EP1474722A2 - Magneto-optisches verfahren zur änderung des polarisationszustandes von licht und zugehörige vorrichtung - Google Patents

Magneto-optisches verfahren zur änderung des polarisationszustandes von licht und zugehörige vorrichtung

Info

Publication number
EP1474722A2
EP1474722A2 EP03704088A EP03704088A EP1474722A2 EP 1474722 A2 EP1474722 A2 EP 1474722A2 EP 03704088 A EP03704088 A EP 03704088A EP 03704088 A EP03704088 A EP 03704088A EP 1474722 A2 EP1474722 A2 EP 1474722A2
Authority
EP
European Patent Office
Prior art keywords
crystal
magnetic field
pulse
light
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03704088A
Other languages
English (en)
French (fr)
Inventor
Yuri S. Didosyan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1474722A2 publication Critical patent/EP1474722A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/11Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/092Operation of the cell; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0136Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  for the control of polarisation, e.g. state of polarisation [SOP] control, polarisation scrambling, TE-TM mode conversion or separation

Definitions

  • the invention relates to a method for changing the polarization state of light with a magnetically uniaxial crystal which changes into a single-domain state under the action of an external magnetic field pulse, light passing through predetermined regions of the crystal, and to a device for carrying out such a method.
  • the subject of the invention is therefore methods and devices for changing the polarization of light beams and subsequently for changing the direction, the intensity and the like. More of these light beams, as are used in optical communication systems, information processing, displays etc.
  • MEMS microelectromechanical systems
  • acoustic-optical liquid crystalline
  • electronically switchable Bragg gmtings Bragg grids
  • bubblejets bubblejets
  • thermo-optical interferometric
  • thermo-capillary thermo-capillary
  • electro-holographic and magneto-optical systems Numerous types of optical switches have been developed, including microelectromechanical systems (MEMS), acoustic-optical, liquid crystalline, electronically switchable Bragg gmtings (Bragg grids), bubblejets (bubble systems), thermo-optical, interferometric, thermo-capillary, electro-holographic and magneto-optical systems.
  • MEMS microelectromechanical systems
  • acoustic-optical liquid crystalline
  • electronically switchable Bragg gmtings Bragg grids
  • bubblejets bubblejets
  • thermo-optical interferometric
  • thermo-capillary thermo-capillary
  • electro-holographic and magneto-optical systems thermo-opti
  • Electro-optical systems have comparatively much shorter switching times; for example, the switching time of the new electro-holographic switches is only approx. 10 ns. But these circuits need permanent energy supply, at least in one state. In addition, the insertion loss of electroholographic switches is quite high, namely around 4-5 dB.
  • Magneto-optical systems open up the possibility of combining short switching times and low insertion loss with the so-called “latching” mode of operation (see above).
  • a multistable polarization rotator is described. Stable states in this Rotators are predetermined by inhomogeneities on the surfaces of orthoferritic platelets that cover the domain walls (DWs) Hold layers, guaranteed. Transitions between these stable states result from the shifting of the domain walls between these positions and take place without the creation of new domains. The time required for these transitions is approximately 100 ns, which means that they are several thousand times faster than for other optical switches of the "latching" type. However, the aperture of the switch is considerably restricted. The amplitude of the driver magnetic field is fairly small, which is why DWs can only travel at comparatively small distances.
  • the object of the invention is to reduce the restrictions on the aperture of the switch.
  • this is achieved in that a magnetic field pulse with a magnetic field strength (H) is applied to the crystal, in which the crystal does not remain in the signal domain state after the end of the pulse, but in a defined, from the direction of the applied Magnetic field returns certain multi-domain state.
  • H magnetic field strength
  • This increases the aperture of the switch by using higher amplitude magnetic field pulses.
  • the aperture is defined by the zone in which magnetic pulses alternate. In the present invention, this zone represents the domain structure that occurs after the magnetic pulse is turned off. In orthoferrites, relatively large domains occur, which means that large switch apertures can also be reached.
  • Orthoferrites have a rectangular hysteresis function.
  • the coercive force of the Orthoferrite is quite high, it is a few kilo-oersted (kOe).
  • the force required to overcome the coercive force generation 'high magnetic fields requires large energy input (this factor is particularly important for construction of densely packed switch matrices of importance) and can also increase the inductance of the scheme lead to, which increases the switching times.
  • inhomogeneities on the crystal surface are used, which fix the domain walls in predetermined positions. If the distance between the inhomogeneities is small, or if thin orthoferrite flakes are used, the DW's move continuously from one dissimilarity to another.
  • the last refers to the thickness »100 ⁇ m, used for polarization rotation in the visible and near infrared spectrum range. It was found that with thicker patterns, namely at> 1.2 mm thick yttrium orthoferrite crystals, which are responsible for 45 ° polarization rotation on the wavelengths> 1.3 ⁇ m are used, other situation is.
  • the magnetization directions in certain crystal areas are changed to opposite:
  • the DWs are oriented perpendicular to the direction of the crystallographic ⁇ -axis, see Fig. 1.
  • the magnetizations are positive in the upper and lower domains and negative in the middle domains (Fig. La).
  • a magnetic field pulse of negative polarity now acts on the crystal. If the amplitude of the pulse is approximately H s , the crystal is magnetized to the single domain state, Fig. Ib. After the end of the pulse, the crystal is divided into the domains, Fig. Lc.
  • the polarization of the rays that pass through area 1 is “+” (that is, the direction of polarization has rotated clockwise) and the polarization of the rays that pass through area 2 is “-” "(the direction of polarization has rotated counterclockwise).
  • a magnetic field pulse of negative polarity is applied, the polarization of the two beams will be “minus” during the pulse.
  • the polarization of beams 1 and 2 will accordingly become “-” (for 1) and "+” (for 2
  • the application of a magnetic field pulse of positive polarity leads to the new distribution: "+” and “+” and after the termination of this pulse the state "+” and "-” is created again.
  • the polarity and the duration achieve a desired polarization distribution or combination at selected time intervals.
  • Patent No. 408,700 uses irregularities (such as scratches) on the crystal surface through which the light rays pass to fix the DWs. These inhomogeneities on the surface cause light scattering, which is particularly troublesome when such crystals are used in attenuators.
  • the inhomogeneities are applied to the side surface or the crystal.
  • Fig. 2 shows such inhomogeneities in the form of scratches or scratches on the side surface of a rotator. The direction of the scratches or scratches is perpendicular to the crystallographic ⁇ -axis and parallel to the planes of the DWs.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

Zur Änderung des Polarisationszustandes von Licht wird ein magnetisch einachsiger Kristall verwendet, wobei Licht durch vorgegebene Bereiche des Kristalls hindurchtritt. Zur Umschaltung des Polarisationszustandes des Lichtes wird an dem Kristall ein Magnetfeldimpuls mit einer Magnetfeldstärke angelegt, bei der der Kristall nach dem Ende des Impulses nicht im Singledomänen-Zustand verbleibt, sondern in einen definierten, von der Richtung des angelegten Magnetfeldes bestimmten Multidomänen-Zustand zurückkehrt, womit grosse nutzbare Aperturen des Schaltelementes und sehr kurze Umschaltzeiten erzielbar sind, wobei Energie nur zum Umschalten selbst und nicht zum Halten eines bestimmten Zustandes notwendig ist.

Description

Verfahren und Vorrichtung zur Änderung des Polarisationszustandes von Licht
Gegenstand der Erfindung
Die Erfindung betrifft ein Nerfahren zur Änderung des Polarisationszustandes von Licht mit einem magnetisch einachsigen Kristall, der unter der Einwirkung eines äußeren Magnetfeldimpulses in einen Eindomänen-Zustand übergeht, wobei Licht durch vorgegebene Bereiche des Kristalls hindurchtritt, sowie eine Vorrichtung zur Durchführung eines derartigen Verfahrens. Gegenstände der Erfindung sind also Methoden und Vorrichtungen zur Änderung der Polarisation von Lichtstrahlen und in der Folge zur Änderung der Richtung, der Intensität u dgl. mehr dieser Lichtstrahlen, wie sie in optischen Kommunikationssystemen, Informationsverarbeitung, Displays etc. zur Anwendung kommen.
Kurze Beschreibung des Standes der Technik
Zur Zeit wurden zahlreiche Arten von optischen Schalter entwickelt, inklusive mikroelektro- mechanische Systeme (MEMS), akustisch-optische, flüssige kristalline, elektronisch schaltbare Bragg gmtings (Bragg'sche Gitter) , bubblejets (Blasensysteme), thermo-optische, inter- ferometrische, thermo-kapillarische, elektro-holograpfische und magneto-optische Systeme. Zur Zeit sind MEMS am meisten in Verwendung. Wichtiger Vorteil von MEMS ist, dass diese zu den sogenannten „latching Systemen" gehören, das heisst, dass sie energielose stabile Schaltzustände haben und Energie nur zum Schalten benötigen.
Ihre Schaltzeiten sind jedoch ziemlich lang - ca. 1 ms. Elektro-optische Systeme haben vergleichsweise viel kürzere Schaltzeiten; zum Beispiel beträgt die Schaltzeit der neuen elektro- holographischen Schalter nur ca. 10 ns. Aber diese Schaltungen brauchen permanente Energieversorgung, zumindest in einem Zustand. Außerdem ist der „insertion loss" (Eingangsverlust) von elektroholographischen Schalter ziemlich hoch, nämlich etwa 4-5 dB.
Mit magneto-optischen Systemen eröffnet sich die Möglichkeit, kurze Schaltzeit und geringen insertion loss mit der sogenannten „latching" Funktionsweise (siehe oben) zu kombinieren. In der Erfindung gemäß Österr. Patent r. 408.700 wird ein multistabiler Polarisationsrotator beschrieben. Stabile Zustände bei diesem Rotator werden durch Inhomogenitäten auf den Oberflächen von orthoferritischen Plättchen, die die Domänenwände (DWs) in vorgegebenen Lagen halten, gewährleistet. Übergänge zwischen diesen stabilen Zuständen kommen durch Verschiebung der Domänenwände zwischen diesen Lagen zustande und finden ohne Erzeugung von neuen Domänen statt. Die für diese Übergänge benötigte Dauer beträgt ca. 100 ns, das heisst, dass sie um etliche 1000 Male schneller sind als für andere optischen Schalter der „latching" Art. Die Apertur des Schalters ist aber wesentlich eingeschränkt. Die Amplitude des Treiber-Magnetfeldes ist ziemlich gering, weswegen sich DWs nur auf vergleichbar kleinen Distanzen fortbewegen können.
Aufgabe der Erfindung ist es, die Beschränkungen der Apertur des Schalters zu reduzieren.
Gemäß der gegenständlichen Erfindung wird dies dadurch gelöst, daß an den Kristall ein Magnetfeldimpuls mit einer Magnetfeldstärke (H) angelegt wird, bei der der Kristall nach dem Ende des Impulses nicht im Signaldomänen-Zustand verbleibt, sondern in einen definierten, von der Richtung des angelegten Magnetfeldes bestimmten Multidomänen-Zustand zurückkehrt. Damit wird die Apertur des Schalters durch Anwendung von Magnetfeldimpulsen von höherer Amplitude vergrößert. Die Apertur ist dabei definiert durch die Zone, in der abwechselnd Magnetpulse einwirken. Bei der vorliegenden Erfindung repräsentiert diese Zone die Domänenstruktur, die nach dem Abschalten des Magnetimpulses auftritt. In Orthoferriten treten relativ große Domänen auf, womit entsprechend auch große Aperturen des Schalters erreichbar sind.
Orthoferrite besitzen eine rechteckige Hysterese-Funktion. Die Koerzitivkraft der Orthoferrite ist ziemlich hoch, sie beträgt einige kilo-Oersted (kOe). Die zur Überwindung der Koerzitivkraft erforderliche Erzeugung' großer magnetischer Felder verlangt großen Energieinput (dieser Faktor ist besonders bei Konstruktion von dichtgepackten Schaltermatrizen von Bedeutung) und kann auch erhöhte Induktivität des Schemas nach sich ziehen, was die Schaltzeiten vergrößert. Um die erforderliche Intensität des Treiber-Feldes zu verringern, werden Inhomogenitäten auf der Kristalloberfläche verwendet, die die Domänenwände in vorgegebenen Positionen fixieren. Wenn die Entfernung zwischen den Inhomogenitäten gering ist, oder wenn man dünn Orthoferritplätchen verwendet, bewegen sich die DW's kontinuierlich von einer Ungleichartigkeit zu der anderen. Im Falle des Orthoferrite Kristalles bezieht sich das Letzte auf die Dicke » 100 μm, verwendet bei Polarisationsdrehung in sichtbaren und nahe infraroten Spektrumbereich. Es wurde gefunden, dass bei dickeren Muster und zwar bei > 1,2 mm dick Yttrium Orthoferrite Kristalle, die für 45° Polarisationsdrehung auf der Wellenlängen > 1,3 μm verwendet werden, andere Situation ist. Anwendung bei diesen Kristallen der Magnetfelder, die ziemlich stark sind, um die Magnetisierung der großen Bereichen zu ändern verursacht nun die Erzeugung neuer Domänen und deren Ausbreitung, Kollaps von Domänen mit ungünstigen Magnetisierungsrichtung und in der Folge eine Magnetisierung des Kristalls. Falls die Amplitude des Magnetfeldimpulses ziemlich hoch ist (einige kOe), bleibt nach dem Ende dieses Impulses der Kristall im monodomänen Zustand und Änderungen der Magnetisierungsrichtung verlangen wieder die Anwendung von Impulsen mit gleichen oder sogar höheren Amplituden.
Wenn jedoch die Amplitude H der Impulse nicht sehr hoch ist und gerade dazu reicht, Sättigungsmagnetisierung des Kristalls (H=HS) zu erreichen, so kehrt nach der Beendung des Impulses der Kristall wieder in den multidomänen Zustand zurück ( Keime der entgegengesetzt magnetisierten Domänen werden nämlich nicht völlig unterdrückt, und nach Beendung des Impulses wachsen diese zu neuen Domänen).
Weitere Merkmale und Vorteile des erfindungsgemäßen Verfahrens sowie der entsprechenden Vorrichtung werden im folgenden anhand der Tabelle 1 sowie der Zeichnungen näher erläutert.
In manchen Fällen werden nach der Anwendung der Impulse (H≤ Hs) die Magnetisierungsrichtungen in bestimmten Kristallenbereichen zu entgegengesetzten geändert: Betrachtet sei nun ein Orthoferrite-Kristall, der senkrecht zur optischen Achse geschnitten ist. In solchem Kristall sind die DWs senkrecht zur Richtung der kristallographischen α-Achse ausgerichtet, siehe Fig. 1. Die Magnetisierungen seien in der oberen und unteren Domäne positiv und in der mittleren Domänen negativ (Fig. la). Ein Magnetfeldimpuls von negativer Polarität wirke nun auf den Kristall. Wenn die Amplitude des Impulses ungefähr Hs beträgt, wird der Kristall bis in den Eindomänen-Zustand magnetisiert, Fig. Ib. Nach dem Ende des Impulses unterteilt sich der Kristall in die Domänen, Fig. lc. Im unteren und oberen Bereich des Kristalls sind die Kupplungskräfte ziemlich hoch und die Magnetisierungsrichtung bleibt genau so wie während des Impulses. Im mittleren Bereich, wo die Kupplungskräfte schwächer sind, wird die Magnetisierungsrichtung allerdings entgegengesetzt. Für die Stabilisierung der Domänen kann man wieder Inhomogenitäten (Nichtuniformitäten), wie sie in der Erfindung Nr. 408.700 beschrieben werden, verwenden. Werden nun Lichtstrahlen in verschiedene Kristallbereiche gelenkt, so werden sich die Polarisationen der verschiedenen Strahlen in Abhängigkeit vom magnetischen Treiberfeld und der Positionen der Strahlen verändern. Bei dem Bespiel in der Tabelle 1 ist die Polarisation der Strahlen, die durch Bereich 1 durchgehen, mit „+" (d. h. dass die Polarisationsrichtung hat sich im Uhrzeigersinn gedreht ), und die Polarisation der Strahlen, die durch Bereich 2 durchgehen, mit „-" (die Polarisationsrichtung hat sich gegen den Uhrzeigersinn gedreht) charakterisiert. Wird ein Magnetfeldimpuls negativer Polarität appliziert, so wird während des Impulses die Polarisation der beiden Strahlen „minus" betragen. Nach der Beendung des Impulses wird die Polarisation der Strahlen 1 und 2 dementsprechend "-" (für 1) und "+" (für 2) betragen. Die Applikation eines Magnetfeldimpulses positiver Polarität führt zur neuen Verteilung: „+" und „+" und nach der Beendung dieses Impulses entsteht wieder der Zustand "+" und "-". Somit kann man durch die Wahl der Polarität und die Dauer der Impulse in ausgewählten Zeitabständen eine erwünschte Polarisationsverteilung bzw. -kombination erreichen.
In der Erfindung gemäß Österr. Patent Nr. 408.700 werden Ungleichmäßigkeiten (wie z.B. Ritzen bzw. Kratzer), auf der Kristalloberfläche, durch die die Lichtstrahlen durchgehen, zur Fixierung der DWs verwendet. Diese Inhomogenitäten auf der Oberfläche verursachen Lichtstreuung, was besonders beim Einsatz solcher Kristalle in Attenuatoren störend ist.
Abweichend von den Anordnungen gemäß Österr. Patent Nr. 408.700 werden bei der gegenständlichen Erfindung die Inhomogenitäten (wie Ritzen) auf der bzw. den Seitenflächen des Kristalls angebracht.. Fig. 2 zeigt solche Inhomogenitäten in Form von Ritzen bzw. Kratzern auf der Seitenfläche eines Rotators. Die Richtung der Ritzen bzw. Kratzer ist senkrecht zur kristallographischen α-Achse und parallel zu den Ebenen der DWs.
Um eine kontinuierliche Bewegung der DWs über große Distanzen zu gewährleisten, sollen relativ dünne Plättchen verwendet werden (im Falle der Orthoferite gelten „als relativ dünn" einige hundert Micrometer dicke Plättchen). In einem sehr breiten Bereich der Magnetfeldstärke besteht die Wirkung des Magnetfeldes auf diese Plättchen in der Verbreiterung der existierenden Domänen mit passender Polarität und nicht in der Erzeugung neuer Domänen. Die Inhomogenitäten halten die DWs in gewünschten Positionen, wodurch ein multistabiler Betrieb des Rotators ermöglicht wird. Stapel von einigen solchen Plättchen können zur Konstruktion eines Rotators mit erwünschter Dicke verwendet werden. Man kann weiters die Inhomogenitäten, die die DWs fixieren, mit den Quellen permanenter Magnetfelder kombinieren. In der Erfindung gemäß Österr. Patent Nr. 408.700 wird vorgeschlagen, das inhomogene Magnetfeld eines Paares von Magneten zu verwenden. Jedoch erhöht die Verwendung von zwei Magneten die Dimensionen der Elemente bzw. Systeme.
Erfindungsgemäß wird nun lediglich ein Permanentmagnet verwendet. Dieser hält die Magnetisierung des angrenzenden Teils des Rotators aufrecht; die Lage der Grenze dieser Domäne (seine DW) ändert sich unter der Einwirkung des Magnetfeldimpulses und kann durch Inhomogenitäten, wie sie oben erwähnt wurden, fixiert werden.

Claims

Patentansprüche:
1. Verfahren zur Änderung des Polarisationszustandes von Licht mit einem magnetisch einachsigen Kristall, der unter der Einwirkung eines äußeren Magnetfeldes in einen Eindomänen-Zustand übergeht, wobei Licht durch vorgegebene Bereiche des Kristalls hindurchtritt, d a d u r c h g e k e n n z e i c h n e t, dass an den Kristall ein Magnetfeldimpuls mit einer Magnetfeldstärke (H) angelegt wird, bei der der Kristall nach dem Ende des Impulses nicht im Singledomänen-Zustand verbleibt, sondern in einen definierten, von der Richtung des angelegten Magnetfeldes bestimmten Multidomä- nen-Zustand zurückkehrt.
2. Verfaliren nach Anspruch 1, dadurch gekennzeichnet, dass die Domänenwände durch Inhomogenitäten, die im Kristall erzeugt werden, in vorgegebenen Positionen gehalten werden.
3. Verfaliren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Lichtstrahlen durch solche Bereiche des Kristalls geleitet werden, die nach Abschalten des äußeren Magnetfeldimpulses mit dem selben Vorzeichen wie der äußere Magnetfeldimpuls magnetisiert bleiben.
4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Lichtstrahlen durch solche Bereiche des Kristalls geleitet werden, die nach Abschalten des äußeren Magnetfeldimpulses mit entgegengesetztem Vorzeichen wie der äußere Magnetfeldimpuls magnetisiert bleiben.
5. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Lichtstrahlen durch solche Bereiche des Kristalls geleitet werden, die während der Einwirkung des äußeren Magnetfeldimpulses mit gleichem Vorzeichen magnetisiert sind und nach dem Abschalten des äußeren Magnetfeldimpulses mit entgegengesetztem Vorzeichen magnetisiert werden.
6. Vorrichtung zur Veränderung des Polarisationszustandes von Lichtstrahlen nach dem Verfahren gemäß einem der Ansprüche 1 bis 5, mit einem magneto-optischen Rotator gebildet aus einem magnetisch einachsigen Kristall, der Inhomogenitäten aufweist, welche die Domänen in vorgegebenen Positionen fixieren, dadurch gekennzeichnet, dass diese Inhomogenitäten sich auf den Seitenflächen des Kristalls befinden.
EP03704088A 2002-02-12 2003-02-12 Magneto-optisches verfahren zur änderung des polarisationszustandes von licht und zugehörige vorrichtung Withdrawn EP1474722A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT0021602A AT411852B (de) 2002-02-12 2002-02-12 Verfahren und vorrichtung zur änderung des polarisationszustandes von licht mit einem magnetisch einachsigen kristall
AT2162002 2002-02-12
PCT/AT2003/000042 WO2003069395A2 (de) 2002-02-12 2003-02-12 Magneto-optisches verfahren zur änderung des polarisationszustandes von licht und zugehörige vorrichtung

Publications (1)

Publication Number Publication Date
EP1474722A2 true EP1474722A2 (de) 2004-11-10

Family

ID=27671426

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03704088A Withdrawn EP1474722A2 (de) 2002-02-12 2003-02-12 Magneto-optisches verfahren zur änderung des polarisationszustandes von licht und zugehörige vorrichtung

Country Status (13)

Country Link
US (1) US7158301B2 (de)
EP (1) EP1474722A2 (de)
JP (1) JP2005517977A (de)
KR (1) KR20040089623A (de)
CN (1) CN100397148C (de)
AT (1) AT411852B (de)
AU (1) AU2003206487A1 (de)
CA (1) CA2475203A1 (de)
MX (1) MXPA04007814A (de)
PL (1) PL370581A1 (de)
RU (1) RU2303801C2 (de)
WO (1) WO2003069395A2 (de)
ZA (1) ZA200407272B (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT501111B8 (de) * 2004-12-09 2007-02-15 Univ Wien Tech Verfahren und vorrichtung zur änderung des polarisationszustandes von licht
CN105246503A (zh) 2013-03-14 2016-01-13 第一三共株式会社 Pcsk9的新颖结合蛋白
RU2613943C1 (ru) * 2015-12-14 2017-03-22 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Акустооптический преобразователь поляризации лазерного излучения (варианты)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3526883A (en) 1968-10-09 1970-09-01 Bell Telephone Labor Inc Magnetic domain display device
US3831156A (en) * 1971-12-06 1974-08-20 Hughes Aircraft Co Biasing apparatus for magnetic domain stores
US4220395A (en) 1974-05-13 1980-09-02 Regents Of University Of California Polarization converter and circuit elements for use in optical waveguides
US4495492A (en) * 1982-05-05 1985-01-22 Litton Systems, Inc. Magneto-optic chip with gray-scale capability
US4550983A (en) * 1983-05-09 1985-11-05 Litton Systems, Inc. Magneto-optic device for the control of electromagnetic radiation
US4893910A (en) * 1988-03-16 1990-01-16 Hewlett-Packard Company Magneto-optical recording system having medium with domainless control layer
US5344720A (en) * 1991-11-08 1994-09-06 Litton Systems, Inc. Bistable magneto-optic single crystal films and method of producing same utilizing controlled defect introduction
US5192862A (en) * 1991-12-19 1993-03-09 Simmonds Precision Products, Inc. Polarizerless magneto-optic speed and torque sensor
US5493222A (en) * 1992-05-08 1996-02-20 Mitsubishi Gas Chemical Company, Ltd. Reflection type magnetooptic sensor head with faraday rotator
JPH07104225A (ja) * 1993-10-05 1995-04-21 Mitsubishi Gas Chem Co Inc ファラデー回転子
US5473466A (en) * 1994-06-02 1995-12-05 Tanielian; Aram A. Magneto-optical display and method of forming such display
US5703710A (en) * 1994-09-09 1997-12-30 Deacon Research Method for manipulating optical energy using poled structure
US5801875A (en) * 1995-07-05 1998-09-01 Lucent Technologies Inc. Article comprising a magneto-optic material having low magnetic moment
AT408700B (de) * 1999-09-15 2002-02-25 Didosyan Juri S Dr Magnetooptisches schaltelement mit einem faraday-rotator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03069395A2 *

Also Published As

Publication number Publication date
AT411852B (de) 2004-06-25
AU2003206487A1 (en) 2003-09-04
PL370581A1 (en) 2005-05-30
RU2303801C2 (ru) 2007-07-27
ZA200407272B (en) 2005-10-18
JP2005517977A (ja) 2005-06-16
ATA2162002A (de) 2003-11-15
CN100397148C (zh) 2008-06-25
MXPA04007814A (es) 2005-06-20
US7158301B2 (en) 2007-01-02
WO2003069395A2 (de) 2003-08-21
US20050128729A1 (en) 2005-06-16
CN1688915A (zh) 2005-10-26
KR20040089623A (ko) 2004-10-21
RU2004127230A (ru) 2005-04-10
WO2003069395A3 (de) 2003-12-18
CA2475203A1 (en) 2003-08-21

Similar Documents

Publication Publication Date Title
DE2037676A1 (de) Anzeigeschirm mit einer Flüssigkristallschicht sowie Verfahren zu dessen Herstellung
DE1228305B (de) Magnetischer Duennschichtspeicher
DE2237996B2 (de) Fluessigkristall-anzeigevorrichtung mit matrixfoermig angeordneten anzeige- elektroden
DE1774401A1 (de) Optischer Speicher mit photoaktivem Speicherelement
DE19823826A1 (de) MRAM-Speicher sowie Verfahren zum Lesen/Schreiben digitaler Information in einen derartigen Speicher
AT411852B (de) Verfahren und vorrichtung zur änderung des polarisationszustandes von licht mit einem magnetisch einachsigen kristall
DE69911076T2 (de) Ultraschnelle magnetisierungsumkehrung
DE2748738A1 (de) Elektrooptischer modulator
DE1524786A1 (de) Magnetische Speicheranordnung
AT408700B (de) Magnetooptisches schaltelement mit einem faraday-rotator
DE3517785A1 (de) Vorrichtung zum drehen der polarisationsebene linear polarisierten lichtes und verfahren zu deren herstellung
DE1524770A1 (de) Magnetischer Duennschichtspeicher
DE2159443A1 (de) Verfahren zur Vermehrung zylindrischer Bläschendomänen
AT501111B1 (de) Verfahren und vorrichtung zur änderung des polarisationszustandes von licht
DE2225585A1 (de) Magnetisierungsdomäne-Übertragungsanordnung
DE2754876C2 (de) Verfahren zur Reduzierung der Steuerleistung von thermomagnetisch geschalteten magnetooptischen Lichtmodulationselementen mit Speicherwirkung
DE1449809C3 (de) Verfahren und Vorrichtung zum Einschreiben, Speichern und nichtlöschenden Auslesen von Informationen
DE2904068A1 (de) Vorrichtung zur einstellung des magnetfeldes fuer vorzugsweise magnetische blasenspeicher
DE2529150B2 (de) Verfahren zum speichern von blasendomaenen in einem duennen, ferromagnetischen film und anordnung zur durchfuehrung des verfahrens
DE2355852A1 (de) Farbmodulator
DE102009016949A1 (de) Faraday-Rotator
DE1298139B (de) Magnetschichtspeicher
DE1246811B (de) Verfahren zum Speichern und Lesen binaerer Informationen auf magnetischem Duennfilm
DE1424554A1 (de) Ein Speichersystem,in dem duenne magnetische Filme Verwendung finden
DE1296671B (de) Magnetischer Duennschichtspeicher

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040820

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17Q First examination report despatched

Effective date: 20080218

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090829