EP1441848A2 - Body for isolating a constituent contained in a gas mixture - Google Patents

Body for isolating a constituent contained in a gas mixture

Info

Publication number
EP1441848A2
EP1441848A2 EP02796494A EP02796494A EP1441848A2 EP 1441848 A2 EP1441848 A2 EP 1441848A2 EP 02796494 A EP02796494 A EP 02796494A EP 02796494 A EP02796494 A EP 02796494A EP 1441848 A2 EP1441848 A2 EP 1441848A2
Authority
EP
European Patent Office
Prior art keywords
bodies
separation
bed
shell
gas mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02796494A
Other languages
German (de)
French (fr)
Inventor
Frank Bretschneider
Constant Van Lookeren
Manfred Nebelung
Hagen Klemm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
IPC Process Center GmbH and Co
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
IPC Process Center GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV, IPC Process Center GmbH and Co filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority to EP04019108A priority Critical patent/EP1479436A3/en
Publication of EP1441848A2 publication Critical patent/EP1441848A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28021Hollow particles, e.g. hollow spheres, microspheres or cenospheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3293Coatings on a core, the core being particle or fiber shaped, e.g. encapsulated particles, coated fibers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/408Alkaline earth metal or magnesium compounds of barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/606Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/104Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • B01D2253/1124Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/116Molecular sieves other than zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/25Coated, impregnated or composite adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/304Linear dimensions, e.g. particle shape, diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/306Surface area, e.g. BET-specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/311Porosity, e.g. pore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/05Methods of making filter

Definitions

  • the invention relates to bodies for the separation of a component contained in a gas mixture.
  • the gas mixtures can be, for example, raw gases containing hydrocarbons, such as natural gas, or also exhaust gas. Harmful components contained in such gas mixtures, e.g. Sulfur can also be removed in the form of compounds in order to make the gas mixture free of negative properties during further use and processing or to release gas free of harmful components to the environment.
  • nitrogen or nitrogen oxides can also be separated in order to improve their suitability for combustion or to release almost nitrogen oxide-free exhaust gases into the environment.
  • phosphorus, halogens or their compounds can also be separated.
  • Such gas mixtures are cleaned using solid substances, the separation being carried out by sorption.
  • the surface of the material used can be used to ensure a higher separation capacity.
  • an increase in surface area can be achieved by the geometric design and in particular the specific surface of a fabric by the porosity.
  • suitable materials mainly chemical compounds, have been used as granules in a wide variety of grain sizes and a favorable porosity, often set by appropriate sintering.
  • the gas mixture to be cleaned or freed from a component is then passed through a fixed bed formed from a bed of the granulate and the respective component to be separated is sorbed.
  • the bed forms a throttle point for the gas flow, so that a dynamic pressure which is influenced by the grain size and the dimensioning of the bed is recorded on the inlet side.
  • This requires an increased output for gas production.
  • abrasion occurs, which impedes the gas flow and this effect can severely limit the service life of a bed, so that an exchange in relatively short time intervals is necessary.
  • each substance suitable for separation has a limited separation capacity, essentially influenced by the usable surface and mass. and a saturation range, so that full use cannot usually take place.
  • bodies should be used for the separation selected components from gas mixtures are used, the active area for the separation is designed in the form of a porous shell.
  • This shell can enclose at least one cavity or at least one core that is not active for the separation on all sides, so that a closed body is formed.
  • the term pores should not include the individual pores.
  • This body is particularly preferably spherically curved and can also be designed as a hollow sphere.
  • a spherical shape is not only advantageous because of the spherical geometry with a large surface area, but also offers favorable fluidic conditions when a gas mixture is passed through a bed formed from such bodies during the separation, since a correspondingly reduced dynamic pressure is reached at the inlet side of such a bed can be.
  • the bodies according to the invention can optionally also be hollow cylinders.
  • the shell shape with a correspondingly limited thickness up to a maximum of 5 mm, preferably less than 2 mm, can also ensure an almost constant separation performance over a large usable period, this being guaranteed at least up to the vicinity of the saturation limit. This can improve the quality of separation, and consequently that of
  • the degree of purity of the treated gas was kept constant and also reduce operating costs.
  • the bodies according to the invention can be used for the separation at least up to a load which is close to the saturation limit without the gas purity being significantly influenced.
  • Spherical bodies can be produced in a manner known per se.
  • a powder which essentially consists of a substance suitable for the respective component to be separated, is applied as a dispersion / suspension to a spherical core and, after drying, is subjected to sintering.
  • the core can consist of a material which is inactive for the separation, but the thermal behavior of this material should be taken into account, taking into account the thermal expansion and shrinkage during sintering, in order to avoid cracking of the shell as far as possible.
  • the core can also be made of an organic material, e.g. Pre-expanded polystyrene exist, which can be safely expelled at temperatures below 700 ° C, so that in these cases the bodies are present as hollow spheres.
  • the ratio of the outside diameter to the shell thickness should be in the range from 2 to 1 to 10 to 1, the smaller ratios with small outside diameters of the bodies being preferred. If possible, the shell thickness should not be greater than 3 mm, whereby an upper limit of 8 mm should not be exceeded.
  • the mechanical strength and porosity of the shell can be influenced by the powder used, in particular its grain size, possibly with additives that remain in the shell and the sintering conditions. the.
  • the sintering should be carried out in such a way that just sufficient mechanical strength with the highest possible porosity is achieved.
  • outer dimensions (outer diameter) and the mass of the body according to the invention can be varied taking into account the respective application, the porosity being kept constant.
  • sintering aids for example SiO 2
  • the proportion of SiO 2 should be less than 10% by mass, preferably less than 5% by mass.
  • the shell can be made from different materials. It can be formed from metal oxides or metal oxide mixtures, with oxides of II-valent metals being preferred. For example, for the separation of sulfur in the form of hydrogen sulfide with oxides of II-valent metals (e.g. Cu, Fe, Co, Ni, Zn) can be separated from a gas mixture, such as natural gas, by chemical conversion.
  • a gas mixture such as natural gas
  • ZnO react with H 2 S to ZnS and
  • ZnS is chemically more stable than H 2 S and can be held in solid form on the body.
  • ZnS can react with H 2 O to form sulfuric acid, ZnO again forming in the shell at the same time, which can be used for a new separation.
  • bodies made of Al 2 0 3 can be used as a catalyst.
  • the Al 2 0 3 can also form the shell of such a body.
  • the so-called Claus process can then be carried out with these catalysts and the ZnO bodies, in which S0 2 and 2H 2 S react catalytically to 3S and 2H 2 0.
  • Certain zeolites which are also known per se, can also be used for the separation of sulfur compounds.
  • Zeolites as they are referred to, for example, in US Pat. No. 6,197,092, can also be used as so-called molecular sieves for the separation of nitrogen, this advantageously being possible by means of a pressure swing adsorption process (PSA) which is also mentioned there ,
  • PSA pressure swing adsorption process
  • Phosphorus, halogens or their compounds can also be separated using such molecular sieves.
  • BaC0 3 can be used as the shell material, which reacts with N0 2 to form BaO. Regeneration is also possible here.
  • the BaO formed is heated (T approx. 450 ° C.) and BaC0 3 can be formed again with carbon compounds (for example C0 2 ).
  • the bodies according to the invention can also be used for gas drying and e.g. Extract water or water vapor from a gas / gas mixture.
  • the bodies according to the invention can be used in devices in which, in containers through which a gas mixture for the separation is passed, at least one body is formed from a bed of so-called fixed beds.
  • the bodies can also form a fluidized bed or fluid bed, in particular because of their increased strength with the same porosity, the gas mixture being used with an increased volume flow.
  • Such a bed can also be formed by bodies moved as a result of gravitational or mechanical forces. The bodies can be continuously fed to the area of such a bed that is active for the separation, removed from the bed with the component loaded with the component to be separated, fed to a regeneration and returned to the circuit.
  • the gas mixture flows through this bed for separation and a component is held there by chemical and / or physical effects, so that gas emerging from this bed or a cascade of several such beds is largely free of this component.
  • regeneration is necessary. This can be achieved by supplying heat, ie heating the beds or the entire container. In particular when ZnS is formed, the regeneration can also be carried out by adding water. Water vapor or fluid containing water vapor can be passed through the bed in order to trigger the regression of ZnS to ZnO.
  • Switching from one container to the other can be time-controlled but also regulated, in the latter case the concentration of the corresponding component in the emerging gas stream being determined and when a limit value is exceeded, the switching of the gas flow to another container is initiated.
  • Form beds can have at least approximately the same outside dimensions / outside diameter in each bed.
  • Bodies with different dimensions can be used in several beds forming a cascade and there is the possibility of using bodies with different outside dimensions / outside diameters in one bed.
  • the flow conditions of the gas mixture should be influenced in such a way that the pressure drop is kept as small as possible and nevertheless there is sufficient contact or dwell time in the beds for the separation.
  • the bodies according to the invention should be present in the beds as a loose bed, without the use of binders.
  • a catalytically active substance can also advantageously be additionally present in the beds, with which the separation is facilitated, made possible and, if necessary, the required reaction time or energy supplied can be reduced.
  • Such a catalytically active substance for example platinum
  • nitrogen monoxide can be catalytic oxidized to nitrogen dioxide and nitrogen dioxide can be separated from an exhaust gas by chemical reaction with BaC03.
  • Figure 1 is a diagram of the time course of the
  • Solid spheres were produced as a comparative example and hollow spheres as bodies according to the invention.
  • the specific breaking strength of the hollow bodies according to the invention was 2.9 MPa, whereas the solid spheres only reached 1.99 MPa.
  • the specific surface of the comparison body was 41.7 m 2 / g and that of the body according to the invention was 48.6 m 2 / g.
  • the temperature was kept constant at 400 ° C.
  • the load was measured in mg over time.
  • the increase in the mass increase representing the separation of hydrogen sulfide from the gas mixture turns out to be significantly smaller, at least after reaching about 50% of the maximum separation capacity, that is to say before the saturation limit has been reached for the full comparison bodies.
  • the result of this is that, after a certain time, significantly less hydrogen sulfide can be separated and chemically converted into ZnS than is possible with the hollow spherical bodies according to the invention.
  • a total mass of 332 g / l of hydrogen sulfide could be separated in both investigations.
  • this mass could already be reached after 38 minutes, whereas the comparison bodies required 57 minutes, which also demonstrates an increased separation effect, that is to say not only faster but also a larger amount of hydrogen sulfide can be separated from a gas mixture and a higher purity of a gas mixture treated in this way can be recorded.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

The invention concerns a body for isolating a constituent contained in a gas mixture, the gas mixtures may be crude gases containing hydrocarbons such as natural gas, or exhaust gases. The invention is characterized in that the bodies used are designed to enable isolation of constituents of gas mixtures, for long periods of time, with approximately constant efficiency. Therefor, inventive body has, for achieving isolation, active zones in the form of a porous shell. Said bodies having a porous shell can be installed in a device, and, inside a container can be provided at least a bed formed by a supply of said bodies, through which the gas mixture passes to enable isolation of the unwanted constituent. The invention is particularly advantageous for isolating sulphur compounds contained in gas mixtures.

Description

Körper für die Separation einer in einem Gasgemisch enthaltenen KomponenteBody for the separation of a component contained in a gas mixture
Die Erfindung betrifft Körper für die Separation ei- ner in einem Gasgemisch enthaltenen Komponente. Dabei kann es sich bei den Gasgemischen beispielsweise um Kohlenwasserstoffe enthaltende Rohgase, wie Erdgas oder auch um Abgas handeln. So können in solchen Gasgemischen enthaltene schädliche Komponenten, wie z.B. Schwefel auch in Form von Verbindungen entfernt werden, um das Gasgemisch bei der weiteren Nutzung und Verarbeitung frei von negativen Eigenschaften zur Verfügung zu stellen oder von schädlichen Komponenten freies Gas an die Umwelt abzugeben.The invention relates to bodies for the separation of a component contained in a gas mixture. The gas mixtures can be, for example, raw gases containing hydrocarbons, such as natural gas, or also exhaust gas. Harmful components contained in such gas mixtures, e.g. Sulfur can also be removed in the form of compounds in order to make the gas mixture free of negative properties during further use and processing or to release gas free of harmful components to the environment.
Außerdem können auch Stickstoff oder Stickoxide separiert werden, um einmal die Verbrennungseignung zu verbessern oder nahezu stickoxidfreie Abgase an die Umwelt abzugeben.In addition, nitrogen or nitrogen oxides can also be separated in order to improve their suitability for combustion or to release almost nitrogen oxide-free exhaust gases into the environment.
Des weiteren können auch Phosphor, Halogene oder deren Verbindungen separiert werden.Furthermore, phosphorus, halogens or their compounds can also be separated.
Für die Separation der unterschiedlichen Komponenten sind eine Vielzahl von Lösungen bekannt, wobei für die jeweilige zu separierende elementare oder als chemische Verbindung vorliegende Komponente unterschiedliche chemische Reaktionen oder auch physikalische Effekte ausgenutzt werden.A large number of solutions are known for the separation of the different components, different chemical reactions or physical effects being used for the respective elemental component or component present as a chemical compound.
In vielen Fällen werden solche Gasgemische mittels fester Stoffe gereinigt, wobei die Separation durch Sorption erfolgt. Hierbei spielt die jeweils ausnutzbare Oberfläche des verwendeten Stoffes eine Rolle, um eine höhere Separationskapazität zu sichern. Bekanntermaßen läßt sich eine Oberflächenvergrößerung durch die geometrische Gestaltung und inbesondere die spezifische Oberfläche eines Stoffes durch die Porosität beeinflussen.In many cases, such gas mixtures are cleaned using solid substances, the separation being carried out by sorption. The surface of the material used can be used to ensure a higher separation capacity. As is known, an increase in surface area can be achieved by the geometric design and in particular the specific surface of a fabric by the porosity.
Bekanntermaßen verhalten sich aber Porosität und mechanische Festigkeit genau entgegengesetzt, so dass bezüglich der Porosität Grenzen gesetzt sind. Auch der Verwendung von festigkeitserhδhenden Bindemitteln sind Grenzen gesetzt, da diese die Separationseigen- Schäften negativ beeinflussen.As is known, however, porosity and mechanical strength behave in exactly the opposite way, so that there are limits to the porosity. There are also limits to the use of strength-increasing binders, since these have a negative effect on the separation properties.
Für die Separation von Komponenten werden bisher entsprechend geeignete Stoffe, überwiegend chemische Verbindungen als Granulat in den verschiedensten Korngrößen eingesetzt und eine günstige Porosität, häufig durch entsprechende Sinterung eingestellt.For the separation of components, suitable materials, mainly chemical compounds, have been used as granules in a wide variety of grain sizes and a favorable porosity, often set by appropriate sintering.
Das zu reinigende oder von einer Komponente zu befreiende Gasgemisch wird dann durch ein aus einer Schüttung des Granulates gebildetes Festbett geführt und die jeweilige zu separierende Komponente sor- biert . Das Bett bildet dabei für den Gasstrom eine Drosselstelle, so dass ein von der Korngröße und der Dimensionierung des Bettes beeinflußter Staudruck an der Eintrittseite zu verzeichnen ist. Dies erfordert eine erhöhte Leistung für die Gasförderung. Infolge einer verringerten mechanischen Festigkeit des porös verwendeten Stoffes tritt Abrieb auf, der die Gasströmung behindert und dieser Effekt die Nutzungs- dauer eines Bettes stark begrenzen kann, so dass ein Austausch in relativ kurzen Zeitintervallen erforderlich ist.The gas mixture to be cleaned or freed from a component is then passed through a fixed bed formed from a bed of the granulate and the respective component to be separated is sorbed. The bed forms a throttle point for the gas flow, so that a dynamic pressure which is influenced by the grain size and the dimensioning of the bed is recorded on the inlet side. This requires an increased output for gas production. As a result of a reduced mechanical strength of the porous material, abrasion occurs, which impedes the gas flow and this effect can severely limit the service life of a bed, so that an exchange in relatively short time intervals is necessary.
Bekanntermaßen weist jeder zur Separation geeignete Stoff, im wesentlichen von der nutzbaren Oberfläche und Masse beeinflußt eine begrenzte Separationskapa- zität und einen Sättigungsbereich auf, so dass eine vollständige Nutzung in der Regel nicht erfolgen kann.As is known, each substance suitable for separation has a limited separation capacity, essentially influenced by the usable surface and mass. and a saturation range, so that full use cannot usually take place.
Bei der Separation ist es außerdem gewünscht über einen längeren Zeitraum eine annähernd gleichmäßige Separationsleistung zu gewährleisten. Dies bedeutet eine nahezu konstante Menge (Masse) der Komponente pro Zeit zu separieren. Hier weisen bekannte Lösungen je- doch starke Defizite auf, da im Laufe der Nutzung die Separationsleistung reduziert ist und dieser Effekt bereits lange vor Erreichen der Sättigungsgrenze auftritt. Ein Nutzer muss entweder einen verringerten Reinheitsgrad des behandelten Gases oder eine kürzere effektive Nutzungsdauer in Kauf nehmen. Letzteres bedeutet in der Regel, dass der Zyklus Separation - Regeneration in kürzeren Zeiträumen durchgeführt werden muss, was selbstverständlich mit erhöhten Anlagen- und Betriebskosten verbunden ist.In the case of separation, it is also desirable to ensure approximately uniform separation performance over a longer period of time. This means separating an almost constant amount (mass) of the component per time. However, known solutions have strong deficits here, since the separation performance is reduced in the course of use and this effect occurs long before the saturation limit is reached. A user either has to accept a reduced degree of purity of the treated gas or a shorter effective service life. The latter usually means that the separation - regeneration cycle has to be carried out in shorter periods, which is of course associated with increased plant and operating costs.
Es ist daher Aufgabe der Erfindung eine Lösung vorzuschlagen, mit der Komponenten aus Gasgemischen über größere Zeiträume mit annähernd konstanter Leistung separiert werden können.It is therefore an object of the invention to propose a solution with which components from gas mixtures can be separated over relatively long periods of time with approximately constant power.
Erfindungsgemäß wird diese Aufgabe mit gemäß Anspruch 1 ausgebildeten Körpern gelöst, die in einer Vorrichtung gemäß dem nebengeordneten Anspruch 13 einsetzbar und entsprechend der nebengeordneten Anspüche 21 bis 24 verwendbar sind.According to the invention, this object is achieved with bodies designed according to claim 1, which can be used in a device according to the independent claim 13 and can be used according to the independent claims 21 to 24.
Vorteilhafte Ausgestaltungen und Weiterbildungen können mit den in den untergeordneten Ansprüchen genannten Merkmalen erreicht werden.Advantageous refinements and developments can be achieved with the features mentioned in the subordinate claims.
Erfindungsgemäß sollen Körper für die Separation be- stimmter Komponenten aus Gasgemischen eingesetzt werden, deren für die Separation aktiver Bereich in Form einer porösen Schale ausgebildet ist.According to the invention, bodies should be used for the separation selected components from gas mixtures are used, the active area for the separation is designed in the form of a porous shell.
Diese Schale kann mindestens einen Hohlraum oder mindestens einen für die Separation nicht aktiven Kern allseitig umschließen, so dass ein geschlossener Körper gebildet wird. Dabei sollen unter den Begriff Hohlraum nicht die einzelnen Poren fallen.This shell can enclose at least one cavity or at least one core that is not active for the separation on all sides, so that a closed body is formed. The term pores should not include the individual pores.
Dieser Körper ist besonders bevorzugt sphärisch gekrümmt und kann so auch als Hohlkugel ausgebildet sein. Dabei ist eine solche Kugelform nicht nur wegen der Kugelgeometrie mit großer Oberfläche vorteilhaft, sondern bietet auch strömungstechnisch günstige Verhältnisse, wenn ein Gasgemisch bei der Separation durch ein aus solchen Körpern gebildetes Bett geführt wird, da ein entsprechend reduzierter Staudruck an der Eintrittseite eines solchen Bettes erreicht wer- den kann.This body is particularly preferably spherically curved and can also be designed as a hollow sphere. Such a spherical shape is not only advantageous because of the spherical geometry with a large surface area, but also offers favorable fluidic conditions when a gas mixture is passed through a bed formed from such bodies during the separation, since a correspondingly reduced dynamic pressure is reached at the inlet side of such a bed can be.
Neben diesen Eigenschaften kann auch formbedingt eine erhöhte mechanische Festigkeit bei geringerer Masse erreicht werden.In addition to these properties, an increased mechanical strength with a lower mass can also be achieved due to the shape.
Die erfindungsgemäßen Körper können ggf. auch Hohlzy- linder sein.The bodies according to the invention can optionally also be hollow cylinders.
In überraschender Weise kann die Schalenform mit ent- sprechend begrenzter Dicke, bis maximal 5mm, bevorzugt kleiner 2 mm auch eine fast konstante Separati- onsleistung über einen großen nutzbaren Zeitraum sichern, wobei dies zumindest bis in die Nähe der Sättigungsgrenze gewährleistet ist. Dadurch können die Separationsqualitat verbessert, demzufolge auch derSurprisingly, the shell shape with a correspondingly limited thickness, up to a maximum of 5 mm, preferably less than 2 mm, can also ensure an almost constant separation performance over a large usable period, this being guaranteed at least up to the vicinity of the saturation limit. This can improve the quality of separation, and consequently that of
Reinheitsgrad des behandelten Gases konstant gehalten und außerdem die Betriebskosten reduziert werden.The degree of purity of the treated gas was kept constant and also reduce operating costs.
Eine Nutzung der erfindungsgemäßen Körper für die Separation kann zumindest bis zu einer Beladung erfol- gen, die in der Nähe der Sättigungsgrenze liegt, ohne dass die Gasreinheit wesentlich beeinflußt wird.The bodies according to the invention can be used for the separation at least up to a load which is close to the saturation limit without the gas purity being significantly influenced.
Körper in Kugelform können auf an sich bekannte Art und Weise hergestellt werden. Dabei wird ein Pulver, das im wesentlichen aus einem für die jeweilige zu separierende Komponente geeigneten Stoff besteht als Dispersion/Suspension auf einen kugelförmigen Kern aufgebracht und nach einem Trocknen einer Sinterung unterzogen. Der Kern kann aus einem für die Separati- on inaktiven Material bestehen, wobei jedoch das thermische Verhalten dieses Stoffes unter Berücksichtigung der Wärmeausdehnung und Schwindung beim Sintern beachtet werden sollte, um Rissbildungen der Schale möglichst zu vermeiden. Der Kern kann auch aus einem organischen Material, z.B. vorgeschäumtes Polystyrol bestehen, das bei Temperaturen unterhalb 700 ° C sicher ausgetrieben werden kann, so dass in diesen Fällen die Körper als Hohlkugeln vorliegen.Spherical bodies can be produced in a manner known per se. A powder, which essentially consists of a substance suitable for the respective component to be separated, is applied as a dispersion / suspension to a spherical core and, after drying, is subjected to sintering. The core can consist of a material which is inactive for the separation, but the thermal behavior of this material should be taken into account, taking into account the thermal expansion and shrinkage during sintering, in order to avoid cracking of the shell as far as possible. The core can also be made of an organic material, e.g. Pre-expanded polystyrene exist, which can be safely expelled at temperatures below 700 ° C, so that in these cases the bodies are present as hollow spheres.
Bei Körpern in Kugelform sollte das Verhältnis Außendurchmesser zu Schalendicke im Bereich 2 zu 1 bis 10 zu 1 liegen, wobei die kleineren Verhältnisse bei kleinen Außendurchmessern der Körper zu bevorzugen sind. Die Schalendicke sollte möglichst nicht grösser als 3 mm sein, wobei eine Obergrenze von 8 mm nicht überschritten werden sollte.In the case of bodies in the form of spheres, the ratio of the outside diameter to the shell thickness should be in the range from 2 to 1 to 10 to 1, the smaller ratios with small outside diameters of the bodies being preferred. If possible, the shell thickness should not be greater than 3 mm, whereby an upper limit of 8 mm should not be exceeded.
Die mechanische Festigkeit und Porosität der Schale kann durch das verwendete Pulver, insbesondere dessen Korngröße, ggf. mit Zusätzen die in der Schale verbleiben und die Sinterbedingungen, beeinflusst wer- den. Dabei sollte die Sinterung so durchgeführt werden, dass eine gerade ausreichende mechanische Festigkeit mit möglichst hoher Porosität erreicht werden.The mechanical strength and porosity of the shell can be influenced by the powder used, in particular its grain size, possibly with additives that remain in the shell and the sintering conditions. the. The sintering should be carried out in such a way that just sufficient mechanical strength with the highest possible porosity is achieved.
Die äußeren Abmessungen (Außendurchmesser) und die Masse der erfindungsgemäßen Körper können, die jeweilige Applikation berücksichtigend variiert werden, wobei die Porosität konstant gehalten werden kann.The outer dimensions (outer diameter) and the mass of the body according to the invention can be varied taking into account the respective application, the porosity being kept constant.
Dem Pulver können an sich bekannte Sinterhilfsmittel, z.B. Si02 zugegeben werden. Dabei sollte der Anteil von Si02 kleiner 10 Masse-%, bevorzugt kleiner 5 Mas- se-% sein.Known sintering aids, for example SiO 2 , can be added to the powder. The proportion of SiO 2 should be less than 10% by mass, preferably less than 5% by mass.
Die Schale kann aus verschiedenen Stoffen gebildet werden. Sie kann aus Metalloxiden oder Metalloxidgemischen gebildet werden, wobei Oxide II-wertiger Metalle bevorzugt sind. So kann beispielsweise für die Separation von Schwefel in Form von Schwefelwasserstoff mit Oxiden II-wertiger Metalle (z.B. Cu, Fe, Co, Ni, Zn) durch chemische Umwandlung aus einem Gasgemisch, wie beispielsweise Erdgas separiert werden.The shell can be made from different materials. It can be formed from metal oxides or metal oxide mixtures, with oxides of II-valent metals being preferred. For example, for the separation of sulfur in the form of hydrogen sulfide with oxides of II-valent metals (e.g. Cu, Fe, Co, Ni, Zn) can be separated from a gas mixture, such as natural gas, by chemical conversion.
So reagieren beispielsweise ZnO mit H2S zu ZnS undFor example, ZnO react with H 2 S to ZnS and
H20. Dabei ist ZnS chemisch stabiler als H2S und kann in fester Form am Körper gehalten werden.H 2 0. ZnS is chemically more stable than H 2 S and can be held in solid form on the body.
Bei einer in bestimmten Zeitabständen, möglichst vor Erreichen der Sättigungsgrenze durchzuführenden Regeneration kann ZnS mit H20 zu Schwefelsäure reagieren, wobei sich gleichzeitig wieder ZnO in der Schale bildet, das für eine neue Separation genutzt werden kann.In the case of regeneration to be carried out at certain time intervals, if possible before the saturation limit is reached, ZnS can react with H 2 O to form sulfuric acid, ZnO again forming in the shell at the same time, which can be used for a new separation.
Insbesondere für die Separation von H2S, der in höhe- ren Konzentrationen in einem Gasgemisch enthalten ist, können neben Körpern, deren Schale im Wesentlichen aus ZnO gebildet ist, auch Körper aus Al203 als Katalysator eingesetzt werden. Dabei kann das Al203 ebenfalls die Schale eines solchen Körpers bilden. Mit diesen Katalysatoren und den ZnO-Körpern kann dann der sogenannte Claus-Prozess durchgeführt werden, bei dem S02 und 2H2S katalytisch zu 3S und 2H20 reagieren.Especially for the separation of H 2 S, which is ren concentrations in a gas mixture, in addition to bodies whose shell is essentially made of ZnO, bodies made of Al 2 0 3 can be used as a catalyst. The Al 2 0 3 can also form the shell of such a body. The so-called Claus process can then be carried out with these catalysts and the ZnO bodies, in which S0 2 and 2H 2 S react catalytically to 3S and 2H 2 0.
Für die Separation von Schwefelverbindungen können auch bestimmte an sich ebenfalls bekannte Zeolithe eingesetzt werden.Certain zeolites, which are also known per se, can also be used for the separation of sulfur compounds.
Zeolithe, wie sie beispielsweise in US 6,197,092 bezeichnet sind, können als sogenannte Molekularsiebe auch für die Separation von Stickstoff eingesetzt werden, wobei dies vorteilhaft mittels eines dort ebenfalls erwähnten Druck-Wechsel-Adsorptions- Prozesses (Pressure-Swing-Adsorption - PSA) erfolgen kann.Zeolites, as they are referred to, for example, in US Pat. No. 6,197,092, can also be used as so-called molecular sieves for the separation of nitrogen, this advantageously being possible by means of a pressure swing adsorption process (PSA) which is also mentioned there ,
Auch Phosphor, Halogene oder deren Verbindungen können mit solchen Molekularsieben separiert werden.Phosphorus, halogens or their compounds can also be separated using such molecular sieves.
Sollen Stickoxide, beispielsweise aus einem Abgasstrom separiert werden kann als Schalenmaterial BaC03 eingesetzt werden, das mit N02 zu BaO reagiert. Auch hier ist eine Regeneration möglich. Dabei wird das gebildete BaO erwärmt (T ca. 450 ° C) und es kann mit Kohlenstoffverbindungen (z.B. C02) wieder BaC03 gebildet werden.If nitrogen oxides are to be separated, for example from an exhaust gas stream, BaC0 3 can be used as the shell material, which reacts with N0 2 to form BaO. Regeneration is also possible here. The BaO formed is heated (T approx. 450 ° C.) and BaC0 3 can be formed again with carbon compounds (for example C0 2 ).
Für die Separation anderer Elemente oder Verbindungen können aber auch andere Carbonate eingesetzt werden. Da bei der Regeneration bzw. auch bei der Separation überwiegend bei erhöhten Temperaturen gearbeitet wird, wirkt sich die verringerte Masse der im wesentlichen aus den Schalen gebildeten erfindungsgemäßen Körper durch Reduzierung der erforderlichen Wärmeenergie günstig aus. Selbstverständlich ist auch der erforderliche Materialeinsatz des für die Separation benutzten Stoffes kleiner. Dabei wird mit geringerer Stoffmasse annähernd die gleiche Menge des jeweiligen Stoffes aus dem Gasgemisch aufgenommen und kann separiert werden.However, other carbonates can also be used for the separation of other elements or compounds. Since the regeneration or also the separation is carried out predominantly at elevated temperatures, the reduced mass of the bodies according to the invention essentially formed from the shells has a favorable effect by reducing the thermal energy required. Of course, the material used for the material used for the separation is also smaller. Almost the same amount of the respective substance is taken up from the gas mixture with a smaller mass of substance and can be separated.
Die erfindungsgemäßen Körper können aber auch zur Gastrocknung eingesetzt werden und z.B. Wasser oder Wasserdampf einem Gas/Gasgemisch entziehen.The bodies according to the invention can also be used for gas drying and e.g. Extract water or water vapor from a gas / gas mixture.
Die erfindungsgemäßen Körper können in Vorrichtungen eingesetzt werden, bei denen in Behältern durch die ein Gasgemisch für die Separation geführt wird, min- destens ein aus einer Schüttung der Körper als sogenanntes Festbett ausgebildet ist. Die Körper können aber auch, insbesondere wegen ihrer erhöhten Festigkeit bei gleicher Porosität, ein Wirbel- oder Fluid- bett bilden, wobei das Gasgemisch mit einem erhöhten Volumenstrom eingesetzt wird. Ein solches Bett kann auch durch durch infolge von Gravitätions- oder mechanischen Kräften bewegten Körpern gebildet werden. Die Körper können dabei kontinuierlich dem für die Separation aktiven Bereich eines solchen Bettes zuge- führt, mit der zu separierenden Komponente beladenene Körper aus dem Bett abgeführt, einer Regeneration zu- und im Kreislauf rückgeführt werden.The bodies according to the invention can be used in devices in which, in containers through which a gas mixture for the separation is passed, at least one body is formed from a bed of so-called fixed beds. However, the bodies can also form a fluidized bed or fluid bed, in particular because of their increased strength with the same porosity, the gas mixture being used with an increased volume flow. Such a bed can also be formed by bodies moved as a result of gravitational or mechanical forces. The bodies can be continuously fed to the area of such a bed that is active for the separation, removed from the bed with the component loaded with the component to be separated, fed to a regeneration and returned to the circuit.
Dabei strömt das Gasgemisch zur Separation durch die- ses Bett und es wird dort durch chemische und/oder physikalische Effekte eine Komponente gehalten, so dass aus diesem Bett oder einer Kaskade mehrerer solcher Betten austretendes Gas weitestgehend von dieser Komponente frei ist .The gas mixture flows through this bed for separation and a component is held there by chemical and / or physical effects, so that gas emerging from this bed or a cascade of several such beds is largely free of this component.
Wird die Sättigungsgrenze der Körper im Bett bzw. den Betten für die jeweilige zu separierende Komponente fast erreicht, ist die Durchführung einer Regeneration erforderlich. Dies kann durch Wärmezufuhr, also Beheizung der Betten bzw. der gesamten Behälter er- reicht werden. Insbesondere bei gebildetem ZnS kann die Regeneration auch durch eine Zufuhr von Wasser erfolgen. Dabei kann Wasserdampf oder auch Wasserdampf enthaltendes Fluid durch das Bett geführt werden, um die Rückbildung von ZnS zu ZnO auszulösen.If the body's saturation limit in bed or beds for the component to be separated is almost reached, regeneration is necessary. This can be achieved by supplying heat, ie heating the beds or the entire container. In particular when ZnS is formed, the regeneration can also be carried out by adding water. Water vapor or fluid containing water vapor can be passed through the bed in order to trigger the regression of ZnS to ZnO.
Um eine kontinuierliche Gasreinigung/Separation durchführen zu können, ist es vorteilhaft mindestens zwei solcher Behältnisse in gleicher Ausführung parallel zueinander anzuordnen und alternierend zu be- treiben. Demzufolge wird in einem der Behältnisse eine Gasreinigung/Separation durchgeführt, währenddessen im anderen die Regeneration der Körper erfolgt. Dabei sollte zumindest die für die Regeneration erforderliche Zeit kleiner als die Zeit bei der ein si- gnifikanter Abfall der Separationsleistung mit verringerter Beladung pro Zeit im jeweils anderen Behälter auftritt, sein. Der Gasstrom kann so durch entsprechendes Schalten von Ventilen durch den jeweiligen Behälter geführt und so eine gleiche Reinheit des austretenden Gasstromes bezüglich der entsprechenden Komponente erreicht werden.In order to be able to carry out a continuous gas cleaning / separation, it is advantageous to arrange at least two such containers of the same design in parallel with one another and to operate them alternately. Accordingly, gas purification / separation is carried out in one of the containers, while the body is regenerated in the other. In this case, at least the time required for regeneration should be less than the time at which a significant drop in the separation performance with reduced loading per time occurs in the other container. The gas flow can thus be passed through the respective container by correspondingly switching valves, and in this way an equal purity of the emerging gas flow with respect to the corresponding component can be achieved.
Das Umschalten von einem auf den anderen Behälter kann zeitgesteuert aber auch geregelt erfolgen, wobei im letztgenannten Fall im austretenden Gasstrom die Konzentration der entsprechenden Komponente bestimmt und bei Überschreiten eines Grenzwertes das Umschalten des Gasstromes in einen anderen Behälter initiiert wird.Switching from one container to the other can be time-controlled but also regulated, in the latter case the concentration of the corresponding component in the emerging gas stream being determined and when a limit value is exceeded, the switching of the gas flow to another container is initiated.
Die Körper, die als Schüttung das eine oder mehrereThe bodies that fill one or more
Betten bilden, können in jeweils einem Bett zumindest annähernd gleiche Aussenabmessungen/Aussendurchmesser aufweisen. In mehreren eine Kaskade bildenden Betten können Körper mit unterschiedlichen Abmassen einge- setzt sein und es besteht die Möglichkeit in einem Bett Körper mit unterschiedlichen Aussenabmessun- gen/Aussendurchmessern einzusetzen.Form beds, can have at least approximately the same outside dimensions / outside diameter in each bed. Bodies with different dimensions can be used in several beds forming a cascade and there is the possibility of using bodies with different outside dimensions / outside diameters in one bed.
In jedem Fall sollten die Strömungsbedingungen des Gasgemisches beim Durchströmen jedoch so beeinflusst werden, dass der Druckabfall möglichst klein gehalten wird und trotzdem eine für die Separation ausreichende Kontakt- bzw. Verweilzeit in den Betten gegeben ist .In any case, however, the flow conditions of the gas mixture should be influenced in such a way that the pressure drop is kept as small as possible and nevertheless there is sufficient contact or dwell time in the beds for the separation.
Die erfindungsgemäßen Körper sollten in den Betten, unter Verzicht auf Bindemittel, als lose Schüttung vorliegen.The bodies according to the invention should be present in the beds as a loose bed, without the use of binders.
Vorteilhaft kann in den Betten auch ein katalytisch wirkender Stoff zusätzlich vorhanden sein, mit dem die Separation erleichtert, ermöglicht und ggf. die erforderliche Reaktionszeit bzw. zugeführte Energie reduziert werden kann.A catalytically active substance can also advantageously be additionally present in the beds, with which the separation is facilitated, made possible and, if necessary, the required reaction time or energy supplied can be reduced.
Ein solcher katalytisch wirkender Stoff, beispielsweise Platin kann auch an der Oberfläche solcher Körper vorhanden oder ein solcher Körper damit dotiert sein.Such a catalytically active substance, for example platinum, can also be present on the surface of such bodies or such a body can be doped therewith.
So kann beispielsweise Stickstoffmonoxid katalytisch zu Stickstoffdioxid oxidiert und Stickstoffdioxid durch chemische Reaktion mit BaC03 aus einem Abgas separiert werden.For example, nitrogen monoxide can be catalytic oxidized to nitrogen dioxide and nitrogen dioxide can be separated from an exhaust gas by chemical reaction with BaC03.
Nachfolgend soll die Erfindung beispielhaft erläutert werden.The invention will be explained by way of example below.
Dabei zeigen:Show:
Figur 1 ein Diagramm des zeitlichen Verlaufs derFigure 1 is a diagram of the time course of the
Separationsleistung eines Vergleichsbeispiels und Figur 2 ein Diagramm des zeitlichen Verlaufs derSeparation performance of a comparative example and Figure 2 is a diagram of the time course of the
Separationsleistung der mit erfindungsgemä- ßen Körpern ermittelt wurde.Separation performance which was determined with bodies according to the invention.
Insbesondere die kontinuierliche Separationsleistung, die mit erfindungsgemäßen Körpern für die Separation von Schwefelwasserstoff aus einem Gas- gemisch erreichbar ist, soll gegenüber an sich vergleichbaren Körpern nachgewiesen werden.In particular, the continuous separation performance which can be achieved with bodies according to the invention for the separation of hydrogen sulfide from a gas mixture is to be demonstrated in comparison with bodies which are comparable per se.
Dabei wurden einmal Vollkugeln, als Vergleichsbeispiel und zum anderen Hohlkugeln, als erfindungs- gemäße Körper hergestellt.Solid spheres were produced as a comparative example and hollow spheres as bodies according to the invention.
In beiden Fällen wurde ZnO mit 2 Masse-% Si02 zu Kugeln verarbeitet. Die Vergleichskugeln wiesen einen Aussendurchmesser zwischen 2,3 und 2 , 4 mm und die erfindungsgemäßen Hohlkugeln einen Aussendurchmesser von ca. 2,9 mm auf. Der Innendurchmesser der erfindungsgemäßen Hohlkugeln lag bei ca. 1 mm, so dass die separationsaktive Schale eine Dicke von ca. 0,9 mm aufwies. Beide Arten von Körpern wurden unter glei- chen Bedingungen hergestellt, was insbesondere die verwendeten Ausgangspulver und das Sintern betrifft . Demzufolge konnte eine gleiche Porosität von ca. 78 % eingestellt werden. Die Schüttdichte lag bei den Vergleichskörpern bei 0,85 g/ml und bei den erfindungsgemäßen Körpern bei 0,79 g/ml. Die spezifische Bruchfestigkeit der erfindungsgemäßen Hohlkörper lag bei 2,9 MPa, wohingegen die Vollkugeln lediglich 1,99 MPa erreichten. Die spezifische Oberfläche der Vergleichskörper betrug 41,7 m2/g und die der erfindungsgemäßen Körper 48,6 m2/g.In both cases, ZnO with 2% by mass Si0 2 was processed into spheres. The comparison balls had an outside diameter between 2.3 and 2.4 mm and the hollow balls according to the invention had an outside diameter of about 2.9 mm. The inside diameter of the hollow spheres according to the invention was approximately 1 mm, so that the separation-active shell had a thickness of approximately 0.9 mm. Both types of bodies were produced under the same conditions, particularly with regard to the starting powder used and the sintering. As a result, an identical porosity of approx. 78% could be set. The bulk density was 0.85 g / ml for the comparison bodies and 0.79 g / ml for the bodies according to the invention. The specific breaking strength of the hollow bodies according to the invention was 2.9 MPa, whereas the solid spheres only reached 1.99 MPa. The specific surface of the comparison body was 41.7 m 2 / g and that of the body according to the invention was 48.6 m 2 / g.
In beiden Fällen wurde eine Schüttung solcher Körper mit einer Gesamtmasse von 870 g Vergleich und 1.140 g (Erfindung) einer Schwefelwasserstoff enthaltenden Stickstoffatmosphäre ausgesetzt. Dabei wurden konti- nuierlich bei einem Druck von einem bar über Atmosphärendruck Volumenströme von 17,0 ml/min Stickstoff und 7,0 ml/min Schwefelwasserstoff zugeführt.In both cases, a bed of such bodies with a total mass of 870 g comparison and 1,140 g (invention) was exposed to a nitrogen atmosphere containing hydrogen sulfide. Volume flows of 17.0 ml / min nitrogen and 7.0 ml / min hydrogen sulfide were continuously fed in at a pressure of one bar above atmospheric pressure.
Die Temperatur wurde konstant auf 400 °C gehalten. Die Beladung wurde über die Zeit in mg gemessen.The temperature was kept constant at 400 ° C. The load was measured in mg over time.
Dabei konnte nach einer versuchsbedingten Einlaufphase ein wesentlich konstanterer Anstieg der Masse an der aus erfindungsgemäßen Körpern gebildeten Schüt- tung festgestellt werden.After a run-in phase due to the experiment, a substantially more constant increase in the mass of the bed formed from the bodies according to the invention was found.
Im Gegensatz fällt der Anstieg der die Separation von Schwefelwasserstoff aus dem Gasgemisch representie- renden Massezunahme, zumindest nach Erreichen von ca. 50 % der maximalen Separationskapazität, also vor Erreichen der Sättigungsgrenze bei den vollen Vergleichskörpern deutlich geringer aus. Daraus resultiert, dass nach einer gewissen Zeit deutlich weniger Schwefelwasserstoff separiert und chemisch in ZnS umgewandelt werden kann, als dies mit den erfindungsgemäßen hohlen kugelförmigen Körpern möglich ist. Bei beiden Untersuchungen konnte eine Gesamtmasse von 332 g/1 Schwefelwasserstoff separiert werden. Dabei konnte diese Masse mit dem erfindungsgemäßen Beispiel bereits nach 38 min erreicht werden, wohingegen bei den Vergleichskörpern 57 min erforderlich waren, was auch eine erhöhte Separationswirkung nachweist, also aus einem Gasgemisch nicht nur schneller sondern auch eine größere Menge Schwefelwasserstoff separiert wer- den kann und eine höhere Reinheit eines so behandelten Gasgemisches zu verzeichnen ist.In contrast, the increase in the mass increase representing the separation of hydrogen sulfide from the gas mixture turns out to be significantly smaller, at least after reaching about 50% of the maximum separation capacity, that is to say before the saturation limit has been reached for the full comparison bodies. The result of this is that, after a certain time, significantly less hydrogen sulfide can be separated and chemically converted into ZnS than is possible with the hollow spherical bodies according to the invention. A total mass of 332 g / l of hydrogen sulfide could be separated in both investigations. With the example according to the invention, this mass could already be reached after 38 minutes, whereas the comparison bodies required 57 minutes, which also demonstrates an increased separation effect, that is to say not only faster but also a larger amount of hydrogen sulfide can be separated from a gas mixture and a higher purity of a gas mixture treated in this way can be recorded.
Vergleicht man nun den zeitlichen Verlauf der Schwefelwasserstoffaufnähme an den Vergleichskδrpern und den erfindungsgemäßen Körpern bis zum Erreichen vonIf one compares the time course of the hydrogen sulfide uptake on the comparison bodies and the bodies according to the invention until they reach
50 % als Vι=10,3 mg/g*min beim Vergleichsbeispiel und Vι= 11,9 mg/g*min beim erfindungsgemäßen Beispiel und nach Erreichen dieser 50 % bis hin zur Sättigung v2=5,l mg/g*min (Vergleich) und v2=10,5 mg/g*min (Er- findung) , so ergibt das Verhältnis v2/vx für die Vergleichskörper 0,5 und die erfindungsgemäßen Körper einen Wert von 0,88, was das gleichmäßigere Separationsverhalten weiter belegt .50% as V = 10.3 mg / g * min in the comparative example and V = 11.9 mg / g * min in the example according to the invention and after reaching this 50% up to saturation v 2 = 5.1 mg / g * min (Comparison) and v 2 = 10.5 mg / g * min (invention), the ratio v 2 / v x for the comparison body 0.5 and the body according to the invention gives a value of 0.88, which is the more uniform Separation behavior further proven.
Es kann also gleichmäßiger und näher bis an die Sättigungsgrenze separiert werden, ohne den Reinheitsgrad des behandelten Gasgemisches deutlich zu verschlechtern. It can therefore be separated more uniformly and closer to the saturation limit without significantly impairing the degree of purity of the gas mixture treated.

Claims

Patentansprüche claims
1. Körper für die Separation einer in einem Gasgemisch enthaltenen Komponente, dadurch gekennzeichnet, dass der für die Separation aktive Bereich des Körpers aus einer porösen Schale gebildet ist.1. Body for the separation of a component contained in a gas mixture, characterized in that the area of the body active for the separation is formed from a porous shell.
2. Körper nach Anspruch 1, dadurch gekennzeichnet, dass die Schale mindestens einen Hohlraum oder mindestens einen für die Separation inaktiven2. Body according to claim 1, characterized in that the shell at least one cavity or at least one inactive for the separation
Kern allseitig umschließt.Encloses core on all sides.
3. Körper nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass die äußere Oberfläche des Körpers sphärisch gekrümmt ist.3. Body according to claim 1 or 2, characterized in that the outer surface of the body is spherically curved.
4. Körper nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Schale aus einem Metalloxid, einem Metalloxidgemisch gebildet ist oder ein solches Metalloxid enthalten ist.4. Body according to one of claims 1 to 3, characterized in that the shell is formed from a metal oxide, a metal oxide mixture or such a metal oxide is contained.
5. Körper nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Schale aus einem Carbo- nat gebildet ist oder ein solches Carbonat enthalten ist.5. Body according to one of claims 1 to 3, characterized in that the shell is formed from a carbonate or contains such a carbonate.
6. Körper nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Schale ein Molekular- sieb bildet.6. Body according to one of claims 1 to 3, characterized in that the shell forms a molecular sieve.
7. Körper nach einem der Ansprüche 1 bis 3 und 6, dadurch gekennzeichnet dass die Schale aus einem Zeolith gebildet ist oder ein Zeolith enthalten ist.7. Body according to one of claims 1 to 3 and 6, characterized in that the shell is formed from a zeolite or a zeolite is included.
8. Körper nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Schale eine maximale Dicke von 8 mm aufweist.8. Body according to one of claims 1 to 7, characterized in that the shell has a maximum Has a thickness of 8 mm.
9. Körper nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Schale aus ZnO gebildet ist oder zumindest ZnO enthält .9. Body according to one of claims 1 to 4, characterized in that the shell is formed from ZnO or at least contains ZnO.
10. Körper nach Anspruch 9, dadurch gekennzeichnet, dass zusätzlich bis zu 10 Masse-% Si02 enthalten sind.10. Body according to claim 9, characterized in that up to 10 mass% Si0 2 are additionally contained.
11. Körper nach einem der Ansprüche 1 bis 3 und 5, dadurch gekennzeichnet, dass die Schale aus Ba- C03 gebildet ist oder BaC03 enthält.11. Body according to one of claims 1 to 3 and 5, characterized in that the shell is formed from Ba- C0 3 or contains BaC0 3 .
12. Körper nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass er einen Aussendurchmesser im Bereich zwischen 1 bis 15 mm aufweist.12. Body according to one of claims 1 to 11, characterized in that it has an outer diameter in the range between 1 to 15 mm.
13. Vorrichtung zur Separation einer in einem Gasge- misch enthaltenen Komponente unter Verwendung von Körpern nach einem der Ansprüche 1 bis 12 , dadurch gekennzeichnet, dass in einem Behälter mindestens ein aus einer Schüttung von Körpern gebildetes Bett, durch das das Gasgemisch zur Separation geführt ist, vorhanden ist.13. Device for separating a component contained in a gas mixture using bodies according to one of claims 1 to 12, characterized in that in a container at least one bed formed from a bed of bodies through which the gas mixture is guided for separation , is available.
14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass mindestens zwei Behälter parallel zueinander angeordnet und das Gasgemisch alternierend durch jeweils mindestens einen der Be- hälter geführt ist.14. The device according to claim 13, characterized in that at least two containers are arranged parallel to one another and the gas mixture is passed alternately through at least one of the containers.
15. Vorrichtung zur Separation einer in einem Gasgemisch enthaltenen Komponente unter Verwendung von Körpern nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Körper ein Wir- bei-, Fluid- oder bewegtes Bett, durch das das15. Device for separating a component contained in a gas mixture using bodies according to any one of claims 1 to 12, characterized in that the body is a fluidized bed, fluidized bed or moving bed, through which the
Gasgemisch geführt ist, bilden. Gas mixture is formed.
16. Vorrichtung nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass zur Regeneration der Körper alternierend zum Gasgemisch ein Wasser enthaltendes Fluid durch das/die Bett (en) eines Behäl- ters geführt ist .16. The apparatus according to claim 14 or 15, characterized in that for the regeneration of the body alternating to the gas mixture, a water-containing fluid is passed through the bed (s) of a container.
17. Vorrichtung nach einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, dass in einem Behälter mehrere aus Körpern gebildete Betten vorhanden sind.17. Device according to one of claims 13 to 16, characterized in that a plurality of beds formed from bodies are present in a container.
18. Vorrichtung nach einem der Ansprüche 13 bis 17, dadurch gekennzeichnet, dass in den Betten Körper mit unterschiedlichen Aussendurchmessern vorhanden sind.18. Device according to one of claims 13 to 17, characterized in that bodies with different outer diameters are present in the beds.
19. Vorrichtung nach einem der Ansprüche 13 bis 18, dadurch gekennzeichnet, dass das/die Bett (en) beheizbar ist/sind.19. Device according to one of claims 13 to 18, characterized in that the bed (s) is / are heated.
20. Vorrichtung nach einem der Ansprüche 13 bis 19, dadurch gekennzeichnet, dass in dem/den Bett (en) ein katalytisch wirkender Stoff vorhanden ist.20. Device according to one of claims 13 to 19, characterized in that a catalytically active substance is present in the bed (s).
21. Vorrichtung nach Anspruch 20, der katalytisch wirkende Stoff auf der Oberfläche von im/in Bett (en) enthaltenen Körpern aufgebracht ist.21. The apparatus of claim 20, the catalytically active substance is applied to the surface of bodies contained in / in bed (s).
22. Verwendung von Körpern nach einem der Ansprüche 1 bis 12 zur Reinigung von Kohlenwasserstoffe enthaltenden Rohgasen.22. Use of bodies according to one of claims 1 to 12 for the purification of hydrocarbons containing raw gases.
23. Verwendung von Körpern nach einem der Ansprüche 1 bis 12 zur Separation von Schwefelverbindungen.23. Use of bodies according to one of claims 1 to 12 for the separation of sulfur compounds.
24. Verwendung von Körpern nach einem der Ansprüche 1 bis 12 zur Separation von Stickstoff oder24. Use of bodies according to one of claims 1 to 12 for the separation of nitrogen or
Stickoxiden. Nitrogen oxides.
5. Verwendung von Körpern nach einem der Ansprüche 1 bis 12 in einem Druck-Wechsel-Adsorptions- Prozess. 5. Use of bodies according to one of claims 1 to 12 in a pressure swing adsorption process.
EP02796494A 2001-11-08 2002-11-06 Body for isolating a constituent contained in a gas mixture Withdrawn EP1441848A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04019108A EP1479436A3 (en) 2001-11-08 2002-11-06 Method for the preparation of hollow porous bodies for separating a component from a gas mixture

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10155643 2001-11-08
DE10155643A DE10155643A1 (en) 2001-11-08 2001-11-08 Body for the separation of a component contained in a gas mixture
PCT/DE2002/004158 WO2003040259A2 (en) 2001-11-08 2002-11-06 Body for isolating a constituent contained in a gas mixture

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP04019108.2 Division-Into 2004-08-12

Publications (1)

Publication Number Publication Date
EP1441848A2 true EP1441848A2 (en) 2004-08-04

Family

ID=7705544

Family Applications (2)

Application Number Title Priority Date Filing Date
EP04019108A Ceased EP1479436A3 (en) 2001-11-08 2002-11-06 Method for the preparation of hollow porous bodies for separating a component from a gas mixture
EP02796494A Withdrawn EP1441848A2 (en) 2001-11-08 2002-11-06 Body for isolating a constituent contained in a gas mixture

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP04019108A Ceased EP1479436A3 (en) 2001-11-08 2002-11-06 Method for the preparation of hollow porous bodies for separating a component from a gas mixture

Country Status (6)

Country Link
US (1) US7014689B2 (en)
EP (2) EP1479436A3 (en)
JP (1) JP2005508251A (en)
AU (1) AU2002361926A1 (en)
DE (1) DE10155643A1 (en)
WO (1) WO2003040259A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7622095B2 (en) 2004-08-12 2009-11-24 Ford Global Technologies, Llc Catalyst composition for use in a lean NOx trap and method of using
US7137249B2 (en) 2004-08-12 2006-11-21 Ford Global Technologies, Llc Thermally stable lean nox trap
US7811961B2 (en) 2004-08-12 2010-10-12 Ford Global Technologies, Llc Methods and formulations for enhancing NH3 adsorption capacity of selective catalytic reduction catalysts
US7749474B2 (en) 2004-08-12 2010-07-06 Ford Global Technologies, Llc Catalyst composition for use in a lean NOx trap and method of using
JP2007160166A (en) * 2005-12-12 2007-06-28 Toyota Motor Corp Ordinary temperature nox adsorbent
ES2746198T3 (en) 2008-12-22 2020-03-05 Glatt Systemtechnik Gmbh Adsorbent granule of composite material, process for its production and gas separation process
US9006508B2 (en) 2012-02-06 2015-04-14 Uop Llc Protected adsorbents for mercury removal and method of making and using same
US9289714B1 (en) 2014-10-17 2016-03-22 JuvanCo Industries, LLC Device for adsorbing the hydrogen sulfide component of exhausted calibration gases
US9579628B2 (en) 2015-04-15 2017-02-28 Air Products And Chemicals, Inc. Perforated adsorbent particles

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292285A (en) * 1977-11-22 1981-09-29 Taiyo Kaken Company, Ltd. Method for removing compounds with offensive odor from a gas containing the same
US4637990A (en) * 1978-08-28 1987-01-20 Torobin Leonard B Hollow porous microspheres as substrates and containers for catalysts and method of making same
JPS57140642A (en) * 1978-08-28 1982-08-31 Torobin Leonard B Minute sphere of hollow inorganic film forming material
US4671909A (en) * 1978-09-21 1987-06-09 Torobin Leonard B Method for making hollow porous microspheres
US4793980A (en) 1978-09-21 1988-12-27 Torobin Leonard B Hollow porous microspheres as substrates and containers for catalyst
JPS5580767A (en) * 1979-12-10 1980-06-18 Pola Kasei Kogyo Kk Manufacture of hollow porous powder
US4358297A (en) * 1980-01-02 1982-11-09 Exxon Research And Engineering Company Removal of sulfur from process streams
GB8333794D0 (en) * 1983-12-19 1984-01-25 Atomic Energy Authority Uk Materials
WO1986002285A1 (en) * 1984-10-12 1986-04-24 Noxso Corporation Sorbent and processes for removing nitrogen oxides, sulfur oxides and hydrogen sulfide from gas streams
US4826516A (en) * 1986-09-18 1989-05-02 Daiken Kogyo Kabushiki Kaisha Moisture-remover and moisture-removing apparatus
JPS6436962A (en) * 1987-08-03 1989-02-07 Toyota Motor Corp Collecting device for evaporated fuel
DK259789D0 (en) * 1989-05-26 1989-05-26 Kem En Tec Ltd Aps PARTICULAR MATERIALS
US5224972A (en) * 1990-09-11 1993-07-06 Frye Gregory C Coatings with controlled porosity and chemical properties
DE4100253C2 (en) * 1991-01-07 1996-09-05 Bitterfelder Vermoegensverwalt Adsorbents based on molecular sieves
US5250089A (en) * 1991-03-07 1993-10-05 Phillips Petroleum Company Process for removing hydrogen sulfide from hydrocarbon gases using a cogelled hydrated zinc oxide-hydrated silica sorbent
DE4420614C2 (en) * 1994-06-13 2000-01-13 Smc Spezialmaterialien Zur Flu Molecular sieve and method and apparatus for making the same
JPH0975667A (en) * 1995-09-13 1997-03-25 Sangyo Shinko Kk Treatment of exhaust gas
US6150300A (en) * 1996-08-14 2000-11-21 Phillips Petroleum Company Process to produce sorbents
US6350422B1 (en) * 1998-09-21 2002-02-26 Phillips Petroleum Company Sorbent compositions
US6197092B1 (en) 1999-03-22 2001-03-06 Engelhard Corporation Selective removal of nitrogen from natural gas by pressure swing adsorption
TW500625B (en) * 1999-06-04 2002-09-01 Nippon Oxygen Co Ltd Gas treatment agent, its production thereof, gas refining method, gas refiner and gas refining apparatus
FR2794993B1 (en) * 1999-06-18 2001-10-05 Air Liquide USE OF A NON-HOMOGENEOUS PARTICULATE ADSORBENT IN A GAS SEPARATION PROCESS
AU5777700A (en) * 1999-06-30 2001-01-31 Phillips Petroleum Company Sulfur sorbent composition and sorption process
JP3622893B2 (en) * 1999-07-02 2005-02-23 日産自動車株式会社 NOx absorbent and exhaust gas purification catalyst using the same
US6284021B1 (en) * 1999-09-02 2001-09-04 The Boc Group, Inc. Composite adsorbent beads for adsorption process
US6428761B1 (en) * 2000-09-29 2002-08-06 Engelhard Corporation Process for reduction of gaseous sulfur compounds
US20020157535A1 (en) * 2001-02-28 2002-10-31 Kanazirev Vladislav I. Process and adsorbent for gas drying
US6733734B2 (en) * 2001-10-31 2004-05-11 Matheson Tri-Gas Materials and methods for the purification of hydride gases

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03040259A2 *

Also Published As

Publication number Publication date
WO2003040259A2 (en) 2003-05-15
EP1479436A3 (en) 2004-12-29
EP1479436A2 (en) 2004-11-24
AU2002361926A1 (en) 2003-05-19
JP2005508251A (en) 2005-03-31
DE10155643A1 (en) 2003-05-28
WO2003040259A3 (en) 2003-07-24
US20050072305A1 (en) 2005-04-07
US7014689B2 (en) 2006-03-21

Similar Documents

Publication Publication Date Title
DE2705901C3 (en) Process for removing sulfur oxides and possibly nitrogen oxides from oxygen-containing exhaust gases
US7241430B2 (en) Activated carbon for odor control and method for making same
DE60036905T2 (en) Gas separation process using composite adsorbent particles
EP1987873B1 (en) Sorbent for dry cleaning of waste gases loaded with mercury and method for its production
EP1257347B1 (en) Catalyst for decomposing n2o, its use and method for the production thereof
DE2016838B2 (en) Process for the production of granulated, abrasion-resistant, binder-free molecular sieve zeolites
DE2656803A1 (en) METHOD OF REMOVING MERCURY PRESENT IN A GAS OR A LIQUID BY ABSORPTION IN A MASS SOLID CONTAINING COPPER SULPHIDE
DE102006058554A1 (en) exhaust gas purification device
EP0226983B2 (en) Iron containing catalyst for reducing the amount of nitrogen oxides in combustion gases
DE2931486A1 (en) METHOD FOR PURIFYING A GASES CONTAINING SULFUR HYDROGEN
EP1441848A2 (en) Body for isolating a constituent contained in a gas mixture
DE2912269C2 (en)
DE69727038T2 (en) METHOD FOR THE DIRECT OXIDATION OF SULFUR COMPOUNDS TO ELEMENTAL SULFUR WITH A CATALYST CONTAINING COPPER
DE69606145T2 (en) CATALYTIC METHOD FOR DESULFURING A GAS CONTAINING H2S AND SO2
DE3031286A1 (en) METHOD FOR TREATING SMOKE GAS
WO2004056949A1 (en) Method for removing sulfur compounds from gases containing hydrocarbons
WO2004089536A1 (en) Method for the production of deformed zeolites, and method for eliminating impurities from a gas stream
DE102005004429A1 (en) Process for the preparation of a catalyst for the desulfurization of hydrocarbon streams
DE3731899A1 (en) Process for separating off nitrogen oxides from exhaust gases of furnaces
DE602004003471T2 (en) PROCESS FOR DECOMPOSING FLUOROUS COMPOUNDS
WO2009100937A2 (en) Material suitable as co2 absorbent and for use as a bedding material in fluidized beds, and the production thereof
WO2006082019A1 (en) Desulfurization catalyst
DE2449845A1 (en) SUBSTANCES AND METHODS FOR CLEANING UP NITROSE GASES
DE2924585A1 (en) Solid absorbent for dry dehalogenation of gas stream - consists of moulded calcium hydroxide contg. basic calcium sulphite
DE10246984A1 (en) Adsorbent for use in gas purification, e.g. hydrogen sulfide removal, consists of a ferrite granulate used in a non-ferromagnetic chamber in fluidized form

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040304

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20040701

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050112