EP1446568B1 - Procede de commande d'un moteur a combustion interne - Google Patents

Procede de commande d'un moteur a combustion interne Download PDF

Info

Publication number
EP1446568B1
EP1446568B1 EP02791690A EP02791690A EP1446568B1 EP 1446568 B1 EP1446568 B1 EP 1446568B1 EP 02791690 A EP02791690 A EP 02791690A EP 02791690 A EP02791690 A EP 02791690A EP 1446568 B1 EP1446568 B1 EP 1446568B1
Authority
EP
European Patent Office
Prior art keywords
volume flow
internal combustion
combustion engine
open
engine according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP02791690A
Other languages
German (de)
English (en)
Other versions
EP1446568A1 (fr
Inventor
Armin DÖLKER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions GmbH
Original Assignee
MTU Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Publication of EP1446568A1 publication Critical patent/EP1446568A1/fr
Application granted granted Critical
Publication of EP1446568B1 publication Critical patent/EP1446568B1/fr
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • F02D2041/223Diagnosis of fuel pressure sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/227Limping Home, i.e. taking specific engine control measures at abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure

Definitions

  • the invention relates to a method for controlling an internal combustion engine according to the preamble of the first claim.
  • the rail pressure is regulated.
  • the rail pressure actual value ie the controlled variable
  • an electronic control unit This calculates the control deviation from a nominal-actual comparison of the rail pressure and determines via a rail pressure regulator a drive signal for an actuator, such as a suction throttle or a pressure control valve.
  • the rail pressure represents an essential parameter for the injection quality, it is necessary to respond to a faulty rail pressure sensor by taking appropriate measures.
  • DE 199 16 100 A1 proposes, in the case of a defective rail pressure sensor, to switch from normal operation to a starting operation. In start mode, the rail pressure is controlled.
  • a high-pressure pump is set to maximum capacity and a pressure control valve, which determines the outflow from the rail, closed.
  • the problem with this solution is the abrupt transition from normal to start operation, as well as the resulting high rail pressure.
  • the invention is therefore based on the task of making the transition from normal operation to emergency operation safer.
  • the invention provides that the transition from normal operation to emergency operation is largely determined by a transition function.
  • This transition function is previously determined in normal operation from the time course of the control deviation of the rail pressure.
  • the control deviations within a measurement period or a predeterminable number of control deviations can be considered.
  • a negative control deviation for the rail pressure regulator is specified according to the measured period or number of control deviations detected during normal operation.
  • a correction volume flow of the controlled system is predetermined by the transition function. The correction volume flow is calculated from the difference between two control deviations. Both measures have the advantage that a defined, continuous transition from normal operation to emergency operation takes place.
  • the immediate effect of the transition function on the rail pressure controller or the controlled system results in a short reaction time after failure of the rail pressure sensor.
  • an evaluation map is provided by means of which the values of the map are additionally evaluated.
  • the map is corrected by limit lines, which supports the indirect determination of the rail pressure via the engine speed controller.
  • the common-rail injection system comprises a first pump 4, a suction throttle 5, a second pump 6, a high-pressure accumulator and injectors 8.
  • the high-pressure accumulator is referred to as rail 7.
  • the first pump 4 delivers the fuel from a fuel tank 3 to the suction throttle 5.
  • the pressure level after the first pump 4 is for example 3 bar.
  • the suction throttle 5 the volume flow to the first pump 6 is set.
  • the first pump 6 in turn delivers the fuel under high pressure in the rail 7.
  • the pressure level in the rail 7 is more than 1200 bar in diesel engines.
  • the injectors 8 are connected. Through the injectors 8, the fuel is injected into the combustion chambers of the internal combustion engine 1.
  • the internal combustion engine 1 is controlled and regulated by an electronic control unit 11 (EDC).
  • EDC electronice control unit 11
  • the electronic control unit 11 includes the usual components of a microcomputer system, such as a microprocessor, I / O devices, buffers and memory devices (EEPROM, RAM). In the memory modules relevant for the operation of the internal combustion engine 1 operating data in maps / curves are applied. About this calculates the electronic control unit 11 from the input variables, the output variables.
  • the following input variables are shown by way of example in FIG. 1: a rail pressure actual value pCR (IST) which is measured by means of a rail pressure sensor 10, the rotational speed nMOT of the internal combustion engine 1, a desired power FW, a cylinder internal pressure pIN which is measured by means of pressure sensors 9 and an input quantity E.
  • the input variable E subsumes, for example, the charge air pressure pLL of the turbocharger 2 and the temperatures of the coolants and lubricants.
  • a signal ADV for controlling the suction throttle 5 and an output variable A are shown as output variables of the electronic control unit 11.
  • the output variable A is representative of the further control signals for controlling and regulating the internal combustion engine 1, for example the start of injection BOI and the injection quantity ve.
  • the drive signal ADV is designed as a PWM signal (pulse-width-modulated), via which a corresponding current value for the suction throttle 5 is set.
  • a current value of zero 0
  • the suction throttle 5 is fully open, i. the funded by the first pump 4 flow freely passes to the second pump. 6
  • FIG. 2 shows a control circuit in a first embodiment.
  • This includes as basic elements a first summation point 16, a rail pressure controller 13, a conversion 17 and the rail 7.
  • the conversion 17 includes the conversion of the desired volume flow V (SOLL) in the drive signal ADV, the suction throttle 5 and the second pump. 6
  • the conversion 17 is supplied with input quantities E, for example the fuel pressure, the operating voltage and the engine speed.
  • the conversion 17 and the rail 7 correspond to the controlled system.
  • This basic control loop is supplemented by a first switch 12, a second switch 15 and a second summation point 18.
  • the first switch 12 and second switch 15 are shown in their switching position corresponding to the normal operation of the internal combustion engine (solid line).
  • the actual rail pressure actual value pCR (IST) at the first summation point 16 is compared with the reference variable, ie the rail pressure setpoint pCR (SW), and supplied to the rail pressure controller 13 as a control deviation dR.
  • the rail pressure regulator 13 determines a regulator volume flow VR.
  • a consumption volume flow V (VER) is added to this regulator volume flow.
  • the consumption volume flow V (VER) is calculated as a function of the engine speed nMOT and a desired injection quantity Q (SW). From these two volumetric flows results as a manipulated variable of the setpoint flow V (SOLL), which represents the input to the conversion 17.
  • the drive signal ADV is generated for the suction throttle 5, from which then via the second pump 6, an actual volume flow V (IST) results.
  • the first switch 12 Upon detection of a defective rail pressure sensor, the first switch 12 changes to the dashed switching position. In this switching position, the control deviation is specified by the transition function ÜF.
  • the transition function was previously determined in normal operation from the time course of the control deviations dR. In practice, the control deviations within a measurement period are considered.
  • the transition function ÜF defines the control deviation for the rail pressure regulator 13 in accordance with the measurement period detected in normal operation. After this time step has elapsed, the transition function ÜF is ended and the second switch 15 changes to the position shown in dashed lines.
  • the nominal volume flow V (SOLL) is now calculated from the consumption volume flow V (VER) and a leakage volume flow V (LKG). This in turn is largely determined by the map 14 as a function of the engine speed nMOT and the target injection quantity Q (SW).
  • FIG. 3 shows the control circuit in a second embodiment.
  • the control circuit of Figure 3 differs by a DT1 element 19, a third switch 20 and the omission of the first switch 12.
  • the second switch 15 and the third switch 20 are shown for normal operation (solid line).
  • the function of the control loop in normal operation corresponds to the description in FIG. 2.
  • the rail pressure regulator 13 is immediately deactivated.
  • the nominal volume flow V (SOLL) is now calculated additively from the leakage volume flow V (LKG), the consumption volume flow V (VER) and the correction volume flow V (KORR).
  • the correction volume flow V (KORR) is determined via the DT1 element 19 from the transition function ÜF. This is calculated from a difference between two control deviations in normal operation and given to the DT1 element 19 as a negated step function.
  • the transition function ÜF will be explained in more detail in connection with FIG. 4B. If the output of the DT1 element 19 falls below a threshold value or a time step has expired, the transition function is deactivated. The third switch 20 then returns to its home position (normal operation).
  • the nominal volume flow V (SOLL) is then specified only by the map 14 and the consumption flow rate V (VER).
  • FIG. 4 consists of the partial figures 4A and 4B.
  • FIG. 4A shows a pressure curve of the rail pressure actual value pCR (IST) and of the rail pressure setpoint pCR (SW), and
  • FIG. 4B shows the resulting system deviation dR.
  • the rail pressure actual value pCR (IST) corresponds to the rail pressure setpoint pCR (SW), corresponding to point A.
  • the control deviation is zero, corresponding to point D of FIG. 4B.
  • the rail pressure actual value pCR (IST) begins to decrease.
  • the cause is a defective rail pressure sensor 10.
  • a control deviation dR3 is already present at point B.
  • the defect is detected at point C. From the two curves of FIG. 4A, a control deviation dR corresponding to the curve with the points D, B and E results for the measurement period dt in FIG. 4B.
  • the further course of the method according to the control circuit of Figure 2 is as follows: With detection of the defective rail pressure sensor at time t5, the transition function ÜF is activated. This is shown in FIG.
  • the transition function ÜF corresponds to the negated control deviations dR. From the time t6, the same time duration as the measurement period dt this set the rail pressure controller 13, curve F and G. For example, the time measured at point t3 control point dR3 at time t8 as -dR3. From the time t10, the transition function ÜF is deactivated by the second switch 15 changes its switching position. Instead of the measurement period dt, a predeterminable number of control deviations can also be used.
  • the sequence of the method when using the control circuit according to the figure 3 is as follows: With detection of the defective rail pressure sensor at time t5, the control deviation at time t5, corresponding to the value of point E, of the control deviation at time t1, corresponding to the value of Point D, subtracted. This difference DIFF is shown in FIG. 4B.
  • the transition function ÜF corresponds to the negated difference DIFF. This is performed as a jump function on the DT1 member 19.
  • the correction volume flow V (KORR) is calculated via the DT1 element. After a predetermined period of time or falls below a threshold DT1 element 19 is turned off by the switch 20 is returned from the dashed to the switch position shown in solid.
  • Both methods offer the advantage that impermissible changes in the rail pressure due to a defective rail pressure sensor can be significantly reduced.
  • the changes in the rail pressure in the sensor defect case arise because the high-pressure control loop continues to process the faulty sensor signal until the sensor defect is detected and calculates therefrom the actuating signal for the suction throttle.
  • FIG. 6 shows a map 14 for determining the leakage volume flow V (LKG).
  • the abscissa shows the engine speed nMOT.
  • a desired injection quantity Q (SW) is plotted as the second input variable.
  • the Z-axis corresponds to the leakage volume flow V (LKG).
  • Each support point in this characteristic field is assigned a predefinable operating range. The operating areas are shown hatched in FIG. Such an operating range is defined by the quantities dn and dQ. Typical values are z. B. 100 revolutions and 50 cubic millimeters per stroke.
  • a support point A is shown as an example.
  • This interpolation point A results from the two input values n (A) equal to 3000 revolutions per minute and Q (A) equal to 40 cubic millimeters per stroke.
  • the interpolation point A is assigned a leakage volume flow V (LKG) of, for example, 7.2 liters per minute as the Z value.
  • the determined by means of the map 14 leakage volume flow V (LKG) is then weighted via a rating map, this is shown in Figure 7. For the example above, for example, the evaluation point A results in a weighting factor of 0.95.
  • the leakage volume flow V (LKG) is thus finally calculated at 6.84 liters per minute.
  • the Z values of the characteristic map 14 are determined in normal operation whenever the common rail injection system is in a steady state, for example at the operating point n (A) and Q (A).
  • the controller volume flow VR or the filtered value is assigned to the corresponding operating range of the map 14 and stored as a Z value.
  • the stored values represent a measure of the leakage of the common rail injection system.
  • the integrating portion of the rail pressure regulator 13 can be used instead of the regulator volume flow VR.
  • the Z values can already be applied firmly even when the internal combustion engine is delivered. By means of the evaluation map of Figure 7, these Z-values can be corrected. As a result, an unacceptably high increase or decrease in the rail pressure after failure of the rail pressure sensor, caused by too large or too small stored values of the map 14, effectively prevented.
  • the map shown in Figure 6 14 has 5 times 4 interpolation points.
  • the advantage here is the lower space requirement and the good clarity.
  • the problem is the fact that smaller values of the desired injection quantity Q (SW) below Q (A) can not be displayed.
  • the target injection quantity Q (A) corresponds to a value of 40 cubic millimeters per stroke.
  • the speed controller calculates a smaller value of the target injection quantity Q (SW), for example 18 cubic millimeters per stroke, then in the map 14 the interpolation point Q (A) is used.
  • This too great value of the map 14 leads to an increase of the rail pressure in emergency operation and thus to greater stress on the crankshaft.
  • This problem can be alleviated by using a map 14 with few nodes by the introduction of a limit line.
  • the abscissa represents the nominal injection quantity Q (SW).
  • the limit value line GW is valid for a stationary engine speed, for example for the support point A from FIG. 6 with n (A) equal to 3000 revolutions per minute.
  • a value Q (A) of 40 cubic millimeters per stroke corresponds to a leakage volume flow of 7.2 liters per minute.
  • a nominal injection quantity Q (SW) of 18 cubic millimeters per stroke calculated by the speed controller, a corresponding leakage volume flow of 1.9 liters per minute is calculated.
  • the leakage volume flow V (LKG) calculated by means of the characteristic map 14 can be corrected to smaller values via the limit value line GW when the nominal injection quantity Q (SW) decreases.
  • the rail pressure is limited in case of failure of the rail pressure sensor in the increase, it thus sets faster a stable operating point.
  • the map 14 may also have more nodes. If the rail pressure increases after the rail pressure sensor has failed, the engine speed also increases. As a consequence, the reduced Speed controller the set injection quantity Q (SW).
  • the leakage volume flow V (LKG) is thus determined from the map 14 for ever smaller target injection quantity values Q (SW).
  • An increase in the rail pressure during emergency operation can be effectively prevented if the map 14 in the range of target injection amount values that are smaller than the smallest stationary driven target injection amount values, with small leakage volume flows (Z values), ideally the value zero liter per minute, is occupied.
  • An excessive increase in the rail pressure is prevented because the setpoint flow V (DESIRED) is reduced with increasing rail pressure.
  • FIG. 9 shows a section of a characteristic map 14 executed in this way.
  • smaller setpoint injection quantity values Q (SW) are assigned correspondingly smaller leakage volume flows (Z values).
  • the thus calculated leakage volume flow V (LKG) is then weighted via the evaluation map of Figure 7.
  • FIG. 10 shows a program flowchart of the method. This begins at step S 1 after the initialization of the electronic control unit.
  • the starting process for the internal combustion engine is activated. Thereafter, it is checked whether the starting process is completed. In practice, the starting process is terminated when the rail pressure actual value pCR (IST) exceeds a limit value (regulator release pressure) and / or the engine rotational speed nMOT exceeds a limit value (controller release rotational speed). If the boot process has not been completed yet, a wait loop will pass through with S4. After the starting process is finished, the control of the rail pressure pCR is activated at S5. Thereafter, at S6, the deviation dR is detected over time and stored.
  • pCR rail pressure actual value
  • nMOT limit value
  • the control deviations dR of a measurement period dt or a predefinable number of values can be selected here.
  • step S7 it is checked whether the values supplied by the rail pressure sensor are free from errors. If the rail pressure sensor is faultless, normal operation is maintained, step S8, and the program flow continues at S5. If the test at S7 shows that the signals of the rail pressure sensor are faulty, the emergency operation and the transition function ÜF are activated, steps S9 and S10.
  • the transition function ÜF predefines the stored control deviation inversely to the rail pressure controller or it becomes a correction Volumetric flow determined from the difference between two control deviations. Thereafter, it is checked at S11 whether the measurement period dt has elapsed. Alternatively, the query may be executed instead of the time (dt) to a number (n) of deviations.
  • step S11 If the query at S11 is negative, a waiting loop is passed through with step S12. If the result of the test is positive in S11, the transfer function is completed, step S13.
  • the rail pressure is determined indirectly by the speed controller via the map 14. As a further measure, the operator of the internal combustion engine is informed about the emergency operation z. B. via a corresponding warning lamp and a diagnostic entry.

Abstract

L'invention concerne un procédé de commande d'un moteur à combustion interne (1) comprenant un système d'injection à rampe commune, procédé selon lequel la détection d'un capteur de pression de rampe (14) défectueux permet de déterminer de manière décisive la transition d'un mode de fonctionnement normal à un mode de fonctionnement d'urgence, par l'intermédiaire d'une fonction de transition. Cette fonction de transition est déterminée préalablement, en mode de fonctionnement normal, à partir de l'évolution d'un écart de réglage. Cet écart de réglage peut être calculé à partir de la comparaison des pressions théorique et réelle de la rampe (pCR). L'invention permet de garantir une transition continue et sans problème d'un mode de fonctionnement normal à un mode de fonctionnement d'urgence.

Claims (20)

  1. Procédé de commande d'un moteur à combustion interne, selon lequel, en fonctionnement normal, on régule une pression de rampe et on passe du fonctionnement normal à un fonctionnement de secours en cas de détection d'un capteur défectueux de pression de rampe, sachant qu'en fonctionnement de secours, on commande la pression de rampe, caractérisé en ce que le passage du fonctionnement normal au fonctionnement de secours est défini de façon déterminante par une fonction de transition (ÜF), sachant que la fonction de transition (ÜF) est déterminée. à partir d'écarts de régulation (dR) en fonctionnement normal, et que les écarts de régulation (dR) sont calculés par la comparaison consigne/réel entre la valeur réelle (pCR(IST)) de pression de rampe et la valeur de consigne (pCR(SW)) de pression de rampe.
  2. Procédé de commande d'un moteur à combustion interne selon la revendication 1, caractérisé en ce que, pour déterminer la fonction de transition (ÜF), on considère les écarts de régulation d'une période de mesure (dt) (dR(t), t=1... dt).
  3. Procédé de commande et de régulation selon la revendication 1, caractérisé en ce que, pour déterminer la fonction de transition (ÜF), on considère un nombre (n) prédéfinissable d'écarts de régulation (dR(i), i=1... n).
  4. Procédé de commande d'un moteur à combustion interne selon la revendication 2 ou 3, caractérisé en ce que la fonction de transition (ÜF) correspond aux opposés des écarts de régulation (dR(t), dR(i)).
  5. Procédé de commande d'un moteur à combustion interne selon la revendication 4, caractérisé en ce que, à l'activation de la fonction de transition (ÜF), un débit volumique de régulateur (VR) à travers un régulateur (13) de pression de rampe est calculé en fonction de la fonction de transition (ÜF).
  6. Procédé de commande d'un moteur à combustion interne selon la revendication 5, caractérisé en ce que la fonction de transition (ÜF) est achevée à l'expiration de la période de mesure (dt) ou conformément au nombre (n).
  7. Procédé de commande d'un moteur à combustion interne selon la revendication 2 ou 3, caractérisé en ce que la fonction de transition (ÜF) est calculée à partir d'une différence (DIFF) entre un premier et un deuxième écart de régulation (dR(t), dR(i)).
  8. Procédé de commande d'un moteur à combustion interne selon la revendication 7, caractérisé en ce que la fonction de transition (ÜF) correspond à l'opposé de la différence (DIFF).
  9. Procédé de commande d'un moteur à combustion interne selon la revendication 8, caractérisé en ce qu'un débit volumique de correction (V(KORR)) est calculé à partir de la fonction de transition (ÜF) par l'intermédiaire d'un élément DT1 (19).
  10. Procédé de commande d'un moteur à combustion interne selon la revendication 9, caractérisé en ce que la fonction de transition (ÜF) est désactivée si le débit volumique de correction (V(KORR)) tombe en dessous d'une valeur limite (GW) (V(KORR)<GW) ou si un intervalle de temps s'est écoulé.
  11. Procédé de commande d'un moteur à combustion interne selon les revendications 4 à 6, caractérisé en ce que, lorsque la fonction de transition (ÜF) est activée, un débit volumique de consigne (V(SOLL)) est calculé à partir du débit volumique de régulateur (VR) et d'un débit volumique de consommation (V(VER)).
  12. Procédé de commande d'un moteur à combustion interne selon les revendications 7 à 10, caractérisé en ce que, lorsque la fonction de transition (ÜF) est activée, le débit volumique de consigne (V(SOLL)) est calculé à partir du débit volumique de consommation (V(VER)) et du débit volumique de correction (V(KORR)).
  13. Procédé de commande d'un moteur à combustion interne selon la revendication 12, caractérisé en ce que le débit volumique de consigne (V(SOLL)) est en outre calculé à partir d'un débit volumique de fuite (V(LKG)) déterminé au moyen d'un diagramme caractéristique (14).
  14. Procédé de commande d'un moteur à combustion interne selon l'une quelconque des revendications précédentes, caractérisé en ce que, lorsque la fonction de transition (ÜF) est achevée, le débit volumique de consigne (V(SOLL)) est calculé à partir du débit volumique de consommation (V(VER)) et du débit volumique de fuite (V(LKG)).
  15. Procédé de commande d'un moteur à combustion interne selon la revendication 11 ou 12, caractérisé en ce que le débit volumique de consommation (V(VER)) est calculé en fonction d'un régime moteur (nMOT) et d'une quantité d'injection de consigne (Q(SW)) ((V(VER) = f (nMOT, Q(SW))).
  16. Procédé de commande d'un moteur à combustion interne selon la revendication 14, caractérisé en ce que les valeurs du débit volumique de fuite (V(LKG)) qui sont enregistrées dans le diagramme caractéristique (14) sont déterminées en fonctionnement normal par le fait que, dans l'état stationnaire, la valeur du débit volumique de régulateur (VR) est posée comme valeur correspondante du débit volumique de fuite (V(LKG)), et la valeur du débit volumique de fuite (V(LKG)) est enregistrée dans le diagramme caractéristique (14).
  17. Procédé de commande d'un moteur à combustion interne selon la revendication 16, caractérisé en ce que le débit volumique de régulateur (VR) est en outre filtré.
  18. Procédé de commande d'un moteur à combustion interne selon la revendication 14, caractérisé en ce que les valeurs du débit volumique de fuite (V(LKG)) qui sont enregistrées dans le diagramme caractéristique (14) sont déterminées en fonctionnement normal par le fait que, dans l'état stationnaire, la part d'intégration (part I) du régulateur (13) de pression de rampe est posée comme valeur correspondante du débit volumique de fuite (V(LKG)), et la valeur du débit volumique de fuite (V(LKG)) est enregistrée dans le diagramme caractéristique (14).
  19. Procédé de commande d'un moteur à combustion interne selon l'une quelconque des revendications précédentes, caractérisé en ce que, si la quantité d'injection de consigne (Q(SW)) diminue, le débit volumique de fuite (V(LKG)) est corrigé vers des valeurs inférieures par l'intermédiaire de courbes de valeur limite (GW).
  20. Procédé de commande d'un moteur à combustion interne selon la revendication 19, caractérisé en ce que le débit volumique de fuite (V(LKG)) est en outre évalué au moyen d'un diagramme caractéristique d'évaluation.
EP02791690A 2001-11-24 2002-11-20 Procede de commande d'un moteur a combustion interne Expired - Fee Related EP1446568B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10157641 2001-11-24
DE10157641A DE10157641C2 (de) 2001-11-24 2001-11-24 Verfahren zur Steuerung einer Brennkraftmaschine
PCT/EP2002/012971 WO2003046357A1 (fr) 2001-11-24 2002-11-20 Procede de commande d'un moteur a combustion interne

Publications (2)

Publication Number Publication Date
EP1446568A1 EP1446568A1 (fr) 2004-08-18
EP1446568B1 true EP1446568B1 (fr) 2006-01-11

Family

ID=7706809

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02791690A Expired - Fee Related EP1446568B1 (fr) 2001-11-24 2002-11-20 Procede de commande d'un moteur a combustion interne

Country Status (5)

Country Link
US (1) US7010415B2 (fr)
EP (1) EP1446568B1 (fr)
DE (2) DE10157641C2 (fr)
ES (1) ES2254770T3 (fr)
WO (1) WO2003046357A1 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10349628A1 (de) * 2003-10-24 2005-06-02 Robert Bosch Gmbh Verfahren zum Regeln des Druckes in einem Kraftstoffspeicher einer Brennkraftmaschine
JP2006200478A (ja) * 2005-01-21 2006-08-03 Denso Corp 燃料噴射装置
US7007676B1 (en) 2005-01-31 2006-03-07 Caterpillar Inc. Fuel system
EP1790844A1 (fr) * 2005-11-25 2007-05-30 Delphi Technologies, Inc. Méthode d'identification d'un comportement anormal d'un système dynamique
DE102006004516B3 (de) * 2006-02-01 2007-03-08 Mtu Friedrichshafen Gmbh Bayes-Netz zur Steuerung und Regelung einer Brennkraftmaschine
DE102006009068A1 (de) * 2006-02-28 2007-08-30 Robert Bosch Gmbh Verfahren zum Betreiben eines Einspritzsystems einer Brennkraftmaschine
DE102006049266B3 (de) * 2006-10-19 2008-03-06 Mtu Friedrichshafen Gmbh Verfahren zum Erkennen eines geöffneten passiven Druck-Begrenzungsventils
EP2085603A1 (fr) * 2008-01-31 2009-08-05 Caterpillar Motoren GmbH & Co. KG Système et procédé pour éviter la surchauffe de pompe CR
DE102008058721B4 (de) * 2008-11-24 2011-01-05 Mtu Friedrichshafen Gmbh Steuerungs- und Regelungsverfahren für eine Brennkraftmaschine mit einem Common-Railsystem
DE102009050468B4 (de) 2009-10-23 2017-03-16 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102009050469B4 (de) * 2009-10-23 2015-11-05 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102009050467B4 (de) * 2009-10-23 2017-04-06 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102009051023B4 (de) * 2009-10-28 2015-01-15 Audi Ag Verfahren zum Betreiben eines Antriebsaggregats sowie Antriebsaggregat
DE102009051390B4 (de) * 2009-10-30 2015-10-22 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102011076258A1 (de) * 2011-05-23 2012-11-29 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
DE102011103988A1 (de) * 2011-06-10 2012-12-13 Mtu Friedrichshafen Gmbh Verfahren zur Raildruckregelung
DE102013214083B3 (de) * 2013-07-18 2014-12-24 Continental Automotive Gmbh Verfahren zum Betreiben eines Kraftstoffeinspritzsystems eines Verbrennungsmotors
DE102016214760B4 (de) * 2016-04-28 2018-03-01 Mtu Friedrichshafen Gmbh Verfahren zum Betrieb einer Brennkraftmaschine, Einrichtung zum Steuern und/oder Regeln einer Brennkraftmaschine, Einspritzsystem und Brennkraftmaschine
CN113107694B (zh) * 2021-05-11 2023-01-06 潍柴动力股份有限公司 一种轨压传感器故障处理方法及共轨系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19603091C1 (de) * 1996-01-29 1997-07-31 Siemens Ag Verfahren zur Regelung einer Regelstrecke, insbesondere einer Brennkraftmaschine
DE19731201C2 (de) 1997-07-21 2002-04-11 Siemens Ag Verfahren zum Regeln des Kraftstoffdruckes in einem Kraftstoffspeicher
JP3680515B2 (ja) 1997-08-28 2005-08-10 日産自動車株式会社 内燃機関の燃料系診断装置
US5937826A (en) * 1998-03-02 1999-08-17 Cummins Engine Company, Inc. Apparatus for controlling a fuel system of an internal combustion engine
US6053147A (en) 1998-03-02 2000-04-25 Cummins Engine Company, Inc. Apparatus and method for diagnosing erratic pressure sensor operation in a fuel system of an internal combustion engine
DE19916100A1 (de) 1999-04-09 2000-10-12 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE19946100B4 (de) * 1999-09-27 2007-05-24 Henry Tunger Verfahren und Vorrichtung zur automatischen Lenkerverstellung bei einem Motorrad
DE10003298A1 (de) 2000-01-27 2001-08-02 Bosch Gmbh Robert Verfahren und Vorrichtung zur Druckregelung
DE10014737A1 (de) * 2000-03-24 2001-10-11 Bosch Gmbh Robert Verfahren zur Bestimmung des Raildrucks eines Einspritzventils mit einem piezoelektrischen Aktor

Also Published As

Publication number Publication date
US20040249555A1 (en) 2004-12-09
DE50205611D1 (de) 2006-04-06
WO2003046357A8 (fr) 2003-12-04
US7010415B2 (en) 2006-03-07
ES2254770T3 (es) 2006-06-16
DE10157641A1 (de) 2003-06-12
EP1446568A1 (fr) 2004-08-18
DE10157641C2 (de) 2003-09-25
WO2003046357A1 (fr) 2003-06-05

Similar Documents

Publication Publication Date Title
EP1446568B1 (fr) Procede de commande d&#39;un moteur a combustion interne
DE102006049266B3 (de) Verfahren zum Erkennen eines geöffneten passiven Druck-Begrenzungsventils
EP1730394B1 (fr) Procede de commande et de regulation d&#39;un moteur a combustion interne
DE19941329B4 (de) Steueranordnung für eine Brennkraftmaschine mit einer Fehlfunktionserfassungsfunktion
DE102009050467B4 (de) Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE10147189A1 (de) Verfahren zum Betreiben eines Kraftstoffversorgungssystems für einen Verbrennungsmotor eines Kraftfahrzeugs
EP2006521B1 (fr) Procédé de réglage de la pression du rail lors d&#39;un processus de démarrage
DE102009051390B4 (de) Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
EP0976921B1 (fr) Méthode et dispositif de surveillance d&#39;un système d&#39;alimentation en carburant
DE102006007365B3 (de) Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE19513370B4 (de) Verfahren und Vorrichtung zur Steuerung der Leistung einer Brennkraftmaschine
DE102004028515B3 (de) Verfahren und Vorrichtung zum Überwachen einer Kraftstoffzuführeinrichtung einer Brennkraftmaschine
DE102014225920B4 (de) Verfahren zum Betrieb eines Dieselmotors
DE19937139C1 (de) Verfahren und Einrichtung zur Steuerung einer Brennkraftmaschine
EP1347165B1 (fr) Procédé et dispositif de commande du dosage de carburant pour un moteur à combustion interne
DE19537381B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102014226259B4 (de) Verfahren zum Betrieb eines Verbrennungsmotors
EP2044317B1 (fr) Procédé de détermination d&#39;une erreur dans une unité de dosage de carburant d&#39;un système d&#39;injection
DE102005014161B4 (de) Verfahren und Vorrichtung zur Ermittlung der Kraftstoffdruckwerte eines Kraftstoffhochdrucksystems
DE102011013392A1 (de) Verfahren zur Regelung eines Verbrennungsmotors
DE102008058721B4 (de) Steuerungs- und Regelungsverfahren für eine Brennkraftmaschine mit einem Common-Railsystem
DE10137871C1 (de) Verfahren zur Kalibrierung eines Drucksensors
DE19652646B4 (de) Verfahren zur Ermittlung der Abstellzeit einer Brennkraftmaschine
EP3631398A1 (fr) Procédé de surveillance d&#39;un capteur de pression de cylindre
DE19541927B4 (de) Verfahren und Vorrichtung zur Steuerung und/oder Regelung einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030909

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060111

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060315

REF Corresponds to:

Ref document number: 50205611

Country of ref document: DE

Date of ref document: 20060406

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2254770

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061012

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20161122

Year of fee payment: 15

Ref country code: FR

Payment date: 20161118

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20161114

Year of fee payment: 15

Ref country code: IT

Payment date: 20161123

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171120

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171120

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201119

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50205611

Country of ref document: DE

Owner name: ROLLS-ROYCE SOLUTIONS GMBH, DE

Free format text: FORMER OWNER: MTU FRIEDRICHSHAFEN GMBH, 88045 FRIEDRICHSHAFEN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50205611

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220601