EP1436830A1 - Method for joining a silicon plate to another plate - Google Patents

Method for joining a silicon plate to another plate

Info

Publication number
EP1436830A1
EP1436830A1 EP02769904A EP02769904A EP1436830A1 EP 1436830 A1 EP1436830 A1 EP 1436830A1 EP 02769904 A EP02769904 A EP 02769904A EP 02769904 A EP02769904 A EP 02769904A EP 1436830 A1 EP1436830 A1 EP 1436830A1
Authority
EP
European Patent Office
Prior art keywords
plate
silicon
connection
silicon plate
further plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02769904A
Other languages
German (de)
French (fr)
Inventor
Frank Reichenbach
Frank Fischer
Ralf Hausner
Frieder Haag
Eckhard Graf
Markus Lutz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1436830A1 publication Critical patent/EP1436830A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • B29C65/1683Laser beams making use of an absorber or impact modifier coated on the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/60Riveting or staking
    • B29C65/606Riveting or staking the rivets being integral with one of the parts to be joined, i.e. staking
    • B29C65/608Riveting or staking the rivets being integral with one of the parts to be joined, i.e. staking the integral rivets being pushed in blind holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/124Tongue and groove joints
    • B29C66/1242Tongue and groove joints comprising interlocking undercuts
    • B29C66/12421Teardrop-like, waterdrop-like or mushroom-like interlocking undercuts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/47Joining single elements to sheets, plates or other substantially flat surfaces
    • B29C66/472Joining single elements to sheets, plates or other substantially flat surfaces said single elements being substantially flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • B29C66/53461Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat joining substantially flat covers and/or substantially flat bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00269Bonding of solid lids or wafers to the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00349Creating layers of material on a substrate
    • B81C1/00357Creating layers of material on a substrate involving bonding one or several substrates on a non-temporary support, e.g. another substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2007Bonding of semiconductor wafers to insulating substrates or to semiconducting substrates using an intermediate insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • B29C66/712General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined the composition of one of the parts to be joined being different from the composition of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2083/00Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/756Microarticles, nanoarticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0174Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
    • B81C2201/019Bonding or gluing multiple substrate layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0172Seals
    • B81C2203/019Seals characterised by the material or arrangement of seals between parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/802Applying energy for connecting
    • H01L2224/8022Applying energy for connecting with energy being in the form of electromagnetic radiation
    • H01L2224/80224Applying energy for connecting with energy being in the form of electromagnetic radiation using a laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/8036Bonding interfaces of the semiconductor or solid state body
    • H01L2224/80365Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/8036Bonding interfaces of the semiconductor or solid state body
    • H01L2224/80379Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/8038Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/80399Material
    • H01L2224/804Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/8038Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/80399Material
    • H01L2224/80486Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2224/80488Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/8322Applying energy for connecting with energy being in the form of electromagnetic radiation
    • H01L2224/83224Applying energy for connecting with energy being in the form of electromagnetic radiation using a laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83417Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/83424Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83447Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83463Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/83466Titanium [Ti] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83463Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/83471Chromium [Cr] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/83486Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2224/83487Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/8349Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER

Definitions

  • the invention is based on a method for connecting a silicon plate to a further plate according to the preamble of the independent claim.
  • Methods are already known in which a silicon plate is connected to a further plate by placing the silicon plate on the further plate. If the further plate is formed from a certain glass, a connection between the silicon plate 1 and the further plate 2 can be established by increasing the temperature and / or applying electrical voltages. This process is known to the person skilled in the art as anodic bonding.
  • silicon plates can be bonded to other plates by adhesive processes.
  • connection areas between a silicon plate and another plate can be formed.
  • the space required for such a connection can therefore be particularly small being held.
  • the method allows the selection of a large number of materials for the further plate, ie the silicon plate can be connected to a further plate which is selected from a large number of materials.
  • the highly absorbent material can either be formed as a thin, superficial layer or the further plate consists entirely of this material.
  • a variety of materials can be used for the highly absorbent material and a variety of materials for the further plate.
  • the actual connection can be made by a variety of connection methods such as gluing, soldering, positive connection or welding.
  • hermetically sealed connections can be created, in which a cavity is then hermetically closed by a circumferential seam. Contacting into the cavity can then be provided within the circumferential seam.
  • the method according to the invention is particularly suitable if a multiplicity of structures are produced simultaneously on the silicon plate or the further plate. It is then advantageous to fix this adjustment by means of a point connection immediately after an adjustment of the two plates to one another.
  • FIG. 1 and 2 show a first exemplary embodiment of the method according to the invention
  • FIG. 3 shows a further exemplary embodiment of the method according to the invention
  • FIGS. 4 and 5 show a further exemplary embodiment of the method according to the invention
  • Figure 9 shows another embodiment of the method according to the invention, wherein all figures each represent a cross section through the plates.
  • the 1 shows a silicon plate 1 which is arranged on a further plate 2.
  • a laser beam 3 is directed through the silicon plate 1 onto the surface of the further plate 2.
  • the wavelength of the laser beam 3 is selected such that only a negligibly small amount of energy is absorbed in the silicon material 1. This is achieved in that the wavelength of the laser light is in the infrared, since silicon is transparent in this frequency range.
  • the material of the further plate 2 is selected so that strong absorption takes place in a thin, superficial layer. This strong absorption of the laser energy in a relatively thin layer results in a strong thermal heating of this layer, which leads to melting of this area.
  • a connection to the silicon plate 1 can be established through the melted area. Various connection mechanisms are conceivable.
  • the melted material of the further silicon plate 2 can be glued to the surface of the silicon wafer 1. This takes place, for example, when the further plate 2 is formed from a plastic material which is melted by the energy of the laser beam 3 introduced. Such a plastic plate 2 is then superficially bonded to the surface of the silicon wafer 1. Furthermore, welding can take place in such a way that both the further plate 2 and the silicon plate 1 are melted on account of the energy introduced by the laser beam. The energy absorbed in the further plate 2 is also transferred to the silicon wafer 1 by heat conduction. This then causes both the further plate 2 and the silicon wafer 1 to melt.
  • the molten material of the silicon plate 1 and the further plate 2 thereby mix and form a mixed melt the material, both the silicon plate 1 and the further plate 2 contains. After cooling, this melting area then forms the weld connection between the silicon plate 1 and the further plate 2. Furthermore, a positive connection can also take place, which is explained further below with reference to FIGS. 3 and 4. Furthermore, there may also be a solder connection between the silicon plate 1 and the further plate 2.
  • a connection of the silicon plate 1 to the further plate 2 through a hot-melt adhesive region 11 is shown in FIG.
  • the use of a plastic material for the further plate 2 is particularly intended here.
  • the plastic material of the further plate 2 is melted and has wetted the surface of the silicon wafer 1 in the liquid state. Adhesive forces then cause the silicon plate 1 to adhere to the further plate 2.
  • FIG. 3 shows the configuration of the connection area as a welding area 12 as a further example. Starting from FIG. 1, the energy of the laser beam 3 causes both the further plate to melt
  • the welding region 12 is formed by mixing the two materials in the molten state and solidifying during cooling.
  • the further plate 2 in particular ceramic material, glass or semiconductor materials (in particular silicon) or metal are considered.
  • the material of the further plate 2 is in turn designed so that there is a strong absorption of the energy of the laser beam
  • connection area is formed as a positive-locking area 13 (FIG. 5) by the energy of the laser beam 3 introduced.
  • the silicon plate 1 has a depression 14 and the further plate 2 has a pin 15.
  • the deepening 14 placed on the pin 15 and there is a heating of the material of the pin 15 by the energy of the laser beam 3.
  • the melting of the material of the pin 15 leads to a deformation of the pin, in particular the molten material of the pin 15 fills the cavity of the Well 14 completely.
  • the recess 14 should in particular be designed in such a way that it has an undercut, ie that the recess 14 has a larger diameter in depth than on the surface with which the silicon plate 1 faces the further plate 2.
  • Such undercuts can be formed in silicon plate 1 by using etching processes. It is thus possible to form a positive connection between a silicon plate 1 and a further plate 2.
  • the further plate 2 consists entirely of one and the same material, which is highly absorbent for the wavelength of the laser beam 3.
  • the highly absorbent layer is arranged between the silicon plate 1 and the further plate 2. It is also irrelevant whether the highly absorbent layer is arranged on the silicon plate 1 or the further plate 1 before the connection. Such a connection process is shown in FIGS. 6-8.
  • FIG. 6 shows a silicon plate 1 and a further plate 2 in an expanded state.
  • An absorption layer 20 and a recess 21 are provided on the side of the silicon plate 1 which faces the further plate 2.
  • the silicon plate 1 with the absorption layer 20 is placed on the further plate 2, and a laser beam is then directed through the silicon plate 1 onto the absorption layer 20.
  • the recess 21 is arranged over the micromechanical structure 22.
  • the recess 21 is dimensioned such that a cavity 23 remains above the micromechanical structure 22. Energy is introduced into the absorption layer 20 by the laser beam 3 in such a way that this absorption layer is strongly heated.
  • the absorption layer 20 can be used for various materials.
  • a glass plate or a silicon plate can be used for the further plate 2, and the absorption layer 20 can be formed from plastic.
  • Such a plastic layer would then result in an adhesive connection as has already been described for FIG. 2.
  • the absorption layer 20 can also be provided with a pin 15 and the silicon plate 1 can also have depressions 14. It could then, similar to that already described in FIGS. 4 and 5, a connection by means of a Form-locking area 13 take place.
  • An absorption layer 20 which is relatively thin in comparison to the plates 1 and 2 and which is equipped with corresponding pins 15 can also be used for this shape.
  • the further plate 2 also consists of a silicon wafer.
  • Thin metal layers for example made of aluminum, aluminum-silicon-copper, platinum, titanium, chromium or other refractory metals, can then be used for the absorbent layer.
  • germanium, silicon germanium or highly doped polysilicon layers can be used for the absorption layer 20.
  • Oxides and nitrides, for example silicon oxide and silicon nitride, can also be used as absorption layers as further materials for the absorption layer 20.
  • the absorption layer can be used in relatively small layer thicknesses, however the layer thickness approximately corresponds to the penetration depth of the laser, i.e.
  • typical layer thicknesses are on the order of more than 100 nanometers.
  • the material for such layers can be made using the usual methods of thin-film technology such as sputtering, vapor deposition, spin coating, CVD deposition, epitaxy and the like. Furthermore, the
  • Absorbent layers 20 are structured, ie they are only arranged where the welded joints 12 are to be made later. Insofar as it is simpler in terms of process technology and the layers do not fear any impairment of any micromechanical structures 22 provided, these layers can also be applied over the entire area. In addition to the connections already described by means of gluing, positive locking and welding, the connection through the absorption layer 20 can also be made by soldering.
  • the absorption layer 20 is formed from a material which, in the melted state, produces a solder connection between the silicon plate 1 and the further plate 2. This can be particularly useful if the further plate 2 is a metal plate.
  • FIGS. 6-8 describe that a micromechanical structure 22 is arranged in a cavity 23 which is formed by the recess 21.
  • a micromechanical structure 22 is arranged in a cavity 23 which is formed by the recess 21.
  • Such a process involves the packaging of a micromechanical component, in which the micromechanical component 22 is hermetically sealed in a cavity 23. It is then provided that the welded connection 12 is formed as a circumferential seam, ie that the welded connection 12 completely surrounds the micromechanical structure 22 in the plane formed by the two plates 1, 2. The problem then arises of how this micromechanical structure 22 is electrically contacted.
  • FIG. 9, represents a cross section through an exemplary micromechanical structure.
  • the silicon plate is arranged here as the bottom plate and, as shown by the arrows, the laser beams are irradiated from below.
  • Welding areas 12 which completely surround the micromechanical structure 22 were formed here by the laser beams 3.
  • the micromechanical structures 22 are also only shown schematically here.
  • the micromechanical structures 22 are covered by a further cover plate 50, which is spaced from the micromechanical structures 22 by means of a spacer layer 51 forms.
  • the micromechanical structures 22 were formed by introducing trenches into the further plate 2, which cut through the further plate 2 from top to bottom. Trench structures of this type can be introduced particularly easily into silicon plates, so that the further plate 2 is usually formed from silicon here.
  • the micromechanical structures have a connection region 52 which is separated from the remaining material of the silicon plate 2 by a trench structure 53.
  • this connection area 52 the material of the silicon plate 2 is directly connected to the material of the cover plate 50.
  • a silicon plate is also considered for the cover plate 50, which is made conductive at least in some areas by doping.
  • a contact area 54 on which a contact metallization 55 is applied, is formed above the connection area 52.
  • the contact area 54 is in turn electrically insulated from the rest of the silicon plate 50 by trenches 53.
  • An electrical contact to the micromechanical structures 22, which are arranged in the cavity 23, can be produced by the contact metallization 55 and the contact area 54 or connection area 52 lying underneath.
  • the method according to the invention is preferably applied to silicon plates which have a large number of structures. Since silicon plates are transparent to infrared light, a silicon plate 1 can be used Alignment of the silicon plate 1 relative to the other plate 2 take place. The two plates can then be connected point by point by laser radiation, which effectively prevents the two plates from slipping relative to one another in the further processing. The actual connections can then be made, which can take longer, for example, in terms of the processing time, than the adjustment of the two plates 1, 2 relative to one another or the point-by-point connection. This is of particular interest if a large number of structures are formed in the silicon plate 1 or the further plate 2 and connections are to be produced over large areas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Laser Beam Processing (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Ceramic Products (AREA)

Abstract

Disclosed is a method for joining a silicon plate (1) to another plate (2), wherein the laser beam is directed through the silicon plate (1) to the other plate (2). The wavelength of the laser beam is selected in such a way that only a negligibly small amount of energy is absorbed in the silicon plate (1). The energy of the laser beam is used to melt a highly absorbent material which subsequently produces a connection between the silicon plate (1) and the other plate (2).

Description

Verfahren zur Verbindung einer Siliziumplatte mit einer weiteren PlatteMethod of connecting a silicon plate to another plate
Stand der TechnikState of the art
Die Erfindung geht aus von einem Verfahren zur Verbindung einer Siliziumplatte mit einer weiteren Platte nach der Gattung des unabhängigen Patentanspruches. Es sind bereits Verfahren bekannt, bei denen einen Siliziumplatte mit einer weiteren Platte verbunden werden, indem die Siliziumplatte auf die weitere Platte gelegt wird. Wenn die weitere Platte aus einem bestimmten Glas ausgebildet ist, so kann durch eine Temperaturerhöhung und /Anlegen von elektrischen Spannungen eine Verbindung zwischen der Siliziumplatte 1 und der weiteren Platte 2 hergestellt werden. Dieser Vorgang ist dem Fachmann als anodisches Bonden bekannt. Weiterhin können Siliziumplatten durch Klebprozesse mit weiteren Platten verbunden werden .The invention is based on a method for connecting a silicon plate to a further plate according to the preamble of the independent claim. Methods are already known in which a silicon plate is connected to a further plate by placing the silicon plate on the further plate. If the further plate is formed from a certain glass, a connection between the silicon plate 1 and the further plate 2 can be established by increasing the temperature and / or applying electrical voltages. This process is known to the person skilled in the art as anodic bonding. Furthermore, silicon plates can be bonded to other plates by adhesive processes.
Vorteile der ErfindungAdvantages of the invention
Das erfindungsgemäße Verfahren mit den Merkmalen des unabhängigen Patentanspruches hat demgegenüber den Vorteil, dass durch einen Laserstrahl und Aufschmelzen eines stark absorbierenden Materials besonders kleineThe method according to the invention with the features of the independent claim has the advantage that particularly small by a laser beam and melting of a highly absorbent material
Verbindungsbereiche zwischen einer Siliziumplatte und einer weiteren Platte ausgebildet werden können. Der Platzbedarf für eine derartige Verbindung kann daher besonders gering gehalten werden. Weiterhin erlaubt das Verfahren, die Auswahl einer Vielzahl von Materialien für die weitere Platte, d.h. die Siliziumplatte kann mit einer weiteren Platte verbunden werden, die aus einer Vielzahl von Materialien ausgewählt wird.Connection areas between a silicon plate and another plate can be formed. The space required for such a connection can therefore be particularly small being held. Furthermore, the method allows the selection of a large number of materials for the further plate, ie the silicon plate can be connected to a further plate which is selected from a large number of materials.
Vorteilhafte Weiterbildungen und Verbesserungen ergeben sich durch die Merkmale der abhängigen Patentansprüche. Das stark absorbierende Material kann entweder als dünne, oberflächliche Schicht ausgebildet sein oder aber die weitere Platte besteht vollständig aus diesem Material. Es können so eine Vielzahl von Materialien für das stark absorbierende Material und eine Vielzahl von Materialien für die weitere Platte verwendet werden. Die eigentliche Verbindung kann durch eine Vielzahl von Verbindungsmethoden wie Kleben, Löten, formschlüssige Verbindung oder Schweißen erfolgen. Insbesondere ist es durch eine dünne, oberflächliche Absorbtionsschicht auch möglich, die Siliziumplatte direkt mit einer weiteren Siliziumplatte zu verbinden, was bezüglich der thermischen Ausdehnungskoeffizienten besonders vorteilhaft ist. Insbesondere können so hermetisch dichte Verbindungen geschaffen werden, bei denen dann ein Hohlraum hermetisch durch eine umlaufende Naht verschlossen wird. Innerhalb der umlaufenden Naht kann dann eine Kontaktierung in den Hohlraum vorgesehen sein. Das erfindungsgemäße Verfahren eignet sich besonders, wenn eine Vielzahl von Strukturen gleichzeitig auf der Siliziumplatte bzw. der weiteren Platte erzeugt werden. Es ist dann vorteilhaft, unmittelbar nach einer Justierung der beiden Platten zueinander diese Justierung durch eine punktförmige Verbindung zu fixieren.Advantageous further developments and improvements result from the features of the dependent claims. The highly absorbent material can either be formed as a thin, superficial layer or the further plate consists entirely of this material. A variety of materials can be used for the highly absorbent material and a variety of materials for the further plate. The actual connection can be made by a variety of connection methods such as gluing, soldering, positive connection or welding. In particular, it is also possible, by means of a thin, superficial absorption layer, to connect the silicon plate directly to a further silicon plate, which is particularly advantageous with regard to the thermal expansion coefficients. In particular, hermetically sealed connections can be created, in which a cavity is then hermetically closed by a circumferential seam. Contacting into the cavity can then be provided within the circumferential seam. The method according to the invention is particularly suitable if a multiplicity of structures are produced simultaneously on the silicon plate or the further plate. It is then advantageous to fix this adjustment by means of a point connection immediately after an adjustment of the two plates to one another.
Zeichnung Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:drawing Embodiments of the invention are shown in the drawings and explained in more detail in the following description. Show it:
Figur 1 und 2 ein erstes Ausführungsbeispiel des erfindungsgemäßen Verfahrens,1 and 2 show a first exemplary embodiment of the method according to the invention,
Figur 3 ein weiteres Ausführungsbeispiel des erfindungsgemäßen Verfahrens,FIG. 3 shows a further exemplary embodiment of the method according to the invention,
Figur 4 und 5 ein weiteres Ausführungsbeispiel des erfindungsgemäßen Verfahrens,FIGS. 4 and 5 show a further exemplary embodiment of the method according to the invention,
Figuren 6, 7 und 8 ein weiteres Ausführungsbeispiel des erfindungsgemäßen Verfahrens undFigures 6, 7 and 8 another embodiment of the method and
Figur 9 ein weiteres Ausführungsbeispiel des erfindungsgemäßen Verfahrens, wobei alle Figuren jeweils einen Querschnitt durch die Platten darstellen.Figure 9 shows another embodiment of the method according to the invention, wherein all figures each represent a cross section through the plates.
Beschreibung des AusführungsbeispielesDescription of the embodiment
In der Figur 1 wird eine Siliziumplatte 1 gezeigt, die auf einer weiteren Platte 2 angeordnet ist. Durch die Siliziumplatte 1 hindurch wird ein Laserstrahl 3 auf die Oberfläche der weiteren Platte 2 gerichtet. Die Wellenlänge des Laserstrahles 3 ist dabei so ausgewählt, dass in dem Silizummaterial 1 nur eine vernachlässigbar geringe Energiemenge absorbiert wird. Dies wird dadurch erreicht, dass die Wellenlänge des Laserlichtes im Infraroten liegt, da in diesem Frequenzbereich Silizium transparent ist. Das Material der weiteren Platte 2 ist so ausgewählt, dass eine starke Absorbtion bereits in einer dünnen, oberflächlichen Schicht erfolgt. Durch diese starke Absorbtion der Laserenergie in einer relativ dünnen Schicht erfolgt eine starke thermische Erwärmung dieser Schicht, was zu einem Aufschmelzen dieses Bereiches führt. Durch den aufgeschmolzenen Bereich kann eine Verbindung mit der Siliziumplatte 1 hergestellt werden. Dabei sind verschiedene Verbindungsmechanismen vorstellbar. Zum einen kann ein Verkleben des aufgeschmolzenen Materials der weiteren Siliziumplatte 2 mit der Oberfläche des Siliziumwafers 1 erfolgen. Dies erfolgt bspw. wenn die weitere Platte 2 aus einem Kunststoffmaterial ausgebildet ist, welches durch die eingebrachte Energie des Laserstrahles 3 aufgeschmolzen wird. Es erfolgt dann ein oberflächliches Verkleben einer derartigen Kunststoffplatte 2 mit der Oberfläche des Siliziumwafers 1. Weiterhin kann eine Verschweißung erfolgen, dergestalt dass sowohl die weitere Platte 2 wie auch die Siliziumplatte 1 aufgrund der eingebrachten Energie des Laserstrahles geschmolzen werden. Die in der weiteren Platte 2 absorbierte Energie wird durch Wärmeleitung auch auf den Siliziumwafer 1 übertragen. Dabei kommt es dann zu einem Aufschmelzen sowohl der weiteren Platte 2 als auch des Siliziumwafers 1. Das geschmolzene Material der Siliziumplatte 1 und der weiteren Platte 2 vermischen sich dabei und bilden so eine Mischschmelze die Material, sowohl der Siliziumplatte 1 wie auch der weiteren Platte 2 enthält. Nach dem Abkühlen bildet dieser Schmelzbereich dann die Schweißverbindung zwischen der Siliziumplatte 1 und der weiteren Platte 2. Weiterhin kann auch ein Formschluss erfolgen, der weiter unten zu den Figuren 3 und 4 erläutert wird. Weiterhin kann es auch zu einer Lotverbindung zwischen der Siliziumplatte 1 und der weiteren Platte 2 kommen.1 shows a silicon plate 1 which is arranged on a further plate 2. A laser beam 3 is directed through the silicon plate 1 onto the surface of the further plate 2. The wavelength of the laser beam 3 is selected such that only a negligibly small amount of energy is absorbed in the silicon material 1. This is achieved in that the wavelength of the laser light is in the infrared, since silicon is transparent in this frequency range. The material of the further plate 2 is selected so that strong absorption takes place in a thin, superficial layer. This strong absorption of the laser energy in a relatively thin layer results in a strong thermal heating of this layer, which leads to melting of this area. A connection to the silicon plate 1 can be established through the melted area. Various connection mechanisms are conceivable. On the one hand, the melted material of the further silicon plate 2 can be glued to the surface of the silicon wafer 1. This takes place, for example, when the further plate 2 is formed from a plastic material which is melted by the energy of the laser beam 3 introduced. Such a plastic plate 2 is then superficially bonded to the surface of the silicon wafer 1. Furthermore, welding can take place in such a way that both the further plate 2 and the silicon plate 1 are melted on account of the energy introduced by the laser beam. The energy absorbed in the further plate 2 is also transferred to the silicon wafer 1 by heat conduction. This then causes both the further plate 2 and the silicon wafer 1 to melt. The molten material of the silicon plate 1 and the further plate 2 thereby mix and form a mixed melt the material, both the silicon plate 1 and the further plate 2 contains. After cooling, this melting area then forms the weld connection between the silicon plate 1 and the further plate 2. Furthermore, a positive connection can also take place, which is explained further below with reference to FIGS. 3 and 4. Furthermore, there may also be a solder connection between the silicon plate 1 and the further plate 2.
In der Figur 2 wird eine Verbindung der Siliziumplatte 1 mit der weiteren Platte 2 durch einen Schmelzklebbereich 11 gezeigt. Hierbei ist insbesondere an die Verwendung eines Kunststoffmaterials für die weitere Platte 2 gedacht. Durch Einbringen der Energie des Laserstrahles 3 ist das Kunststoffmaterial der weiteren Platte 2 aufgeschmolzen und hat im flüssigen Zustand die Oberfläche des Siliziumwafers 1 benetzt. Durch Adhäsionskräfte kommt es dann zu einem Verkleben zwischen der Siliziumplatte 1 und der weiteren Platte 2.A connection of the silicon plate 1 to the further plate 2 through a hot-melt adhesive region 11 is shown in FIG. The use of a plastic material for the further plate 2 is particularly intended here. By introducing the energy of the laser beam 3, the plastic material of the further plate 2 is melted and has wetted the surface of the silicon wafer 1 in the liquid state. Adhesive forces then cause the silicon plate 1 to adhere to the further plate 2.
In der Figur 3 wird als weiteres Beispiel die Ausbildung des Verbindungsbereichs als Schweißbereich 12 gezeigt. Durch die eingebrachte Energie des Laserstrahles 3 erfolgt, ausgehend von der Figur 1, ein Aufschmelzen sowohl der weiteren PlatteFIG. 3 shows the configuration of the connection area as a welding area 12 as a further example. Starting from FIG. 1, the energy of the laser beam 3 causes both the further plate to melt
2 als auch des Materials der Siliziumplatte 1. Durch Mischen der beiden Materialien im geschmolzenen Zustand und Erstarren bei der Abkühlung wird der Schweißbereich 12 gebildet. Für die weitere Platte 2 wird hier insbesondere an keramisches Material, Glas oder Halbleitermaterialien (insbesondere Silizium) oder Metall gedacht. Das Material der weiteren Platte 2 ist hier wiederum so ausgelegt, dass es zu einer starken Absorbtion der Energie des Laserstrahles2 and also the material of the silicon plate 1. The welding region 12 is formed by mixing the two materials in the molten state and solidifying during cooling. For the further plate 2, in particular ceramic material, glass or semiconductor materials (in particular silicon) or metal are considered. The material of the further plate 2 is in turn designed so that there is a strong absorption of the energy of the laser beam
3 kommt. Im Fall von Silizium lässt sich dies durch oberflächliche Schichten erreichen, die hier nicht näher dargestellt sind oder durch das Einbringen von entsprechenden Dotierstoffen. Wesentlich ist dabei nur, dass es zu einem Aufschmelzen, sowohl des Materials der weiteren Platte 2 als auch des Materials der Siliziumplatte 1 kommt, d.h. die beiden Materialien müssen von ihren Schmelzpunkten entsprechend aneinander angepasst sein. Außerdem müssen die Materialien so gewählt sein, dass es zu einer Durchmischung der Schmelzen und zur Ausbildung einer Schweißverbindung 12 kommt .3 is coming. In the case of silicon, this can be achieved by superficial layers, which are not shown here, or by introducing appropriate dopants. It is only essential that there is melting, both of the material of the further plate 2 and of the material of the silicon plate 1, i.e. the melting point of the two materials must be adjusted accordingly. In addition, the materials must be selected so that the melts are mixed and a weld connection 12 is formed.
In den Figuren 4 und 5 wird ein weiteres Verfahren dargestellt, bei dem durch die eingebrachte Energie des Laserstrahles 3 der Verbindungsbereich als Formschlussbereich 13 (Figur 5) ausgebildet wird. Zur Ausbildung des Formschlussbereiches 13 weist die Siliziumplatte 1 eine Vertiefung 14 und die weitere Platte 2 eine Zapfen 15 auf. Für die Verbindung wird die Vertiefung 14 auf den Zapfen 15 aufgelegt und es erfolgt eine Erwärmung des Materials des Zapfens 15 durch die Energie des Laserstrahles 3. Durch das Aufschmelzen des Materials des Zapfens 15 kommt es zu einer Verformung des Zapfens, insbesondere füllt das geschmolzene Material des Zapfens 15 den Hohlraum der Vertiefung 14 vollständig auf. Die Vertiefung 14 sollte insbesondere so ausgebildet sein, dass sie eine Hinterschneidung aufweist, d.h. dass die Vertiefung 14 in der Tiefe einen größeren Durchmesser aufweist als an der Oberfläche mit der die Siliziumplatte 1 der weiteren Platte 2 zugewandt ist. Durch die Verwendung von Ätzprozessen lassen sich derartige Hinterschneidungen in Siliziumplatte 1 ausbilden. Es ist so möglich, eine formschlüssige Verbindung zwischen einer Siliziumplatte 1 und einer weiteren Platte 2 auszubilden.Another method is shown in FIGS. 4 and 5, in which the connection area is formed as a positive-locking area 13 (FIG. 5) by the energy of the laser beam 3 introduced. To form the interlocking area 13, the silicon plate 1 has a depression 14 and the further plate 2 has a pin 15. For the connection is the deepening 14 placed on the pin 15 and there is a heating of the material of the pin 15 by the energy of the laser beam 3. The melting of the material of the pin 15 leads to a deformation of the pin, in particular the molten material of the pin 15 fills the cavity of the Well 14 completely. The recess 14 should in particular be designed in such a way that it has an undercut, ie that the recess 14 has a larger diameter in depth than on the surface with which the silicon plate 1 faces the further plate 2. Such undercuts can be formed in silicon plate 1 by using etching processes. It is thus possible to form a positive connection between a silicon plate 1 and a further plate 2.
Bei der Beschreibung zu den bisherigen Figuren wurde davon ausgegangen, dass die weitere Platte 2 vollständig aus ein und demselben Material besteht, welches für die Wellenlänge des Laserstrahles 3 stark absorbierend ist. Für praktische Anwendungen ist es jedoch völlig ausreichend und in vielen Fällen vorteilhaft, wenn nur eine dünne, oberflächliche Schicht aus einem stark absorbierenden Material besteht und diese stark absorbierende Schicht zwischen der Siliziumplatte 1 und der weiteren Platte 2 angeordnet ist. Dabei ist es auch unerheblich, ob stark absorbierende Schicht vor der Verbindung auf der Siliziumplatte 1 oder der weiteren Platte 1 angeordnet ist. In den Figuren 6-8 wird ein derartiger Verbindungsprozess gezeigt.In the description of the previous figures, it was assumed that the further plate 2 consists entirely of one and the same material, which is highly absorbent for the wavelength of the laser beam 3. For practical applications, however, it is completely sufficient and in many cases advantageous if only a thin, superficial layer consists of a highly absorbent material and this highly absorbent layer is arranged between the silicon plate 1 and the further plate 2. It is also irrelevant whether the highly absorbent layer is arranged on the silicon plate 1 or the further plate 1 before the connection. Such a connection process is shown in FIGS. 6-8.
In der Figur 6 wird eine Siliziumplatte 1 und eine weitere Platte 2 in auseinandergezogenem Zustand gezeigt. Auf der Seite der Siliziumplatte 1 die der weiteren Platte 2 zugewandt ist, ist eine Absorbtionsschicht 20 und eine Ausnehmung 21 vorgesehen. Auf der weiteren Platte 2 ist auf der Seite die der Siliziumplatte 1 zugewandt ist, eine mikromechanische Struktur 22 angeordnet. Wie in der Figur 7 zu erkennen ist, wird die Siliziumplatte 1 mit der Absorbtionsschicht 20 auf die weitere Platte 2 aufgelegt, und es wird dann durch die Siliziumplatte 1 hindurch ein Laserstrahl auf die Absorbtionsschicht 20 gerichtet. Bei dem Aufeinanderlegen wird dabei die Ausnehmung 21 über die mikromechanische Struktur 22 angeordnet. Die Ausnehmung 21 ist so bemessen, dass oberhalb der mikromechanischen Struktur 22 ein Hohlraum 23 verbleibt. Durch den Laserstrahl 3 wird Energie in die Absorbtionsschicht 20 derart eingebracht, dass eine starke Erwärmung dieser Absorbtionsschicht erfolgt. Für die Prozessfolge der Figuren 6, 7 und 8 gehen wir davon aus, dass die eingebrachte Energie so stark ist, dass es zu einem Schmelzen der Siliziumplatte 1 und der weiteren Platte 2 in den Bereichen kommt, die nahe der Einfallstelle des Laserstrahles 3 auf der Absorbtionsschicht 20 liegen. Das geschmolzene Material der Siliziumplatte 1, der Absorbtionsschicht 20 und der weiteren Platte 2 vermischen sich im geschmolzenen Zustand und bilden nach der Laserbestrahlung und dem Erkalten eine Schweißverbindung 12 zwischen der Siliziumplatte 1 und der weiteren Platte 2. Dieser Zustand wird in der Figur 8 mit einem Querschnitt gezeigt, wobei dieser Querschnitt auch einen Schnitt durch die Schweißbereiche 12 zeigt.FIG. 6 shows a silicon plate 1 and a further plate 2 in an expanded state. An absorption layer 20 and a recess 21 are provided on the side of the silicon plate 1 which faces the further plate 2. On the further plate 2, there is one on the side facing the silicon plate 1 Micromechanical structure 22 arranged. As can be seen in FIG. 7, the silicon plate 1 with the absorption layer 20 is placed on the further plate 2, and a laser beam is then directed through the silicon plate 1 onto the absorption layer 20. When stacked, the recess 21 is arranged over the micromechanical structure 22. The recess 21 is dimensioned such that a cavity 23 remains above the micromechanical structure 22. Energy is introduced into the absorption layer 20 by the laser beam 3 in such a way that this absorption layer is strongly heated. For the process sequence of FIGS. 6, 7 and 8, we assume that the energy introduced is so strong that the silicon plate 1 and the further plate 2 melt in the areas that are close to the point of incidence of the laser beam 3 on the Absorbent layer 20 are. The molten material of the silicon plate 1, the absorption layer 20 and the further plate 2 mix in the molten state and form a weld connection 12 between the silicon plate 1 and the further plate 2 after the laser irradiation and cooling. This state is shown in FIG Cross section shown, this cross section also showing a section through the welding areas 12.
Für die Absorbtionsschicht 20 können verschiedene Materialien verwendet werden. Bspw. kann für die weitere Platte 2 eine Glasplatte oder eine Siliziumplatte verwendet werden und die Absorbtionsschicht 20 kann aus Kunststoff ausgebildet sein. Durch eine derartige KunststoffSchicht würde dann eine Klebverbindung entstehen wie sie zur Figur 2 bereits beschrieben wurde. Die Absorbtionsschicht 20 kann auch mit einem Zapfen 15 versehen sein und die Siliziumplatte 1 kann auch Vertiefungen 14 aufweisen. Es könnte dann, ähnlich wie bereits zu den Figuren 4 und 5 beschrieben, eine Verbindung mittels eines Formschlussbereiches 13 erfolgen. Auch für diese Form kann eine im Vergleich zu den Platten 1 und 2 relativ dünne Absorbtionsschicht 20 verwendet werden, die mit entsprechenden Zapfen 15 ausgestattet ist.Various materials can be used for the absorption layer 20. For example. For example, a glass plate or a silicon plate can be used for the further plate 2, and the absorption layer 20 can be formed from plastic. Such a plastic layer would then result in an adhesive connection as has already been described for FIG. 2. The absorption layer 20 can also be provided with a pin 15 and the silicon plate 1 can also have depressions 14. It could then, similar to that already described in FIGS. 4 and 5, a connection by means of a Form-locking area 13 take place. An absorption layer 20 which is relatively thin in comparison to the plates 1 and 2 and which is equipped with corresponding pins 15 can also be used for this shape.
Zu den Figuren 6-7 wurde die Ausbildung einer Schweißverbindung beschrieben. Dieses Verfahren ist bpsw. Anwendbar, wenn die weitere Platte 2 ebenfalls aus einem Siliziumwafer besteht. Für die absorbierende Schicht können dann dünne Metallschichten, bspw. aus Aluminium, Aluminium- Silizium-Kupfer, Platin, Titan, Chrom oder andere Refraktärmetalle, verwendet werden. Weiterhin können für die Absorbtionsschicht 20 Germanium, Silizium-Germanium oder hochdotierte Polysiliziumschichten verwendet werden. Als weitere Materialien für die Absorbtionsschicht 20 können auch Oxide und Nitride, bspw. Siliziumoxid und Siliziumnitrid als Absorbtionsschichten Verwendung finden. Die Absorbtionsschicht kann in relativ geringen Schichtdicken verwendet werden, wobei jedoch die Schichtdicke in etwa der Eindringtiefe des Lasers, d.h. dem Kehrwert des Absorbtionskoeffizienten, entsprechen soll. Typische Schichtdicken liegen dabei in Abhängigkeit von dem verwendeten Material in der Größenordnung von mehr als 100 Nanometern. Das Material für derartige Schichten kann mit den üblichen Verfahren der Dünnschicht-Technik wie Sputtern, Bedampfen, Aufschleudern, CVD-Abscheidung, Epitaxie und dergleichen erfolgen. Weiterhin können dieThe formation of a welded connection has been described with reference to FIGS. 6-7. This procedure is bpsw. Applicable if the further plate 2 also consists of a silicon wafer. Thin metal layers, for example made of aluminum, aluminum-silicon-copper, platinum, titanium, chromium or other refractory metals, can then be used for the absorbent layer. Furthermore, germanium, silicon germanium or highly doped polysilicon layers can be used for the absorption layer 20. Oxides and nitrides, for example silicon oxide and silicon nitride, can also be used as absorption layers as further materials for the absorption layer 20. The absorption layer can be used in relatively small layer thicknesses, however the layer thickness approximately corresponds to the penetration depth of the laser, i.e. the reciprocal of the absorption coefficient. Depending on the material used, typical layer thicknesses are on the order of more than 100 nanometers. The material for such layers can be made using the usual methods of thin-film technology such as sputtering, vapor deposition, spin coating, CVD deposition, epitaxy and the like. Furthermore, the
Absorbtionsschichten 20 strukturiert werden, d.h. sie werden nur dort angeordnet, wo später die Schweißverbindugen 12 zustande kommen sollen. Sofern es prozesstechnisch einfacher ist und durch die Schichten keine Beeinträchtigungen von eventuelle vorgesehenen, mikromechanischen Strukturen 22 zu befürchten sind, können diese Schichten auch ganzflächig aufgebracht werden. Neben den bereits beschriebenen Verbindungen mittels Kleben, Formschluss und Schweißen kann die Verbindung durch die Absorbtionsschicht 20 auch durch Löten erfolgen. Die Absorbtionsschicht 20 wird dabei aus einem Material ausgebildet, das im aufgeschmolzenen Zustand eine Lotverbindung zwischen der Siliziumplatte 1 und der weiteren Platte 2 herstellt. Dies kann insbesondere sinnvoll sein wenn es sich bei der weiteren Platte 2 um eine Metallplatte handelt .Absorbent layers 20 are structured, ie they are only arranged where the welded joints 12 are to be made later. Insofar as it is simpler in terms of process technology and the layers do not fear any impairment of any micromechanical structures 22 provided, these layers can also be applied over the entire area. In addition to the connections already described by means of gluing, positive locking and welding, the connection through the absorption layer 20 can also be made by soldering. The absorption layer 20 is formed from a material which, in the melted state, produces a solder connection between the silicon plate 1 and the further plate 2. This can be particularly useful if the further plate 2 is a metal plate.
In den Figuren 6-8 wird beschrieben, dass eine mikromechanische Struktur 22 in einem Hohlraum 23 angeordnet wird, der durch die Ausnehmung 21 gebildet wird. Bei einem derartigen Prozess handelt es sich um die Verpackung eines mikromechanischen Bauelementes, bei dem das mikromechanische Bauelement 22 hermetisch dicht in einem Hohlraum 23 eingepackt wird. Dabei wird dann vorgesehen, dass die Schweißverbindung 12 als umlaufende Naht ausgebildet ist, d.h. dass die Schweißverbindung 12 in der Ebene, die von den beiden Platten 1, 2 gebildet wird, die mikromechanische Struktur 22 vollständig umgibt. Es stellt sich dann das Problem, wie eine elektrische Kontaktierung dieser mikromechanischen Struktur 22 erfolgt. Diesbezüglich wird auf die Figur 9 verwiesen, die einen Querschnitt durch eine exemplarische, mikromechanische Struktur darstellt. Im Unterschied zu den bisher gezeigten Figuren ist hier die Siliziumplatte als unterste Platte angeordnet und es erfolgt entsprechend, wie durch die Pfeile dargestellt, eine Einstrahlung der Laserstrahlen von unten her. Durch die Laserstrahlen 3 wurden hier Schweißbereiche 12 ausgebildet, die die mikromechanische Struktur 22 vollständig umschließen. Die mikromechanischen Strukturen 22 werden hier auch nur schematisch dargestellt. Auf der Oberseite sind die mikromechanischen Strukturen 22 durch eine weitere Abdeckplatte 50 abgedeckt, die mittels einer Abstandschicht 51 einen Abstand von den mikromechanischen Strukturen 22 bildet. Die mikromechanischen Strukturen 22 wurden gebildet, indem in die weitere Platte 2 Gräben eingebracht wurden, die die weitere Platte 2 von oben bis unten durchtrennen. Derartige Grabenstrukturen lassen sich besonders einfach in Siliziumplatten einbringen, so dass die weitere Platte 2 hier üblicherweise aus Silizium ausgebildet ist. In einem Randbereich weisen die mikromechanischen Strukturen einen Verbindungsbereich 52 auf, der durch eine Grabenstruktur 53 vom restlichen Material der Siliziumplatte 2 getrennt ist. In diesem Verbindungsbereich 52 steht das Material der Siliziumplatte 2 direkt mit dem Material der Abdeckplatte 50 in Verbindung. Für die Abdeckplatte 50 wird ebenfalls an eine Siliziumplatte gedacht, die zumindest bereichsweise durch Dotierung leitend ausgestaltet ist. Oberhalb des Verbindungsbereiches 52 ist ein Kontaktbereich 54 ausgebildet, auf dem eine Kontaktmetallisierung 55 aufgebracht ist. Der Kontaktbereich 54 ist wiederum durch Gräben 53 von dem Rest der Siliziumplatte 50 elektrisch isoliert. Durch die Kontaktmetallisierung 55 und den darunter liegenden Kontaktbereich 54 bzw. Verbindungsbereich 52 kann ein elektrischer Kontakt zu den mikromechanischen Strukturen 22, die in dem Hohlraum 23 angeordnet sind, hergestellt werden. An der Grenzfläche zwischen den Siliziumplatten 1, 2 lässt sich nämlich keine Leiterbahn ausbilden, da durch die umlaufende Schweißverbindung 12 eine derartige Leiterbahn zerstört werden würde. Es ist daher erforderlich, innerhalb dieser umlaufenden Naht eine elektrische Durchführung mittels des Verbindungsbereiches 52 bzw. des Kontaktbereiches 54 vorzusehen, durch den eine Kontaktierung der mikromechanischen Struktur 22 in dem Hohlraum 23 erfolgt.FIGS. 6-8 describe that a micromechanical structure 22 is arranged in a cavity 23 which is formed by the recess 21. Such a process involves the packaging of a micromechanical component, in which the micromechanical component 22 is hermetically sealed in a cavity 23. It is then provided that the welded connection 12 is formed as a circumferential seam, ie that the welded connection 12 completely surrounds the micromechanical structure 22 in the plane formed by the two plates 1, 2. The problem then arises of how this micromechanical structure 22 is electrically contacted. In this regard, reference is made to FIG. 9, which represents a cross section through an exemplary micromechanical structure. In contrast to the figures shown so far, the silicon plate is arranged here as the bottom plate and, as shown by the arrows, the laser beams are irradiated from below. Welding areas 12 which completely surround the micromechanical structure 22 were formed here by the laser beams 3. The micromechanical structures 22 are also only shown schematically here. On the upper side, the micromechanical structures 22 are covered by a further cover plate 50, which is spaced from the micromechanical structures 22 by means of a spacer layer 51 forms. The micromechanical structures 22 were formed by introducing trenches into the further plate 2, which cut through the further plate 2 from top to bottom. Trench structures of this type can be introduced particularly easily into silicon plates, so that the further plate 2 is usually formed from silicon here. In an edge region, the micromechanical structures have a connection region 52 which is separated from the remaining material of the silicon plate 2 by a trench structure 53. In this connection area 52, the material of the silicon plate 2 is directly connected to the material of the cover plate 50. A silicon plate is also considered for the cover plate 50, which is made conductive at least in some areas by doping. A contact area 54, on which a contact metallization 55 is applied, is formed above the connection area 52. The contact area 54 is in turn electrically insulated from the rest of the silicon plate 50 by trenches 53. An electrical contact to the micromechanical structures 22, which are arranged in the cavity 23, can be produced by the contact metallization 55 and the contact area 54 or connection area 52 lying underneath. Namely, no conductor track can be formed at the interface between the silicon plates 1, 2, since such a conductor track would be destroyed by the circumferential welded connection 12. It is therefore necessary to provide an electrical feedthrough within this circumferential seam by means of the connection area 52 or the contact area 54, through which the micromechanical structure 22 is contacted in the cavity 23.
Das erfindungsgemäße Verfahren wird vorzugsweise an Siliziumplatten angewendet, die eine Vielzahl von Strukturen aufweisen. Da Siliziumplatten für infrarotes Licht transparent sind, kann durch die Siliziumplatte 1 eine Ausrichtung der Siliziumplatte 1 relativ zur weiteren Platte 2 erfolgen. Punktweise kann dann eine Verbindung der beiden Platten durch Laserstrahlung erzielt werden, was ein Verrutschen der beiden Platten relativ zueinander in der weiteren Prozessierung wirksam unterbindet. Es können danach die eigentlichen Verbindungen erfolgen, die bspw. von der Bearbeitungsdauer länger dauern können als die Justierung der beiden Platten 1, 2 relativ zueinander bzw. das punktweise Verbinden. Dies ist insbesondere dann von Interesse, wenn eine Vielzahl von Strukturen in der Siliziumplatte 1 bzw. der weiteren Platte 2 ausgebildet sind und über große Bereiche Verbindungen erzeugt werden sollen. Dies gilt insbesondere dann, wenn eine Vielzahl von einzelnen Strukturen vorgesehen sind, die jeweils für sich hermetisch verpackt werden sollen, was um jede Struktur herum eine umlaufende Verbindungsnaht erfordert. Dies ist bspw. der Fall, wenn mikromechanische Strukturen hermetisch verschlossen werden, da dann jede dieser mikromechanischen Strukturen 22 mit einer kompletten Verbindungsnaht umgeben wird. The method according to the invention is preferably applied to silicon plates which have a large number of structures. Since silicon plates are transparent to infrared light, a silicon plate 1 can be used Alignment of the silicon plate 1 relative to the other plate 2 take place. The two plates can then be connected point by point by laser radiation, which effectively prevents the two plates from slipping relative to one another in the further processing. The actual connections can then be made, which can take longer, for example, in terms of the processing time, than the adjustment of the two plates 1, 2 relative to one another or the point-by-point connection. This is of particular interest if a large number of structures are formed in the silicon plate 1 or the further plate 2 and connections are to be produced over large areas. This applies in particular if a large number of individual structures are provided, each of which is to be hermetically packaged, which requires a circumferential connecting seam around each structure. This is the case, for example, when micromechanical structures are hermetically sealed, since each of these micromechanical structures 22 is then surrounded with a complete connecting seam.

Claims

Ansprüche Expectations
1. Verfahren zur Verbindung einer Siliziumplatte (1) mit einer weiteren Platte (2), wobei für die Verbindung die Siliziumplatte (1) und die weitere Platte (2) aufeinander gelegt werden, dadurch gekennzeichnet, dass durch die Siliziumplatte (1) hindurch ein Laserstrahl (3) auf die weitere Platte gerichtet wird, wobei die Wellenlänge des Laserstrahles so ausgewählt ist, dass nur eine geringe Energiemenge in der Siliziumplatte (1) absorbiert wird, dass auf einer, der weiteren Platte (2) zugewandten Oberfläche der Siliziumplatte (1) stark absorbierendes Material vorgesehen ist, welches die Energie des Laserstrahles fast vollständig absorbiert und durch die eingebrachte Energie des Laserstrahles (3) aufgeschmolzen wird, und dass das aufgeschmolzene Material wieder abgekühlt wird und eine Verbindung zwischen der Siliziumplatte (1) und der weiteren Platte (2) herstellt.1. A method for connecting a silicon plate (1) with a further plate (2), the silicon plate (1) and the further plate (2) being placed on top of one another for the connection, characterized in that a through the silicon plate (1) Laser beam (3) is directed onto the further plate, the wavelength of the laser beam being selected so that only a small amount of energy is absorbed in the silicon plate (1), that on a surface of the silicon plate (1 ) highly absorbent material is provided, which absorbs the energy of the laser beam almost completely and is melted by the energy of the laser beam (3), and that the melted material is cooled again and a connection between the silicon plate (1) and the further plate ( 2) manufactures.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zwischen der Siliziumplatte (1) und der weiteren Platte (2) eine Schicht (20) aus dem stark absorbierenden2. The method according to claim 1, characterized in that between the silicon plate (1) and the further plate (2) a layer (20) made of the highly absorbent
Material im Bereich einer Verbindungsstelle angeordnet ist . Material is arranged in the region of a connection point.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die weitere Platte (2) vollständig aus dem stark absorbierenden Material ausgebildet ist.3. The method according to claim 1, characterized in that the further plate (2) is completely formed from the highly absorbent material.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Material für die weitere Platte (2) Silizium, Metall, Glas, Kunststoff, Metall, Germanium oder Silizium-Germanium ausgewählt ist.4. The method according to any one of the preceding claims, characterized in that silicon, metal, glass, plastic, metal, germanium or silicon germanium is selected as the material for the further plate (2).
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als stark absorbierendes Material Metall, Germanium, Silizium-Germanium, stark dotiertes Polysilizium oder ein Kunststoff verwendet wird.5. The method according to any one of the preceding claims, characterized in that metal, germanium, silicon germanium, heavily doped polysilicon or a plastic is used as the highly absorbent material.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass durch das aufgeschmolzene, stark absorbierende Material eine Heißklebverbindung, eine Lotverbindung, eine formschlüssige Verbindung oder eine Schweißverbindung zwischen der Siliziumplatte (1) und der weiteren Platte (2) ausgebildet wird.6. The method according to any one of the preceding claims, characterized in that a hot-glue connection, a solder connection, a positive connection or a weld connection is formed between the silicon plate (1) and the further plate (2) by the melted, highly absorbent material.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Verbindung mit einer umlaufenden Naht erfolgt, die einen Bereich der Oberfläche der Siliziumplatte vollständig umfasst, dass innerhalb der umlaufenden Naht in der Siliziumplatte (1) oder der weiteren Platte (2) eine elektrische Durchführung (52, 54) vorgesehen ist, durch die ein elektrischer Kontakt zu einem Innenraum (23) hergestellt wird, der zwischen der Siliziumplatte (1) und der weiteren Platte (2) angeordnet ist.7. The method according to any one of the preceding claims, characterized in that the connection is made with a circumferential seam which completely comprises a region of the surface of the silicon plate, that within the circumferential seam in the silicon plate (1) or the further plate (2) electrical feedthrough (52, 54) is provided, through which an electrical contact is made to an interior space (23) which is arranged between the silicon plate (1) and the further plate (2).
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass auf der Siliziumplatte (1) und der weiteren Platte (2) jeweils eine Vielzahl von Strukturen vorgesehen sind, dass die Strukturen relativ zueinander justiert werden, und dass die Justierung durch Infrarotlicht durch die Siliziumplatte (1) hindurch erfolgt .8. The method according to any one of the preceding claims, characterized in that a plurality of each on the silicon plate (1) and the further plate (2) Structures are provided that the structures are adjusted relative to one another and that the adjustment is carried out by infrared light through the silicon plate (1).
Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass nach der Justierung punktförmige Verbindungen zwischen der Siliziumplatte (1) und der weiteren Platte (2) ausgebildet werden, durch die die justierte Lage der Siliziumplatte (1) relativ zur weiteren Platte (2) bei dem nachfolgenden Verbindungsvorgang erhalten bleibt. A method according to claim 8, characterized in that after the adjustment punctiform connections between the silicon plate (1) and the further plate (2) are formed, through which the adjusted position of the silicon plate (1) relative to the further plate (2) in the subsequent Connection process is retained.
EP02769904A 2001-10-05 2002-09-05 Method for joining a silicon plate to another plate Withdrawn EP1436830A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10149140 2001-10-05
DE10149140A DE10149140A1 (en) 2001-10-05 2001-10-05 Process for connecting a silicon plate to a further plate comprises directing a laser beam onto the further plate through the silicon plate
PCT/DE2002/003282 WO2003032377A1 (en) 2001-10-05 2002-09-05 Method for joining a silicon plate to another plate

Publications (1)

Publication Number Publication Date
EP1436830A1 true EP1436830A1 (en) 2004-07-14

Family

ID=7701489

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02769904A Withdrawn EP1436830A1 (en) 2001-10-05 2002-09-05 Method for joining a silicon plate to another plate

Country Status (4)

Country Link
US (1) US6955975B2 (en)
EP (1) EP1436830A1 (en)
DE (1) DE10149140A1 (en)
WO (1) WO2003032377A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2952976A1 (en) 2014-06-03 2015-12-09 The Swatch Group Research and Development Ltd. Part for covering a timepiece made of welded materials
EP2952978A1 (en) 2014-06-03 2015-12-09 The Swatch Group Research and Development Ltd. Covering part made of photostructurable glass
EP2952977A1 (en) 2014-06-03 2015-12-09 Nivarox-FAR S.A. Timepiece component made of welded materials
EP2952972A1 (en) 2014-06-03 2015-12-09 The Swatch Group Research and Development Ltd. Method for manufacturing a composite compensator spiral
EP2952979A1 (en) 2014-06-03 2015-12-09 Nivarox-FAR S.A. Timepiece component made of photostructurable glass

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004030619A1 (en) * 2004-06-24 2006-01-12 Forschungszentrum Karlsruhe Gmbh Method for joining workpieces made of plastic
US20060076634A1 (en) * 2004-09-27 2006-04-13 Lauren Palmateer Method and system for packaging MEMS devices with incorporated getter
KR100699859B1 (en) * 2005-08-11 2007-03-27 삼성전자주식회사 Reference wafer for calibrating a semiconductor equipment
US20090297403A1 (en) 2006-08-31 2009-12-03 Volker Franke Method for producing a bioreactor or lab-on-a-chip system and bioreactors or lab-on-a-chip systems produced therewith
DE102007008540A1 (en) * 2007-02-21 2008-08-28 Friedrich-Schiller-Universität Jena Method for laser-supported bonding, bonded substrates and their use
US8125058B2 (en) * 2009-06-10 2012-02-28 Medtronic, Inc. Faraday cage for circuitry using substrates
FI123860B (en) * 2010-05-18 2013-11-29 Corelase Oy Method for sealing and contacting substrates by laser light and electronics module
DE102011084328A1 (en) * 2010-10-13 2012-04-19 Ceramtec Gmbh Method for joining two joining partners (ceramic with metal / ceramic) with a laser beam
US9171721B2 (en) * 2010-10-26 2015-10-27 Medtronic, Inc. Laser assisted direct bonding
US8666505B2 (en) 2010-10-26 2014-03-04 Medtronic, Inc. Wafer-scale package including power source
US8796109B2 (en) * 2010-12-23 2014-08-05 Medtronic, Inc. Techniques for bonding substrates using an intermediate layer
US8424388B2 (en) 2011-01-28 2013-04-23 Medtronic, Inc. Implantable capacitive pressure sensor apparatus and methods regarding same
US9492990B2 (en) * 2011-11-08 2016-11-15 Picosys Incorporated Room temperature glass-to-glass, glass-to-plastic and glass-to-ceramic/semiconductor bonding
EP2608255A1 (en) * 2011-12-23 2013-06-26 Micronit Microfluidics B.V. Method of bonding two substrates and device manufactured thereby
US10017849B2 (en) 2012-11-29 2018-07-10 Corning Incorporated High rate deposition systems and processes for forming hermetic barrier layers
US9666763B2 (en) 2012-11-30 2017-05-30 Corning Incorporated Glass sealing with transparent materials having transient absorption properties
US9515286B2 (en) 2013-05-10 2016-12-06 Corning Incorporated Laser welding transparent glass sheets using low melting glass or thin absorbing films
DE102013109588A1 (en) * 2013-09-03 2015-03-05 Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh Reflow bonding process
DE102014202629A1 (en) 2014-02-13 2015-08-13 Bayerische Motoren Werke Aktiengesellschaft Method for producing a component connection and component connection
DE102014202631A1 (en) * 2014-02-13 2015-08-13 Bayerische Motoren Werke Aktiengesellschaft Method for producing a component connection and component connection produced by this method
WO2015164241A1 (en) 2014-04-21 2015-10-29 Corning Incorporated Laser welding of high thermal expansion glasses and glass-ceramics
US10457595B2 (en) 2014-10-31 2019-10-29 Corning Incorporated Laser welded glass packages
US9865533B2 (en) 2014-12-24 2018-01-09 Medtronic, Inc. Feedthrough assemblies
US10136535B2 (en) 2014-12-24 2018-11-20 Medtronic, Inc. Hermetically-sealed packages including feedthrough assemblies
US9968794B2 (en) 2014-12-24 2018-05-15 Medtronic, Inc. Implantable medical device system including feedthrough assembly and method of forming same
US10124559B2 (en) * 2014-12-24 2018-11-13 Medtronic, Inc. Kinetically limited nano-scale diffusion bond structures and methods
CH711218B1 (en) * 2015-06-16 2019-06-14 Nivarox Sa Method of manufacturing a watch component
US10098589B2 (en) 2015-12-21 2018-10-16 Medtronic, Inc. Sealed package and method of forming same
DE102017223372A1 (en) * 2017-12-20 2019-06-27 Robert Bosch Gmbh Laser bonding process and micromechanical device with laser bond connection
CN109020263A (en) * 2018-09-29 2018-12-18 大族激光科技产业集团股份有限公司 Connect the method and its application of metal and glass
CN109909610A (en) * 2018-12-14 2019-06-21 华南师范大学 A kind of welding method and welding system of silicon wafer and glass
JP2020128035A (en) * 2019-02-08 2020-08-27 アイシン精機株式会社 Case and method for manufacturing the same
DE102019121298A1 (en) * 2019-08-07 2021-02-11 Schott Ag Hermetically sealed glass casing
DE102019218819A1 (en) * 2019-12-03 2021-06-10 Robert Bosch Gmbh Micromechanical-optical component and method for manufacturing a micromechanical-optical component

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH645208A5 (en) * 1978-10-31 1984-09-14 Bbc Brown Boveri & Cie PROCESS FOR MAKING ELECTRICAL CONTACTS ON SEMICONDUCTOR COMPONENTS.
US5010036A (en) * 1990-04-20 1991-04-23 Eaton Corporation Low temperature semiconductor bonding process with chemical vapor reaction
GB2244374B (en) 1990-05-22 1994-10-05 Stc Plc Improvements in hybrid circuits
DE19549635B4 (en) * 1995-02-15 2004-12-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for connecting a flexible substrate to a chip
DE59812923D1 (en) * 1997-07-23 2005-08-18 Infineon Technologies Ag DEVICE AND METHOD FOR PRODUCING A CHIP SUBSTRATE COMPOUND

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03032377A1 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2952976A1 (en) 2014-06-03 2015-12-09 The Swatch Group Research and Development Ltd. Part for covering a timepiece made of welded materials
EP2952978A1 (en) 2014-06-03 2015-12-09 The Swatch Group Research and Development Ltd. Covering part made of photostructurable glass
EP2952977A1 (en) 2014-06-03 2015-12-09 Nivarox-FAR S.A. Timepiece component made of welded materials
EP2952972A1 (en) 2014-06-03 2015-12-09 The Swatch Group Research and Development Ltd. Method for manufacturing a composite compensator spiral
EP2952979A1 (en) 2014-06-03 2015-12-09 Nivarox-FAR S.A. Timepiece component made of photostructurable glass
WO2015185383A3 (en) * 2014-06-03 2016-03-17 The Swatch Group Research And Development Ltd Timepiece exterior part made of welded materials
US9428382B2 (en) 2014-06-03 2016-08-30 The Switch Group Research and Development Ltd. Method for manufacturing a composite compensating balance spring
US9958835B2 (en) 2014-06-03 2018-05-01 The Swatch Group Research And Development Ltd External part based on photostructurable glass
US10635052B2 (en) 2014-06-03 2020-04-28 The Swatch Group Research And Development Ltd. External part based on photostructurable glass
US11537081B2 (en) 2014-06-03 2022-12-27 The Swatch Group Research And Development Ltd Component of external parts for a timepiece made of welded materials
US11768465B2 (en) 2014-06-03 2023-09-26 Nivarox-Far S.A. Timepiece component based on photostructurable glass

Also Published As

Publication number Publication date
US6955975B2 (en) 2005-10-18
US20040082145A1 (en) 2004-04-29
DE10149140A1 (en) 2003-04-17
WO2003032377A1 (en) 2003-04-17

Similar Documents

Publication Publication Date Title
EP1436830A1 (en) Method for joining a silicon plate to another plate
EP2064748B1 (en) Method for metallising semiconductor elements and use thereof
DE69125316T2 (en) Photonics module and alignment process
DE3446780A1 (en) METHOD AND JOINING MATERIAL FOR METALLICALLY CONNECTING COMPONENTS
DE19915019B4 (en) Method for producing a melt seal for an LCD device
DE69426090T2 (en) Method of manufacturing an optical semiconductor device
DE19619921A1 (en) Mfg. semiconductor device having capped element
DE102007025992A1 (en) Method for producing a MEMS package
WO2004030057A1 (en) Glass-type planar substrate, use thereof, and method for the production thereof
DE2937050A1 (en) FLAT PACKAGE FOR RECEIVING ELECTRICAL MICRO CIRCUITS AND METHOD FOR THE PRODUCTION THEREOF
DE102013102134A1 (en) Glass piece and method of making glass pieces and semiconductor devices with glass pieces
CH696100A5 (en) Manufacturing method of a piezoelectric vibrator and a piezoelectric vibrator with a special electrode structure prepared by this method.
EP2183185B1 (en) Wafer joining method, wafer assemblage, and chip
DE19622684A1 (en) Process for producing mechanically strong adhesive bonds between surfaces
EP0463297A1 (en) Arrangement comprising substrate and component and method of making the same
DE19522338B4 (en) Chip carrier assembly with a via
EP1680949B1 (en) Method for producing a solder stop barrier
DE4446289A1 (en) Contact elements on micro-chip boards are connected together by heating a joining element between the contact element
DE2454605C2 (en) Semiconductor component
DE69316159T2 (en) Method for applying bumps on a semiconductor device and for connecting this device to a printed circuit board
DE102008002910A1 (en) Method and device for connecting components by means of laser radiation
DE10225373A1 (en) Integrated circuit component encased in carrier material has contacts which are connected by channels through a thinned under layer
DE10252577B4 (en) Method for producing a solder joint by capillary solder flow
WO2023083957A1 (en) Hermetically connected assembly
WO2004019402A1 (en) Electrical component

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040506

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

17Q First examination report despatched

Effective date: 20070118

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070530