen d'une plaque de verre appliquée sur le substrat gravé.At the low pressures at which the micropumps with thermal transpiration, the channel must have a section of the order of a few microns. The cavity 2 may have a cross section of some tens of microns. Such shapes can be made in a substrate in semiconductor by etching, then closing by means of a glass plate applied to the etched substrate.

L'élément chauffant 4 peut être réalisé par exemple par un dépôt de nitrate de silicium avec des thermo oxydations, réalisé sur la plaque de verre.The heating element 4 may be made for example by a deposit of silicon nitrate with thermooxidation, made on the glass plate.

La figure 2 illustre un réseau de micropompes plus étendu, réalisé dans un substrat 5 commun en semi-conducteur, par gravure du nombre satisfaisant de cavités et de canaux associés, avec des éléments chauffants correspondants placés à des endroits appropriés, c'est-à-dire adjacents aux entrées des cavités telles que la cavité 2.Figure 2 illustrates a larger micropump network, realized in a common semiconductor substrate 5, by etching the satisfactory number of cavities and associated channels, with corresponding heating elements placed at appropriate places, ie adjacent to the entrances of the cavities such as cavity 2.

On retrouve ainsi la micropompe 1, constituée de la cavité 2, du canal 3 et de l'élément chauffant 4.We thus find the micropump 1, consisting of the cavity 2, the channel 3 and the heating element 4.

Dans le substrat 5, on dispose le réseau de micropompes selon une multiplicité de lignes A, B, C ... D constituées chacune d'une série de plusieurs micropompes élémentaires telles que les micropompes 1, 6, 7, 8 et 9 de la ligne A, constituant ainsi des colonnes a, b ... c et d.In the substrate 5, the micropumps network is arranged according to a multiplicity of lines A, B, C ... D each consisting of a series of several elementary micropumps such as micropumps 1, 6, 7, 8 and 9 of line A, thus constituting columns a, b ... c and d.

Chaque ligne A, B, C ... D est associée à un conducteur de commande de ligne respectif 10A, 10B, 10C ... 10D. Chaque colonne a, b ... c, d est associée à un conducteur de commande de colonne respectif 11a, 11b ... 11c, 11d.Each line A, B, C ... D is associated with a control conductor respective line 10A, 10B, 10C ... 10D. Each column a, b ... c, d is associated to a respective column driver 11a, 11b ... 11c, 11d.

Chaque élément chauffant tel que l'élément chauffant 4 de la micropompe 1 située à l'intersection de la ligne A et de la colonne a est commandé par la sollicitation simultanée du conducteur de commande de ligne 10A et du conducteur de commande de colonne 11a correspondants.Each heating element such as the heating element 4 of the micropump 1 at the intersection of line A and column a is controlled by simultaneous solicitation of the line control conductor 10A and the corresponding column driver 11a.

De préférence, les conducteurs de commande de ligne 10A, 10B, 10C, ... 10D sont accessibles pour une connexion selon un premier bord du substrat 5. De même, les conducteurs de commande de colonne 11a, 11b ... 11c et 11d sont accessibles pour une connexion selon un second bord du substrat 5.Preferably, the line control conductors 10A, 10B, 10C, ... 10D are accessible for a connection along a first edge of the substrate 5. Similarly, the column control drivers 11a, 11b ... 11c and 11d are accessible for a connection along a second edge of the substrate 5.

Un dispositif de commande, non représenté sur les figures, peut alimenter sélectivement les conducteurs de commande de ligne 10A, 10B, 10C, ... 10D et les conducteurs de commande de colonne 11a, 11b ... 11c et 11d, pour piloter à volonté les éléments chauffants qui se situent aux intersections de chaque ligne et de chaque colonne. Cela permet de commander individuellement chaque micropompe élémentaire, de façon à donner au réseau de micropompes des propriétés voulues de taux de compression et de débit ou vitesse de pompage.A control device, not shown in the figures, can selectively supplying the line control conductors 10A, 10B, 10C, ... 10D and the column drivers 11a, 11b ... 11c and 11d, for control at will the heating elements located at the intersections of each line and each column. This allows you to individually order each elementary micropump, so as to give the micropump network desired properties of compression ratio and flow rate or pumping rate.

On peut envisager une commande multiplexée des éléments chauffants, en prévoyant par exemple, associé à chaque élément chauffant tel que l'élément chauffant 4, un circuit électronique de bascule bistable dont le basculement est commandé par l'alimentation impulsionnelle simultanée de la ligne de commande de ligne 10A et de la ligne de commande de colonne 11a. La bascule bistable commande alors l'alimentation électrique de l'élément chauffant 4 à partir d'une source extérieure d'énergie électrique.It is possible to envisage a multiplexed control of the heating elements, by providing for example, associated with each heating element such as the element 4, a flip-flop electronic circuit whose tilting is controlled by simultaneous impulse supply from the command line line 10A and the column control line 11a. The flip-flop then controls the power supply of the heating element 4 from a external source of electrical energy.

Un mode de commande simplifié est illustré sur la figure 3. Dans ce cas, l'élément chauffant 4 est connecté en série, entre les bornes positive 12 et négative 13 d'une alimentation électrique, en série avec un transistor 14 dont la base 15 est connectée à la sortie d'une porte ET 16 dont les deux entrées sont connectées respectivement au conducteur de commande de ligne 10A et au conducteur de commande de colonne 11a. Le transistor 14 devient passant, pour alimenter l'élément chauffant 4, lorsque l'un et l'autre des conducteurs de commande de ligne 10A et de colonne 11a sont à un potentiel approprié pour produire le basculement de la porte ET 16 qui débloque le transistor 14.A simplified control mode is illustrated in Figure 3. In this case, the heating element 4 is connected in series, between the positive terminals 12 and negative 13 of a power supply, in series with a transistor 14 whose base 15 is connected to the output of an AND gate 16 whose two inputs are connected respectively to the line control conductor 10A and to the driver of column control 11a. Transistor 14 turns on, to power the heating element 4, when one and the other of the line control drivers 10A and 11a column are at an appropriate potential to produce failover of the AND gate 16 which unblocks the transistor 14.

La description qui précède, en relation avec les figures 1 à 3, a concerné les moyens de commande permettant de piloter de manière simple et efficace un réseau de nombreuses micropompes élémentaires à transpiration thermique.The above description, in relation with FIGS. 1 to 3, concerned the control means for controlling a simple and effective way a network of many elemental micropumps with thermal transpiration.

On se réfère maintenant aux figures 4 à 7, qui illustrent les moyens pour améliorer l'efficacité des micropompes élémentaires.Reference is now made to FIGS. 4 to 7, which illustrate the means for to improve the efficiency of elementary micropumps.

La figure 4 illustre la distribution de température dans une source chaude de micropompe à transpiration thermique constituée d'un barreau 4 résistif parallélépipédique. La courbe en pointillés illustre la variation de la température, en ordonnées, en fonction de la position longitudinale considérée le long du canal, en abscisses.Figure 4 illustrates the temperature distribution in a source hot heat pump micropump consisting of a resistive bar 4 cuboid. The dashed line shows the variation in temperature, ordered, according to the longitudinal position considered along the canal, in abscissa.

Il apparaít que la température varie en fonction de la zone considérée du barreau de matériau résistif le long du canal 3 (figure 1) : la température n'est pas uniforme mais présente une distribution sinusoïdale, avec une augmentation lente au voisinage de l'extrémité amont 4a du barreau 4, puis une augmentation rapide jusqu'à un maximum M au centre 4c du barreau 4, suivie d'une diminution rapide elle-même suivie d'une diminution plus progressive au voisinage de l'extrémité aval 4b du barreau 4.It appears that the temperature varies according to the zone considered bar of resistive material along channel 3 (Figure 1): the temperature is not uniform but has a sinusoidal distribution, with a slow increase in the vicinity of the upstream end 4a of the bar 4, then a rapid increase up to a maximum M at the center 4c of the bar 4, followed by a rapid decrease itself followed by a more gradual decrease in the vicinity of the downstream end 4b of the bar 4.

Cette répartition de température sinusoïdale résulte notamment d'une répartition généralement inégale du courant électrique qui se propage dans le barreau 4 selon une direction généralement perpendiculaire à l'axe longitudinal du canal. Le courant électrique choisit le chemin le plus court pour aller d'une borne à l'autre, et ce chemin le plus court passe essentiellement par le centre 4c du barreau 4, ce qui maximise la température centrale au sommet M.This sinusoidal temperature distribution results in particular from a generally unequal distribution of electrical current that propagates in the bar 4 in a direction generally perpendicular to the longitudinal axis of the channel. The electric current chooses the shortest way to go from a terminal to the other, and this shortest way passes essentially through the center 4c of the bar 4, which maximizes the central temperature at the summit M.

Par contre, cette structure traditionnelle de barreau parallélépipédique à section rectangulaire produit une température relativement réduite au voisinage de l'extrémité aval 4b du barreau 4, extrémité qui se trouve la plus proche de la cavité 2 qui suit.On the other hand, this traditional parallelepipedal bar structure with rectangular section produces a relatively reduced temperature in the vicinity of the downstream end 4b of the bar 4, which end is closest to the cavity 2 following.

Or l'élément déterminant pour obtenir un taux de compression maximum d'une pompe à transpiration thermique réside dans le rapport des températures à l'extrémité aval du canal 3, ou orifice d'entrée dans la cavité 2, et la température dans la cavité 2. On comprend donc que le barreau résistif à section rectangulaire de l'élément chauffant 4 illustré sur la figure 4 ne permet pas d'obtenir un rapport de température optimal, ou nécessite alors d'augmenter excessivement la température du sommet M au centre 4c du barreau 4.But the determining element to obtain a maximum compression ratio of a thermal transpiration pump lies in the ratio of temperatures to the downstream end of the channel 3, or inlet orifice in the cavity 2, and the temperature in the cavity 2. It is therefore understood that the resistive bar with rectangular section of the heating element 4 illustrated in Figure 4 does not provide a report optimal temperature, or requires then to increase excessively the temperature of the summit M at the center 4c of the bar 4.

L'idée selon l'invention est alors de modifier la répartition de température le long de l'élément chauffant, de façon que la température au voisinage de l'extrémité aval 4b de l'élément chauffant soit peu inférieure à la température en partie centrale et dans les autres parties de l'élément chauffant. On s'attend ainsi à ce que l'élément chauffant puisse produire une température plus élevée au voisinage de l'extrémité aval du canal 3, sans que cela nécessite d'augmenter pour autant la température dans les autres parties de l'élément chauffant. La consommation de puissance électrique peut ainsi être minimisée, et on évite les risques de dégradation des éléments par une température excessive au centre de l'élément chauffant.The idea according to the invention is then to modify the temperature distribution along the heating element, so that the temperature in the vicinity of the downstream end 4b of the heating element is not much lower than the temperature in central part and in the other parts of the heating element. This is expected that the heating element can produce a higher temperature at neighborhood of the downstream end of channel 3, without this requiring to increase for as much the temperature in the other parts of the heating element. The power consumption can be minimized, and risk of degradation of the elements by excessive temperature in the center of the heating element.

Un premier mode de réalisation est illustré sur la figure 5 dans laquelle l'élément chauffant est formé par trois éléments chauffants successifs 41, 42, 43, placés en travers du canal 3 et décalés longitudinalement le long du canal. La figure 5 montre la répartition de température en présence des trois éléments chauffants 41, 42 et 43. On constate une meilleure régularité de la température en fonction de la zone longitudinale considérée du canal. Une variante peut consister à prévoir seulement deux éléments chauffants, réalisant un tronçon chauffant plus court dans le canal 3.A first embodiment is illustrated in FIG. the heating element is formed by three successive heating elements 41, 42, 43, placed across the channel 3 and offset longitudinally along the channel. The Figure 5 shows the temperature distribution in the presence of the three elements heating elements 41, 42 and 43. There is a better regularity of the temperature in function of the longitudinal zone considered of the canal. A variant may consist to provide only two heating elements, realizing a heating section more short in channel 3.

La figure 6 illustre un autre mode de réalisation d'élément chauffant 4, comportant une cavité centrale 4e dépourvue d'élément résistif, et favorisant ainsi le passage de courant électrique au voisinage des extrémités amont 4a et aval 4b de l'élément chauffant 4. On réduit ainsi la température atteinte au centre de l'élément chauffant 4.FIG. 6 illustrates another embodiment of heating element 4, having a central cavity 4e devoid of resistive element, and thus promoting the passage of electric current in the vicinity of the upstream ends 4a and 4b downstream of the heating element 4. This reduces the temperature reached in the center of the the heating element 4.

La figure 7 montre une autre réalisation de l'élément chauffant 4, constitué d'une bande de matériau résistif enroulée en double spirale plate. On évite ainsi de favoriser le passage du courant électrique au centre de l'élément chauffant 4, ce qui réduit l'effet de surchauffe au centre de l'élément chauffant 4.FIG. 7 shows another embodiment of the heating element 4, consisting of a strip of resistive material wound in double flat spiral. We avoids favoring the passage of electric current in the center of the element heating 4, which reduces the overheating effect in the center of the heating element 4.

Dans tous ces modes de réalisation, l'élément chauffant 4 doit produire un échauffement sur une longueur suffisante du canal 3, afin d'assurer un contact satisfaisant avec les molécules de gaz qui transitent dans le canal. Il faut en effet que l'élément chauffant 4 puisse échauffer suffisamment les molécules pour qu'elles s'agitent et présentent la température élevée appropriée avant d'entrer dans la cavité 2 qui suit. C'est la raison pour laquelle l'élément chauffant 4 ne peut pas avoir lui-même une longueur réduite, concentrée au voisinage immédiat de l'orifice d'entrée de la cavité 2, mais qu'il doit au contraire s'étendre en amont dans le canal 3 selon une longueur suffisante.In all these embodiments, the heating element 4 must produce heating over a sufficient length of the channel 3 to ensure contact satisfactory with the gas molecules that pass through the channel. It is indeed necessary that the heating element 4 can sufficiently heat the molecules to that they are agitated and present the appropriate high temperature before entering in cavity 2 which follows. This is why the heating element 4 can not not have a reduced length, concentrated in the immediate vicinity of the inlet of the cavity 2, but that it must instead extend upstream in the channel 3 in a sufficient length.

Dans la description qui précède, l'élément chauffant 4 a été décrit comme une résistance électrique.In the above description, the heating element 4 has been described like an electrical resistance.

En alternative, on peut prévoir que l'élément chauffant 4 est la partie chaude d'un couple à effet Peltier, tandis que l'élément refroidissant du couple à effet Peltier peut être placé en regard de la cavité 2 de la micropompe, ou en regard de la partie amont du canal 3.Alternatively, it can be provided that the heating element 4 is the part of a Peltier effect torque, while the cooling element of the couple to Peltier effect can be placed next to the cavity 2 of the micropump, or view of the upstream part of canal 3.

On se réfère maintenant aux figures 8 à 12, qui illustrent les moyens permettant de réduire le volume global du dispositif de pompage à micropompes à transpiration thermique.Referring now to Figures 8 to 12, which illustrate the means to reduce the overall volume of the pumping device with micropumps to thermal transpiration.

La figure 8 illustre un premier mode de réalisation dans lequel les cavités ont une épaisseur constante mais une largeur qui va en décroissant depuis leur entrée vers leur sortie. La figure montre ainsi quatre micropompes élémentaires 1, 1a, 1b et 1c, dans lesquelles on retrouve, comme dans le mode de réalisation de la figure 1, une cavité 2, un canal d'entrée 3, un élément chauffant 4, et un canal de sortie 3a, la cavité étant raccordée aux canaux respectifs par son entrée 2a et par sa sortie 2b.FIG. 8 illustrates a first embodiment in which the cavities have a constant thickness but a width that is decreasing since their entrance to their exit. The figure thus shows four micropumps elementary 1, 1a, 1b and 1c, in which we find, as in the embodiment of FIG. 1, a cavity 2, an inlet channel 3, a heating element 4, and an output channel 3a, the cavity being connected to the respective channels by its entrance 2a and by its exit 2b.

La figure 9 illustre l'ensemble de la figure 8, représenté vu de côté en coupe selon le plan I-I. On trouve sur les deux figures les deux cavités 2 et 2c côte à côte.FIG. 9 illustrates the assembly of FIG. 8, shown seen from the side in cut according to plan I-I. The two cavities 2 and 2c are on both figures beside.

Comme on le voit mieux sur la figure 9, les cavités 2 et 2c sont réalisées par gravure dans un substrat 5, et les cavités sont ensuite fermées par une plaque de verre 17 rapportée sur le substrat 5 gravé. Dans cette réalisation, les cavités 2 et 2c ont une épaisseur constante.As can be seen better in FIG. 9, the cavities 2 and 2c are made by etching in a substrate 5, and the cavities are then closed by a plate of glass 17 reported on the etched substrate 5. In this embodiment, cavities 2 and 2c have a constant thickness.

Comme on le voit sur la figure 8 dans ce mode de réalisation, les cavités telles que la cavité 2 ont une largeur qui va en décroissant depuis leur entrée 2a vers leur sortie 2b. La réduction progressive de largeur peut être régulière, pour former une cavité 2 généralement triangulaire comme illustré sur la figure 8. L'adoption d'une telle forme de cavité 2 est rendue possible par le fait que la température des gaz décroít progressivement depuis l'entrée 2a de la cavité 2 vers la sortie 2b de la même cavité 2, le libre parcours moyen des molécules décroissant simultanément avec la température, de sorte que la largeur de la cavité 2 reste, en toutes positions longitudinales considérées, nettement supérieure au libre parcours moyen des molécules, ce qui garantit que les molécules se déplacent dans la cavité 2 selon un régime de déplacement en milieu visqueux. As seen in FIG. 8 in this embodiment, the cavities such as the cavity 2 have a width that decreases since their entry 2a to their output 2b. The progressive reduction of width can be regular, for to form a generally triangular cavity 2 as illustrated in FIG. The adoption of such a cavity shape 2 is made possible by the fact that the gas temperature decreases gradually from the inlet 2a of the cavity 2 to the outlet 2b of the same cavity 2, the average free path of the molecules descending simultaneously with the temperature, so that the width of the cavity 2 remains, in all longitudinal positions considered, significantly greater than free path of molecules, which ensures that the molecules are move in the cavity 2 in a displacement regime in a viscous medium.

Sur la figure 8, on voit simultanément que les cavités 2 et 2c sont imbriquées tête bêche, ce qui, grâce à leur forme triangulaire, réduit leur encombrement en section transversale.In FIG. 8, it can be seen simultaneously that the cavities 2 and 2c are nested head to tail, which, thanks to their triangular shape, reduces their cross-sectional dimensions.

La figure 10 illustre, en coupe transversale, un perfectionnement du mode de réalisation précédent. Selon ce perfectionnement, le substrat 5 est gravé sur ses deux faces opposées, pour constituer, sur une première face, les cavités 2 et 2c précédentes, et pour constituer, sur la face opposée, deux cavités 21 et 21c. Les deux faces sont fermées par des plaques de verre 17 et 171 respectives. Cela double le nombre de micropompes élémentaires par unité de surface du substrat 5.FIG. 10 illustrates, in cross-section, an improvement of the previous embodiment. According to this improvement, the substrate 5 is etched on its two opposite sides, to constitute, on a first face, the cavities 2 and 2c previous, and to constitute, on the opposite face, two cavities 21 and 21c. Both faces are closed by respective glass plates 17 and 171. it doubles the number of elementary micropumps per unit area of substrate 5.

Ce mode de réalisation conduit toutefois à une augmentation de l'épaisseur du dispositif.This embodiment however leads to an increase of the thickness of the device.

Le mode de réalisation de la figure 11, illustré en coupe longitudinale, consiste à modifier non pas la largeur de la cavité, mais sa profondeur pour réaliser une cavité 2 à section transversale variable.The embodiment of FIG. 11, illustrated in longitudinal section, does not change the width of the cavity, but its depth to achieve a cavity 2 of variable cross section.

On retrouve ainsi une cavité 2 constituée par gravure d'un substrat 5 recouvert d'une plaque de verre 17, avec sa profondeur qui va en décroissant de son entrée 2a vers sa sortie 2b. On voit également, sur cette figure, le canal d'entrée 3 et le canal de sortie 3a. On voit en outre l'élément chauffant 4.There is thus a cavity 2 formed by etching a substrate 5 covered with a glass plate 17, with its depth which decreases from its entrance 2a to its exit 2b. We also see, in this figure, the channel input 3 and the output channel 3a. In addition, the heating element 4 is visible.

Enfin, sur la figure 12, on a illustré un mode de réalisation qui combine à la fois l'idée de la variation de profondeur selon la figure 11 avec des micropompes élémentaires 1 et 1a en série, l'idée de la superposition de deux couches selon la figure 10 avec un substrat 5 gravé sur ses deux faces et engagé entre deux plaques de verre 17 et 171, et l'idée de l'imbrication des cavités selon la figure 8. Ainsi, les cavités 2 et 21 sont imbriquées tête bêche, ce qui réduit l'épaisseur globale de l'ensemble par rapport au mode de réalisation de la figure 10.Finally, in FIG. 12, an embodiment is illustrated which combines with both the idea of depth variation according to Figure 11 with micropumps elements 1 and 1a in series, the idea of the superposition of two layers according to the 10 with a substrate 5 etched on both sides and engaged between two glass plates 17 and 171, and the idea of nesting the cavities according to FIG. 8. Thus, the cavities 2 and 21 are nested head to tail, which reduces the thickness overall of the assembly compared with the embodiment of FIG. 10.

Grâce à l'imbrication des cavités, on augmente la densité, c'est-à-dire le nombre de micropompes élémentaires dans une surface donnée du substrat 5, et également dans un volume donné de substrat 5. Le nombre de micropompes peut être augmenté d'un facteur proche de 4, ce qui conduit à augmenter proportionnellement la vitesse de pompage.Thanks to the nesting of cavities, we increase the density, that is to say the number of elementary micropumps in a given surface of the substrate 5, and also in a given volume of substrate 5. The number of micropumps can to be increased by a factor close to 4, which leads to proportionally the pumping speed.

La présente invention n'est pas limitée aux modes de réalisation qui ont été explicitement décrits, mais elle en inclut les diverses variantes et généralisations qui sont à la portée de l'homme du métier.The present invention is not limited to the embodiments which have have been explicitly described, but it includes the various variants and generalizations that are within the reach of those skilled in the art.

Claims (17)

Dispositif de pompage par micropompes à transpiration thermique, les micropompes à transpiration thermique (1) comprenant chacune au moins une cavité (2) ayant une entrée (2a) raccordée à un canal d'entrée (3) de petite section transversale et ayant une sortie (2b) raccordée à un canal de sortie (3a), et comprenant un élément chauffant (4) pour chauffer le tronçon de canal d'entrée (3) adjacent à la cavité (2), une pluralité de telles micropompes (1, 1a, 1b, 1c) étant connectées aérauliquement en série, caractérisé en ce que : les micropompes (1, 1a, 1b, 1c) sont réparties, sur un substrat (5), en une pluralité de lignes (A, B, C ... D) composées chacune d'une pluralité de micropompes (1, 6 ... 7, 8, 9) constituant ainsi une pluralité de colonnes (a, b ... c, d), les éléments chauffants (4) respectifs des micropompes sont pilotés chacun par la commande appropriée d'un conducteur de commande de ligne (10A, 10B, 10C, ... 10D) et d'un conducteur de commande de colonne (11a, 11b ... 11c et 11d). Device for pumping by thermal transpiration micropumps, the thermal transpiration micropumps (1) each comprising at least one cavity (2) having an inlet (2a) connected to an inlet channel (3) of small cross-section and having an outlet (2b) connected to an outlet channel (3a), and comprising a heating element (4) for heating the inlet channel section (3) adjacent to the cavity (2), a plurality of such micropumps (1, 1a , 1b, 1c) being aeraulically connected in series, characterized in that : the micropumps (1, 1a, 1b, 1c) are distributed on a substrate (5) in a plurality of lines (A, B, C ... D) each composed of a plurality of micropumps (1, 6. 7, 8, 9) thus constituting a plurality of columns (a, b ... c, d), the respective heating elements (4) of the micropumps are each controlled by appropriate control of a line driver (10A, 10B, 10C, ... 10D) and a column driver (11a, 11b. .. 11c and 11d). Dispositif de pompage selon la revendication 1, caractérisé en ce que les conducteurs de commande de ligne (10A, 10B, 10C, ... 10D) sont accessibles pour la connexion électrique selon un premier bord du substrat (5), et les conducteurs de commande de colonne (11a, 11b ... 11c et 11d) sont accessibles pour la connexion électrique selon un second bord du substrat (5).Pumping device according to claim 1, characterized in that the line control conductors (10A, 10B, 10C, ... 10D) are accessible for the electrical connection along a first edge of the substrate (5), and the conductors of column control (11a, 11b ... 11c and 11d) are accessible for the electrical connection along a second edge of the substrate (5). Dispositif de pompage selon l'une des revendications 1 ou 2, caractérisé en ce que des moyens de commande pilotent sélectivement les conducteurs de commande de ligne (10A, 10B, 10C, ... 10D) et les conducteurs de commande de colonne (11a, 11b ... 11c et 11d), de façon à piloter individuellement chaque micropompe individuelle du réseau de micropompes.Pumping device according to one of claims 1 or 2, characterized in that control means selectively drive the line control conductors (10A, 10B, 10C, ... 10D) and the column control conductors (11a , 11b ... 11c and 11d), so as to individually control each individual micropump of the micropump network. Dispositif de pompage selon l'une quelconque des revendications 1 à 3, caractérisé en ce que chaque élément chauffant (4) est de type résistance électrique, connecté aux bornes d'une alimentation électrique (12, 13) en série avec un transistor (14) lui-même piloté par une porte ET (16) dont les entrées sont connectées respectivement à un conducteur de commande de ligne correspondant (10A) et à un conducteur de commande de colonne correspondant (11a).Pumping device according to one of Claims 1 to 3, characterized in that each heating element (4) is of the electrical resistance type, connected across a power supply (12, 13) in series with a transistor (14 ) itself driven by an AND gate (16) whose inputs are respectively connected to a corresponding line control conductor (10A) and to a corresponding column control conductor (11a). Réseau de micropompes selon l'une quelconque des revendications 1 à 3, caractérisé en ce que chaque élément chauffant (4) est commandé par une bascule bistable elle-même agencée pour basculer à réception simultanée de signaux impulsionnels de commande provenant d'un conducteur de commande de ligne correspondant (10A) et d'un conducteur de commande de colonne correspondant (11a). Micropump network according to any one of claims 1 to 3, characterized in that each heating element (4) is controlled by a flip-flop itself arranged to switch to simultaneously receive control pulse signals from a driver of corresponding line control (10A) and corresponding column driver (11a). Dispositif de pompage selon l'une quelconque des revendications 1 à 5, caractérisé en ce que une ou plusieurs lignes de micropompes sont connectées aérauliquement en série pour constituer un sous-ensemble série, plusieurs sous-ensemble série étant connectés aérauliquement en parallèle.Pumping device according to any one of claims 1 to 5, characterized in that one or more lines of micropumps are connected aeraulically in series to form a serial subassembly, several serial subset being connected aeraulically in parallel. Dispositif de pompage selon l'une quelconque des revendications 1 à 6, caractérisé en ce que certaines au moins des micropompes ont un élément chauffant (4) agencé pour répartir de manière équitable l'échauffement selon la longueur du tronçon de canal (3) devant être chauffé, de façon à réaliser une distribution de température sensiblement régulière selon la longueur de tronçon de canal (3) devant être chauffé.Pumping device according to one of Claims 1 to 6, characterized in that at least some of the micropumps have a heating element (4) arranged to distribute the heating fairly evenly along the length of the channel section (3) in front of it. to be heated, so as to achieve a substantially regular temperature distribution according to the length of channel section (3) to be heated. Dispositif de pompage selon la revendication 7, caractérisé en ce que l'élément chauffant (4) est de type résistance électrique et comprend au moins deux zones conductrices du courant électrique (41, 42, 43) placées en deux zones successives longitudinalement espacées l'une de l'autre dans le tronçon de canal (3) devant être chauffé.Pumping device according to Claim 7, characterized in that the heating element (4) is of the electrical resistance type and comprises at least two electrically conductive zones (41, 42, 43) placed in two successive zones longitudinally spaced apart. one of the other in the channel section (3) to be heated. Dispositif de pompage selon la revendication 7, caractérisé en ce que l'élément chauffant (4) de type résistance électrique est une plage résistive comportant un trou central (4e).Pumping device according to claim 7, characterized in that the heating element (4) of electrical resistance type is a resistive range having a central hole (4e). Dispositif de pompage selon la revendication 7, caractérisé en ce que l'élément chauffant (4) est de type résistance électrique en forme de cordon chauffant enroulé en double spirale plate.Pumping device according to claim 7, characterized in that the heating element (4) is of the heating wire-like heating element wound in a double flat spiral. Dispositif de pompage selon la revendication 7, caractérisé en ce que l'élément chauffant est la zone chauffante d'un élément à effet Peltier.Pump device according to claim 7, characterized in that the heating element is the heating zone of a Peltier element. Dispositif de pompage selon l'une quelconque des revendications 1 à 11, caractérisé en ce que certaines au moins des micropompes ont une cavité (2) dont la section va en se réduisant depuis l'entrée (2a) vers la sortie (2b), et en ce que des cavités (2, 2c) de formes similaires sont imbriquées tête bêche pour réduire leur encombrement commun en section transversale.Pumping device according to any one of claims 1 to 11, characterized in that at least some of the micropumps have a cavity (2) whose section decreases from the inlet (2a) to the outlet (2b), and in that recesses (2, 2c) of similar shapes are nested head to tail to reduce their common dimensions in cross section. Dispositif de pompage selon la revendication 12, caractérisé en ce que la section transversale de la cavité (2) reste, en tout point considéré le long de sa longueur, suffisamment grande pour que les molécules gazeuses aient un régime de déplacement en milieu visqueux.Pumping device according to claim 12, characterized in that the cross section of the cavity (2) remains, at all points along its length, large enough for the gaseous molecules to have a displacement regime in a viscous medium. Dispositif de pompage selon l'une des revendications 12 ou 13, caractérisé en ce que les cavités (2) ont une épaisseur constante et une largeur qui va en décroissant depuis leur entrée (2a) vers leur sortie (2b), et les cavités (2, 2c) sont imbriquées côte à côte tête bêche pour réduire leur encombrement global dans la direction transversale. Pumping device according to one of claims 12 or 13, characterized in that the cavities (2) have a constant thickness and a width which decreases from their inlet (2a) to their outlet (2b), and the cavities ( 2, 2c) are imbricated side by side head to tail to reduce their overall size in the transverse direction. Dispositif de pompage selon l'une quelconque des revendications 12 à 14, caractérisé en ce que l'épaisseur des cavités (2) va en décroissant depuis leur entrée (2a) vers leur sortie (2b).Pumping device according to any one of claims 12 to 14, characterized in that the thickness of the cavities (2) decreases from their inlet (2a) to their outlet (2b). Dispositif de pompage selon l'une quelconque des revendications 12 à 15, caractérisé en ce que le substrat (5) est traité sur ses deux faces pour réaliser deux couches de cavités (2, 2c ; 21, 21c).Pumping device according to any one of claims 12 to 15, characterized in that the substrate (5) is treated on both sides to produce two layers of cavities (2, 2c, 21, 21c). Dispositif de pompage selon la revendication 15 et la revendication 16, caractérisé en ce que les cavités (2, 21) sont imbriquées tête bêche dans l'épaisseur du substrat (5).Pumping device according to claim 15 and claim 16, characterized in that the cavities (2, 21) are nested head-to-tail in the thickness of the substrate (5).
EP04292591A 2003-11-04 2004-11-02 Pumping device using thermal-transpiration micropumps Not-in-force EP1531267B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0312894A FR2861814B1 (en) 2003-11-04 2003-11-04 THERMAL TRANSPIRATION MICROPOMP PUMPING DEVICE
FR0312894 2003-11-04

Publications (3)

Publication Number Publication Date
EP1531267A2 true EP1531267A2 (en) 2005-05-18
EP1531267A3 EP1531267A3 (en) 2006-05-17
EP1531267B1 EP1531267B1 (en) 2008-12-03

Family

ID=34429857

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04292591A Not-in-force EP1531267B1 (en) 2003-11-04 2004-11-02 Pumping device using thermal-transpiration micropumps

Country Status (6)

Country Link
US (1) US7572110B2 (en)
EP (1) EP1531267B1 (en)
JP (1) JP2005163784A (en)
AT (1) ATE416311T1 (en)
DE (1) DE602004018089D1 (en)
FR (1) FR2861814B1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI278426B (en) * 2004-12-30 2007-04-11 Prec Instr Dev Ct Nat Composite plate device for thermal transpiration micropump
WO2006121534A1 (en) * 2005-05-09 2006-11-16 University Of Oregon Thermally-powered nonmechanical fluid pumps using ratcheted channels
US7913928B2 (en) * 2005-11-04 2011-03-29 Alliant Techsystems Inc. Adaptive structures, systems incorporating same and related methods
US20090095927A1 (en) * 2005-11-04 2009-04-16 Mccarthy Matthew Thermally actuated valves, photovoltaic cells and arrays comprising same, and methods for producing same
WO2008038611A1 (en) * 2006-09-28 2008-04-03 National Institute Of Advanced Industrial Science And Technology Gas conveying pump, method of forming heater, and sensor
US7980828B1 (en) 2007-04-25 2011-07-19 Sandia Corporation Microelectromechanical pump utilizing porous silicon
US9728699B2 (en) * 2009-09-03 2017-08-08 Game Changers, Llc Thermal transpiration device and method of making same
US9243624B2 (en) 2009-10-23 2016-01-26 University Of Louisville Research Foundation, Inc. Thermally driven Knudsen pump
JP2013514836A (en) * 2009-12-18 2013-05-02 ケーアンドワイ コーポレイション Infusion pump
RU2462615C1 (en) * 2011-04-19 2012-09-27 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Московский Физико-Технический Институт (Государственный Университет)" Gas micropump
JP4934750B1 (en) * 2011-05-31 2012-05-16 株式会社メトラン Pump unit, breathing assistance device
JP5211336B2 (en) * 2012-02-16 2013-06-12 株式会社メトラン Pump unit, breathing assistance device
US9702351B2 (en) * 2014-11-12 2017-07-11 Leif Alexi Steinhour Convection pump and method of operation
US10208739B2 (en) * 2016-01-05 2019-02-19 Funai Electric Co., Ltd. Microfluidic pump with thermal control
CN114585812A (en) 2019-10-21 2022-06-03 株式会社村田制作所 Fluid control device
WO2023039173A1 (en) * 2021-09-09 2023-03-16 Torramics, Inc. Apparatus and method of operating a gas pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5871336A (en) * 1996-07-25 1999-02-16 Northrop Grumman Corporation Thermal transpiration driven vacuum pump
US20020076140A1 (en) * 2000-12-14 2002-06-20 Onix Microsystems, Inc. MEMS optical switch with pneumatic actuation
US6422823B2 (en) * 1999-12-09 2002-07-23 Alcatel Mini-environment control system and method
US6533554B1 (en) * 1999-11-01 2003-03-18 University Of Southern California Thermal transpiration pump

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130519A (en) * 1983-09-05 1984-07-27 Mitsutoshi Kashiwajima Device for transporting and compressing gas by using porous material
US5041800A (en) * 1989-05-19 1991-08-20 Ppa Industries, Inc. Lower power oscillator with heated resonator (S), with dual mode or other temperature sensing, possibly with an insulative support structure disposed between the resonator (S) and a resonator enclosure
JP3005972B2 (en) * 1992-05-19 2000-02-07 株式会社 セル・コーポレーション Threshold operation type semiconductor electrostatic device
SG47435A1 (en) * 1992-10-08 1998-04-17 Hewlett Packard Co Printhead with reduced interconnections to a printer
EP0956449B1 (en) * 1996-12-11 2002-05-29 Gesim Gesellschaft für Silizium-Mikrosysteme mbH Microejection pump
US6179586B1 (en) * 1999-09-15 2001-01-30 Honeywell International Inc. Dual diaphragm, single chamber mesopump
JP2007521453A (en) * 2003-10-21 2007-08-02 ヴェイポア インコーポレイテッド Capillary pump for liquid vaporization

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5871336A (en) * 1996-07-25 1999-02-16 Northrop Grumman Corporation Thermal transpiration driven vacuum pump
US6533554B1 (en) * 1999-11-01 2003-03-18 University Of Southern California Thermal transpiration pump
US6422823B2 (en) * 1999-12-09 2002-07-23 Alcatel Mini-environment control system and method
US20020076140A1 (en) * 2000-12-14 2002-06-20 Onix Microsystems, Inc. MEMS optical switch with pneumatic actuation

Also Published As

Publication number Publication date
FR2861814A1 (en) 2005-05-06
FR2861814B1 (en) 2006-02-03
EP1531267B1 (en) 2008-12-03
JP2005163784A (en) 2005-06-23
ATE416311T1 (en) 2008-12-15
US20050095143A1 (en) 2005-05-05
US7572110B2 (en) 2009-08-11
EP1531267A3 (en) 2006-05-17
DE602004018089D1 (en) 2009-01-15

Similar Documents

Publication Publication Date Title
EP1531267B1 (en) Pumping device using thermal-transpiration micropumps
FR2760593A1 (en) Electronic assembly with high heat dissipation
EP0176671B1 (en) Thermo-electric modules with a plurality of thermo-elements for a thermo-electric installation, and thermo-electric installation comprising such thermo-electric modules
EP1881538B1 (en) Electronic component for heat transfer by boiling and condensation, and manufacturing method
EP1589565B1 (en) Apparatus for transporting substrates under controlled environment
EP2740153B1 (en) Cooling device provided with a thermoelectric sensor
FR2733386A1 (en) MICRO-COOLER FOR ELECTRONIC COMPONENTS AND METHOD FOR MANUFACTURING THE SAME
CA2637645A1 (en) Thermoelectric means and tissue-type structure integrating said means
WO2002075822A1 (en) Thermoelectric generator and methods for the production thereof
EP1589564B1 (en) Transport box comprising a thermophoresis protection effect
EP3408869A1 (en) Photovoltaic and thermal solar panel
CA1033393A (en) Thermoelectric heat pump
FR2622685A1 (en) GAS / LIQUID HEAT EXCHANGER WITH CONDENSATION
EP0861511A1 (en) Cooled laser diode array assembly
EP2591513B1 (en) Device for generating current and/or voltage based on a thermoelectric module placed in a flowing fluid
CA3124292A1 (en) Regenerator and method for manufacturing such a regenerator
BE1000539A5 (en) Cake microchannel a higher rate.
WO1994002793A1 (en) Compact heat exchanger having a high heat exchange coefficient between a liquid phase and a flowing gaseous phase
EP2425180A1 (en) Led lighting device including improved means for promoting heat dissipation
FR3116923A1 (en) Multimodal haptic device
EP3506358B1 (en) Thermoelectric device with thermoelectric junction formed in the thickness of a substrate and method for manufacturing such a thermoelectric device
EP0860667B1 (en) Conditioning system of components operating at cryogenic temperature
EP3985745B1 (en) Method for manufacturing a thermoelectric device by additive manufacturing of combs to come into contact with one another
FR3065904A1 (en) PLATE FOR ASSEMBLY MEMBRANE / ELECTRODES
WO2023057269A1 (en) Electrical converter configured to supply an electric machine with power, electrical module comprising such a converter, and method for using such an electrical module

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK YU

17P Request for examination filed

Effective date: 20061117

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL LUCENT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F04B 19/00 20060101ALI20071029BHEP

Ipc: F04B 19/24 20060101AFI20071029BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602004018089

Country of ref document: DE

Date of ref document: 20090115

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: CABINET ROLAND NITHARDT CONSEILS EN PROPRIETE INDU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090314

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081203

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081203

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081203

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081203

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090303

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081203

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081203

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090504

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090403

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081203

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090303

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081203

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081203

26N No opposition filed

Effective date: 20090904

BERE Be: lapsed

Owner name: ALCATEL LUCENT

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090304

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110104

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20101224

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101221

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101222

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081203

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: ALCATEL LUCENT;3, AVENUE OCTAVE GREARD;75007 PARIS (FR)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004018089

Country of ref document: DE

Effective date: 20120601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120601

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20150521

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20150521