EP1413082A1 - Method for data communication between a single-carrier and a multi-carrier system - Google Patents

Method for data communication between a single-carrier and a multi-carrier system

Info

Publication number
EP1413082A1
EP1413082A1 EP01957743A EP01957743A EP1413082A1 EP 1413082 A1 EP1413082 A1 EP 1413082A1 EP 01957743 A EP01957743 A EP 01957743A EP 01957743 A EP01957743 A EP 01957743A EP 1413082 A1 EP1413082 A1 EP 1413082A1
Authority
EP
European Patent Office
Prior art keywords
carrier
signals
frequency
phase
carrier system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01957743A
Other languages
German (de)
French (fr)
Inventor
Edgar Bolinth
Ralf Kern
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1413082A1 publication Critical patent/EP1413082A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/023Multiplexing of multicarrier modulation signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/02Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2003Modulator circuits; Transmitter circuits for continuous phase modulation
    • H04L27/2007Modulator circuits; Transmitter circuits for continuous phase modulation in which the phase change within each symbol period is constrained
    • H04L27/2017Modulator circuits; Transmitter circuits for continuous phase modulation in which the phase change within each symbol period is constrained in which the phase changes are non-linear, e.g. generalized and Gaussian minimum shift keying, tamed frequency modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems

Definitions

  • the invention relates to a method and a device for data communication between a single and a multi-carrier system and a transmitter and a receiver for single and multi-carrier signals.
  • the signals to be transmitted are converted from their normal low-pass frequency position by modulation into higher frequency ranges.
  • the higher frequency used for transmission is called the carrier frequency or the carrier. If this carrier frequency is sufficiently high, the advantage of transmission by radio can be used to advantage.
  • Carrier (frequency) systems that is to say devices for transmitting signals by means of carrier frequency technology, can use a single carrier or also a plurality of carriers (frequencies) for transmission.
  • a system that uses only one carrier frequency or one carrier is usually referred to as a single carrier (frequency) system (single carrier system).
  • Systems that use multiple carrier frequencies for transmission are also known as multi-carrier (frequency) systems.
  • OFDM Orthogonal Frequency Division Multiplexing
  • This system is particularly suitable for a strongly disturbed terrestrial transmission of digital signals. le.
  • OFDM systems are used in digital broadcasting.
  • OFDM also enables the use of the Frequency Division Multiple Access access method (FDMA), which can be used particularly advantageously in mobile radio technology.
  • FDMA Frequency Division Multiple Access access method
  • the available bandwidth of a transmission channel is divided into several neighboring disjoint sub-frequency channels.
  • the individual sub-frequency channels are then used as individual communication channels for different connections.
  • a disadvantage of the previously known multi-carrier systems is that communication with a single-carrier system is neither provided nor possible without additional, not inconsiderable additional expenditure.
  • a single carrier system in which the data to be transmitted is modulated onto a single carrier by means of frequency shift keeing (FSK) cannot communicate with an OFDM system.
  • the object of the present invention is therefore to propose a method and a device for data communication between a single and a multi-carrier system. Furthermore, an inexpensive transmitter and a receiver structure for both single and multi-carrier signals are to be specified.
  • this transmitter and receiver structure is not only restricted to the FSK modulation, but can be applied overall to the class of the digital nonlinear modulation types and the analog nonlinear and linear modulation types.
  • the classic analog non-linear modulation types include FM (frequency modulation) and WM (angle modulation), whose digital derivatives each include FSK (Frequency Shift Keying) modulation and CPFSK (Continuous Phase Frequency Shift Keying), which also includes CPM (Continuous Phase Modu - lation) is called.
  • GMSK Gausian Minimum
  • Shift Keying represents a linear modulation, it can be interpreted as a special case of the FSK, so that the above-mentioned transmitter and receiver structure are also systems modulated on GMSK, e.g. GSM and DECT can be applied.
  • GMSK e.g. GSM and DECT
  • a classic analog form of modulation is AM (amplitude modulation) which is still widely used in medium and long wave broadcasting.
  • the transmitter and receiver structure mentioned above can also be used for AM according to the invention.
  • An essential point of the invention is that data communication between a single and a multi-carrier system can be accomplished in that the multi-carrier system simulates the spectral signal components of the single-carrier system.
  • the multitude of carriers of the multi-carrier system is essentially used for this.
  • the invention thus relates to a method for data communication between a single and a multi-carrier system.
  • the multi-carrier system On the receiving side, the multi-carrier system spectrally samples a received single-carrier signal and, depending on it, decides on received data.
  • a single-carrier signal to be transmitted is simulated by the multi-carrier system with its carriers.
  • the multi-carrier system For bidirectional operation, the multi-carrier system spectrally scans a received single-carrier signal and, depending on it, decides on received data; the multicarrier system also simulates a single carrier signal to be transmitted with its carriers.
  • IFFT Inverse Fast Fourier Transformation
  • FFT Fast Fourier Transformation
  • the center frequency, frequency deviation and other relevant system parameters of the single carrier system are preferably matched to the spacing of the carrier frequencies, center frequency and other relevant system parameters of the multi-carrier system.
  • These system parameters of the single-carrier system are also referred to as system-inherent parameters of the system.
  • the data received is preferably decided on the basis of the amplitude and phase of the spectrally sampled single carrier signal.
  • the amplitude and phase can be evaluated relatively easily. Furthermore, they represent reliable criteria for a safe decision about the received data.
  • signals are transmitted and / or received by multi-carrier systems by means of orthogonal frequency division multiplexing.
  • OFDM is used particularly advantageously for the transmission of signals via frequency-selective multipath propagation channels. It can advantageously be used both for digital broadcasting, transmission methods using power line communication and the like OFDM, and also in mobile radio technology.
  • the single carrier system modulates signals using frequency shift keying (FSK).
  • FSK frequency shift keying
  • FSK is preferably used in mobile radio technology and in the cordless telephone area. It proper is especially useful for the transmission of signals
  • the invention relates to a device for data communication between a single and a multi-carrier system.
  • a transmission path an amount / phase allocator, which allocates a single carrier signal to be transmitted according to amount and phase carriers of a multi-carrier signal, and / or in an reception path an amount / phase evaluator, which identifies the carriers evaluates a received multi-carrier signal according to magnitude and phase, and a decision-maker connected downstream of this, who decides on received data, is provided.
  • the transmission path preferably comprises a multi-carrier and a single-carrier data source.
  • the signals from the single carrier data source are fed to an IFFT (Inverse Fast Fourier Transformation) unit via a multiplexer. While in a multi-carrier system the IFFT and / or FFT algorithm is used for multi-carrier modulation and / or multi-carrier demodulation, in a single-carrier system the IFFT and / or the FFT is used to emulate the spectral signal components of the single carrier useful signal used. According to the invention, an IDFT (Inverse Discrete Fourier Transformation and / or DFT (Discrete Fourier Transformation) can also be used instead of an IFFT and / or FFT.
  • an IDFT Inverse Discrete Fourier Transformation and / or DFT (Discrete Fourier Transformation) can also be used instead of an IFFT and / or FFT.
  • the receive path preferably comprises an FFT unit (Fast Fourier Transformation) which transforms received signals from the time domain into the frequency domain, a demultiplexer which ultiplexes the received signal transformed by the FFT unit on carriers, and a single and a multi-carrier - data sink.
  • FFT unit Fast Fourier Transformation
  • demultiplexer which ultiplexes the received signal transformed by the FFT unit on carriers
  • a single and a multi-carrier - data sink a device for in particular bidirectional data communication between a single and a multi-carrier system can advantageously be created.
  • the invention also includes a transmitter for single and multi-carrier signals.
  • This has a multi-carrier and a single-carrier data source.
  • a single carrier signal generated by the single carrier data source is assigned by an amount / phase allocator according to the amount and phase carriers of a signal generated by the multiple carrier data source.
  • a multiplexer multiplexes the signals assigned by the amount / phase allocator and the signals from the multi-carrier data source onto carriers of the multi-carrier signal to be transmitted.
  • the signals multiplexed by the multiplexer are fed to an IFFT unit, which transforms them from the frequency to the time domain.
  • the invention relates to a receiver for single and multi-carrier signals, which has an FFT unit, among other things. This transforms the received signals from the time domain to the frequency domain.
  • the receiver has a de ultiplexer, which multiplexes the received signals transformed by the FFT unit onto carriers of a multi-carrier signal.
  • the demultiplexer is followed by an absolute value / phase evaluator, which evaluates the signals supplied according to the absolute value and phase.
  • the amount / phase evaluator is followed by a decision maker who decides on received data. The decided data is then fed to a single carrier data sink.
  • the output signals of the demultiplexer can also be fed to a multi-carrier data sink.
  • FIG. 1 shows an embodiment of a device for data communication using multi-carrier signals, with which both single and multi-carrier signals can be transmitted;
  • FIG. 2 shows an exemplary embodiment of a device for data communication between a single and a multi-carrier system, in which the single-carrier system is the transmitter and the multi-carrier system is the receiver;
  • Fig. 3 shows an embodiment of an apparatus for data communication between a single and a multi-carrier system, in which the single-carrier system is the receiver and the multi-carrier system is the transmitter.
  • the device shown in FIG. 1 has an OFDM and a single carrier signal source in the transmission path and an FSK data source 10 and 12 in the transmission path.
  • signals are essentially digitally generated and processed in the frequency range. Before transmission, they are transformed into the time domain.
  • Signals generated by the OFDM data source 10 are converted into a parallel signal by means of a downstream QAM modulator 13 and a serial / parallel converter 14. More precisely, the data packets, for example bits or bytes, contained in the serial input signal of the converter 14 are distributed on parallel lines in order to be able to be transmitted in parallel over a plurality of carrier frequencies.
  • the parallel output signals of the converter 14 are fed to a multiplexer 18, which multiplexes them on carriers of a multi-carrier signal to be transmitted.
  • the multiplexer 18 is followed by an IFFT unit 22, which transforms the supplied signals from the frequency to the time domain. These transformed signals are then transmitted via a transmitter 24.
  • the single carrier signals generated by the FSK data source 12 are modulated by a frequency domain modulator 17, more precisely an FSK modulator, to a single carrier frequency.
  • the signal generated by the FSK modulator 17 is then fed to an amount / phase allocator 20, which assigns the supplied signal according to amount and phase to the individual carriers of the multicarrier signal.
  • the signals assigned in this way are fed to the multiplexer 18, which multiplexes them onto the individual carriers.
  • Signals generated in this way by the reception path are transmitted via a transmission channel 26 and received by a receiver 28 in the transmission path.
  • the signals received by the receiver 28 are fed to an FFT unit 30, which transforms them from the time domain to the frequency domain.
  • the subsequent processing of the signals is then carried out essentially digitally in the frequency domain.
  • a demultiplexer 32 Downstream of the FFT unit 30 is a demultiplexer 32, which de-duplexes the output signals generated by the FFT unit 30 onto the individual carriers of the received multi-carrier signal.
  • the output signal of the demultiplexer 32 is fed to a serial / parallel converter 38, which converts it into a serial data stream and sends it to an OFDM data sink 42 via a QAM demodulator and decision maker 39.
  • the output signals of the demultiplexer 32 are fed to an absolute value / phase evaluator 34, which evaluates the signals of the individual carriers according to absolute value and phase and transmits the signals evaluated in this way to a frequency domain demodulator and decision maker 37.
  • the frequency domain demodulator and decision maker 37 makes the decision about the received data sequence and sends the data obtained in this way to an FSK data sink 40.
  • the device shown in FIG. 2 is a system for unidirectional data communication between a single and a multi-carrier system.
  • the single-carrier system is the transmitter and the multi-carrier system is the receiver. Since the device is otherwise the same as that shown in FIG. 1, except for the difference that a time-domain modulator 16 is used, reference is made to the description of the function of the individual components there.
  • FIG. 3 shows a device which is also designed for unidirectional data communication between a single and a multi-carrier system.
  • the single-carrier system is a receiver, and the multi-carrier system is therefore a transmitter.

Abstract

The invention relates to a method for data communication between a single-carrier and a multi-carrier system. According to the invention, a received single-carrier signal is spectrally scanned by the multi-carrier system which decides upon received data according thereto and/or simulates a single-carrier signal with its own carriers.

Description

Beschreibung description
Verfahren zur Datenkommunikation zwischen einem Einzel- und einem Mehr-Träger-SystemMethod for data communication between a single and a multi-carrier system
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Datenkommunikation zwischen einem Einzel- und einem Mehr- Träger-System sowie einen Sender und einen Empfänger für Einzel- und Mehr-Träger-Signale .The invention relates to a method and a device for data communication between a single and a multi-carrier system and a transmitter and a receiver for single and multi-carrier signals.
Zur Übertragung von Nachrichtensignalen über frequenzselektive Mehrwegeausbreitungskanäle werden die zu übertragende Signale aus ihrer normalen Tiefpaß-Frequenzlage durch Modulation in höhere Frequenzbereiche umgesetzt. Die höhere Frequenz, die zur Übertragung genutzt wird, wird als Trägerfrequenz o- der Träger bezeichnet. Ist diese Trägerfrequenz ausreichend hoch, so kann der Vorteil einer Übertragung per Funk vorteilhaft ausgenutzt werden.For the transmission of message signals via frequency-selective multipath propagation channels, the signals to be transmitted are converted from their normal low-pass frequency position by modulation into higher frequency ranges. The higher frequency used for transmission is called the carrier frequency or the carrier. If this carrier frequency is sufficiently high, the advantage of transmission by radio can be used to advantage.
Träger (frequenz) -Systeme, also Vorrichtungen zum Übertragen von Signalen mittels der Trägerfrequenztechnik, können eine einzelne oder auch mehrere Träger (frequenzen) zur Übertragung nutzen. Ein System das nur eine Trägerfrequenz bzw. einen Träger nutzt, wird üblicherweise als Einzelträger (frequenz) - System (Single Carrier System) bezeichnet. Systeme, die mehrere Trägerfrequenzen zur Übertragung nutzen, sind auch als Mehr-Träger (frequenz) -Systeme (Multi Carrier Systems) bekannt .Carrier (frequency) systems, that is to say devices for transmitting signals by means of carrier frequency technology, can use a single carrier or also a plurality of carriers (frequencies) for transmission. A system that uses only one carrier frequency or one carrier is usually referred to as a single carrier (frequency) system (single carrier system). Systems that use multiple carrier frequencies for transmission are also known as multi-carrier (frequency) systems.
Ein typischer Vertreter eines Mehr-Träger-Systems ist ein OFDM-System. OFDM steht für Orthogonal Frequency Division Multiplexing. Dieses System eignet besonders gut sich für eine stark gestörte terrestrische Übertragung digitaler Signa- le. Beispielsweise werden OFDM-Systeme im digitalen Rundfunk eingesetzt.A typical representative of a multi-carrier system is an OFDM system. OFDM stands for Orthogonal Frequency Division Multiplexing. This system is particularly suitable for a strongly disturbed terrestrial transmission of digital signals. le. For example, OFDM systems are used in digital broadcasting.
Weiterhin ermöglicht OFDM die Nutzung des Frequency Division Multiple Access Zugriffsverfahren (FDMA) , das vor allem in der Mobilfunktechnik vorteilhaft eingesetzt werden kann. Bei FDMA wird die verfügbare Bandbreite eines Übertragungskanals in mehrere benachbarte disjunkte Teilfrequenzkanäle unterteilt. Die einzelnen Teilfrequenzkanäle werden dann als einzelne Kommunikationskanäle für verschiedene Verbindungen genutzt.OFDM also enables the use of the Frequency Division Multiple Access access method (FDMA), which can be used particularly advantageously in mobile radio technology. With FDMA, the available bandwidth of a transmission channel is divided into several neighboring disjoint sub-frequency channels. The individual sub-frequency channels are then used as individual communication channels for different connections.
Bei OFDM werden dagegen Datensymbole einer Kommunikationsverbindung über mehrere solche Teilfrequenzbänder sozusagen parallel übertragen. Die Übertragung in einem einzelnen Teilfrequenzband erfolgt schmalbandig. Daher benötigt ein einzelnes Teilfrequenzband relativ wenig Bandbreite zur Übertragung. Durch die geringe Bandbreite eines Teilfrequenzbandes wird der insgesamt frequenzselektive Übertragungskanal in mehrere nicht-frequenzselektive AWGN-Teil-Übertragungskanäle (Additive White Gaussian Noise) aufgeteilt. Dies ermöglicht empfängerseitig die Implementierung eines effizienten Frequenzbereichentzerrers, welcher üblicherweise aus einer FFT- Einheit (Fast Fourier Transformation) und einer Kanalschätz- und Korrektureinheit besteht. Somit ist im wesentlichen aufgrund der parallelen Übertragung von Datensymbolen über mehrere Teilfrequenzbänder auch bei stark gestörten Mehrwegeaus- breitungskanälen trotzdem eine sehr hohe Übertragungsqualität möglich. Weiterhin können mittels Hinzufügen eines zeitlichen Präfixes zu dem OFDM-Nutzsymbolanteil Intersymbolinterferen- zen, die durch Echobildung auf dem Übertragungskanal entstehen, wirksam verringert werden. Nachteilig ist jedoch bei den bisher bekannten Mehr-Träger- Systemen, dass eine Kommunikation mit einem Einzel-Träger- System ohne weiteren, nicht unerheblichen Zusatzaufwand weder vorgesehen noch möglich ist. Beispielsweise kann ein Einzel- Träger-System, bei dem die zu übertragenden Daten mittels Frequency-Shift-Keeing (FSK) auf einen einzelnen Träger moduliert werden, nicht mit einem OFDM-System kommunizieren.In contrast, in OFDM, data symbols of a communication link are transmitted in parallel over several such sub-frequency bands, so to speak. The transmission in a single sub-frequency band is narrow-band. Therefore, a single sub-frequency band requires relatively little bandwidth for transmission. Due to the small bandwidth of a sub-frequency band, the overall frequency-selective transmission channel is divided into several non-frequency-selective AWGN sub-transmission channels (Additive White Gaussian Noise). This enables the implementation of an efficient frequency domain equalizer on the receiver side, which usually consists of an FFT unit (Fast Fourier Transformation) and a channel estimation and correction unit. Thus, due to the parallel transmission of data symbols over several sub-frequency bands, a very high transmission quality is still possible even with severely disturbed multipath channels. Furthermore, by adding a temporal prefix to the OFDM useful symbol portion, intersymbol interference that occurs due to echo formation on the transmission channel can be effectively reduced. However, a disadvantage of the previously known multi-carrier systems is that communication with a single-carrier system is neither provided nor possible without additional, not inconsiderable additional expenditure. For example, a single carrier system in which the data to be transmitted is modulated onto a single carrier by means of frequency shift keeing (FSK) cannot communicate with an OFDM system.
Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren und eine Vorrichtung zur Datenkommunikation zwischen einem Einzel- und einem Mehr-Träger-System vorzuschlagen. Ferner sollen eine aufwandsgünstige Sender- und ein Empfängerstruktur für sowohl Einzel- als auch Mehr-Träger-Signale angegeben werden.The object of the present invention is therefore to propose a method and a device for data communication between a single and a multi-carrier system. Furthermore, an inexpensive transmitter and a receiver structure for both single and multi-carrier signals are to be specified.
Diese Aufgabe wird durch ein Verfahren zur Datenkommunikation zwischen einem Einzel- und einem Mehr-Träger-System mit den Merkmalen nach Anspruch 1, eine entsprechende Vorrichtung mit den Merkmalen nach Anspruch 10 sowie einen Sender und einen Empfänger für Einzel- und einem Mehr-Träger-Signale mit den Merkmalen nach Anspruch 14 bzw. 15 gelöst. Bevorzugte Ausgestaltungen sind Gegenstand der abhängigen Ansprüche.This object is achieved by a method for data communication between a single and a multi-carrier system with the features according to claim 1, a corresponding device with the features according to claim 10 and a transmitter and a receiver for single and a multi-carrier 15 solved signals with the features of claims 14 and 15 respectively. Preferred embodiments are the subject of the dependent claims.
Es sei insbesondere darauf hingewiesen, das diese Sende- und Empfängerstruktur nicht lediglich auf die FSK-Modulation eingeschränkt ist, sondern insgesamt auf die Klasse der digitalen nichtlinearen Modulationsarten und der analogen nichtlinearen und linearen Modulationsarten angewendet werden kann. Zu den klassischen analogen nicht-linearen Modulationsarten gehören die FM (Frequenzmodulation) und WM (Winkelmodulation) , deren digitalen Derivate jeweils die FSK (Frequency Shift Keying) Modulation und das CPFSK (Continuous Phase Frequency Shift Keying) , welches auch CPM (Continuous Phase Modu- lation) genannt wird, sind. Obwohl GMSK (Gaussian MinimumIt should be pointed out in particular that this transmitter and receiver structure is not only restricted to the FSK modulation, but can be applied overall to the class of the digital nonlinear modulation types and the analog nonlinear and linear modulation types. The classic analog non-linear modulation types include FM (frequency modulation) and WM (angle modulation), whose digital derivatives each include FSK (Frequency Shift Keying) modulation and CPFSK (Continuous Phase Frequency Shift Keying), which also includes CPM (Continuous Phase Modu - lation) is called. Although GMSK (Gaussian Minimum
Shift Keying) eine lineare Modulation darstellt, kann sie als Sonderfall der FSK interpretiert werden, so dass oben genannte Sender- und Empfängerstruktur ebenfalls auf GMSK modulierte Systeme wie z.B. GSM und DECT angewendet werden können. Eine klassische analoge Modulationsform ist AM (Amplitudenmodulation) welche immer noch im Mittelwellen und Langwellen Rundfunkbereich weit verbreitet ist. Oben genannte Senderund Empfängerstruktur kann erfindungsgemäß ebenfalls auch für AM angewendet werden.Shift Keying) represents a linear modulation, it can be interpreted as a special case of the FSK, so that the above-mentioned transmitter and receiver structure are also systems modulated on GMSK, e.g. GSM and DECT can be applied. A classic analog form of modulation is AM (amplitude modulation) which is still widely used in medium and long wave broadcasting. The transmitter and receiver structure mentioned above can also be used for AM according to the invention.
Ein wesentlicher Punkt der Erfindung besteht darin, dass eine Datenkommunikation zwischen einem Einzel- und einem Mehr- Träger-System dadurch bewerkstelligt werden kann, dass das Mehr-Träger-System die spektralen Signalanteile des Einzel- Träger-Systems nachbildet. Hierzu wird im wesentlichen die Vielzahl von Trägern des Mehr-Träger-Systems genutzt.An essential point of the invention is that data communication between a single and a multi-carrier system can be accomplished in that the multi-carrier system simulates the spectral signal components of the single-carrier system. The multitude of carriers of the multi-carrier system is essentially used for this.
Die Erfindung betrifft also ein Verfahren zur Datenkommunikation zwischen einem Einzel- und einem Mehr-Träger-System. Auf der Empfangsseite tastet das Mehr-Träger-System ein empfangenes Einzel-Träger-Signal spektral ab und entscheidet davon abhängig über empfangene Daten. Auf der Sendeseite wird ein zu sendendes Einzel-Träger-Signal von dem Mehr-Träger-System mit seinen Trägern nachgebildet. Für einen bidirektionalen Betrieb tastet das Mehr-Träger-System ein empfangenes Einzel- Träger-Signal spektral ab und entscheidet davon abhängig über empfangene Daten; ferner bildet das Mehr-Träger-System ein zu sendendes Einzel-Träger-Signal mit seinen Trägern nach. Während in einem Mehr-Träger-System der IFFT (Inverse Fast Fou- rier Transformation) und/oder FFT (Fast Fourier Transformation) Algorithmus der Mehr-Träger-Modulation und/oder Mehr- Träger-Demodulation dient, wird in einem Einzel-Träger-System die IFFT und/oder die FFT zu Nachbildung der spektralen Signalanteile des Einzel-Träger-Nutzsignals verwendet. Im Prinzip ist damit eine bidirektionale Datenkommunikation zwischen den beiden Systemen möglich.The invention thus relates to a method for data communication between a single and a multi-carrier system. On the receiving side, the multi-carrier system spectrally samples a received single-carrier signal and, depending on it, decides on received data. On the transmission side, a single-carrier signal to be transmitted is simulated by the multi-carrier system with its carriers. For bidirectional operation, the multi-carrier system spectrally scans a received single-carrier signal and, depending on it, decides on received data; the multicarrier system also simulates a single carrier signal to be transmitted with its carriers. While in a multi-carrier system the IFFT (Inverse Fast Fourier Transformation) and / or FFT (Fast Fourier Transformation) algorithm serves the multi-carrier modulation and / or multi-carrier demodulation, in a single carrier -System uses the IFFT and / or the FFT to emulate the spectral signal components of the single-carrier useful signal. In principle, bidirectional data communication between the two systems is possible.
Vorzugsweise sind Mittenfrequenz, Frequenzhub und weitere relevante Systemparameter des Einzel-Träger-Systems auf Abstände der Trägerfrequenzen, Mittenfrequenz und weitere relevante Systemparameter des Mehr-Träger-Systems abgestimmt. Diese Systemparameter des Einzel-Träger-Systems werde auch als systemimmanente Parameter des Systems bezeichnet.The center frequency, frequency deviation and other relevant system parameters of the single carrier system are preferably matched to the spacing of the carrier frequencies, center frequency and other relevant system parameters of the multi-carrier system. These system parameters of the single-carrier system are also referred to as system-inherent parameters of the system.
Über empfangene Daten wird vorzugsweise anhand von Amplitude und Phase des spektral abgetasteten Einzel-Träger-Signals entschieden. Amplitude als auch Phase können verhältnismäßig einfach ausgewertet werden. Ferner stellen sie zuverlässige Kriterien für eine sichere Entscheidung über die empfangenen Daten dar.The data received is preferably decided on the basis of the amplitude and phase of the spectrally sampled single carrier signal. The amplitude and phase can be evaluated relatively easily. Furthermore, they represent reliable criteria for a safe decision about the received data.
In einem bevorzugten Einsatzgebiet der Erfindung werden Signale mittels Orthogonal Frequency Division Multiplexing von Mehr-Träger-Systemen gesendet und/oder empfangen. OFDM wird - wie bereits Eingangs erwähnt - vor allem bei der Übertragung von Signalen über frequenzselektive Mehrwegeausbreitungskanä- le vorteilhaft angewandt. Vorteilhaft kann es sowohl für digitalen Rundfunk, die Power-Line-Communication und dergleichen OFDM nutzende Übertragungsverfahren als auch in der Mobilfunktechnik eingesetzt werden.In a preferred field of application of the invention, signals are transmitted and / or received by multi-carrier systems by means of orthogonal frequency division multiplexing. As already mentioned at the beginning, OFDM is used particularly advantageously for the transmission of signals via frequency-selective multipath propagation channels. It can advantageously be used both for digital broadcasting, transmission methods using power line communication and the like OFDM, and also in mobile radio technology.
Schließlich moduliert in einer bevorzugten Ausgestaltung des Verfahrens das Einzel-Träger-System Signale mittels Frequency Shift Keying (FSK) . FSK wir vorzugsweise in der Mobilfunktechnik und im Schnurlos-Telefon-Bereich eingesetzt. Es eig- net sich vor allem für die Übertragung von Signalen überFinally, in a preferred embodiment of the method, the single carrier system modulates signals using frequency shift keying (FSK). FSK is preferably used in mobile radio technology and in the cordless telephone area. It proper is especially useful for the transmission of signals
Funkkanäle.Radio channels.
Ferner betrifft die Erfindung eine Vorrichtung zur Datenkommunikation zwischen einem Einzel- und einem Mehr-Träger- System. Hierbei sind in einem Sendepfad ein Betrags/Phasen- Zuordner, der ein zu sendendes Einzel-Träger-Signal nach Betrag und Phase Trägern eines Mehr-Träger-Signals zuordnet, und/oder in einem Empfangspfad ein Betrags/Phasen-Auswerter, der die Träger eines empfangenen Mehr-Träger-Signals nach Betrag und Phase auswertet, und ein diesem nachgeschalter Entscheider, der über empfangene Daten entscheidet, vorgesehen.Furthermore, the invention relates to a device for data communication between a single and a multi-carrier system. Here are in a transmission path an amount / phase allocator, which allocates a single carrier signal to be transmitted according to amount and phase carriers of a multi-carrier signal, and / or in an reception path an amount / phase evaluator, which identifies the carriers evaluates a received multi-carrier signal according to magnitude and phase, and a decision-maker connected downstream of this, who decides on received data, is provided.
Vorzugsweise umfasst der Sendepfad einen Mehr- und eine Einzel-Träger-Datenquelle. Die Signale der Einzel-Träger- Datenquelle werden über einen Multiplexer einer IFFT (Inverse Fast Fourier Transformation) -Einheit zugeführt. Während in einem Mehr-Träger-System der IFFT und/oder FFT Algorithmus der Mehr-Träger-Modulation und/oder Mehr-Träger-Demodulation dient, wird in einem Einzel-Träger-System die IFFT und/oder die FFT zu Nachbildung der die spektralen Signalanteile des Einzel-Träger-Nutzsignals verwendet. Erfindungsgemäß können anstelle einer IFFT und/oder FFT auch eine IDFT (Inverse Discrete Fourier Transformation und/oder DFT (Discrete Fourier Transformation eingesetzt werden.The transmission path preferably comprises a multi-carrier and a single-carrier data source. The signals from the single carrier data source are fed to an IFFT (Inverse Fast Fourier Transformation) unit via a multiplexer. While in a multi-carrier system the IFFT and / or FFT algorithm is used for multi-carrier modulation and / or multi-carrier demodulation, in a single-carrier system the IFFT and / or the FFT is used to emulate the spectral signal components of the single carrier useful signal used. According to the invention, an IDFT (Inverse Discrete Fourier Transformation and / or DFT (Discrete Fourier Transformation) can also be used instead of an IFFT and / or FFT.
Der Empfangspfad umfasst vorzugsweise eine FFT-Einheit (Fast Fourier Transformation) , die empfangenen Signale vom Zeit- in den Frequenzbereich transformiert, einen Demultiplexer, der das von der FFT-Einheit transformierte Empfangssignal auf Trägern ultiplext, und eine Einzel- und eine Mehr-Träger- Datensenke. Mit den oben erläuterten Ausgestaltungen kann eine Vorrichtung zur insbesondere bidirektionalen Datenko munikation zwischen einem Einzel- und einem Mehr-Träger-System vorteilhaft geschaffen werden.The receive path preferably comprises an FFT unit (Fast Fourier Transformation) which transforms received signals from the time domain into the frequency domain, a demultiplexer which ultiplexes the received signal transformed by the FFT unit on carriers, and a single and a multi-carrier - data sink. With the embodiments explained above, a device for in particular bidirectional data communication between a single and a multi-carrier system can advantageously be created.
Die Erfindung umfasst ferner einen Sender für Einzel- und Mehr-Träger-Signale. Dieser weist eine Mehr- und eine Einzel- Träger-Datenquelle auf. Ein von der Einzel-Träger-Datenquelle erzeugtes Einzel-Träger-Signal wird von einem Betrags/Phasen- Zuordner nach Betrag und Phase Trägern eines Signals zugeordnet, das von der Mehr-Träger-Datenquelle erzeugt wurde. Ein Multiplexer multiplext die vom Betrags/Phasen-Zuordner zugeordneten Signale und die Signale von der Mehr-Träger- Datenquelle auf Träger des zu sendenden Mehr-Träger-Signals. Schließlich werden die vom Multiplexer gemultiplexten Signale einer IFFT-Einheit zugeführt, die sie vom Frequenz- in den Zeitbereich transformiert.The invention also includes a transmitter for single and multi-carrier signals. This has a multi-carrier and a single-carrier data source. A single carrier signal generated by the single carrier data source is assigned by an amount / phase allocator according to the amount and phase carriers of a signal generated by the multiple carrier data source. A multiplexer multiplexes the signals assigned by the amount / phase allocator and the signals from the multi-carrier data source onto carriers of the multi-carrier signal to be transmitted. Finally, the signals multiplexed by the multiplexer are fed to an IFFT unit, which transforms them from the frequency to the time domain.
Ferner betrifft die Erfindung noch einen Empfänger für Einzel- und Mehr-Träger-Signale, der unter anderem eine FFT- Einheit aufweist. Diese transformiert die empfangenen Signale vom Zeit- in den Frequenzbereich. Zusätzlich weist der Empfänger einen De ultiplexer auf, der die von der FFT-Einheit transformierten EmpfangsSignale auf Träger eines Mehr-Träger- Signals multiplext. Dem Demultiplexer ist ein Betrags/Phasen- Auswerter nachgeschaltet, der zugeführte Signale nach Betrag und Phase auswertet. Schließlich ist dem Betrags/Phasen- Auswerter ein Entscheider nachgeschaltet, der über empfangene Daten entscheidet. Die entschiedenen Daten werden dann einer Einzel-Träger-Datensenke zugeführt. Die Ausgangssignale des Demultiplexers können auch einer Mehr-Träger-Datensenke zugeführt werden. Nachfolgend wird nun die Erfindung anhand von Ausführungsbei- spielen in Verbindung mit den Zeichnungen erläutert. Die Zeichnungen zeigen inFurthermore, the invention relates to a receiver for single and multi-carrier signals, which has an FFT unit, among other things. This transforms the received signals from the time domain to the frequency domain. In addition, the receiver has a de ultiplexer, which multiplexes the received signals transformed by the FFT unit onto carriers of a multi-carrier signal. The demultiplexer is followed by an absolute value / phase evaluator, which evaluates the signals supplied according to the absolute value and phase. Finally, the amount / phase evaluator is followed by a decision maker who decides on received data. The decided data is then fed to a single carrier data sink. The output signals of the demultiplexer can also be fed to a multi-carrier data sink. The invention will now be explained in the following on the basis of exemplary embodiments in conjunction with the drawings. The drawings show in
Fig. 1 ein Ausführungsbeispiel einer Vorrichtung zur Datenkommunikation mittels Mehr-Träger-Signalen, mit der sowohl Einzel- als auch Mehr-Träger-Signale übertragen werden können;1 shows an embodiment of a device for data communication using multi-carrier signals, with which both single and multi-carrier signals can be transmitted;
Fig. 2 ein Ausführungsbeispiel einer Vorrichtung zur Datenkommunikation zwischen einem Einzel- und einem Mehr- Träger-System, bei dem das Einzel-Träger-System Sender und das Mehr-Träger-System Empfänger ist; und2 shows an exemplary embodiment of a device for data communication between a single and a multi-carrier system, in which the single-carrier system is the transmitter and the multi-carrier system is the receiver; and
Fig. 3 ein Ausführungsbeispiel einer Vorrichtung zur Datenkommunikation zwischen einem Einzel- und einem Mehr- Träger-System, bei dem das Einzel-Träger-System Empfänger und das Mehr-Träger-System Sender ist.Fig. 3 shows an embodiment of an apparatus for data communication between a single and a multi-carrier system, in which the single-carrier system is the receiver and the multi-carrier system is the transmitter.
Die in Fig. 1 dargestellte Vorrichtung weist im Sendepfad als Mehr-Träger-Signal-Quelle eine OFDM- und als Einzel-Träger- Signal-Quelle eine FSK-Datenquelle 10 bzw. 12 auf. Im Sendepfad werden Signale im wesentlichen im Frequenzbereich digital erzeugt und verarbeitet. Vor der Übertragung werden sie in den Zeitbereich transformiert.The device shown in FIG. 1 has an OFDM and a single carrier signal source in the transmission path and an FSK data source 10 and 12 in the transmission path. In the transmission path, signals are essentially digitally generated and processed in the frequency range. Before transmission, they are transformed into the time domain.
Von der OFDM-Datenquelle 10 erzeugte Signale werden mittels einem nachgeschaltetem QAM-Modulators 13 und einem Se- riell/Parallel-Wandler 14 in ein paralleles Signal umgesetzt. Genauer gesagt werden die in dem seriellen Eingangssignal des Wandlers 14 enthaltenen Datenpakete, beispielsweise Bits oder Bytes, auf parallele Leitungen verteilt, um über mehrere Trägerfrequenzen parallel übertragen werden zu können. Die parallelen Ausgangssignale des Wandlers 14 werden einem Multiplexer 18 zugeführt, der diese auf Trägern eines auszusendenden Mehr-Träger-Signals multiplext. Dem Multiplexer 18 ist eine IFFT-Einheit 22 nachgeschaltet, die die zugeführten Signale vom Frequenz- in den Zeitbereich transformiert. Diese transformierten Signale werden dann über einen Transmitter 24 ausgesendet.Signals generated by the OFDM data source 10 are converted into a parallel signal by means of a downstream QAM modulator 13 and a serial / parallel converter 14. More precisely, the data packets, for example bits or bytes, contained in the serial input signal of the converter 14 are distributed on parallel lines in order to be able to be transmitted in parallel over a plurality of carrier frequencies. The parallel output signals of the converter 14 are fed to a multiplexer 18, which multiplexes them on carriers of a multi-carrier signal to be transmitted. The multiplexer 18 is followed by an IFFT unit 22, which transforms the supplied signals from the frequency to the time domain. These transformed signals are then transmitted via a transmitter 24.
Die von der FSK-Datenquelle 12 erzeugten Einzel-Träger- Signale werden von einem Frequenzbereichs-Modulator 17, genauer gesagt einem FSK-Modulator, auf eine einzelne Trägerfrequenz moduliert. Das vom FSK-Modulator 17 erzeugte Signal wird dann einem Betrags/Phasen-Zuordner 20 zugeführt, der das zugeführte Signal nach Betrag und Phase den einzelnen Trägern des Mehr-Träger-Signals zuordnet. Die derart zugeordneten Signale werden dem Multiplexer 18 zugeführt, der sie auf die einzelnen Trägern multiplext.The single carrier signals generated by the FSK data source 12 are modulated by a frequency domain modulator 17, more precisely an FSK modulator, to a single carrier frequency. The signal generated by the FSK modulator 17 is then fed to an amount / phase allocator 20, which assigns the supplied signal according to amount and phase to the individual carriers of the multicarrier signal. The signals assigned in this way are fed to the multiplexer 18, which multiplexes them onto the individual carriers.
Derart vom Empfangspfad erzeugte Signale werden über einen Übertragungskanal 26 übertragen und von einem Receiver 28 im Sendepfad empfangen. Die vom Receiver 28 empfangenen Signale werden einer FFT-Einheit 30 zugeführt, die sie vom Zeit- in den Frequenzbereich transformiert. Die nachfolgende Verarbeitung der Signale erfolgt dann im wesentlichen digital im Frequenzbereich.Signals generated in this way by the reception path are transmitted via a transmission channel 26 and received by a receiver 28 in the transmission path. The signals received by the receiver 28 are fed to an FFT unit 30, which transforms them from the time domain to the frequency domain. The subsequent processing of the signals is then carried out essentially digitally in the frequency domain.
Der FFT-Einheit 30 ist ein Demultiplexer 32 nachgeschaltet, der die von der FFT-Einheit 30 erzeugten Ausgangssignale auf die einzelnen Träger des empfangenen Mehr-Träger-Signals de- ultiplext . Dem Ausgangssignal des Demultiplexer 32 werden einerseits einem Seriell/Parallel-Wandler 38 zugeführt, der sie in einem seriellen Datenstrom umsetzt und über einen QAM-Demodulator und Entscheider 39 an eine OFDM-Datensenke 42 sendet. Andererseits werden die Ausgangssignale des Demultiplexers 32 einem Betrags/Phasen-Auswerter 34 zugeführt, der die Signale der einzelnen Träger nach Betrag und Phase auswertet und die so ausgewerteten Signale an einen Frequenzbereichs-Demodula- tor und Entscheider 37 überträgt.Downstream of the FFT unit 30 is a demultiplexer 32, which de-duplexes the output signals generated by the FFT unit 30 onto the individual carriers of the received multi-carrier signal. On the one hand, the output signal of the demultiplexer 32 is fed to a serial / parallel converter 38, which converts it into a serial data stream and sends it to an OFDM data sink 42 via a QAM demodulator and decision maker 39. On the other hand, the output signals of the demultiplexer 32 are fed to an absolute value / phase evaluator 34, which evaluates the signals of the individual carriers according to absolute value and phase and transmits the signals evaluated in this way to a frequency domain demodulator and decision maker 37.
Der Frequenzbereichs-Demodulator und Entscheider 37 trifft die Entscheidung über die empfangene Datenfolge und sendet die derart erhaltenen Daten an eine FSK-Datensenke 40.The frequency domain demodulator and decision maker 37 makes the decision about the received data sequence and sends the data obtained in this way to an FSK data sink 40.
Mit der in Fig. 1 dargestellten Vorrichtung ist es somit möglich, dass mit FSK modulierte Einzel-Träger-Signale über ein Mehr-Träger-System übertragen, insbesondere gesendet und empfangen werden. Damit stehen die Vorteile einer Mehr-Träger- Übertragung, wie beispielsweise eine sehr geringe Störanfälligkeit, auch Einzel-Träger-Signalen zur Verfügung. Obwohl die Übertragung in der Vorrichtung in Fig. 1 nur in einer Richtung angedeutet ist, ist eine bidirektionale Datenkommunikation im Prinzip genauso möglich.With the device shown in FIG. 1, it is thus possible for single-carrier signals modulated with FSK to be transmitted, in particular transmitted and received, via a multi-carrier system. This means that the advantages of multi-carrier transmission, such as very low susceptibility to interference, are also available for single-carrier signals. Although the transmission is only indicated in one direction in the device in FIG. 1, bidirectional data communication is in principle also possible.
Bei der in Fig. 2 dargestellten Vorrichtung handelt es sich um ein System zur unidirektionalen Datenkommunikation zwischen einem Einzel- und einem Mehr-Träger-System. Das Einzel- Träger-System ist bei dieser Vorrichtung Sender, das Mehr- Träger-System Empfänger. Da die Vorrichtung ansonsten der in Fig.l dargestellten gleicht, bis auf den Unterschied, dass ein Zeitbereichs-Modulator 16 verwendet wird, sei auf die dortige Beschreibung der Funktion der einzelnen Komponenten verwiesen. Schließlich zeigt Fig. 3 eine Vorrichtung, die ebenfalls zur unidirektionalen Datenkommunikation zwischen einem Einzel- und einem Mehr-Träger-System ausgebildet ist. Hier ist das Einzel-Träger-System ein Empfänger, das Mehr-Träger-System demnach Sender. Zur Beschreibung der Funktion der einzelnen Komponenten sei wiederum auf die Erläuterungen zu Fig. 1 verwiesen. The device shown in FIG. 2 is a system for unidirectional data communication between a single and a multi-carrier system. In this device, the single-carrier system is the transmitter and the multi-carrier system is the receiver. Since the device is otherwise the same as that shown in FIG. 1, except for the difference that a time-domain modulator 16 is used, reference is made to the description of the function of the individual components there. Finally, FIG. 3 shows a device which is also designed for unidirectional data communication between a single and a multi-carrier system. Here the single-carrier system is a receiver, and the multi-carrier system is therefore a transmitter. For a description of the function of the individual components, reference is again made to the explanations relating to FIG. 1.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
10 OFDM-Datenquelle10 OFDM data source
12 FSK-Datenquelle12 FSK data source
13 QAM-Modulator13 QAM modulator
14 Seriell/Parallel-Wandler14 serial / parallel converters
16 Zeitbereichs-Modulator16 time domain modulator
17 Frequenzbereichs-Modulator17 frequency domain modulator
18 Multiplexer18 multiplexers
20 Betrags/Phasen-Zuordner20 amount / phase allocators
22 IFFT-Einheit22 IFFT unit
24 Transmitter24 transmitters
26 Übertragungskanal 28 Receiver26 Transmission channel 28 receiver
30 FFT-Einheit 32 Demultiplexer30 FFT unit 32 demultiplexer
34 Betrags/Phasen-Auswerter34 amount / phase evaluator
36 Zeitbereichs-Demodulator und Entscheider36 time domain demodulator and decision maker
37 Frequenzbereichs-Demodulator und Entscheider37 Frequency domain demodulator and decision maker
38 Parallel/Seriell-Wandler38 parallel / serial converter
39 QAM-Demodulator und Entscheider39 QAM demodulator and decision maker
40 FSK-Datensenke 42 OFDM-Datensenke 40 FSK data sink 42 OFDM data sink

Claims

Patentansprüche claims
1. Verfahren zur Datenkommunikation zwischen einem Einzel- und einem Mehr-Träger-System, dadurch gekennzeichnet, dass das Mehr-Träger-System ein empfangenes Einzel-Träger-Signal spektral abtastet und davon abhängig ü- ber empfangene Daten entscheidet, oder das Mehr-Träger-System ein zu sendendes Einzel-Träger-Signal mit seinen Trägern nachbildet oder das Mehr-Träger-System ein empfangenes Einzel-Träger-Signal spektral abtastet und davon abhängig über empfangene Daten entscheidet und das Mehr-Träger-System ein zu sendendes Einzel-Träger-Signal mit seinen Trägern nachbildet.1. A method for data communication between a single and a multi-carrier system, characterized in that the multi-carrier system spectrally scans a received single carrier signal and, depending on this, decides on received data, or the multi-carrier system Carrier system simulates a single-carrier signal to be transmitted with its carriers, or the multi-carrier system spectrally scans a received single-carrier signal and, depending on this, decides on received data and the multi-carrier system a single to be transmitted. Replicates carrier signal with its carriers.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die systemimmanenten Parameter des Einzel-Träger-Systems auf Abstände der Trägerfrequenzen, Mittenfrequenz und weiteren systemimmanenten Parametern des Mehr- Träger-Systems abgestimmt werden.2. The method according to claim 1, characterized in that the system-inherent parameters of the single carrier system are matched to the spacing of the carrier frequencies, center frequency and other system-inherent parameters of the multi-carrier system.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die systemimmanenten Parameter des Einzel-Träger- Systems eine nichtlineare Modulationsart nach FSK und/oder CPFSK/CPM und/oder MSK und/oder GMSK und/der Frequenzmodulation und/oder Winkelmodulation beschreiben.3. The method according to claim 2, characterized in that the system-inherent parameters of the single carrier system describe a non-linear type of modulation according to FSK and / or CPFSK / CPM and / or MSK and / or GMSK and / or frequency modulation and / or angle modulation.
4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die systemimmanenten Parameter des Einzel-Träger- Systems eine lineare Modulationsart wie Amplitudenmodulation und/oder ASK/PAM (Amplitude Shift Keying/Pulse Amplitude Modulation) beschreiben. 4. The method according to claim 2, characterized in that the system-inherent parameters of the single carrier system describe a linear type of modulation such as amplitude modulation and / or ASK / PAM (Amplitude Shift Keying / Pulse Amplitude Modulation).
5. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass über empfangene Daten anhand von Amplitude und Phase des spektral abgetasteten Einzel-Träger-Signals entschieden wird.5. The method according to any one of the preceding claims, characterized in that a decision is made on received data based on the amplitude and phase of the spectrally sampled single carrier signal.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Mehr-Träger-System Signale mittels Orthogonal Frequency Division Multiplexing sendet und/oder empfängt.6. The method according to any one of the preceding claims, characterized in that the multi-carrier system sends and / or receives signals by means of orthogonal frequency division multiplexing.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Einzel-Träger- System Signale mittels Frequency Shift Keying moduliert.7. The method according to any one of the preceding claims, characterized in that the single carrier system modulates signals by means of frequency shift keying.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Einzel-Träger- System Signale mittels Continuous Phase Frequency Shift Keying moduliert.8. The method according to any one of the preceding claims, characterized in that the single carrier system modulates signals by means of continuous phase frequency shift keying.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Einzel-Träger- System Signale mittels Amplitudenmodulation moduliert.9. The method according to any one of the preceding claims, characterized in that the single carrier system modulates signals by means of amplitude modulation.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Einzel-Träger- System Signale mittels (analoger) Frequenzmodulation oder Winkelmodulation moduliert.10. The method according to any one of the preceding claims, characterized in that the single carrier system modulates signals by means of (analog) frequency modulation or angle modulation.
11. Vorrichtung zur Datenkommunikation zwischen einem Einzel- und einem Mehr-Träger-System, dadurch gekennzeichnet, dass in einem Sendepfad (10, 12, 13, 14, 17, 18, 22, 24) ein Betrags/Phasen-Zuordner (20), der ein zu sendendes Einzel-Träger-Signal nach Betrag und Phase Trägern ei- nes Mehr-Träger-Signals zuordnet, und/oder in einem Empfangspfad (28, 30, 32, 38, 39, 40, 42) ein Betrags/Phasen- Auswerter (34), der die Träger eines empfangenen Mehr-Träger- Signals nach Betrag und Phase auswertet, und ein diesem nachgeschalteter Frequenzbereichs-Demodulator und Entscheider (37), der über empfangene Daten entscheidet, vorgesehen sind.11. Device for data communication between a single and a multi-carrier system, characterized in that an amount / phase allocator (20) in a transmission path (10, 12, 13, 14, 17, 18, 22, 24) which transmits a single carrier signal to be transmitted based on amount and phase carriers. assigns a multicarrier signal, and / or in a reception path (28, 30, 32, 38, 39, 40, 42) an absolute value / phase evaluator (34) which detects the carriers of a received multicarrier signal Evaluates the magnitude and phase, and a frequency range demodulator and decider (37), which follows this and decides on received data, is provided.
12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass der Sendepfad eine Mehr- und eine Einzel- Träger-Datenquelle (10, 12) umfasst, deren Signale über einen Multiplexers (18) einer IFFT-Einheit (22) zugeführt werden, die zugeführte Signale vom Frequenz- in den Zeitbereich transformiert .12. The apparatus according to claim 11, characterized in that the transmission path comprises a multi-carrier and a single-carrier data source (10, 12), the signals of which are fed via a multiplexer (18) to an IFFT unit (22), the supplied Signals transformed from the frequency to the time domain.
13. Vorrichtung nach Anspruch 11 oder 12, dadurch gekennzeichnet , dass der Empfangspfad eine FFT-Einheit (30), die empfangene Signale vom Zeit- in den Frequenzbereich transformiert, einen Demultiplexer (32), der das von der FFT- Einheit (30) transformierte Empfangssignal auf Träger multiplext, und eine Einzel- und Mehr-Träger-Datensenke (40, 42) umfasst.13. The apparatus of claim 11 or 12, characterized in that the receiving path an FFT unit (30) that transforms received signals from the time domain to the frequency domain, a demultiplexer (32) that from the FFT unit (30) transformed received signal multiplexed on carriers, and comprises a single and multi-carrier data sink (40, 42).
14. Sender für Einzel- und Mehr-Träger-Signale, der14. Transmitter for single and multi-carrier signals, the
- eine Mehr- und eine Einzel-Träger-Datenquelle (10, 12),a multiple and a single carrier data source (10, 12),
- einen Betrags/Phasen-Zuordner (20) , der ein Einzel-Träger- Signal von der Einzel-Träger-Datenquelle (12) nach Betrag und Phase Trägern eines Mehr-Träger-Signals zuordnet,an amount / phase allocator (20) which assigns a single carrier signal from the single carrier data source (12) according to the amount and phase carriers of a multi-carrier signal,
- einen Multiplexer (18), der die vom Betrags/Phasen-Zuordner (20) zugeordneten Signale und die Signale von der Mehr- Träger-Datenquelle (10) auf Träger des zu sendenden Mehr- Träger-Signals multiplext, und- A multiplexer (18) which multiplexes the signals assigned by the amount / phase allocator (20) and the signals from the multicarrier data source (10) onto carriers of the multicarrier signal to be transmitted, and
- eine IFFT-Einheit (22) aufweist, die vom Multiplexer (18) zugeführte Signale vom Frequenz- in den Zeitbereich transformiert.- Has an IFFT unit (22) by the multiplexer (18) supplied signals are transformed from the frequency to the time domain.
15. Empfänger für Einzel- und Mehr-Träger-Signale, der15. Receiver for single and multi-carrier signals, the
- eine FFT-Einheit (30), die empfangene Signale vom Zeit- in den Frequenzbereich transformiert,an FFT unit (30) which transforms received signals from the time domain into the frequency domain,
- einen Demultiplexer (32), der das von der FFT-Einheit (30) transformierte Empfangssignal auf Träger eines Mehr-Träger- Signals multiplext,a demultiplexer (32) which multiplexes the received signal transformed by the FFT unit (30) onto a carrier of a multi-carrier signal,
- einen Betrags/Phasen-Auswerter (34), der die vom Demultiplexer (32) zugeführten Signale nach Betrag und Phase auswertet,an amount / phase evaluator (34) which evaluates the signals supplied by the demultiplexer (32) according to amount and phase,
- einen dem Betrags/Phasen-Auswerter (34) nachgeschalteten Frequenzbereichs-Demodulator und Entscheider (37), der über empfangene Daten entscheidet, und- A frequency range demodulator and decision maker (37), which decides on received data, is connected to the amount / phase evaluator (34), and
- eine Einzel- und Mehr-Träger-Datensenke (40, 42) aufweist. - A single and multi-carrier data sink (40, 42).
EP01957743A 2001-08-01 2001-08-01 Method for data communication between a single-carrier and a multi-carrier system Withdrawn EP1413082A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE2001/002926 WO2003013050A1 (en) 2001-08-01 2001-08-01 Method for data communication between a single-carrier and a multi-carrier system

Publications (1)

Publication Number Publication Date
EP1413082A1 true EP1413082A1 (en) 2004-04-28

Family

ID=5648274

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01957743A Withdrawn EP1413082A1 (en) 2001-08-01 2001-08-01 Method for data communication between a single-carrier and a multi-carrier system

Country Status (5)

Country Link
US (1) US20040218521A1 (en)
EP (1) EP1413082A1 (en)
JP (1) JP2004537239A (en)
CN (1) CN1310460C (en)
WO (1) WO2003013050A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60229370D1 (en) * 2001-03-30 2008-11-27 M & Fc Holding Llc IMPROVED WIRELESS PACKAGE DATA COMMUNICATION SYSTEM, METHOD AND APPARATUS WITH APPLICABILITY BOTH ON LARGE-NETWORK NETWORKS AND LOCAL NETWORKS
US8484272B2 (en) * 2004-08-20 2013-07-09 Qualcomm Incorporated Unified pulse shaping for multi-carrier and single-carrier waveforms
WO2007029406A1 (en) * 2005-09-07 2007-03-15 Nec Corporation Adaptive radio/modulation apparatus, receiver apparatus, wireless communication system and wireless communication method
US8948154B2 (en) * 2010-02-10 2015-02-03 Qualcomm Incorporated Method and apparatus for sending and receiving a low-complexity transmission in a wireless communication system
CN102244537B (en) * 2010-05-13 2014-07-16 中兴通讯股份有限公司 Method for loading uplink analog data of terminal and terminal
EP3082287A1 (en) 2015-04-16 2016-10-19 Gemalto M2M GmbH Method for uplink communication in a lte cellular network
JP6477203B2 (en) * 2015-04-27 2019-03-06 株式会社ノーリツ Communication mechanism for hot water supply system, hot water supply apparatus and communication terminal device provided with the same
JP6810253B2 (en) 2016-09-09 2021-01-06 ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company Systems and methods for producing products on demand
WO2018049125A1 (en) 2016-09-09 2018-03-15 The Procter & Gamble Company System and method for simultaneously filling containers with different fluent compositions
US10640354B2 (en) 2016-09-09 2020-05-05 The Procter & Gamble Company System and method for simultaneously filling containers of different shapes and/or sizes
US11584628B2 (en) 2016-09-09 2023-02-21 The Procter & Gamble Company System and method for independently routing vehicles and delivering containers and closures to unit operation systems
JP6892497B2 (en) 2016-09-09 2021-06-23 ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company Non-stop weighing scale system and method for linear synchronous motor conveyors
WO2018049119A1 (en) 2016-09-09 2018-03-15 The Procter & Gamble Company Methods for simultaneously producing different products on a single production line
EP3510459A2 (en) 2016-09-09 2019-07-17 The Procter and Gamble Company System and method for independently routing container-loaded vehicles to create different finished products
CA3036087C (en) 2016-09-09 2021-03-23 The Procter & Gamble Company Vacuum holder with extensible skirt gasket
WO2020166970A1 (en) * 2019-02-12 2020-08-20 Samsung Electronics Co., Ltd. Method and apparatus for multi-band single carrier transmission in millimeter wireless communication system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5680394A (en) * 1995-07-11 1997-10-21 Amati Communications Corporation Time division duplexed high speed data transmission system and method
US6021158A (en) * 1996-05-09 2000-02-01 Texas Instruments Incorporated Hybrid wireless wire-line network integration and management
KR100226698B1 (en) * 1996-12-28 1999-10-15 전주범 Channel equalizer for use in ofdm receiving system
EP0938193A1 (en) * 1998-02-18 1999-08-25 Sony International (Europe) GmbH Header structure for TDD systems
CN1166086C (en) * 1998-02-26 2004-09-08 索尼公司 Communication system, base station apparatus, communication terminal apparatus and communication method
CA2291551A1 (en) * 1999-11-26 2001-05-26 Telecommunications Research Laboratories Microwave phase modulator
JP2001358692A (en) * 2000-06-14 2001-12-26 Nec Corp Orthogonal frequency-division multiplex modulating and demodulating circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03013050A1 *

Also Published As

Publication number Publication date
WO2003013050A1 (en) 2003-02-13
CN1310460C (en) 2007-04-11
US20040218521A1 (en) 2004-11-04
CN1620777A (en) 2005-05-25
JP2004537239A (en) 2004-12-09

Similar Documents

Publication Publication Date Title
DE69633670T2 (en) PULSE SHAPING FOR MULTI-LEAD MODULATION
EP1413082A1 (en) Method for data communication between a single-carrier and a multi-carrier system
DE60038047T2 (en) CORRECTION OF A SCREEN FREQUENCY TRANSFER ERROR IN AN ORTHOGONAL FREQUENCY MULTIPLEX TRANSMISSION SYSTEM BY ANALYSIS OF THE SIDE PIPES OF PILOT CARRIERS
EP1889431B1 (en) Radio transmission having variable lengths of guard intervals
DE69933409T2 (en) Method and arrangement for achieving and maintaining symbol synchronization in an OFDM transmission system
DE602005006423T2 (en) Blind Selective Mapping (SLM) using pilot signals
EP1142172B1 (en) Method and communications assembly for transferring information by using a multi-carrier method
DE69726546T2 (en) Arrangement and method for multichannel transmission with a reduced ratio of peak to average power
DE19962340B4 (en) Transmitter for sending signals via radio channels and method for transmitting signals via radio channels
DE2101076A1 (en) Digital data transmission system rmt high working speed
DE69637193T2 (en) Transmitter or receiver with phase rotator for multicarrier signals
DE10234823B4 (en) Method for dividing the bit rate of QPSK signals into two or more subchannels
WO2011006839A1 (en) Method for transferring control signals and data signals, circuit configuration for transferring and receiving
WO2004023752A1 (en) Method and transmission device for the transmission of data in a multi-carrier system
DE19701011C1 (en) Channel estimating method for mobile communication channel
WO1992020179A1 (en) Process and arrangement for the differential modulation of signals in a multi-channel transmission system
DE19543622C2 (en) Method and device for the bidirectional transmission of high-rate digital signals
DE69838096T2 (en) Method and device for processing a signal in a telecommunication device
DE102004061854B3 (en) Method and device for generating a periodic training signal
DE69729239T2 (en) Method and device for equalizing a multicarrier signal and corresponding receiver
DE19827514A1 (en) Multiple carrier signal transmission method for parallel transmission over several sub channels
WO2003039088A1 (en) Frequency equalization for a multitone transmission system
DE102004056478B3 (en) Reception of quadrature amplitude-modulated discrete multi-tone signals, employs Fourier transformation and equalization to achieve maximum signal to noise ratio
EP1320969A1 (en) Modulation method for a multi-carrier process with pre-emphasis
EP3345330A1 (en) Pilot signal pattern for wirelessly transmitting data by means of an orthogonal frequency-division multiplexing method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040113

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20070222

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070705