EP1408895A4 - Valvular prostheses having metal or pseudometallic construction and methods of manufacture - Google Patents

Valvular prostheses having metal or pseudometallic construction and methods of manufacture

Info

Publication number
EP1408895A4
EP1408895A4 EP02750232A EP02750232A EP1408895A4 EP 1408895 A4 EP1408895 A4 EP 1408895A4 EP 02750232 A EP02750232 A EP 02750232A EP 02750232 A EP02750232 A EP 02750232A EP 1408895 A4 EP1408895 A4 EP 1408895A4
Authority
EP
European Patent Office
Prior art keywords
valve
stent
graft
member
stent body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02750232A
Other languages
German (de)
French (fr)
Other versions
EP1408895B1 (en
EP1408895A2 (en
Inventor
Julio C Palmaz
Eugene A Sprague
Christina Fuss
Denes Marton
Roger W Wiseman
Christopher E Banas
Christopher T Boyle
Steven R Bailey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Bio Prosthetic Surfaces Ltd
Original Assignee
Advanced Bio Prosthetic Surfaces Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US120728 priority Critical
Priority to US30279701P priority
Priority to US302797P priority
Priority to US10/120,728 priority patent/US7195641B2/en
Application filed by Advanced Bio Prosthetic Surfaces Ltd filed Critical Advanced Bio Prosthetic Surfaces Ltd
Priority to PCT/US2002/023239 priority patent/WO2003003943A2/en
Publication of EP1408895A2 publication Critical patent/EP1408895A2/en
Publication of EP1408895A4 publication Critical patent/EP1408895A4/en
Application granted granted Critical
Publication of EP1408895B1 publication Critical patent/EP1408895B1/en
Application status is Expired - Fee Related legal-status Critical
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices
    • A61F2/2475Venous valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • A61F2220/0016Fixation appliances for connecting prostheses to the body with sharp anchoring protrusions, e.g. barbs, pins, spikes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/005Rosette-shaped, e.g. star-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0054V-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0073Quadric-shaped
    • A61F2230/0078Quadric-shaped hyperboloidal

Abstract

This invention relates to improvements in prosthetic cardiac and venous valves and implantable medical devices (10) having moveable septa. The inventive prosthetic cardiac and venous valves have metallic or pseudometallic valves coupled to metallic or pseudometallic stents that permit percutaneous delivery of the devices.

Description

VALVULAR PROSTHESES HAVING METAL OR PSEUDOMETALLIC CONSTRUCTION AND METHODS OF MANUFACTURE

Background of the Invention

The present invention relates generally to metal and pseudometalhc films suitable for implantation into mammalian subjects in need thereof. More particularly, the present invention pertains to prosthetic cardiac and venous valve implants, access ports and other implantable medical devices that employ moveable valve flaps. The implantable medical devices according to the present invention have improved valve flap members fabricated from metal and/or pseudometalhc materials. It is desirable, although not essential to the present invention, that the prosthetic cardiac and venous valve implants be capable of being delivered using endovascular techniques and being implanted at an intracardiac or intravenous site without the need for anatomic valve removal. Embodiments of the prosthetic valves of the present invention are well-suited for cardiac delivery via a femoral or subclavian artery approach using a delivery catheter, and, depending upon the specific configuration selected, may be deployed within the heart to repair valve defects or disease or septal defects or disease. According to one embodiment of the invention, there is provided a chamber-to-vessel (CV) configuration that is particularly well suited as an aortic valve prosthesis to facilitate blood flow from the left ventricle to the aorta. In a second embodiment, there is provided a prosthetic valve in a chamber-to-chamber (CC) configuration that is particularly well-adapted for mitral valve replacement or repair of septal defects. Finally, a third embodiment is provided in a vessel-to-vessel (VV) configuration, which is well suited for venous valve exclusion and replacement. Common to each of the CV, CC and W embodiments of the present invention are a stent support member, a graft member which covers at least a portion of either or both the luminal and abluminal surfaces of the stent and valve flap members. Both the graft member and the valve flap members are preferably fabricated from metallic and/or pseudometalhc materials, the valve flaps being coupled to the stent in a manner which biases the valve flaps so they close upon a zero pressure differential across the valve region. More specifically, the valve flap members and the graft members of the present invention are fabricated entirely of self-supporting films made of biocompatible metals or biocompatible pseudometals. For purposes of this application, the term "pseudometal" or "pseudometallic" is intended to mean a biocompatible material which exhibits biological response and material characteristics substantially the same as biocompatible metals, such as for example composite materials.

As opposed to wrought materials that are made of a single metal or alloy, the inventive valve flap members and graft members are made of at least two layers formed upon one another into a self-supporting laminate structure. Laminate structures are generally known to increase the mechanical strength of sheet materials, such as wood or paper products. Laminates are used in the field of thin film fabrication also to increase the mechanical properties of the thin film, specifically hardness and toughness. Laminate metal foils have not been used or developed because the standard metal forming technologies, such as rolling and extrusion, for example, do not readily lend themselves to producing laminate structures. Vacuum deposition technologies can be developed to yield laminate metal structures with improved mechanical properties. In addition, laminate structures can be designed to provide special qualities by including layers that have special properties such as superelasticity, shape memory, radio-opacity, corrosion resistance etc.

It is important for the present invention to provide orientational definitions. For purposes of the present invention, references to positional aspects of the present invention will be defined relative to the directional flow vector of blood flow through the implantable device. Thus, the term "proximal" is intended to mean on the inflow or upstream flow side of the device, while "distal" is intended to mean on the outflow or downstream flow side of the device. With respect to the catheter delivery system described herein, the term "proximal" is intended to mean toward the operator end of the catheter, while the term "distal" is intended to mean toward the terminal end or device-carrying end of the catheter.

Conventional metal foils, wires and thin-walled seamless tubes are typically produced from ingots in a series of hot or cold forming steps that include some combination of rolling, pulling, extrusion and other similar processes. Each of these processing steps is accompanied by auxiliary steps that include cleaning the surfaces of the material of foreign material residues deposited on the material by the tooling and lubricants used in the metal forming processes. Additionally, chemical interaction with tooling and lubricant materials and ambient gases also introduces contaminants. Some residue will still usually remain on the surface of the formed material, and there is a high probability that these contaminating residues become incorporated during subsequent processing steps into the bulk of the wrought metal product. With decreasing material product size, the significance of such contaminating impurities increases. Specifically, a greater number of process steps, and, therefore, a greater probability for introducing contaminants, are required to produce smaller product sizes. Moreover, with decreasing product size, the relative size of non-metal or other foreign inclusions becomes larger. This effect is particularly important for material thicknesses that are comparable to the grain or inclusion size. For example, austenitic stainless steels have typical grain sizes on the order of magnitude of 10-100 micrometer.

When a wire or foil with a thickness in this range is produced, there is significant probability that some grain boundaries or defects will extend across a large portion or even across the total thickness of the product. Such products will have locally diminished mechanical and corrosion resistance properties. While corrosion resistance is remedied by surface treatments such as electropolishing, the mechanical properties are more difficult to control.

The mechanical properties of metals depend significantly on their microstructure. The forming and shaping processes used to fabricate metal foils, wires and thin-walled seamless tubes involves heavy deformation of a bulk material, which results in a heavily strained and deformed grain structure. Even though annealing treatments may partially alleviate the grain deformation, it is typically impossible to revert to well-rounded grain structure and a large range of grain sizes is a common result. The end result of conventional forming and shaping processes, coupled with annealing, typically results in non-uniform grain structure and less favorable mechanical properties in smaller sized wrought metal products. It is possible, therefore, to produce high quality homogeneous materials for special purposes, such as micromechanical devices and medical devices, using vacuum deposition technologies.

In vacuum deposition technologies, materials are formed directly in the desired geometry, e.g., planar, tubular, etc. The common principle of the vacuum deposition processes is to take a material in a minimally processed form, such as pellets or thick foils (the source material) and atomize them. Atomization may be carried out using heat, as is the case in physical vapor deposition, or using the effect of collisional processes, as in the case of ' sputter deposition, for example. In some forms of deposition, a process, such as laser ablation, which creates microparticles that typically consist of one or more atoms, may replace atomization; the number of atoms per particle may be in the thousands or more. The atoms or particles of the source material are then deposited on a substrate or mandrel to directly form the desired object. In other deposition methodologies, chemical reactions between ambient gas introduced into the vacuum chamber, i.e., the gas source, and the deposited atoms and/or particles are part of the deposition process. The deposited material includes compound species that are formed due to the reaction of the solid source and the gas source, such as in the case of chemical vapor deposition. In most cases, the deposited material is then either partially or completely removed from the substrate, to form the desired product.

The rate of film growth is a significant parameter of vacuum deposition processes. In order to deposit materials that can be compared in functionality with wrought metal products, deposition rates in excess of 1 micrometers/hour are a must and indeed rates as high as 100 micrometers per hour are desirable. These are high deposition rates and it is known that at such rates the deposits always have a columnar structure. Depending on other deposition parameters, and most importantly on the substrate temperature, the columns may be amorphous or crystalline but at such high deposition rates macrocrystalline structure development can be expected at best. The difficulty is that the columns provide a mechanically weak structure in which crack propagation can occur uninhibited across the whole thickness of the deposit.

A special advantage of vacuum deposition technologies is that it is possible to deposit layered materials and thus films possessing exceptional qualities may be produced (cf., H. Holleck, V. Schier: "Multilayer PVD coatings for wear protection", Surface and Coatings Technology, Vol. 76-77 (1995) pp. 328-336). Layered materials, such as superstructures or multilayers, are commonly deposited to take advantage of some chemical, electronic, or optical property of the material as a coating; a common example is an antireflective coating on an optical lens.

It has not been recognized until relatively recently that multilayer coatings may have improved mechanical properties compared with similar coatings made of a single layer. The improved mechanical properties may be due to the ability of the interface between the layers to relieve stress. This stress relief occurs if the interface provides a slide plane, is plastic, or may delaminate locally. This property of multilayer films has been recognized in regard with their hardness but this recognition has not been translated to other mechanical properties that are significant for metal products that may be used in application where they replace wrought metal parts.

A technological step that interrupts the film growth results in discontinuous columns and prevents crack propagation across the entire film thickness. In this sense, it is not necessary that the structure consist of a multiplicity of chemically distinct layers, as it is common in the case of thin film technology where multilayers are used. Such chemical differences may be useful and may contribute to improved properties of the materials.

As used in this application a "layer" is intended to mean a substantially uniform material limited by interfaces between it and adjacent other substantially homogeneous layers, substrate, or environment. The interface region between adjacent layers is an inhomogeneous region in which extensive thermodynamic parameters may change. Different layers are not necessarily characterized by different values of the extensive thermodynamic parameters but at the interface, there is a local change at least in some parameters. For example, the interface between two steel layers that are identical in composition and microstructure may be characterized by a high local concentration of grain boundaries due to an interruption of the film growth process. Thus, the interface between layers is not necessarily different in chemical composition if it is different in structure.

It is necessary to provide for good adhesion between the layers and this is usually achieved by providing for a relatively broad interface region rather than for an abrupt interface. The width of the interface region may be defined as the range within which extensive thermodynamic parameters change. This range can depend on the interface area considered and it may mean the extent of interface microroughness. In other words, adhesion may be promoted by increased interface microroughness between adjacent layers.

By providing for a layered structure, the inventive materials consist of a controlled maximum size of grains and columns as extended defects in the direction of the film growth (perpendicular to the layers). This limit of the grain or defect size results in materials that have increased mechanical strength and particularly increased toughness compared to their non-laminated counterparts, both deposited and wrought materials. In addition, limiting the extent to which defects and grain boundaries reach across the laminate, corrosion resistance is also improved.

Laminated materials will have additional advantages when chemical compositions of the layers are chosen to achieve special properties. For example, a radiopaque material such as tantalum may form one layer of a structure while other layers are chosen to provide the material with necessary mechanical and other properties.

Heretofore, however, conventional implantable valves have traditionally been fabricated of rigid metal or synthetic materials, or have been fabricated of pliant synthetic polymeric materials, each of which involved both hemodynamic and physiological complications.

Summary of Prior Art

The prior art discloses certain common device segments inherently required by a percutaneous prosthetic valve: an expandable stent segment, an anchoring segment and a flow-regulation segment.

Prior art percutaneous prosthetic valve devices include the Dobben valve, U.S. Pat. No. 4,994,077, the Vince valve, U.S. Pat. No. 5,163,953, the Teitelbaum valve, U.S. Pat. No. 5,332,402, the Stevens valve, U.S. Pat. No. 5,370,685, the Pavcnik valve, U.S. Pat. No. 5,397,351, the Taheri valve, U.S. Pat. No. 5,824,064, the Anderson valves, U.S. Pat. Nos. 5,411,552 & 5,840,081, the Jayaraman valve, U.S. Pat. No. 5,855,597, the Besseler valve,

U.S. Pat. No. 5,855,601, the Khosravi valve, U.S. Pat. No. 5,925,063, the Zadano-Azizi valve, U.S. Pat. No. 5,954,766, and the Leonhardt valve, U.S. Pat. No. 5,957,949. Each of these pre-existing stent valve designs has certain disadvantages which are resolved by the present invention. The Dobben valve has a disk shaped flap threaded on a wire bent like a safety pin to engage the vessel wall and anchor the valve. A second embodiment uses a stent of a cylindrical or crown shape that is made by bending wire into a zig-zag shape to anchor the device and attach the flow regulator flap. The device presents significant hemodynamic, delivery, fatigue and stability disadvantages. The Vince valve has a stent comprised of a toroidal body formed of a flexible coil of wire and a flow-regulation mechanism consisting of a flap of biologic material. Numerous longitudinal extensions within the stent are provided as attachment posts to mount the flow- regulation mechanism. The device requires balloon expansion to deliver to the body orifice. The main shortcoming of this design is delivery profile. Specifically, the device and method put forth will require a 20+ French size catheter (approximately 9 French sizes to accommodate the balloon and 14+ French sizes to accommodate the compressed device) making the device clinically ineffective as a minimally invasive technique. Additionally, the device does not adequately address hemodynamic, stability and anchoring concerns. The Teitelbaum valve is made of shape memory nitinol and consists of two components. The first component is stent-like and comprised of a meshwork or braiding of nitinol wire similar to that described by Wallsten, U.S. Pat. No. 4,655,771, with trumpet like distal a proximal flares. The purpose of the stent is to maintain a semi-ridged patent channel through the diseased cardiac valve after initial balloon dilation. The flared ends are intended to maintain the position of the stent component across the valve thereby anchoring the device. Embodiments for the flow-regulation mechanism include a sliding obturator and a caged ball both which are delivered secondary to the stent portion. The disadvantages of the device are the flow regulators reduce the effective valve orifice and generate sub-optimal hemodynamic characteristics; fatigue concerns arise from the separate nature of the stent and flow-regulation components; the high metal and exposed metal content raises thrombogenesis, valvular stenosis and chronic anticoagulation concerns; and the separate delivery requirements (although addressing the need for small delivery profile) in addition to any initial valvuloplasty performed increases the time, costs, risks, difficulty and trauma associated with the percutaneous procedure.

The Pavcnik valve is a self-expanding percutaneous device comprised of a poppet, a stent and a restraining element. The valve stent has barbed means to anchor to the internal passageway. The device includes a self-expanding stent of a zigzag configuration in conjunction with a cage mechanism comprised of a multiplicity of crisscrossed wires and a valve seat. The disadvantages of the device include large delivery profile, reduced effective valvular orifice, possible perivalvular leakage, trauma-inducing turbulent flow generated by the cage occlusive apparatus and valve seat, thrombogenesis, valvular stenosis, chronic anticoagulation, problematic physiological and procedural concerns due to the barb anchors and complex delivery procedure that includes inflation of occlusive member after initial implantation.

Stevens discloses a percutaneous valve replacement system for the endovascular removal of a malfunctioning valve followed by replacement with a prosthetic valve. The valve replacement system may include a prosthetic valve device comprised of a stent and cusps for flow-regulation such as a fixed porcine aortic valve, a valve introducer, an intraluminal procedure device, a procedure device capsule and a tissue cutter. The devices disclosed indicate a long and complex procedure requiring large diameter catheters. The valve device disclosed will require a large delivery catheter and does not address the key mechanisms required of a functioning valve. Additionally, the device requires intraluminal- securing means such as suturing to anchor the device at the desired location.

The Taheri valve describes an aortic valve replacement combined with an aortic arch graft. The devices and percutaneous methods described require puncture of the chest cavity. Anderson has disclosed various balloon expandable percutaneous prosthetic valves. The latest discloses a valve prosthesis comprised of a stent made from an expandable cylindrical structure made of several spaced apices and an elastically collapsible valve mounted to the stent with the commissural points of the valve mounted to the apices. The device is placed at the desired location by balloon expanding the stent and valve. The main disadvantage to this design is the 20+ French size delivery requirement. Other problems include anchoring stability, perivalvular leakage, difficult manufacture and suspect valve performance.

The Jayaraman valve includes a star-shaped stent and a replacement valve and/or replacement graft for use in repairing a damaged cardiac valve. The device is comprised of a chain of interconnected star-shaped stent segments in the center of which sits a replacement valve. The flow-regulation mechanism consists of three flaps cut into a flat piece of graft material that is rolled to form a conduit in which the three flaps may be folded inwardly in an overlapping manner. An additional flow-regulation mechanism is disclosed in which a patch (or multiple patches) is sutured to the outside of a conduit which is then pulled inside out or inverted such that the patch(s) reside on the fully inverted conduit. A balloon catheter is required to assist expansion during delivery. The disadvantages of this design include lack of sufficient anchoring mechanism; problematic interference concerns with adjacent tissues and anatomical structures; fatigue concerns associated with the multiplicity of segments, connections and sutures; lack of an adequately controlled and biased flow-regulation mechanism; uncertain effective valve orifice, difficult manufacture; balloon dilation requirement; complex, difficult and inaccurate delivery and large delivery profile. The Besseler valve discloses methods and devices for the endo vascular removal of a defective heart valve and the replacement with a percutaneous cardiac valve. The device is comprised of a self-expanding stent member with a flexible valve disposed within. The stent member is of a self-expanding cylindrical shape made from a closed wire in formed in a zigzag configuration that can be a single piece, stamped or extruded or formed by welding the free ends together. The flow-regulation mechanism is comprised of an arcuate portion which contains a slit (or slits) to form leaflets and a cuff portion which is sutured to and encloses the stent. The preferred flow regulator is a porcine pericardium with three cusps. An additional flow regulator is described in which the graft material that comprises the leaflets (no additional mechanisms for flow-regulation) extends to form the outer cuff portion and is attached to the stent portion with sutures. The anchoring segment is provided by a plurality of barbs carried by the stent (and therefor penetrating the cuff-graft segment). Delivery requires endoluminal removal of the natural valve because the barb anchors will malfunction if they are orthotopically secured to the native leaflets instead of the more rigid tissue at the native annulus or vessel wall. Delivery involves a catheter within which the device and a pusher rod are disposed. The disadvantages of the device are lack of a well defined and biased flow- regulation mechanism, anatomic valve removal is required thereby lengthening the procedure time, increasing difficulty and reducing clinical practicality, trauma-inducing barbs as described above and the device is unstable and prone to migration if barbs are omitted.

The Khosravi valve discloses a percutaneous prosthetic valve comprised of a coiled sheet stent similar to that described by Derbyshire, U.S. Pat. No. 5,007,926, to which a plurality of flaps are mounted on the interior surface to form a flow-regulation mechanism that may be comprised of a biocompatible material. The disadvantages of this design include problematic interactions between the stent and flaps in the delivery state, lack of clinical data on coiled stent performance, the lack of a detailed mechanism to ensure that the flaps will create a competent one-directional valve, lack of appropriate anchoring means, and the design requirements imposed by surrounding anatomical structures are ignored.

The Zadno-Azizi valve discloses a device in which flow-regulation is provided by a flap disposed within a frame structure capable of taking an insertion state and an expanded state. The preferred embodiment of the flow-regulation mechanism is defined by a longitudinal valve body made of a sufficiently resilient material with a slit(s) that extends longitudinally through the valve body. Increased sub-valvular pressure is said to cause the valve body to expand thereby opening the slit and allowing fluid flow there through. The valve body extends into the into the lumen of the body passage such that increased supra- valvular pressure will prevent the slit from opening thereby effecting one-directional flow. The device includes embedding the frame within the seal or graft material through injection molding, blow molding and insertion molding. The disadvantages of the device include the flow-regulation mechanism provides a small effective valve orifice, the turbidity caused by the multiple slit mechanisms, the large delivery profile required by the disclosed embodiments and the lack of acute anchoring means. Finally, the Leonhardt valve is comprised of a tubular graft having radially compressible annular spring portions and a flow regulator, which is preferably a biological valve disposed within. In addition to oversizing the spring stent by 30%, anchoring means is provided by a light- activated biocompatible tissue adhesive is located on the outside of the tubular graft and seals to the living tissue. The stent section is comprised of a single piece of superelastic wire formed into a zigzag shape and connected together by crimping tubes, adhesives or welds. A malleable thin-walled, biocompatible, flexible, expandable, woven fabric graft material is connected to the outside of the stent that is in turn connected to the biological flow regulator. Disadvantages of this device include those profile concerns associated with biological valves and unsupported graft-leaflet regulators, a large diameter complex delivery system and method which requires multiple anchoring balloons and the use of a light activated tissue adhesive in addition to any prior valvuloplasty performed, interference with surrounding anatomy and the questionable clinical utility and feasibility of the light actuated anchoring means. As used herein the term "Graft" is intended to indicate any type of tubular member which exhibits integral columnar and circumferential strength and which has openings which pass through the thickness of the tubular member In accordance with a preferred embodiment of the invention, a graft member is formed as a discrete thin sheet or tube of biocompatible metal and or pseudometal. A plurality of openings is provided which pass transversely through the graft member. The plurality of openings may be random or may be patterned. It is preferable that the size of each of the plurality of openings be such as to permit cellular migration through each opening, without permitting fluid flow there through. In this manner, blood cannot flow through the plurality of openings, but various cells or proteins may freely pass through the plurality of openings to promote graft healing in vivo. In accordance with another aspect of the inventive graft embodiment, it is contemplated that two graft members are employed, with an outer diameter of a first graft member being smaller than the inner diameter of a second graft member, such that the first graft member is concentrically engageable within a lumen of the second graft member. Both the first and second graft members have a pattern of a plurality of openings passing there through. The first and second graft members are positioned concentrically with respect to one another, with the plurality of patterned openings being positioned out of phase relative to one another such as to create a tortuous cellular migration pathway through the wall of the concentrically engaged first and second graft members. In order to facilitate cellular migration through and healing of the first and second graft members in vivo, it is preferable to provide additional cellular migration pathways that communicate between the plurality of openings in the first and second graft members. These additional cellular migration pathways may be imparted as 1) a plurality of projections formed on either the luminal surface of the second graft or the abluminal surface of the first graft, or both, which serve as spacers and act to maintain an annular opening between the first and second graft members that permits cellular migration and cellular communication between the plurality of openings in the first and second graft members, or 2) a plurality of microgrooves, which may be random, radial, helical, or longitudinal relative to the longitudinal axis of the first and second graft members, the plurality of microgrooves being of a sufficient size to permit cellular migration and propagation along the groove without permitting fluid flow there through, the microgrooves serve as cellular migration conduits between the plurality of openings in the first and second graft members. In order to improve healing response, it is preferable that the materials employed have substantially homogenous surface profiles at the blood or tissue contact surfaces thereof. A substantially homogeneous surface profile is achieved by controlling heterogeneities along the blood or tissue-contacting surface of the material. The heterogeneities that are controlled in accordance with an embodiment of the present invention include: grain size, grain phase, grain material composition, stent-material composition, and surface topography at the blood flow surface of the stent. Additionally, the present invention provides methods of making endoluminal devices having controlled heterogeneities in the device material along the blood flow or tissue-contacting surface of the device. Material heterogeneities are preferably controlled by using conventional methods of vacuum deposition of materials onto a substrate. The surface of a solid, homogeneous material can be conceptualized as having unsaturated inter-atomic and intermolecular bonds forming a reactive plane ready to interact with the environment. In practice, a perfectly clean surface is unattainable because of immediate adsorption of airborne species, upon exposure to ambient air, of O, O2, CO2, SO2, NO, hydrocarbons and other more complex reactive molecules. Reaction with oxygen implies the formation of oxides on a metal surface, a self-limiting process, known as passivation. An oxidized surface is also reactive with air, by adsorbing simple, organic airborne compounds. Assuming the existence of bulk material of homogeneous subsurface and surface composition, oxygen and hydrocarbons may adsorb homogeneously. Therefore, further exposure to another environment, such as the vascular compartment, may be followed by a uniform biological response.

Current metallic vascular devices, such as stents, are made from bulk metals made by conventional methods which employ many steps that introduce processing aides to the metals make stent precursors, such as hypotubes. For example, olefins trapped by cold drawing and transformed into carbides or elemental carbon deposit by heat treatment, typically yield large carbon rich areas in 316L stainless steel tubing manufactured by cold drawing process. The conventional stents have marked surface and subsurface heterogeneity resulting from manufacturing processes (friction material transfer from tooling, inclusion of lubricants, chemical segregation from heat treatments). This results in formation of surface and subsurface inclusions with chemical composition and, therefore, reactivity different from the bulk material. Oxidation, organic contamination, water and electrolytic interaction, protein adsorption and cellular interaction may, therefore, be altered on the surface of such inclusion spots. Unpredictable distributions of inclusions such as those mentioned above provide unpredictable and uncontrolled heterogeneous surface available for interaction with plasma proteins and cells. Specifically, these inclusions interrupt the regular distribution pattern of surface free energy and electrostatic charges on the metal surface that determine the nature and extent of plasma protein interaction. Plasma proteins deposit nonspecifϊcally on surfaces according to their relative affinity for polar or non-polar areas and their concentration in blood. A replacement process known as the Vroman effect, Vroman L., The importance of surfaces in contact phase reactions. Seminars of Thrombosis and Hemostasis 1987; 13(1): 79- 85, determines a time-dependent sequential replacement of predominant proteins at an artificial surface, starting with albumin, following with IgG, fibrinogen and ending with high molecular weight kininogen. Despite this variability in surface adsorption specificity, some of the adsorbed proteins have receptors available for cell attachment and therefore constitute adhesive sites. Examples are: fibrinogen glycoprotein receptor Ilbllla for platelets and fibronectin RGD sequence for many blood activated cells. Since the coverage of an artificial surface with endothelial cells is a favorable end-point in the healing process, favoring endothelialization in device design is desirable in implantable vascular device manufacturing. Normally, endothelial cells (EC) migrate and proliferate to cover denuded areas until confluence is achieved. Migration, quantitatively more important than proliferation, proceeds under normal blood flow roughly at a rate of 25 μm/hr or 2.5 times the diameter of an EC, which is nominally lOμm. EC migrate by a rolling motion of the cell membrane, coordinated by a complex system of intracellular filaments attached to clusters of cell membrane integrin receptors, specifically focal contact points. The integrins within the focal contact sites are expressed according to complex signaling mechanisms and eventually couple to specific amino acid sequences in substrate adhesion molecules (such as RGD, mentioned above). An EC has roughly 16-22% of its cell surface represented by integrin clusters. Davies, P.F., Robotewskyi A., Griem M.L. Endothelial cell adhesion in real time. J Clin. Invest.1993; 91:2640-2652, Davies, P.F., Robotewski, A., Griem, M ., Oualitiative studies of endothelial cell adhesion. J Clin.Invest.1994; 93 :2031 -2038. This is a dynamic process, which implies more than 50% remodeling in 30 minutes. The focal adhesion contacts vary in size and distribution, but 80% of them measure less than 6 μm2, with the majority of them being about 1 μm2, and tend to elongate in the direction of flow and concentrate at leading edges of the cell. Although the process of recognition and signaling to determine specific attachment receptor response to attachment sites is incompletely understood, regular availability of attachment sites, more likely than not, would favorably influence attachment and migration. Irregular or unpredictable distribution of attachment sites, that might occur as a result of various inclusions, with spacing equal or smaller to one whole cell length, is likely to determine alternating hostile and favorable attachment conditions along the path of a migrating cell. These conditions may vary from optimal attachment force and migration speed to insufficient holding strength to sustain attachment, resulting in cell slough under arterial flow conditions. Due to present manufacturing processes, current implantable vascular devices exhibit such variability in surface composition as determined by surface sensitive techniques such as atomic force microscopy, X-ray photoelectron spectroscopy and time-of- flight secondary ion mass spectroscopy.

There have been numerous attempts to increase endothelialization of implanted stents, including covering the stent with a polymeric material (U.S. Patent No. 5,897,911), imparting a diamond-like carbon coating onto the stent (U.S. Patent No. 5,725,573), covalently binding hydrophobic moieties to a heparin molecule (U.S. Patent No. 5,955,588), coating a stent with a layer of blue to black zirconium oxide or zirconium nitride (U.S. Patent No. 5,649,951), coating a stent with a layer of turbostratic carbon (U.S. Patent No. 5,387,247), coating the tissue-contacting surface of a stent with a thin layer of a Group VB metal (U.S. Patent No. 5,607,463), imparting a porous coating of titanium or of a titanium alloy, such as Ti-Nb-Zr alloy, onto the surface of a stent (U.S. Patent No. 5,690,670), coating the stent, under ultrasonic conditions, with a synthetic or biological, active or inactive agent, such as heparin, endothelium derived growth factor, vascular growth factors, silicone, polyurethane, or polytetrafluoroethylene, U.S. Patent No. 5,891,507), coating a stent with a silane compound with vinyl functionality, then forming a graft polymer by polymerization with the vinyl groups of the silane compound (U.S. Patent No. 5,782,908), grafting monomers, oligomers or polymers onto the surface of a stent using infrared radiation, microwave radiation or high voltage polymerization to impart the property of the monomer, oligomer or polymer to the stent (U.S. Patent No. 5,932,299). Thus, the problems of thrombogenicity and re-endothelialization associated with stents have been addressed by the art in various manners which cover the stent with either a biologically active or an inactive covering which is less thrombogenic than the stent material and/or which has an increased capacity for promoting re-endothelialization of the stent situs. These solutions, however, all require the use of existing stents as substrates for surface derivatization or modification, and each of the solutions result in a biased or laminate structure built upon the stent substrate. These prior art coated stents are susceptible to delaminating and/or cracking of the coating when mechanical stresses of transluminal catheter delivery and/or radial expansion in vivo. Moreover, because these prior art stents employ coatings applied to stents fabricated in accordance with conventional stent formation techniques, e.g., cold-forming metals, the underlying stent substrate is characterized by uncontrolled heterogeneities on the surface thereof. Thus, coatings merely are laid upon the heterogeneous stent surface, and inherently conform to the topographical heterogeneities in the stent surface and mirror these heterogeneities at the blood contact surface of the resulting coating. This is conceptually similar to adding a coat of fresh paint over an old coating of blistered paint; the fresh coating will conform to the blistering and eventually, blister and delaminate from the underlying substrate. Thus, topographical heterogeneities are typically telegraphed through a surface coating. Chemical heterogeneities, on the other hand, may not be telegraphed through a surface coating but may be exposed due to cracking or peeling of the adherent layer, depending upon the particular chemical heterogeneity. The current invention entails creating valve flap members and other implantable septa, for example, access ports, of vacuum deposited metal and/or pseudometalhc materials. According to a preferred embodiment of the invention, the manufacture of valve flap members and other implantable septa fabricated of metallic and/or pseudometalhc films is controlled to attain a regular, homogeneous atomic and molecular pattern of distribution along their fluid-contacting surfaces. This avoids the marked variations in surface composition, creating predictable oxidation and organic adsorption patterns and has predictable interactions with water, electrolytes, proteins and cells. Particularly, EC migration is supported by a homogeneous distribution of binding domains that serve as natural or implanted cell attachment sites, in order to promote unimpeded migration and attachment. Based on observed EC attachment mechamsms such binding domains should have a repeating pattern along the blood contact surface of no less than 1 μm radius and 2 μm border-to-border spacing between binding domains. Ideally, the inter-binding domain spacing is less than the nominal diameter of an endothelial cell in order to ensure that at any given time, a portion of an endothelial cell is in proximity to a binding domain. Summary of the Invention In accordance with the present invention, there is provided an improved film structure for implantable moveable septa, such as valve flaps, access ports, prosthetic ventricular members or similar types of anatomical prosthetic replacements.

It is, therefore, a primary of the present invention to provide a prosthetic unidirectional valve having valve flap members fabricated of biocompatible metal and/or pseudometalhc films. The valvular prosthesis of the present invention consists generally of a stent body member, a graft, and valve flaps. The stent body member may be fashioned by laser cutting a hypotube or by weaving wires into a tubular structure, and is preferably made from shape memory or super-elastic materials, such as nickel-titanium alloys known as NITINOL, but may be made of balloon expandable stainless steel or other plastically deformable stent materials as are known in the art, such as titanium or tantalum, or may be self-expanding such as by weaving stainless steel wire into a stressed-tubular configuration in order to impart elastic strain to the wire. The graft is preferably a biocompatible, fatigue- resistant membrane which is capable of endothelialization, and is attached to the stent body member on at least portions of either or both the luminal and abluminal surfaces of the stent body member by suturing to or encapsulating stent struts. The valve leaflets are preferably formed by sections of the graft material attached to the stent body member.

The stent body member is shaped to include the following stent sections: proximal and distal anchors, a intermediate annular stent section, and at least one valve arm or blood flow regulator struts. The proximal and distal anchor sections are present at opposing ends of the prosthesis and subtend either an acute, right or obtuse angle with a central longitudinal axis that defines the cylindrical prosthesis. In either the CV or CC configurations, the proximal anchor is configured to assume approximately a right angle radiating outward from the central longitudinal axis of the prosthesis in a manner which provides an anchoring flange. When being delivered from a delivery catheter, the proximal anchor is deployed first and engages the native tissue and anatomical structures just proximal to the anatomic valve, such as the left ventricle wall in the case of retrograde orthotopic delivery at the aortic valve. Deployment of the proximal anchor permits the intermediate annular stent section to be deployed an reside within the native valve annular space and the abluminal surface of the intermediate annular stent section to abut and outwardly radially compress the anatomic valve leaflets against the vascular wall. The distal anchor is then deployed and radially expands to contact the vascular wall and retain the prosthesis in position, thereby excluding the anatomic valve leaflets from the bloodflow and replacing them with the prosthetic valve leaflets.

Flow regulation in the inventive stent valve prosthesis is provided by the combination of the prosthetic valve leaflets and the valve arms and is biased closed in a manner similar manner to that described for a surgically implanted replacement heart valve by Boretos, U.S. Pat. No. 4,222,126. The valve regulator-struts are preferably configured to be positioned to radiate inward from the stent body member toward the central longitudinal axis of the prosthesis. The graft-leaflet has the appearance of a partially-everted tube where the innermost layer, on the luminal surface of the stent body member, forms the leaflets and the outer-most layer, on the abluminal surface of the stent body member, forms a sealing graft which contacts and excludes the immobilized anatomical valve leaflets. The struts of the stent are encapsulated by the outer graft-membrane. The valve regulator-struts are encapsulated by the inner leaflet-membrane and serve to bias the valve to the closed position. The regulator-struts also prevent inversion or prolapse of the otherwise unsupported leaflet- membrane during increased supra- valvular pressure. The inner leaflet-membrane may also be attached to the outer graft-membrane at points equidistant from the valve strut-arms in a manner analogous to that described for a surgically implanted replacement heart valve by Cox, U.S. Pat. No. 5,824,063. The combination of the thin walled properties of the leaflet- membrane, the one-sided open lumen support of the intermediate annular stent section, the free ends of the valve leaflets, the biasing and support provided by the valve regulator-struts and the attachment points all work to provide a prosthetic valvular device capable of endoluminal delivery which simulates the hemodynamic properties of a healthy anatomical cardiac or venous valve. In accordance with another embodiment of the invention, there is provided an implantable valvular prosthesis having a graft covering and valve flap members that are each formed as discrete laminated films of a biocompatible metal or pseudometal. A plurality of openings is provided which pass transversely through the graft member. The plurality of opemngs may be random or may be patterned. It is preferable that the size of each of the plurality of openings be such as to permit cellular migration through each opening, without permitting fluid flow there through. In this manner, blood cannot flow through the plurality of openings, but various cells or proteins may freely pass through the plurality of openings to promote graft healing in vivo. Finally, in accordance with the present invention, there is provided an implantable valvular prosthesis having valve flap members and a covering graft member that are fabricated from metallic and/or pseudometalhc films that present a blood or tissue contact surface that is substantially homogeneous in material constitution.

Brief Description of Figures

FIG. 1 is a perspective view of the inventive valve stent chamber-to-vessel embodiment in its fully deployed state.

FIG. 2 is a perspective view of the inventive valve stent chamber-to-vessel embodiment in its fully deployed state with the outermost graft layer and stent layer partially removed to show an embodiment of the valve apparatus.

FIG. 3 is a top view of the inventive valve stent chamber-to-vessel embodiment in its fully deployed state.

FIG. 4 shows the cross-sectional taken along line 4-4 of FIG. 1.

FIG. 5 is a bottom view of the inventive valve stent chamber-to-vessel embodiment in its fully deployed state.

FIG. 6 A illustrates a cross-sectional view of a human heart during systole with the inventive valve stent chamber-to-vessel embodiment implanted in the aortic valve and illustrating a blood flow vector of an ejection fraction leaving the left ventricle and passing through the inventive valve stent. FIG. 6B illustrates a cross-sectional view of a human heart during diastole with the inventive valve stent chamber-to-vessel embodiment implanted in the aortic valve and illustrating a blood flow vector of blood passing from the left atrium, through the mitral valve and into the left ventricle during and a retrograde blood flow vector blocked by the inventive valve stent in the aorta.

FIG. 7 is a perspective view of the inventive valve stent chamber-to-chamber embodiment in its fully deployed state.

FIG. 8 is a is a perspective view of the inventive valve stent chamber-to-chamber embodiment in its fully deployed state with the outermost graft layer and stent layer partially removed to show an embodiment of the valve apparatus.

FIG. 9 is a top view of the inventive valve stent chamber-to-chamber embodiment in its fully deployed state.

FIG. 10 shows the cross sectional view taken along line 10-10 of FIG. 7.

FIG. 11 is a bottom view of inventive valve stent chamber-to-chamber embodiment in its fully deployed state.

FIG. 12A illustrates a cross-sectional view of a human heart during atrial systole with the inventive valve stent chamber-to-chamber embodiment implanted at the site of the mitral valve and illustrating a blood flow vector of a filling fraction leaving the left atrium and entering the left ventricle.

FIG. 12B illustrates a cross-sectional view of a human heart during atrial diastole with the inventive valve stent chamber-to-chamber embodiment implanted at the site of the mitral valve and illustrating a blood flow vector of an ejection fraction from the left ventricle to the aorta and the back pressure against the implanted mitral valve prosthesis.

FIG. 13 is a perspective view of the chamber-to-vessel configuration in the fully deployed state.

FIG. 14 is a perspective view of the same configuration in the fully deployed state with the outermost graft layer and stent layer partially removed to show an embodiment of the valve apparatus.

FIG. 15 is a top view of the same configuration.

FIG. 16 shows the cross sectional view of the same configuration for the deployed state. FIG. 17 is a bottom view of the same configuration. FIG. 18A and 18B show cross-sectional views of a vein and venous valve illustrating the inventive prosthetic venous valve in the open and closed state.

FIG. 19 is a cross-sectional diagrammatic view of a valvuloplasty and stent valve delivery catheter in accordance with the present invention. FIGS. 20A-20I are diagrammatic cross-sectional views illustrating single catheter valvuloplasty, inventive stent valve delivery and stent valve operation in situ in accordance with the method of the present invention.

Detailed Description of the Preferred Embodiments The present invention consists generally of three preferred embodiments, each embodiment corresponding to a prosthetic stent valve configuration adapted for either heart chamber to blood vessel communication, chamber to chamber communication or vessel to vessel, or intravascular configuration. Certain elements are common to each of the preferred embodiments of the invention, specifically, each embodiment includes a stent body member which defines a central annular opening along the longitudinal axis of the stent body member, a graft member which covers at least a portion of the stent body member along either the luminal or abluminal surfaces of the stent body member, at least one biasing arm is provided and projects from the stent body member and into the central annular opening of the stent body member, and at least one valve flap member which is coupled to each biasing arm such that the biasing arm biases the valve flap member to occlude the central annular opening of the stent body member under conditions of a zero pressure differential across the prosthesis. The stent body member is preferably made of a shape memory material or superelastic material, such as NITINOL, but also is fabricated from either plastically deformable materials or spring-elastic materials such as are well known in the art. Additionally, the stent body member has three main operable sections, a proximal anchor section, a distal anchor section and an intermediate annular section which is intermediate the proximal and distal anchor sections. Depending upon the specific inventive embodiment, the distal and proximal anchor sections may be either a diametrically enlarged section or may be a flanged section. The intermediate annular section defines a valve exclusion region and primary blood flow channel of the inventive valve stent. The intermediate annular section defines a luminal opening through which blood flow is established. The transverse cross- section of the luminal opening may be circular, elliptical, ovular, triangular or quadralinear, depending upon the specific application for which the valve stent is being employed. Thus, for example, where a tricuspid valve is particularly stenosed, it may be preferable to employ a valve stent with a luminal opening in the intermediate annular section which has a triangular transverse cross-sectional dimension.

In each of the foregoing embodiments, the graft member and the valve flap members are fabricated of a biocompatible metal and/or a biocompatible pseudometal and are formed as films of material that are preferably laminated to enhance their material properties. The metal films may be micro or nanoporous to enhance endothelialization as described in greater detail in parent patent application U.S. Serial No. 09/853,985 filed May 11, 2001, which is hereby incorporated by reference. Suitable materials to fabricated the inventive graft and valve flap members are chosen for their biocompatibility, mechanical properties, i.e., tensile strength, yield strength, and their ease of deposition include, without limitation, the following: titanium, vanadium, aluminum, nickel, tantalum, zirconium, chromium, silver, gold, silicon, magnesium, niobium, scandium, platinum, cobalt, palladium, manganese, molybdenum and alloys thereof, such as zirconium-titanium-tantalum alloys, nitinol, and stainless steel. The graft member and the valve flap members are formed by vacuum deposition methodologies. Chamber-to- Vessel Configuration

An implantable prosthesis or prosthetic valve in accordance with certain embodiments of the chamber-to-vessel CV configuration of the present invention is illustrated generally in Figures 1-5. The chamber-to-vessel valve stent 10 consists of an expandable stent body member 12 and graft member 11. The stent body member 12 is preferably made from a shape memory and/or superelastic NITINOL material, or thermomechanically similar materials, but may be made of plastically deformable or elastically compliant materials such as stainless steel, titanium or tantalum. The graft member 11 is fabricated of biocompatible metal and/or pseudometalhc materials, such as thin film stainless steel, nickel-titanium alloy, tantalum, titanium or carbon fiber. The stent body member 12 is configured to have three functional sections: a proximal anchor flange 22, an intermediate annular section 20 and a distal anchor section 16. The stent body member 12, as with conventional stents is formed of a plurality of stent struts 13 which define interstices 14 between adjacent stent struts 13. The stent body member preferably also includes a transitional section 18 that interconnects the intermediate annular section 20 and the distal anchor section 16, which together define a valve exclusion region of the inventive stent valve 10 to exclude the anatomic valve after implantation. The proximal anchor flange 22, the intermediate annular section 20 and the distal anchor section 16 are each formed during the formation of the stent body member and are formed from the same material as the stent body member and comprise stent struts 13 and intervening interstices 14 between adjacent pairs of stent struts 13. The anchor flange 22, for example, consists of a plurality of stent struts and a plurality of stent interstices, which project radially outwardly away from the central longitudinal axis of the stent body member. Thus, the different sections of the stent body member 12 are defined by the positional orientation of the stent struts and interstices relative to the central longitudinal axis of the stent body member 12.

With reference to FIG. 2, there is shown in greater detail the valve body 26 and valve arms or flow regulator struts 24 coupled to the stent body member 12. The valve body 26 subtends the central annular opening of the stent valve 10 and is illustrated in its closed position. In accordance with one embodiment of the present invention, the graft member 11 consists of an outer or abluminal graft member 11a and an inner or luminal graft member 1 lb. The outer graft member 11a encloses at least a portion of the abluminal surface of the intermediate annular section 20 of the stent body member, while the inner graft member 1 lb is coupled, on the luminal surface of the intermediate annular section 20 of the stent body member 12, to the outer graft member 11a through the interstices 14 of the stent body member. The valve body 26 is formed by everting the inner graft memberl lb toward the central longitudinal axis of the stent body member 12 such that free ends or valve flap portions 28 of the inner graft member 1 lb are oriented toward the distal anchor section 16 of the stent body member 12 and a pocket or envelope 27 is formed at the eversion point of the inner graft member 1 lb adjacent the junction between the intermediate annular section 20 and the proximal anchor flange 22 of the stent body member 12. Alternatively, portions of the outer graft member 11a may be passed through to the luminal surface of the stent body member 12, thereby becoming the inner graft member 1 lb and everted to form the valve body 26. Valve arms or regulator struts 24 are coupled or formed integral with the stent body member 12 and are positioned adjacent the junction point between intermediate annular section 20 and the proximal anchor flange 22 of the stent body member 12. The valve arms 24 are oriented radially inward toward the central longitudinal axis of the stent body member 12 when in their zero strain state. The valve arms 24 are attached or coupled to the valve flap portions 28 of the inner graft member leaflets to bias the valve flap portions 28 to the closed position when under zero pressure differential across the stent valve 10.

The zero strain position of the valve arms 24 is radially inward and orthogonal to the central longitudinal axis of the stent valve 10. Valve arms 24 have a length which is preferably longer than the radius of the luminal diameter of the stent valve 10, and they extent distally into the lumen of the stent valve 10 such that, in conjunction with the action of the valve leaflets 28, the valve arms 24 are prevented from achieving their zero strain configuration thereby biasing the valve closed. As shown in FIG. 4, the valve arms 24 force the valve leaflets 28 to collapse into the center of the lumen of the stent valve 10, thus biasing the valve to its closed position.

It is preferable to couple sections of the valve flaps 28, along a longitudinal seam 29, to the inner graft member 1 lb and the outer graft member 1 la at points equidistant from the valve arms 24 in order to impart a more cusp-like structure to the valve flaps 28. It should be appreciated, that the graft member 11 should cover at least a portion of the abluminal surface of the stent body member 12 in order to exclude the anatomic valves, but may also cover portions or all of the stent valve member 12, including the distal anchor section 16, the intermediate annular section 20, the transition section 18 and/or the proximal anchor flange 22, on either or both of the luminal and abluminal surfaces of the stent body member.

In accordance with a particularly preferred embodiment of the CV valve stent 10, the proximal anchor flange 22, which consists of a plurality of stent struts and stent interstices which project radially outward away from the central longitudinal axis of the valve stent 10, is configured to have one or more stent struts eliminated from the proximal anchor flange 22 to define an open region which is positioned in such a manner as to prevent the CV valve stent 10 from interfering with or impinging upon an adjacent anatomic structure. For example, where the CV valve stent 10 is to be an aortic valve prosthesis, it is known that the mitral valve is immediately adjacent the aortic valve, and the mitral valve flaps deflect toward the left ventricle. Thus, placing the CV valve stent 10 such that the proximal anchor flange 22 is adjacent the mitral valve might, depending upon the particular patient anatomy, interfere with normal opening of the mitral valve flaps. By eliminating one or more of the stent struts in the proximal anchor flange 22, an opening is created which permits the mitral valve flaps to deflect ventricularly without impinging upon the proximal anchor flange 22 of the CV valve stent 10.

Similarly, the stent struts of the CV valve stent 10 may be oriented in such a manner as to create interstices of greater or smaller area between adjacent struts, to accommodate a particular patient anatomy. For example, where the stent struts in the distal anchor section 16 would overly an artery branching from the aorta, such as the coronary ostreum arteries, it may be desirable to either eliminate certain stent struts, or to configure certain stent struts to define a greater interstitial area to accommodate greater blood flow into the coronary ostreum.

In the case of providing an oriented opening in the proximal anchor flange, or an oriented opening in the interstitial spaces of the distal anchor, it is desirable to provide radiopaque markers on the stent body member 12 to permit the CV valve stent to be oriented correctly relative to the anatomic structures.

Figures 6 A and 6B illustrate the inventive CV stent valve 10 implanted in the position of the aortic valve and excluding the anatomic aortic valve AV. FIG. 6A illustrates the heart during systole in which a positive pressure is applied to the prosthetic aortic valve by contraction of the left ventricle LV and the ejection fraction represented by the arrow. The systolic pressure overcomes the bias exerted by the valve arms 24 and causes the valve leaflets 26 to open and release the ejection fraction into the aorta. FIG. 6 B illustrates that the presence of a negative pressure head across the stent valve 10, i.e. such as that during diastole, causes the biased valve leaflets 26 which are aheady closed, to further close, and prevent regurgitation from the aorta into the left ventricle.

Chamber-to- Chamber Configuration

Figures 7-11 illustrate the inventive stent valve in the chamber-to-chamber (CC) configuration 40. The CC valve stent 40 is constructed in a manner which is virtually identical to that of the CV valve stent 10 described above, except that the distal anchor section 16 of the CV valve stent 10 is not present in the CC valve stent 40, but is substituted by a distal anchor flange 42 in the CC stent valve. Thus, like the CV valve stent 10, described above, the CC valve stent 40 if formed of a stent body member 12 and a graft member 11, with the graft member having luminal 1 lb and abluminal 1 la portions which cover at least portions of the luminal and abluminal surfaces of the stent body member 12, respectively. The CC valve stent 40 has both a proximal anchor flange 44 and a distal anchor flange 42 which are formed of sections of the stent body member 12 which project radially outward away from the central longitudinal axis of the CC valve stent 40 at opposing ends of the stent body member 12. Like the CV valve stent 10, the luminal graft portion 1 lb is everted inwardly toward the central longitudinal axis of the valve stent 40 and free ends 28 of the luminal graft portion 1 lb to form valve flaps 26 which project distally toward distal anchor flange 42. Flow regulation struts 24 are coupled to or integral with the proximal anchor flange 44 and intermediate annular section 20 and project radially inward toward the central longitudinal axis of the CC valve stent 40. The valve flaps 26 are coupled to the flow regulation struts 24 and the flow regulation struts 24 bias the valve flaps 26 to a closed position under a zero strain load.

Like with the CV stent valve 10, it is preferable to couple sections of the valve flaps 28, along a longitudinal seam 29, to the inner graft member 1 lb and the outer graft member 1 la at points equidistant from the valve arms 24 in order to impart a more cusp-like structure to the valve flaps 28.

Turning to Figures 12A and B there is illustrated the inventive CC stent valve 40 implanted in the position of the mitral valve and excluding the anatomic mitral valve MV. FIG. 12 A illustrates the heart during atrial systole in which a positive pressure is applied to the prosthetic mitral valve by contraction of the left atrium LA and the pressure exerted by the blood flow represented by the arrow. The atrial systolic pressure overcomes the bias exerted by the valve arms 24 onto the valve leaflets 26, and causes the valve leaflets 26 to open and release the atrial ejection fraction into the left ventricle. FIG. 12 B illustrates that the presence of a negative pressure head across the stent valve 40, i.e. such as that during atrial diastole, causes the biased valve leaflets 26 which are aheady closed, to further close, and prevent backflow from the left ventricle into the left atrium. In accordance with another preferred embodiment of the invention, the CC configuration may be adapted for use in repairing septal defects. By simply substituting a membrane for the valve leaflets 26, the lumen of the stent body member 12 is occluded. The CC stent valve 40 may be delivered endoluminally and placed into a position to subtend a septal defect and deployed to occlude the septal defect.

Vessel-to-Vessel Configuration

Turning now to Figures 13-17, there is illustrated the inventive stent valve in its vessel-to-vessel (W) valve stent configuration 50. The VV valve stent 50 is constructed in a manner which is virtually identical to that of the CV valve stent 10 described above, except that the proximal anchor flange 22 of the CV valve stent 10 is not present in the VV valve stent 50, but is substituted by a proximal anchor section 52 in the VV stent valve. Thus, like the CV valve stent 10, described above, the VV valve stent 50 is formed of a stent body member 12 and a graft member 11, with the graft member having luminal 1 lb and abluminal 1 la portions which cover at least portions of the luminal and abluminal surfaces of the stent body member 12, respectively. The VV valve stent 50 has both a proximal anchor section 52 and a distal anchor section 54 which are formed of sections of the stent body member 12 which are diametrically greater than the intermediate annular section 20 of the VV valve stent 50. Transition sections 56 and 58 taper outwardly away from the central longitudinal axis of the VV valve stent 50 and interconnect the intermediate annular section 20 to each of the distal anchor section 54 and the proximal anchor section 52, respectively.

Like the CV valve stent 10, in the VV valve stent 50, the graft member 11, particularly the luminal graft portion 1 lb or the abluminal graft portion 1 la, or both, is everted inwardly toward the central longitudinal axis of the valve stent 40 and free ends 28 of the luminal graft portion 1 lb to form valve flaps 26 which project distally toward distal anchor flange 42. Flow regulation struts 24 are coupled to or integral with the stent body member at the proximal transition section 58 and project radially inward toward the central longitudinal axis of the VV valve stent 50. The valve flaps 26 are coupled to the flow regulation struts 24 and the flow regulation struts 24 bias the valve flaps 26 to a closed position under a zero strain load. Like with the CV stent valve 10 and the CC stent valve 40, it is preferable to couple sections of the valve flaps 28, along a longitudinal seam 29, to the inner graft member 1 lb and the outer graft member 1 la at points equidistant from the valve arms 24 in order to impart a more cusp-like structure to the valve flaps 28.

Turning to Figures 18A and B there is illustrated the inventive VV stent valve 50 implanted in the position of a venous valve and excluding the anatomic venous valve flaps VE. FIG. 18 A illustrates the vein under systolic blood pressure in which a positive pressure is applied to the prosthetic venous valve and the pressure exerted by the blood flow represented by the arrow. The systolic pressure overcomes the bias exerted by the valve arms 24 onto the valve leaflets 26, and causes the valve leaflets 26 to open and permit blood flow through the prosthesis. FIG. 18 B illustrates that the presence of a negative pressure head across the VV stent valve 50, i.e. such as which exists at physiological diastolic pressures, causes the biased valve leaflets 26 which are aheady closed, to further close, and prevent backflow from the left ventricle into the left atrium.

The purpose of the proximal 54 and distal 52 anchor sections of the stent body member 12 is to anchor the prosthesis at the anatomic vessel- vessel junction, such as a venous valve, while causing minimal interference with adjacent tissue. The intermediate annular section 20 of the VV stent valve 50 excludes diseased anatomic leaflets and surrounding tissue from the flow field. The flare angle of the transition sections 56, 58 between the intermediate annular section 20 and each of the proximal and distal anchor sections 54, 52, respectively, may be an acute angle, a right angle or an obtuse angle, depending upon the anatomical physiological requirements of the implantation site.

Alternatively, the transition sections 56, 58 may be coplanar with the proximal and distal anchor section 52, 54, respectively, thereby, eliminating any transition flare angle, depending upon the anatomical and physiological requirements of the delivery site.

Single Catheter Valvuloplasty Stent Valve Delivery System and Method of Delivery

In accordance with the present invention, there is also provide a single catheter valvuloplasty and valve stent delivery system 200 illustrated in FIG. 19. The objective of the single catheter delivery system 200 is to permit the surgeon or interventionalist to percutaneously deliver and deploy the inventive valve stent 10, 40 or 50 at the desired anatomical site and to perform valvuloplasty with a single catheter. In accordance with the preferred embodiment of the single catheter delivery system 200 of the present invention, there is provided a catheter body210 having dual lumens212, 216. A first lumen 212 is provided as a guidewire lumen and is defined by a guidewire shaft 222 that traverses the length of the catheter body 210. A second lumen is an inflation lumen 216 for communicating an inflation fluid, such as saline, from an external source, through an inflation port 240 at the operator end of the catheter 210, to an inflatable balloon 214 located at or near the distal end of the catheter body 210. The inflation lumen 216 is defined by an annular space between the luminal surface of the catheter body 210 and the abluminal surface of the guidewire shaft 222. A capture sheath 217 is provided at the distal end 215 of the catheter body 210 and is positioned adjacent and distal the balloon 214. The capture sheath 217 defines an annular space about the guidewire lumen 212 and the capture sheath 217 into which the stent valve 10, 40 or 50 is positioned and retained during delivery. An annular plug member 220 is within the inflation lumen 216 distal the balloon 214 and terminates the inflation lumen 216 in a fluid tight manner. Annular plug member 220 has a central annular opening 221 through which the guidewire shaft 222 passes. The annular plug member 220 is coupled to the guidewire shaft 222 and is moveable axially along the central longitudinal axis of the catheter 200 by moving the guidewire shaft 222. The annular plug member 220 also serves to abut the stent valve 10, 40 and 50 when the stent valve 10, 40 and 50 is positioned within the capture sheath 217. The guidewire shaft 222 passes through the capture sheath 217 and terminates with an atraumatic tip 218 which facilitates endoluminal delivery without injuring the native tissue encountered during delivery. With this configuration, the stent valve is exposed by proximally withdrawing the catheter body 210, while the guidewire shaft 222 is maintained in a fixed position, such that the annular plug member 220 retains the position of the stent valve as it is uncovered by capture sheath 217 as the capture sheath 217 is being proximally withdrawn with the catheter body 210. In many cases the anatomic valve will be significantly stenosed, and the valve flaps of the anatomic valve will be significantly non-compliant. The stenosed valves may be incapable of complete closure permitting blood regurgitation across the anatomic valve. Thus, it may be desirable to configure the inflatable balloon 214 to assume an inflation profile which is modeled to maximally engage and dilatate the anatomic valves. For example, a tricuspid valve, such as the aortic valve may stenose to an opening which has a generally triangular configuration. In order to maximally dilatate this triangular opening, it may be desirable to employ a balloon profile which assumes a triangular inflation profile. Alternatively, it may be advantageous to configure the balloon such that it does not fully occlude the anatomic lumen when inflated, but permits a quantum of blood flow to pass around the balloon in its inflated state. This may be accomplished by providing channels or ridges on the abluminal surface of the balloon. Additionally, irregular inflation profiles of the balloon may facilitate continuous blood flow about the inflated balloon. Furthermore, it may be desirable to configure the balloon to have an hour-glass inflation profile to prevent migration or slippage of the balloon in the anatomic valve during valvuloplasty.

In accordance with the present invention, it is preferable that the capture sheath 217 be made of a material which is sufficiently strong so as prevent the stent valve 10, 40, 50 from impinging upon and seating into the capture sheath 217 due to the expansive pressure exerted by the stent valve 10, 40, 50 against the capture sheath. Alternatively, the capture sheath 217 may be lined with a lubricious material, such as polytetrafluoroethylene, which will prevent the capture sheath 217 from exerting drag or frictional forces against the stent valve during deployment of the stent valve.

In accordance with the present invention, it is also contemplated that the position of the balloon 214 and the capture sheath 217 may be reversed, such that the balloon 214 is distal the capture sheath 217. In this configuration, the anatomic valve may be radially enlarged by dilatating the balloon 214, then the catheter moved distally to position the capture sheath 217 at the anatomic valve and deployed in the manner described above. This would also allow for post-deployment balloon expansion of the deployed stent valve without the need to traverse the prosthetic valve in a retrograde fashion. Alternatively, the catheter 200 of the present invention may be provided without a balloon 214 in those cases where valvuloplasty is not required, e.g., where a stenotic valve does not need to be opened such as with a regurgitating valve, and the catheter 200 is terminated at its distal end with only a capture sheath 217, and deployment occurs as described above.

Turning now to Figures 20A-20I there is illustrated the sequence of steps in delivery of the stent valve of the present invention, valvuloplasty of the aortic valve and deployment of the stent valve at the position of the aortic valve. The single catheter delivery system 501 having a distal balloon 502 and a capture sheath 503 covering the valve stent 10 (not shown in Figs 20A-B), is delivered percutaneously either through a femoral or subclavian artery approach, and traverses the aorta and is passed through the aortic valve 510 such that the balloon 503 on the distal end of catheter 501 is adjacent the aortic valve 510 and the capture sheath 503 is within the left ventricle 504. A valvuloplasty step 520 is performed by inflating balloon 503 to dilate the aortic valve and deform the aortic valve flaps against the aorta wall adjacent the aortic valve. After the valvuloplasty step 520, delivery of the valve stent 505 is initiated by stabilizing the guidewire shaft (not shown) while the catheter body is withdrawn antegrade relative to the blood flow until the proximal anchor flange section of the valve stent 505 is exposed by the withdrawal of the capture sheath 503. The distal anchor flange of the valve stent 505 is then positioned at the junction between the aortic valve and the left ventricle at step 540, such that the distal anchor flange engages the ventricular surface of the aortic valve. The valve stent is fully deployed at step 550 by retrograde withdrawal of the catheter body 501 which continues to uncover the intermediate annular section of the valve stent and release the aortic valve stent 505. at the aortic valve site 510. In step 560, the valve stent 505 is completely deployed from the catheter 501 and the capture sheath 503. The distal anchor section of the valve stent 505 expands and contacts the luminal wall of the aorta, immediately distal the aortic valve, thereby excluding the aortic valve flaps from the lumen of the prosthetic aortic valve stent 505. In step 570, the atraumatic tip and guidewire are retracted by retrograde movement of the guidewire shaft of the catheter, and the catheter 501 is withdrawn from the patient. Figures 20H and 201 depict the implanted valve stent 505 during diastole and systole, respectively. During ventricular diastole 580, the left ventricle expands to draw blood flow 506 from the left atrium into the left ventricle. A resultant negative pressure gradient is exerted across the valve stent 505, and the valve arms and valve flaps 506 of the valve stent 505 are biased to the closed position to prevent a regurgitation flow 507 from passing through the valve stent 505 and into the left ventricle 504. During ventricular systole 590, the left ventricle contracts and exerts a positive pressure across the valve stent 505, which overcomes the bias of the valve arms and valve flaps, which open 508 against the luminal wall of the intermediate annular section of the valve stent and permit the ejection fraction 509 to be ejected from the left ventricle and into the aorta.

The method for delivery of the CC valve stent 40 or the VV valve stent 50 is identical to that of the CV stent 10 depicted in Figures 20A-20I, except that the anatomical location where delivery and deployment of the valve stent occurs is, of course, different. Thus, while the present invention, including the different embodiments of the valve stent, the delivery and deployment method and the single catheter valvuloplasty and delivery system, have been described with reference to their preferred embodiments, those of ordinary skill in the art will understand and appreciate that the present invention is limited in scope only by the claims appended hereto.

Claims

What is claimed is:
1. An implantable valvular prosthesis having a stent body at least partially covered by a graft member, at least one biasing art projecting from the stent body into a central lumen of the stent body member and at least one valve flap member coupled to the biasing art, the improvement comprising: the at least one valve flap member being comprised of a biocompatible material selected from the group consisting of metals and pseudometals.
2. The implantable valvular prosthesis according to Claim 1 , wherein the biocompatible material further comprises a plurality of layers.
3. The implantable valvular prosthesis according to Claim 1, wherein the biocompatible material is selected from the group consisting of titanium, vanadium, aluminum, nickel, tantalum, zirconium, chromium, silver, gold, silicon, magnesium, mobium, scandium, platinum, cobalt, palladium, manganese, molybdenum and alloys thereof, such as zirconium-titanium-tantalum alloys, nitinol, and stainless steel.
4. The implantable valvular prosthesis according to Claim 1, wherein the graft member further comprises a biocompatible metal film.
5. The implantable valvular prosthesis according to Claim 2, wherein the graft member further comprises a biocompatible metal film.
6. The implantable valvular prosthesis according to Claim 4, wherein biocompatible metal film of the graft member is selected from the group consisting of titanium, vanadium, aluminum, nickel, tantalum, zirconium, chromium, silver, gold, silicon, magnesium, niobium, scandium, platinum, cobalt, palladium, manganese, molybdenum and alloys thereof, such as zirconium-titanium-tantalum alloys, nitinol, and stainless steel.
7. An implantable valvular prosthesis having a stent body at least partially covered by a graft member, at least one biasing arm projecting from the stent body into a central lumen of the stent body member and at least one valve flap member coupled to the biasing arm, the improvement comprising: the at least one valve flap member being comprised of a biocompatible film fabricated of a material selected from metals and pseudometals.
8. The implantable valvular prosthesis according to Claim 7, wherein the biocompatible pseudometalhc film further comprises a plurality of film layers at least one layer being a pseudometalhc material.
EP20020750232 1999-11-19 2002-07-03 Valvular prostheses having metal or pseudometallic construction Expired - Fee Related EP1408895B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US120728 1989-05-15
US30279701P true 2001-07-03 2001-07-03
US302797P 2001-07-03
US10/120,728 US7195641B2 (en) 1999-11-19 2002-04-11 Valvular prostheses having metal or pseudometallic construction and methods of manufacture
PCT/US2002/023239 WO2003003943A2 (en) 2001-07-03 2002-07-03 Valvular prostheses having metal or pseudometallic construction and methods of manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20100179601 EP2298252B1 (en) 2001-07-03 2002-07-03 Valvular prostheses having metal or pseudometallic construction

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP20100179601 Division EP2298252B1 (en) 1999-11-19 2002-07-03 Valvular prostheses having metal or pseudometallic construction
EP10179601.9 Division-Into 2010-09-24

Publications (3)

Publication Number Publication Date
EP1408895A2 EP1408895A2 (en) 2004-04-21
EP1408895A4 true EP1408895A4 (en) 2008-05-07
EP1408895B1 EP1408895B1 (en) 2010-12-22

Family

ID=26818701

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20020750232 Expired - Fee Related EP1408895B1 (en) 1999-11-19 2002-07-03 Valvular prostheses having metal or pseudometallic construction
EP20100179601 Expired - Fee Related EP2298252B1 (en) 1999-11-19 2002-07-03 Valvular prostheses having metal or pseudometallic construction

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP20100179601 Expired - Fee Related EP2298252B1 (en) 1999-11-19 2002-07-03 Valvular prostheses having metal or pseudometallic construction

Country Status (8)

Country Link
US (1) US7195641B2 (en)
EP (2) EP1408895B1 (en)
JP (1) JP4636794B2 (en)
AT (1) AT492242T (en)
AU (1) AU2002319631B2 (en)
CA (1) CA2452571C (en)
DE (1) DE60238680D1 (en)
WO (1) WO2003003943A2 (en)

Families Citing this family (425)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7713297B2 (en) 1998-04-11 2010-05-11 Boston Scientific Scimed, Inc. Drug-releasing stent with ceramic-containing layer
US6006134A (en) * 1998-04-30 1999-12-21 Medtronic, Inc. Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers
US7452371B2 (en) * 1999-06-02 2008-11-18 Cook Incorporated Implantable vascular device
US7749245B2 (en) 2000-01-27 2010-07-06 Medtronic, Inc. Cardiac valve procedure methods and devices
US8038708B2 (en) 2001-02-05 2011-10-18 Cook Medical Technologies Llc Implantable device with remodelable material and covering material
US7201771B2 (en) 2001-12-27 2007-04-10 Arbor Surgical Technologies, Inc. Bioprosthetic heart valve
US20070043435A1 (en) * 1999-11-17 2007-02-22 Jacques Seguin Non-cylindrical prosthetic valve system for transluminal delivery
US8016877B2 (en) * 1999-11-17 2011-09-13 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US7018406B2 (en) * 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
US8579966B2 (en) 1999-11-17 2013-11-12 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US6458153B1 (en) * 1999-12-31 2002-10-01 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US8241274B2 (en) 2000-01-19 2012-08-14 Medtronic, Inc. Method for guiding a medical device
US7321677B2 (en) * 2000-05-09 2008-01-22 Paieon Inc. System and method for three-dimensional reconstruction of an artery
US8366769B2 (en) 2000-06-01 2013-02-05 Edwards Lifesciences Corporation Low-profile, pivotable heart valve sewing ring
WO2002005888A1 (en) 2000-06-30 2002-01-24 Viacor Incorporated Intravascular filter with debris entrapment mechanism
US8771302B2 (en) 2001-06-29 2014-07-08 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
US7544206B2 (en) 2001-06-29 2009-06-09 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
US8623077B2 (en) 2001-06-29 2014-01-07 Medtronic, Inc. Apparatus for replacing a cardiac valve
US6769434B2 (en) * 2000-06-30 2004-08-03 Viacor, Inc. Method and apparatus for performing a procedure on a cardiac valve
US6409758B2 (en) * 2000-07-27 2002-06-25 Edwards Lifesciences Corporation Heart valve holder for constricting the valve commissures and methods of use
EP1309289A2 (en) 2000-08-18 2003-05-14 Atritech, Inc. Expandable implant devices for filtering blood flow from atrial appendages
US7097659B2 (en) 2001-09-07 2006-08-29 Medtronic, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US6966925B2 (en) * 2000-12-21 2005-11-22 Edwards Lifesciences Corporation Heart valve holder and method for resisting suture looping
IL143007D0 (en) * 2001-05-07 2002-04-21 Rafael Medical Technologies In Retrievable intravascular support structures
AU2002345328A1 (en) 2001-06-27 2003-03-03 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
FR2826863B1 (en) 2001-07-04 2003-09-26 Jacques Seguin An assembly for the introduction of a prosthetic valve in a body conduit
US7377938B2 (en) 2001-07-19 2008-05-27 The Cleveland Clinic Foundation Prosthetic cardiac value and method for making same
US6579307B2 (en) * 2001-07-19 2003-06-17 The Cleveland Clinic Foundation Endovascular prosthesis having a layer of biological tissue
AU2005260008B2 (en) * 2004-06-29 2009-07-16 The Cleveland Clinic Foundation Prosthetic cardiac valve and method for making same
AU2005267199B2 (en) * 2004-06-29 2009-07-16 The Cleveland Clinic Foundation Prosthetic valve and method for making same
FR2828091B1 (en) 2001-07-31 2003-11-21 Seguin Jacques An assembly for the introduction of a prosthetic valve in a body conduit
FR2828263B1 (en) 2001-08-03 2007-05-11 Philipp Bonhoeffer The implantation device of an implant and method of implantation of the device
WO2004030568A2 (en) * 2002-10-01 2004-04-15 Ample Medical, Inc. Device and method for repairing a native heart valve leaflet
EP1476095A4 (en) * 2002-02-20 2007-04-25 Francisco J Osse Venous bi-valve
US7125418B2 (en) * 2002-04-16 2006-10-24 The International Heart Institute Of Montana Foundation Sigmoid valve and method for its percutaneous implantation
US8721713B2 (en) * 2002-04-23 2014-05-13 Medtronic, Inc. System for implanting a replacement valve
US8348963B2 (en) * 2002-07-03 2013-01-08 Hlt, Inc. Leaflet reinforcement for regurgitant valves
US7959674B2 (en) * 2002-07-16 2011-06-14 Medtronic, Inc. Suture locking assembly and method of use
EP1592367B1 (en) * 2002-08-28 2016-04-13 HLT, Inc. Method and device for treating diseased valve
CO5500017A1 (en) * 2002-09-23 2005-03-31 3F Therapeutics Inc prosthetic mitral valve
US9770349B2 (en) * 2002-11-13 2017-09-26 University Of Virginia Patent Foundation Nanoporous stents with enhanced cellular adhesion and reduced neointimal formation
US8551162B2 (en) 2002-12-20 2013-10-08 Medtronic, Inc. Biologically implantable prosthesis
AU2004213047A1 (en) * 2003-02-19 2004-09-02 Palomar Medical Technologies, Inc. Method and apparatus for treating pseudofolliculitis barbae
US8157810B2 (en) 2003-02-26 2012-04-17 Cook Medical Technologies Llc Prosthesis adapted for placement under external imaging
US7658759B2 (en) * 2003-04-24 2010-02-09 Cook Incorporated Intralumenally implantable frames
JP4940388B2 (en) * 2003-04-24 2012-05-30 クック メディカル テクノロジーズ エルエルシーCook Medical Technologies Llc Prosthetic valve proteinase with improved hydrodynamic characteristics - Ze
US7717952B2 (en) * 2003-04-24 2010-05-18 Cook Incorporated Artificial prostheses with preferred geometries
US7625399B2 (en) 2003-04-24 2009-12-01 Cook Incorporated Intralumenally-implantable frames
US7201772B2 (en) * 2003-07-08 2007-04-10 Ventor Technologies, Ltd. Fluid flow prosthetic device
WO2005002466A2 (en) * 2003-07-08 2005-01-13 Ventor Technologies Ltd. Implantable prosthetic devices particularly for transarterial delivery in the treatment of aortic stenosis, and methods of implanting such devices
WO2005007018A2 (en) * 2003-07-16 2005-01-27 The Regents Of The University Of California Thin-film metal alloy biomedical implantable devices
NZ527025A (en) * 2003-07-16 2007-01-26 David Peter Shaw Prosthetic valves for medical application
WO2005011534A1 (en) * 2003-07-31 2005-02-10 Cook Incorporated Prosthetic valve devices and methods of making such devices
US8021421B2 (en) 2003-08-22 2011-09-20 Medtronic, Inc. Prosthesis heart valve fixturing device
US20050075725A1 (en) * 2003-10-02 2005-04-07 Rowe Stanton J. Implantable prosthetic valve with non-laminar flow
US9579194B2 (en) * 2003-10-06 2017-02-28 Medtronic ATS Medical, Inc. Anchoring structure with concave landing zone
US7556647B2 (en) * 2003-10-08 2009-07-07 Arbor Surgical Technologies, Inc. Attachment device and methods of using the same
US7186265B2 (en) * 2003-12-10 2007-03-06 Medtronic, Inc. Prosthetic cardiac valves and systems and methods for implanting thereof
US7329279B2 (en) * 2003-12-23 2008-02-12 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US20050137687A1 (en) * 2003-12-23 2005-06-23 Sadra Medical Heart valve anchor and method
US7959666B2 (en) 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US8603160B2 (en) 2003-12-23 2013-12-10 Sadra Medical, Inc. Method of using a retrievable heart valve anchor with a sheath
US20050137694A1 (en) 2003-12-23 2005-06-23 Haug Ulrich R. Methods and apparatus for endovascularly replacing a patient's heart valve
US7381219B2 (en) * 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
US8579962B2 (en) * 2003-12-23 2013-11-12 Sadra Medical, Inc. Methods and apparatus for performing valvuloplasty
US20050137686A1 (en) * 2003-12-23 2005-06-23 Sadra Medical, A Delaware Corporation Externally expandable heart valve anchor and method
US9005273B2 (en) * 2003-12-23 2015-04-14 Sadra Medical, Inc. Assessing the location and performance of replacement heart valves
US7748389B2 (en) * 2003-12-23 2010-07-06 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US20050137696A1 (en) * 2003-12-23 2005-06-23 Sadra Medical Apparatus and methods for protecting against embolization during endovascular heart valve replacement
US20120041550A1 (en) 2003-12-23 2012-02-16 Sadra Medical, Inc. Methods and Apparatus for Endovascular Heart Valve Replacement Comprising Tissue Grasping Elements
US7445631B2 (en) 2003-12-23 2008-11-04 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US9526609B2 (en) * 2003-12-23 2016-12-27 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US20050137691A1 (en) * 2003-12-23 2005-06-23 Sadra Medical Two piece heart valve and anchor
US7824442B2 (en) 2003-12-23 2010-11-02 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US8182528B2 (en) * 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US8052749B2 (en) * 2003-12-23 2011-11-08 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US7824443B2 (en) 2003-12-23 2010-11-02 Sadra Medical, Inc. Medical implant delivery and deployment tool
ES2457747T3 (en) 2003-12-23 2014-04-29 Sadra Medical, Inc. Replaceable heart valve
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US8343213B2 (en) 2003-12-23 2013-01-01 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
EP2529696B1 (en) * 2003-12-23 2014-01-29 Sadra Medical, Inc. Repositionable heart valve
US20050288773A1 (en) * 2004-01-22 2005-12-29 Glocker David A Radiopaque coating for biomedical devices
US7871435B2 (en) 2004-01-23 2011-01-18 Edwards Lifesciences Corporation Anatomically approximate prosthetic mitral heart valve
US7470285B2 (en) 2004-02-05 2008-12-30 Children's Medical Center Corp. Transcatheter delivery of a replacement heart valve
CA2557657C (en) * 2004-02-27 2013-06-18 Aortx, Inc. Prosthetic heart valve delivery systems and methods
US20050197687A1 (en) * 2004-03-02 2005-09-08 Masoud Molaei Medical devices including metallic films and methods for making same
US8998973B2 (en) * 2004-03-02 2015-04-07 Boston Scientific Scimed, Inc. Medical devices including metallic films
US8591568B2 (en) * 2004-03-02 2013-11-26 Boston Scientific Scimed, Inc. Medical devices including metallic films and methods for making same
ITTO20040135A1 (en) 2004-03-03 2004-06-03 Sorin Biomedica Cardio Spa cardiac valve prosthesis
AU2005221234C1 (en) * 2004-03-11 2009-10-29 Percutaneous Cardiovascular Solutions Pty Limited Percutaneous heart valve prosthesis
US20050228494A1 (en) * 2004-03-29 2005-10-13 Salvador Marquez Controlled separation heart valve frame
WO2005096988A1 (en) 2004-04-01 2005-10-20 Cook Incorporated A device for retracting the walls of a body vessel with remodelable material
EP1737390A1 (en) * 2004-04-08 2007-01-03 Cook Incorporated Implantable medical device with optimized shape
US9801527B2 (en) 2004-04-19 2017-10-31 Gearbox, Llc Lumen-traveling biological interface device
US20120035540A1 (en) 2006-04-12 2012-02-09 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Event-based control of a lumen traveling device
US7998060B2 (en) * 2004-04-19 2011-08-16 The Invention Science Fund I, Llc Lumen-traveling delivery device
US9011329B2 (en) * 2004-04-19 2015-04-21 Searete Llc Lumenally-active device
US20070244520A1 (en) * 2004-04-19 2007-10-18 Searete Llc Lumen-traveling biological interface device and method of use
US8353896B2 (en) 2004-04-19 2013-01-15 The Invention Science Fund I, Llc Controllable release nasal system
US8337482B2 (en) * 2004-04-19 2012-12-25 The Invention Science Fund I, Llc System for perfusion management
US7850676B2 (en) * 2004-04-19 2010-12-14 The Invention Science Fund I, Llc System with a reservoir for perfusion management
US8000784B2 (en) * 2004-04-19 2011-08-16 The Invention Science Fund I, Llc Lumen-traveling device
US8361013B2 (en) 2004-04-19 2013-01-29 The Invention Science Fund I, Llc Telescoping perfusion management system
US8019413B2 (en) * 2007-03-19 2011-09-13 The Invention Science Fund I, Llc Lumen-traveling biological interface device and method of use
US7641686B2 (en) * 2004-04-23 2010-01-05 Direct Flow Medical, Inc. Percutaneous heart valve with stentless support
AU2005234793B2 (en) 2004-04-23 2012-01-19 3F Therapeutics, Inc. Implantable prosthetic valve
US8012201B2 (en) * 2004-05-05 2011-09-06 Direct Flow Medical, Inc. Translumenally implantable heart valve with multiple chamber formed in place support
US7780725B2 (en) 2004-06-16 2010-08-24 Sadra Medical, Inc. Everting heart valve
JP2008504104A (en) * 2004-06-28 2008-02-14 イソフラックス・インコーポレイテッドIsoflux, Inc. Biomedical implants for the porous coating
US20060030928A1 (en) * 2004-08-04 2006-02-09 Robert Burgermeister Radial design for high strength, high flexibility, controlled recoil stent
US20060052867A1 (en) 2004-09-07 2006-03-09 Medtronic, Inc Replacement prosthetic heart valve, system and method of implant
WO2006034436A2 (en) 2004-09-21 2006-03-30 Stout Medical Group, L.P. Expandable support device and method of use
US7331010B2 (en) * 2004-10-29 2008-02-12 International Business Machines Corporation System, method and storage medium for providing fault detection and correction in a memory subsystem
KR20070094888A (en) * 2004-11-19 2007-09-27 메드트로닉 인코포레이티드 Method and apparatus for treatment of cardiac valves
US8562672B2 (en) 2004-11-19 2013-10-22 Medtronic, Inc. Apparatus for treatment of cardiac valves and method of its manufacture
WO2006060546A2 (en) * 2004-12-01 2006-06-08 Cook Incorporated Valve with leak path
US20060142838A1 (en) * 2004-12-29 2006-06-29 Masoud Molaei Medical devices including metallic films and methods for loading and deploying same
US8632580B2 (en) * 2004-12-29 2014-01-21 Boston Scientific Scimed, Inc. Flexible medical devices including metallic films
US8992592B2 (en) * 2004-12-29 2015-03-31 Boston Scientific Scimed, Inc. Medical devices including metallic films
US7901447B2 (en) * 2004-12-29 2011-03-08 Boston Scientific Scimed, Inc. Medical devices including a metallic film and at least one filament
ITTO20050074A1 (en) * 2005-02-10 2006-08-11 Sorin Biomedica Cardio Srl Prosthetic heart valve
US8574257B2 (en) * 2005-02-10 2013-11-05 Edwards Lifesciences Corporation System, device, and method for providing access in a cardiovascular environment
DK1850796T3 (en) * 2005-02-18 2016-01-18 Cleveland Clinic Foundation Apparatus for replacement of a heart valve
US7867274B2 (en) * 2005-02-23 2011-01-11 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US7513909B2 (en) * 2005-04-08 2009-04-07 Arbor Surgical Technologies, Inc. Two-piece prosthetic valves with snap-in connection and methods for use
US7962208B2 (en) 2005-04-25 2011-06-14 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
JP5112295B2 (en) * 2005-04-27 2013-01-09 スタウト メディカル グループ,エル.ピー. Expandable support device and methods of use thereof
US7914569B2 (en) 2005-05-13 2011-03-29 Medtronics Corevalve Llc Heart valve prosthesis and methods of manufacture and use
US7854760B2 (en) * 2005-05-16 2010-12-21 Boston Scientific Scimed, Inc. Medical devices including metallic films
AU2006251888B2 (en) * 2005-05-20 2009-12-10 The Cleveland Clinic Foundation Apparatus and methods for repairing the function of a diseased valve and method for making same
WO2006127756A2 (en) * 2005-05-24 2006-11-30 Edwards Lifesciences Corporation Rapid deployment prosthetic heart valve
WO2006130505A2 (en) 2005-05-27 2006-12-07 Arbor Surgical Technologies, Inc. Gasket with collar for prosthetic heart valves and methods for using them
CA2610669A1 (en) * 2005-06-07 2006-12-14 Direct Flow Medical, Inc. Stentless aortic valve replacement with high radial strength
US7776084B2 (en) * 2005-07-13 2010-08-17 Edwards Lifesciences Corporation Prosthetic mitral heart valve having a contoured sewing ring
WO2007009107A2 (en) 2005-07-14 2007-01-18 Stout Medical Group, P.L. Expandable support device and method of use
US7712606B2 (en) 2005-09-13 2010-05-11 Sadra Medical, Inc. Two-part package for medical implant
US7682304B2 (en) * 2005-09-21 2010-03-23 Medtronic, Inc. Composite heart valve apparatus manufactured using techniques involving laser machining of tissue
US7569071B2 (en) * 2005-09-21 2009-08-04 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
EP1945142B1 (en) 2005-09-26 2013-12-25 Medtronic, Inc. Prosthetic cardiac and venous valves
US8287584B2 (en) * 2005-11-14 2012-10-16 Sadra Medical, Inc. Medical implant deployment tool
US20070213813A1 (en) * 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US9717468B2 (en) * 2006-01-10 2017-08-01 Mediguide Ltd. System and method for positioning an artificial heart valve at the position of a malfunctioning valve of a heart through a percutaneous route
US9078781B2 (en) * 2006-01-11 2015-07-14 Medtronic, Inc. Sterile cover for compressible stents used in percutaneous device delivery systems
US7967857B2 (en) 2006-01-27 2011-06-28 Medtronic, Inc. Gasket with spring collar for prosthetic heart valves and methods for making and using them
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
EP1988851A2 (en) 2006-02-14 2008-11-12 Sadra Medical, Inc. Systems and methods for delivering a medical implant
US20070224235A1 (en) 2006-03-24 2007-09-27 Barron Tenney Medical devices having nanoporous coatings for controlled therapeutic agent delivery
US8187620B2 (en) 2006-03-27 2012-05-29 Boston Scientific Scimed, Inc. Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents
US8075615B2 (en) * 2006-03-28 2011-12-13 Medtronic, Inc. Prosthetic cardiac valve formed from pericardium material and methods of making same
US7524331B2 (en) * 2006-04-06 2009-04-28 Medtronic Vascular, Inc. Catheter delivered valve having a barrier to provide an enhanced seal
US7740655B2 (en) * 2006-04-06 2010-06-22 Medtronic Vascular, Inc. Reinforced surgical conduit for implantation of a stented valve therein
US20070239269A1 (en) * 2006-04-07 2007-10-11 Medtronic Vascular, Inc. Stented Valve Having Dull Struts
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
US20070244544A1 (en) * 2006-04-14 2007-10-18 Medtronic Vascular, Inc. Seal for Enhanced Stented Valve Fixation
US20070244545A1 (en) * 2006-04-14 2007-10-18 Medtronic Vascular, Inc. Prosthetic Conduit With Radiopaque Symmetry Indicators
US20070244546A1 (en) * 2006-04-18 2007-10-18 Medtronic Vascular, Inc. Stent Foundation for Placement of a Stented Valve
EP1849440A1 (en) * 2006-04-28 2007-10-31 Younes Boudjemline Vascular stents with varying diameter
WO2007130881A2 (en) * 2006-04-29 2007-11-15 Arbor Surgical Technologies, Inc. Multiple component prosthetic heart valve assemblies and apparatus and methods for delivering them
US8021161B2 (en) * 2006-05-01 2011-09-20 Edwards Lifesciences Corporation Simulated heart valve root for training and testing
US8070800B2 (en) 2006-05-05 2011-12-06 Children's Medical Center Corporation Transcatheter heart valve prostheses
US8815275B2 (en) 2006-06-28 2014-08-26 Boston Scientific Scimed, Inc. Coatings for medical devices comprising a therapeutic agent and a metallic material
US8771343B2 (en) 2006-06-29 2014-07-08 Boston Scientific Scimed, Inc. Medical devices with selective titanium oxide coatings
CA2659761A1 (en) 2006-08-02 2008-02-07 Boston Scientific Scimed, Inc. Endoprosthesis with three-dimensional disintegration control
JP2010503469A (en) 2006-09-14 2010-02-04 ボストン サイエンティフィック リミテッド Medical device having a drug eluting coating
ES2368125T3 (en) 2006-09-15 2011-11-14 Boston Scientific Scimed, Inc. bioerodible endoprostheses biostable inorganic layers.
EP2959925B1 (en) 2006-09-15 2018-08-29 Boston Scientific Limited Medical devices and methods of making the same
AT517590T (en) 2006-09-15 2011-08-15 Boston Scient Ltd Bioerodible endoprostheses
US8808726B2 (en) 2006-09-15 2014-08-19 Boston Scientific Scimed. Inc. Bioerodible endoprostheses and methods of making the same
CA2663762A1 (en) 2006-09-18 2008-03-27 Boston Scientific Limited Endoprostheses
US8876895B2 (en) 2006-09-19 2014-11-04 Medtronic Ventor Technologies Ltd. Valve fixation member having engagement arms
US8834564B2 (en) 2006-09-19 2014-09-16 Medtronic, Inc. Sinus-engaging valve fixation member
EP2083901B1 (en) 2006-10-16 2017-12-27 Medtronic Ventor Technologies Ltd. Transapical delivery system with ventriculo-arterial overflow bypass
US7935144B2 (en) * 2006-10-19 2011-05-03 Direct Flow Medical, Inc. Profile reduction of valve implant
US8133213B2 (en) * 2006-10-19 2012-03-13 Direct Flow Medical, Inc. Catheter guidance through a calcified aortic valve
US7771467B2 (en) 2006-11-03 2010-08-10 The Cleveland Clinic Foundation Apparatus for repairing the function of a native aortic valve
US7981150B2 (en) 2006-11-09 2011-07-19 Boston Scientific Scimed, Inc. Endoprosthesis with coatings
CA2671754C (en) * 2006-12-06 2015-08-18 Medtronic Corevalve Llc System and method for transapical delivery of an annulus anchored self-expanding valve
US20080147181A1 (en) 2006-12-19 2008-06-19 Sorin Biomedica Cardio S.R.L. Device for in situ axial and radial positioning of cardiac valve prostheses
US8070799B2 (en) 2006-12-19 2011-12-06 Sorin Biomedica Cardio S.R.L. Instrument and method for in situ deployment of cardiac valve prostheses
DE602007010669D1 (en) 2006-12-28 2010-12-30 Boston Scient Ltd hear it
WO2008089365A2 (en) * 2007-01-19 2008-07-24 The Cleveland Clinic Foundation Method for implanting a cardiovascular valve
US20080262593A1 (en) * 2007-02-15 2008-10-23 Ryan Timothy R Multi-layered stents and methods of implanting
EP2129332B1 (en) * 2007-02-16 2019-01-23 Medtronic, Inc. Replacement prosthetic heart valves
US8431149B2 (en) 2007-03-01 2013-04-30 Boston Scientific Scimed, Inc. Coated medical devices for abluminal drug delivery
US8070797B2 (en) 2007-03-01 2011-12-06 Boston Scientific Scimed, Inc. Medical device with a porous surface for delivery of a therapeutic agent
US8067054B2 (en) 2007-04-05 2011-11-29 Boston Scientific Scimed, Inc. Stents with ceramic drug reservoir layer and methods of making and using the same
EP2155115B1 (en) * 2007-04-13 2018-09-05 JenaValve Technology, Inc. Medical device for treating a heart valve insufficiency or stenosis
FR2915087A1 (en) 2007-04-20 2008-10-24 Corevalve Inc Implant treatment of a heart valve, particularly a mitral valve implant inculant material and equipment for setting up of this implant.
US7976915B2 (en) 2007-05-23 2011-07-12 Boston Scientific Scimed, Inc. Endoprosthesis with select ceramic morphology
US8002823B2 (en) 2007-07-11 2011-08-23 Boston Scientific Scimed, Inc. Endoprosthesis coating
US7942926B2 (en) 2007-07-11 2011-05-17 Boston Scientific Scimed, Inc. Endoprosthesis coating
US9284409B2 (en) 2007-07-19 2016-03-15 Boston Scientific Scimed, Inc. Endoprosthesis having a non-fouling surface
US7931683B2 (en) 2007-07-27 2011-04-26 Boston Scientific Scimed, Inc. Articles having ceramic coated surfaces
US8815273B2 (en) 2007-07-27 2014-08-26 Boston Scientific Scimed, Inc. Drug eluting medical devices having porous layers
US8221822B2 (en) 2007-07-31 2012-07-17 Boston Scientific Scimed, Inc. Medical device coating by laser cladding
WO2009020520A1 (en) 2007-08-03 2009-02-12 Boston Scientific Scimed, Inc. Coating for medical device having increased surface area
US8747458B2 (en) 2007-08-20 2014-06-10 Medtronic Ventor Technologies Ltd. Stent loading tool and method for use thereof
CA2697364C (en) * 2007-08-23 2017-10-17 Direct Flow Medical, Inc. Translumenally implantable heart valve with formed in place support
US8114154B2 (en) 2007-09-07 2012-02-14 Sorin Biomedica Cardio S.R.L. Fluid-filled delivery system for in situ deployment of cardiac valve prostheses
US8808367B2 (en) * 2007-09-07 2014-08-19 Sorin Group Italia S.R.L. Prosthetic valve delivery system including retrograde/antegrade approach
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
DE102007043830A1 (en) 2007-09-13 2009-04-02 Lozonschi, Lucian, Madison Heart valve stent
BRPI0817708A2 (en) 2007-09-26 2017-05-16 St Jude Medical prosthetic heart valve, and slide structure for the same.
US9532868B2 (en) 2007-09-28 2017-01-03 St. Jude Medical, Inc. Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
US8784481B2 (en) 2007-09-28 2014-07-22 St. Jude Medical, Inc. Collapsible/expandable prosthetic heart valves with native calcified leaflet retention features
US20090138079A1 (en) * 2007-10-10 2009-05-28 Vector Technologies Ltd. Prosthetic heart valve for transfemoral delivery
US9848981B2 (en) * 2007-10-12 2017-12-26 Mayo Foundation For Medical Education And Research Expandable valve prosthesis with sealing mechanism
US8142490B2 (en) * 2007-10-24 2012-03-27 Cordis Corporation Stent segments axially connected by thin film
EP2679198A1 (en) 2007-10-25 2014-01-01 Symetis Sa Stents, valved-stents and methods and systems for delivery thereof
US8216632B2 (en) 2007-11-02 2012-07-10 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8029554B2 (en) 2007-11-02 2011-10-04 Boston Scientific Scimed, Inc. Stent with embedded material
US7938855B2 (en) 2007-11-02 2011-05-10 Boston Scientific Scimed, Inc. Deformable underlayer for stent
US8715337B2 (en) 2007-11-09 2014-05-06 Cook Medical Technologies Llc Aortic valve stent graft
US7846199B2 (en) * 2007-11-19 2010-12-07 Cook Incorporated Remodelable prosthetic valve
WO2009094501A1 (en) 2008-01-24 2009-07-30 Medtronic, Inc. Markers for prosthetic heart valves
EP2254513B1 (en) * 2008-01-24 2015-10-28 Medtronic, Inc. Stents for prosthetic heart valves
US20090287290A1 (en) * 2008-01-24 2009-11-19 Medtronic, Inc. Delivery Systems and Methods of Implantation for Prosthetic Heart Valves
US9149358B2 (en) * 2008-01-24 2015-10-06 Medtronic, Inc. Delivery systems for prosthetic heart valves
US8157853B2 (en) * 2008-01-24 2012-04-17 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
MX2010008171A (en) 2008-01-24 2010-12-07 Medtronic Inc Stents for prosthetic heart valves.
US9393115B2 (en) 2008-01-24 2016-07-19 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
CA2787245A1 (en) * 2008-02-26 2009-09-03 Jenavalve Technology Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US20090264989A1 (en) * 2008-02-28 2009-10-22 Philipp Bonhoeffer Prosthetic heart valve systems
US9241792B2 (en) 2008-02-29 2016-01-26 Edwards Lifesciences Corporation Two-step heart valve implantation
US8313525B2 (en) 2008-03-18 2012-11-20 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
US8696689B2 (en) * 2008-03-18 2014-04-15 Medtronic Ventor Technologies Ltd. Medical suturing device and method for use thereof
US8430927B2 (en) 2008-04-08 2013-04-30 Medtronic, Inc. Multiple orifice implantable heart valve and methods of implantation
US8920491B2 (en) 2008-04-22 2014-12-30 Boston Scientific Scimed, Inc. Medical devices having a coating of inorganic material
US8696743B2 (en) * 2008-04-23 2014-04-15 Medtronic, Inc. Tissue attachment devices and methods for prosthetic heart valves
US8312825B2 (en) * 2008-04-23 2012-11-20 Medtronic, Inc. Methods and apparatuses for assembly of a pericardial prosthetic heart valve
WO2009132176A2 (en) 2008-04-24 2009-10-29 Boston Scientific Scimed, Inc. Medical devices having inorganic particle layers
US20090276040A1 (en) * 2008-05-01 2009-11-05 Edwards Lifesciences Corporation Device and method for replacing mitral valve
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US8840661B2 (en) 2008-05-16 2014-09-23 Sorin Group Italia S.R.L. Atraumatic prosthetic heart valve prosthesis
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
WO2009155328A2 (en) 2008-06-18 2009-12-23 Boston Scientific Scimed, Inc. Endoprosthesis coating
ES2584315T3 (en) 2008-07-15 2016-09-27 St. Jude Medical, Inc. Collapsible designs and reexpansible Prosthetic heart valve sleeve and complementary technological applications
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US20110208299A1 (en) 2008-08-19 2011-08-25 Roelof Marissen Implantable valve prosthesis and method for manufacturing such a valve
US8998981B2 (en) * 2008-09-15 2015-04-07 Medtronic, Inc. Prosthetic heart valve having identifiers for aiding in radiographic positioning
US8721714B2 (en) * 2008-09-17 2014-05-13 Medtronic Corevalve Llc Delivery system for deployment of medical devices
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
CN102245256B (en) * 2008-10-10 2014-07-23 萨德拉医学公司 Medical devices and delivery systems for delivering medical devices
US8137398B2 (en) * 2008-10-13 2012-03-20 Medtronic Ventor Technologies Ltd Prosthetic valve having tapered tip when compressed for delivery
US8986361B2 (en) 2008-10-17 2015-03-24 Medtronic Corevalve, Inc. Delivery system for deployment of medical devices
US20100211176A1 (en) 2008-11-12 2010-08-19 Stout Medical Group, L.P. Fixation device and method
WO2010065265A2 (en) 2008-11-25 2010-06-10 Edwards Lifesciences Corporation Apparatus and method for in situ expansion of prosthetic device
US8231980B2 (en) 2008-12-03 2012-07-31 Boston Scientific Scimed, Inc. Medical implants including iridium oxide
US8308798B2 (en) 2008-12-19 2012-11-13 Edwards Lifesciences Corporation Quick-connect prosthetic heart valve and methods
US8834563B2 (en) 2008-12-23 2014-09-16 Sorin Group Italia S.R.L. Expandable prosthetic valve having anchoring appendages
US8267992B2 (en) 2009-03-02 2012-09-18 Boston Scientific Scimed, Inc. Self-buffering medical implants
US8071156B2 (en) 2009-03-04 2011-12-06 Boston Scientific Scimed, Inc. Endoprostheses
US9980818B2 (en) 2009-03-31 2018-05-29 Edwards Lifesciences Corporation Prosthetic heart valve system with positioning markers
US8287937B2 (en) 2009-04-24 2012-10-16 Boston Scientific Scimed, Inc. Endoprosthese
EP2628465A1 (en) 2009-04-27 2013-08-21 Sorin Group Italia S.r.l. Prosthetic vascular conduit
EP2448522A4 (en) 2009-07-02 2018-01-31 The Cleveland Clinic Foundation Apparatus and method for replacing a diseased cardiac valve
WO2010129900A1 (en) * 2009-05-07 2010-11-11 Georgia Tech Research Corporation Implantable prosthetic vascular valves
US8353953B2 (en) * 2009-05-13 2013-01-15 Sorin Biomedica Cardio, S.R.L. Device for the in situ delivery of heart valves
US9168105B2 (en) * 2009-05-13 2015-10-27 Sorin Group Italia S.R.L. Device for surgical interventions
US8403982B2 (en) * 2009-05-13 2013-03-26 Sorin Group Italia S.R.L. Device for the in situ delivery of heart valves
US8348998B2 (en) 2009-06-26 2013-01-08 Edwards Lifesciences Corporation Unitary quick connect prosthetic heart valve and deployment system and methods
US8808369B2 (en) * 2009-10-05 2014-08-19 Mayo Foundation For Medical Education And Research Minimally invasive aortic valve replacement
US8449625B2 (en) 2009-10-27 2013-05-28 Edwards Lifesciences Corporation Methods of measuring heart valve annuluses for valve replacement
WO2011057087A1 (en) * 2009-11-05 2011-05-12 The Trustees University Of Pennsylvania Valve prosthesis
US9226826B2 (en) * 2010-02-24 2016-01-05 Medtronic, Inc. Transcatheter valve structure and methods for valve delivery
US9522062B2 (en) * 2010-02-24 2016-12-20 Medtronic Ventor Technologies, Ltd. Mitral prosthesis and methods for implantation
US8306029B2 (en) * 2010-03-01 2012-11-06 Avaya Inc. System and method for detecting sources of rogue non-audio traffic marked as audio traffic
US8668732B2 (en) 2010-03-23 2014-03-11 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
US9480557B2 (en) * 2010-03-25 2016-11-01 Medtronic, Inc. Stents for prosthetic heart valves
US8652204B2 (en) 2010-04-01 2014-02-18 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
WO2011143238A2 (en) 2010-05-10 2011-11-17 Edwards Lifesciences Corporation Prosthetic heart valve
US9554901B2 (en) 2010-05-12 2017-01-31 Edwards Lifesciences Corporation Low gradient prosthetic heart valve
US9603708B2 (en) 2010-05-19 2017-03-28 Dfm, Llc Low crossing profile delivery catheter for cardiovascular prosthetic implant
IT1400327B1 (en) 2010-05-21 2013-05-24 Sorin Biomedica Cardio Srl Support device for valve prostheses and corresponding kit.
US20110307056A1 (en) * 2010-06-09 2011-12-15 Biotronik Ag Medical valve implant for implantation in an animal body and/or human body
US9795476B2 (en) 2010-06-17 2017-10-24 St. Jude Medical, Llc Collapsible heart valve with angled frame
JP2013188235A (en) * 2010-06-28 2013-09-26 Terumo Corp Artificial valve
WO2012004679A2 (en) 2010-07-09 2012-01-12 Highlife Sas Transcatheter atrio-ventricular valve prosthesis
JP2013537464A (en) * 2010-08-17 2013-10-03 パルマズ サイエンティフィック,インコーポレイテッドPalmaz Scientific,Inc. Transtubular heart ball valve and method for deploying it
EP2611388A2 (en) 2010-09-01 2013-07-10 Medtronic Vascular Galway Limited Prosthetic valve support structure
US8641757B2 (en) 2010-09-10 2014-02-04 Edwards Lifesciences Corporation Systems for rapidly deploying surgical heart valves
US9125741B2 (en) 2010-09-10 2015-09-08 Edwards Lifesciences Corporation Systems and methods for ensuring safe and rapid deployment of prosthetic heart valves
BR112013005277A2 (en) 2010-09-10 2016-05-17 Symetis Sa valve replacement devices, dispensing device for a valve replacement device and a replacement valve device production method
US9370418B2 (en) 2010-09-10 2016-06-21 Edwards Lifesciences Corporation Rapidly deployable surgical heart valves
BR112013006514A2 (en) 2010-09-20 2016-07-12 St Jude Medical Cardiology Div Prosthetic heart valve
US10321998B2 (en) 2010-09-23 2019-06-18 Transmural Systems Llc Methods and systems for delivering prostheses using rail techniques
US9579193B2 (en) 2010-09-23 2017-02-28 Transmural Systems Llc Methods and systems for delivering prostheses using rail techniques
US8845720B2 (en) 2010-09-27 2014-09-30 Edwards Lifesciences Corporation Prosthetic heart valve frame with flexible commissures
US20120116496A1 (en) * 2010-11-05 2012-05-10 Chuter Timothy A Stent structures for use with valve replacements
US9149286B1 (en) 2010-11-12 2015-10-06 Flexmedex, LLC Guidance tool and method for use
US8845717B2 (en) 2011-01-28 2014-09-30 Middle Park Medical, Inc. Coaptation enhancement implant, system, and method
US8888843B2 (en) 2011-01-28 2014-11-18 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valve regurgitation
ES2641902T3 (en) 2011-02-14 2017-11-14 Sorin Group Italia S.R.L. Anchoring device for sutureless heart valve prostheses
EP2486894A1 (en) 2011-02-14 2012-08-15 Sorin Biomedica Cardio S.r.l. Sutureless anchoring device for cardiac valve prostheses
GB2488530A (en) * 2011-02-18 2012-09-05 David J Wheatley Heart valve
WO2012127309A1 (en) 2011-03-21 2012-09-27 Ontorfano Matteo Disk-based valve apparatus and method for the treatment of valve dysfunction
WO2014149295A1 (en) * 2013-03-15 2014-09-25 W. L. Gore & Associates, Inc. Prosthetic heart valve leaflet adapted for external imaging
US20130197536A1 (en) * 2011-04-07 2013-08-01 Jai Singh General uterine manipulator and system
US9987042B2 (en) * 2011-04-07 2018-06-05 Jai Singh General uterine manipulator and system
EP2693961B1 (en) * 2011-04-07 2017-05-31 Jiwan Steven Singh General uterine manipulator and system
US20120303048A1 (en) 2011-05-24 2012-11-29 Sorin Biomedica Cardio S.R.I. Transapical valve replacement
JP2014527425A (en) 2011-07-12 2014-10-16 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Coupling system for medical equipment
EP2741711B1 (en) 2011-08-11 2018-05-30 Tendyne Holdings, Inc. Improvements for prosthetic valves and related inventions
EP2747682A4 (en) 2011-08-23 2015-01-21 Flexmedex Llc Tissue removal device and method
US10238483B2 (en) * 2011-09-16 2019-03-26 3Dt Holdings, Llc Devices and methods for assisting valve function, replacing venous valves, and predicting valve treatment success
US9131926B2 (en) 2011-11-10 2015-09-15 Boston Scientific Scimed, Inc. Direct connect flush system
US8940014B2 (en) 2011-11-15 2015-01-27 Boston Scientific Scimed, Inc. Bond between components of a medical device
US8951243B2 (en) 2011-12-03 2015-02-10 Boston Scientific Scimed, Inc. Medical device handle
US9827092B2 (en) 2011-12-16 2017-11-28 Tendyne Holdings, Inc. Tethers for prosthetic mitral valve
US9277993B2 (en) 2011-12-20 2016-03-08 Boston Scientific Scimed, Inc. Medical device delivery systems
US9510945B2 (en) 2011-12-20 2016-12-06 Boston Scientific Scimed Inc. Medical device handle
US9078747B2 (en) 2011-12-21 2015-07-14 Edwards Lifesciences Corporation Anchoring device for replacing or repairing a heart valve
EP2842517A1 (en) 2011-12-29 2015-03-04 Sorin Group Italia S.r.l. A kit for implanting prosthetic vascular conduits
WO2013112547A1 (en) 2012-01-25 2013-08-01 Boston Scientific Scimed, Inc. Valve assembly with a bioabsorbable gasket and a replaceable valve implant
US20130226026A1 (en) * 2012-02-28 2013-08-29 Spiration, Inc. Pulmonary nodule access devices and methods of using the same
US20130274873A1 (en) 2012-03-22 2013-10-17 Symetis Sa Transcatheter Stent-Valves and Methods, Systems and Devices for Addressing Para-Valve Leakage
WO2013159019A1 (en) 2012-04-20 2013-10-24 Surgitools Usa Llc Repositionable medical instrument support systems, devices, and methods
US9445897B2 (en) 2012-05-01 2016-09-20 Direct Flow Medical, Inc. Prosthetic implant delivery device with introducer catheter
US9554902B2 (en) 2012-06-28 2017-01-31 St. Jude Medical, Cardiology Division, Inc. Leaflet in configuration for function in various shapes and sizes
US9289292B2 (en) 2012-06-28 2016-03-22 St. Jude Medical, Cardiology Division, Inc. Valve cuff support
US9241791B2 (en) 2012-06-29 2016-01-26 St. Jude Medical, Cardiology Division, Inc. Valve assembly for crimp profile
US20140005776A1 (en) 2012-06-29 2014-01-02 St. Jude Medical, Cardiology Division, Inc. Leaflet attachment for function in various shapes and sizes
US9615920B2 (en) 2012-06-29 2017-04-11 St. Jude Medical, Cardiology Divisions, Inc. Commissure attachment feature for prosthetic heart valve
US10004597B2 (en) 2012-07-03 2018-06-26 St. Jude Medical, Cardiology Division, Inc. Stent and implantable valve incorporating same
US9808342B2 (en) 2012-07-03 2017-11-07 St. Jude Medical, Cardiology Division, Inc. Balloon sizing device and method of positioning a prosthetic heart valve
WO2014022124A1 (en) 2012-07-28 2014-02-06 Tendyne Holdings, Inc. Improved multi-component designs for heart valve retrieval device, sealing structures and stent assembly
WO2014021905A1 (en) 2012-07-30 2014-02-06 Tendyne Holdings, Inc. Improved delivery systems and methods for transcatheter prosthetic valves
US9801721B2 (en) 2012-10-12 2017-10-31 St. Jude Medical, Cardiology Division, Inc. Sizing device and method of positioning a prosthetic heart valve
US9314163B2 (en) 2013-01-29 2016-04-19 St. Jude Medical, Cardiology Division, Inc. Tissue sensing device for sutureless valve selection
US9655719B2 (en) 2013-01-29 2017-05-23 St. Jude Medical, Cardiology Division, Inc. Surgical heart valve flexible stent frame stiffener
US9186238B2 (en) 2013-01-29 2015-11-17 St. Jude Medical, Cardiology Division, Inc. Aortic great vessel protection
EP2961349A1 (en) * 2013-02-28 2016-01-06 Boston Scientific Scimed, Inc. Stent with balloon for repair of anastomosis surgery leaks
US9844435B2 (en) 2013-03-01 2017-12-19 St. Jude Medical, Cardiology Division, Inc. Transapical mitral valve replacement
US9901470B2 (en) 2013-03-01 2018-02-27 St. Jude Medical, Cardiology Division, Inc. Methods of repositioning a transcatheter heart valve after full deployment
US9480563B2 (en) 2013-03-08 2016-11-01 St. Jude Medical, Cardiology Division, Inc. Valve holder with leaflet protection
US10271949B2 (en) 2013-03-12 2019-04-30 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak occlusion device for self-expanding heart valves
US9339274B2 (en) 2013-03-12 2016-05-17 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak occlusion device for self-expanding heart valves
WO2014143126A1 (en) 2013-03-12 2014-09-18 St. Jude Medical, Cardiology Division, Inc. Self-actuating sealing portions for paravalvular leak protection
US9398951B2 (en) 2013-03-12 2016-07-26 St. Jude Medical, Cardiology Division, Inc. Self-actuating sealing portions for paravalvular leak protection
US9636222B2 (en) 2013-03-12 2017-05-02 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak protection
US10314698B2 (en) 2013-03-12 2019-06-11 St. Jude Medical, Cardiology Division, Inc. Thermally-activated biocompatible foam occlusion device for self-expanding heart valves
US9131982B2 (en) 2013-03-14 2015-09-15 St. Jude Medical, Cardiology Division, Inc. Mediguide-enabled renal denervation system for ensuring wall contact and mapping lesion locations
US9326856B2 (en) 2013-03-14 2016-05-03 St. Jude Medical, Cardiology Division, Inc. Cuff configurations for prosthetic heart valve
EP2967863B1 (en) 2013-03-15 2018-01-31 Edwards Lifesciences Corporation Valved aortic conduits
US9486306B2 (en) 2013-04-02 2016-11-08 Tendyne Holdings, Inc. Inflatable annular sealing device for prosthetic mitral valve
US9629718B2 (en) 2013-05-03 2017-04-25 Medtronic, Inc. Valve delivery tool
KR101429005B1 (en) 2013-05-06 2014-08-12 부산대학교 산학협력단 Holding Device of Cardiac Valves
CN105578991B (en) * 2013-05-29 2017-11-14 M阀门技术有限公司 Equipped with a valve leaflet of the heart valve support means
US9610159B2 (en) 2013-05-30 2017-04-04 Tendyne Holdings, Inc. Structural members for prosthetic mitral valves
US9468527B2 (en) 2013-06-12 2016-10-18 Edwards Lifesciences Corporation Cardiac implant with integrated suture fasteners
WO2014204807A1 (en) 2013-06-19 2014-12-24 Aga Medical Corporation Collapsible valve having paravalvular leak protection
EP3415120A1 (en) 2013-06-25 2018-12-19 Tendyne Holdings, Inc. Thrombus management and structural compliance features for prosthetic heart valves
US9668856B2 (en) 2013-06-26 2017-06-06 St. Jude Medical, Cardiology Division, Inc. Puckering seal for reduced paravalvular leakage
US9561103B2 (en) 2013-07-17 2017-02-07 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
CA2919528C (en) * 2013-08-07 2018-05-01 Boston Scientific Scimed, Inc. Silicone reflux valve for polymeric stents
US9919137B2 (en) 2013-08-28 2018-03-20 Edwards Lifesciences Corporation Integrated balloon catheter inflation system
US9867611B2 (en) 2013-09-05 2018-01-16 St. Jude Medical, Cardiology Division, Inc. Anchoring studs for transcatheter valve implantation
EP3043745A1 (en) 2013-09-12 2016-07-20 St. Jude Medical, Cardiology Division, Inc. Stent designs for prosthetic heart valves
WO2015052663A1 (en) * 2013-10-08 2015-04-16 Medical Research, Infrastructure And Health Services Fund Of The Tel Aviv Medical Center Cardiac prostheses and their deployment
US10166098B2 (en) 2013-10-25 2019-01-01 Middle Peak Medical, Inc. Systems and methods for transcatheter treatment of valve regurgitation
US9526611B2 (en) 2013-10-29 2016-12-27 Tendyne Holdings, Inc. Apparatus and methods for delivery of transcatheter prosthetic valves
US9913715B2 (en) 2013-11-06 2018-03-13 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak sealing mechanism
US9700409B2 (en) 2013-11-06 2017-07-11 St. Jude Medical, Cardiology Division, Inc. Reduced profile prosthetic heart valve
EP2870946B1 (en) 2013-11-06 2018-10-31 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak sealing mechanism
US9889004B2 (en) 2013-11-19 2018-02-13 St. Jude Medical, Cardiology Division, Inc. Sealing structures for paravalvular leak protection
WO2015080929A1 (en) 2013-11-27 2015-06-04 St. Jude Medical, Cardiology Division, Inc. Cuff stitching reinforcement
EP3082655A1 (en) 2013-12-19 2016-10-26 St. Jude Medical, Cardiology Division, Inc. Leaflet-cuff attachments for prosthetic heart valve
US9393111B2 (en) 2014-01-15 2016-07-19 Sino Medical Sciences Technology Inc. Device and method for mitral valve regurgitation treatment
CN104906682A (en) 2014-01-24 2015-09-16 史蒂文·沙勒布瓦 Articulating balloon catheter and method for using the same
US9820852B2 (en) 2014-01-24 2017-11-21 St. Jude Medical, Cardiology Division, Inc. Stationary intra-annular halo designs for paravalvular leak (PVL) reduction—active channel filling cuff designs
WO2015120122A2 (en) 2014-02-05 2015-08-13 Robert Vidlund Apparatus and methods for transfemoral delivery of prosthetic mitral valve
EP2904967A1 (en) 2014-02-07 2015-08-12 St. Jude Medical, Cardiology Division, Inc. System and method for assessing dimensions and eccentricity of valve annulus for trans-catheter valve implantation
US10292711B2 (en) 2014-02-07 2019-05-21 St. Jude Medical, Cardiology Division, Inc. Mitral valve treatment device having left atrial appendage closure
US9986993B2 (en) 2014-02-11 2018-06-05 Tendyne Holdings, Inc. Adjustable tether and epicardial pad system for prosthetic heart valve
ES2711663T3 (en) * 2014-03-18 2019-05-06 Nvt Ag Cardiac valve implant
WO2015142648A1 (en) 2014-03-18 2015-09-24 St. Jude Medical, Cardiology Division, Inc. Mitral valve replacement toggle cell securement
EP2921140A1 (en) 2014-03-18 2015-09-23 St. Jude Medical, Cardiology Division, Inc. Percutaneous valve anchoring for a prosthetic aortic valve
EP3119352A1 (en) 2014-03-21 2017-01-25 St. Jude Medical, Cardiology Division, Inc. Leaflet abrasion mitigation
US20150272737A1 (en) * 2014-03-26 2015-10-01 St. Jude Medical, Cardiology Division, Inc. Transcatheter mitral valve stent frames
US20170014115A1 (en) 2014-03-27 2017-01-19 Transmural Systems Llc Devices and methods for closure of transvascular or transcameral access ports
EP3125826A1 (en) 2014-03-31 2017-02-08 St. Jude Medical, Cardiology Division, Inc. Paravalvular sealing via extended cuff mechanisms
US9549816B2 (en) 2014-04-03 2017-01-24 Edwards Lifesciences Corporation Method for manufacturing high durability heart valve
EP3131504A1 (en) 2014-04-14 2017-02-22 St. Jude Medical, Cardiology Division, Inc. Leaflet abrasion mitigation in prosthetic heart valves
US9585752B2 (en) 2014-04-30 2017-03-07 Edwards Lifesciences Corporation Holder and deployment system for surgical heart valves
US9668858B2 (en) 2014-05-16 2017-06-06 St. Jude Medical, Cardiology Division, Inc. Transcatheter valve with paravalvular leak sealing ring
WO2015175863A1 (en) 2014-05-16 2015-11-19 St. Jude Medical, Cardiology Division, Inc. Stent assembly for use in prosthetic heart valves
WO2015175524A1 (en) 2014-05-16 2015-11-19 St. Jude Medical, Cardiology Division, Inc. Subannular sealing for paravalvular leak protection
US10321993B2 (en) * 2014-05-21 2019-06-18 St. Jude Medical, Cardiology Division, Inc. Self-expanding heart valves for coronary perfusion and sealing
US9532870B2 (en) * 2014-06-06 2017-01-03 Edwards Lifesciences Corporation Prosthetic valve for replacing a mitral valve
US9855140B2 (en) 2014-06-10 2018-01-02 St. Jude Medical, Cardiology Division, Inc. Stent cell bridge for cuff attachment
CA2914094A1 (en) 2014-06-20 2015-12-20 Edwards Lifesciences Corporation Surgical heart valves identifiable post-implant
CA2958065A1 (en) 2014-06-24 2015-12-30 Middle Peak Medical, Inc. Systems and methods for anchoring an implant
EP2979664B1 (en) 2014-08-01 2019-01-09 Alvimedica Tibbi Ürünler Sanayi Ve Dis Ticaret A.S Aortic valve prosthesis, particularly suitable for transcatheter implantation
WO2016028585A1 (en) 2014-08-18 2016-02-25 St. Jude Medical, Cardiology Division, Inc. Sensors for prosthetic heart devices
US9808201B2 (en) 2014-08-18 2017-11-07 St. Jude Medical, Cardiology Division, Inc. Sensors for prosthetic heart devices
US9901445B2 (en) 2014-11-21 2018-02-27 Boston Scientific Scimed, Inc. Valve locking mechanism
US20160158000A1 (en) 2014-12-09 2016-06-09 Juan F. Granada Replacement cardiac valves and methods of use and manufacture
US9861477B2 (en) 2015-01-26 2018-01-09 Boston Scientific Scimed Inc. Prosthetic heart valve square leaflet-leaflet stitch
US10201417B2 (en) 2015-02-03 2019-02-12 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
US9788942B2 (en) 2015-02-03 2017-10-17 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
US10285809B2 (en) 2015-03-06 2019-05-14 Boston Scientific Scimed Inc. TAVI anchoring assist device
US10314699B2 (en) 2015-03-13 2019-06-11 St. Jude Medical, Cardiology Division, Inc. Recapturable valve-graft combination and related methods
US10080652B2 (en) 2015-03-13 2018-09-25 Boston Scientific Scimed, Inc. Prosthetic heart valve having an improved tubular seal
EP3273911A1 (en) 2015-03-24 2018-01-31 St. Jude Medical, Cardiology Division, Inc. Prosthetic mitral valve
WO2016154172A2 (en) 2015-03-24 2016-09-29 St. Jude Medical, Cardiology Division, Inc. Mitral heart valve replacement
US20160310268A1 (en) * 2015-04-21 2016-10-27 Edwards Lifesciences Corporation Percutaneous mitral valve replacement device
WO2016183526A1 (en) 2015-05-14 2016-11-17 Cephea Valve Technologies, Inc. Replacement mitral valves
WO2016201024A1 (en) 2015-06-12 2016-12-15 St. Jude Medical, Cardiology Division, Inc. Heart valve repair and replacement
US10195392B2 (en) 2015-07-02 2019-02-05 Boston Scientific Scimed, Inc. Clip-on catheter
WO2017004377A1 (en) 2015-07-02 2017-01-05 Boston Scientific Scimed, Inc. Adjustable nosecone
US10136991B2 (en) 2015-08-12 2018-11-27 Boston Scientific Scimed Inc. Replacement heart valve implant
US10179041B2 (en) 2015-08-12 2019-01-15 Boston Scientific Scimed Icn. Pinless release mechanism
US10080653B2 (en) 2015-09-10 2018-09-25 Edwards Lifesciences Corporation Limited expansion heart valve
US10327894B2 (en) 2015-09-18 2019-06-25 Tendyne Holdings, Inc. Methods for delivery of prosthetic mitral valves
US9592121B1 (en) 2015-11-06 2017-03-14 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US10342660B2 (en) 2016-02-02 2019-07-09 Boston Scientific Inc. Tensioned sheathing aids
US10321994B2 (en) 2016-05-13 2019-06-18 St. Jude Medical, Cardiology Division, Inc. Heart valve with stent having varying cell densities
USD802765S1 (en) 2016-05-13 2017-11-14 St. Jude Medical, Cardiology Division, Inc. Surgical stent
US10245136B2 (en) 2016-05-13 2019-04-02 Boston Scientific Scimed Inc. Containment vessel with implant sheathing guide
USD802764S1 (en) 2016-05-13 2017-11-14 St. Jude Medical, Cardiology Division, Inc. Surgical stent
USD802766S1 (en) 2016-05-13 2017-11-14 St. Jude Medical, Cardiology Division, Inc. Surgical stent
US10201416B2 (en) 2016-05-16 2019-02-12 Boston Scientific Scimed, Inc. Replacement heart valve implant with invertible leaflets
USD846122S1 (en) 2016-12-16 2019-04-16 Edwards Lifesciences Corporation Heart valve sizer
US10123874B2 (en) 2017-03-13 2018-11-13 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valvular regurgitation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3197788A (en) * 1962-04-23 1965-08-03 Inst Of Medical Sciences Prosthetic valve for cardiac surgery
EP0850607A1 (en) * 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
WO1998057599A2 (en) * 1997-06-17 1998-12-23 Sante Camilli Implantable valve for blood vessels
WO2002024119A1 (en) * 2000-09-21 2002-03-28 St. Jude Medical, Inc. Valved prostheses with reinforced polymer leaflets

Family Cites Families (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3717883A (en) 1970-11-23 1973-02-27 Techno Corp Cardiac valve replacement
US3898701A (en) 1974-01-17 1975-08-12 Russa Joseph Implantable heart valve
US4222126A (en) 1978-12-14 1980-09-16 The United States Of America As Represented By The Secretary Of The Department Of Health, Education & Welfare Unitized three leaflet heart valve
DE3133871A1 (en) 1981-08-27 1983-03-10 Ruhrchemie Ag A process for the preparation of homogeneous coatings of two or more metals and / or metal compounds
SE445884B (en) 1982-04-30 1986-07-28 Medinvent Sa A device for implantation of a tubular prosthesis
US5387247A (en) 1983-10-25 1995-02-07 Sorin Biomedia S.P.A. Prosthetic device having a biocompatible carbon film thereon and a method of and apparatus for forming such device
JPS6176153A (en) * 1984-09-25 1986-04-18 Kohgakusha Eng Artificial valve for artificial heart having surface treatment applied thereto
US5084151A (en) 1985-11-26 1992-01-28 Sorin Biomedica S.P.A. Method and apparatus for forming prosthetic device having a biocompatible carbon film thereon
JPH0536229B2 (en) 1985-12-28 1993-05-28 Kagaku Gijutsucho Koku Uchu Gijutsu Kenkyushocho
US4846834A (en) 1986-05-27 1989-07-11 Clemson University Method for promoting tissue adhesion to soft tissue implants
JPH0360271B2 (en) * 1986-10-30 1991-09-13 Tokai Rubber Ind Ltd
US5133845A (en) 1986-12-12 1992-07-28 Sorin Biomedica, S.P.A. Method for making prosthesis of polymeric material coated with biocompatible carbon
IT1196836B (en) 1986-12-12 1988-11-25 Sorin Biomedica Spa Polymeric or metal alloy prosthesis with biocompatible carbon coating
EP0331345A3 (en) * 1988-03-02 1990-10-17 Pfizer Hospital Products Group, Inc. Triaxially woven fabric for heart valve
JPH0577329B2 (en) 1988-06-10 1993-10-26 Fujitsu Ltd
US5007926A (en) 1989-02-24 1991-04-16 The Trustees Of The University Of Pennsylvania Expandable transluminally implantable tubular prosthesis
US4994077A (en) 1989-04-21 1991-02-19 Dobben Richard L Artificial heart valve for implantation in a blood vessel
US5061914A (en) 1989-06-27 1991-10-29 Tini Alloy Company Shape-memory alloy micro-actuator
US5649951A (en) 1989-07-25 1997-07-22 Smith & Nephew Richards, Inc. Zirconium oxide and zirconium nitride coated stents
US5258022A (en) * 1989-07-25 1993-11-02 Smith & Nephew Richards, Inc. Zirconium oxide and nitride coated cardiovascular implants
US5477864A (en) 1989-12-21 1995-12-26 Smith & Nephew Richards, Inc. Cardiovascular guidewire of enhanced biocompatibility
DK124690D0 (en) 1990-05-18 1990-05-18 Henning Rud Andersen Klapprotes for implantation in the body for replacement of the natural folding and catheter for use in the implantation of such a prosthesis flap
US5411552A (en) 1990-05-18 1995-05-02 Andersen; Henning R. Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis
US5158750A (en) 1990-06-06 1992-10-27 Praxair S.T. Technology, Inc. Boron nitride crucible
IL98530A (en) 1990-06-25 1996-06-18 Lanxide Technology Co Ltd Methods for making selfsupporting composite bodies and articles produced thereby using vapor-phase parent metals and solid oxidants
US5855955A (en) 1995-06-07 1999-01-05 Lanxide Technology Company L.P. Method for making self-supporting composite bodies
US5242710A (en) 1990-06-25 1993-09-07 Lanxide Technology Company, Lp Methods for making self-supporting composite bodies and articles produced thereby
KR950009939B1 (en) 1990-11-30 1995-09-01 가나이 쓰또무 Thin film forming method and semiconductor device thereby
US5108420A (en) 1991-02-01 1992-04-28 Temple University Aperture occlusion device
US5179993A (en) 1991-03-26 1993-01-19 Hughes Aircraft Company Method of fabricating anisometric metal needles and birefringent suspension thereof in dielectric fluid
US5397351A (en) 1991-05-13 1995-03-14 Pavcnik; Dusan Prosthetic valve for percutaneous insertion
IT1245750B (en) 1991-05-24 1994-10-14 Sorin Biomedica Emodialisi S R cardiac valvular prosthesis, especially for aortic valve replacement
US5370685A (en) 1991-07-16 1994-12-06 Stanford Surgical Technologies, Inc. Endovascular aortic valve replacement
JP2981804B2 (en) 1991-07-31 1999-11-22 キヤノン株式会社 The information processing apparatus, the electrode substrate used therefor, and an information recording medium
CA2079417C (en) 1991-10-28 2003-01-07 Lilip Lau Expandable stents and method of making same
US5316023A (en) 1992-01-08 1994-05-31 Expandable Grafts Partnership Method for bilateral intra-aortic bypass
JP3393383B2 (en) 1992-01-21 2003-04-07 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Septal defect closure device
US5163953A (en) 1992-02-10 1992-11-17 Vince Dennis J Toroidal artificial heart valve stent
US5685961A (en) 1992-03-27 1997-11-11 P & D Medical Coatings, Inc. Method for fabrication of metallized medical devices
US5332402A (en) 1992-05-12 1994-07-26 Teitelbaum George P Percutaneously-inserted cardiac valve
US5342387A (en) 1992-06-18 1994-08-30 American Biomed, Inc. Artificial support for a blood vessel
US5382261A (en) 1992-09-01 1995-01-17 Expandable Grafts Partnership Method and apparatus for occluding vessels
US5630840A (en) 1993-01-19 1997-05-20 Schneider (Usa) Inc Clad composite stent
US5607463A (en) 1993-03-30 1997-03-04 Medtronic, Inc. Intravascular medical device
US5713950A (en) 1993-11-01 1998-02-03 Cox; James L. Method of replacing heart valves using flexible tubes
JP2703510B2 (en) 1993-12-28 1998-01-26 アドヴァンスド カーディオヴァスキュラー システムズ インコーポレーテッド Expandable stent and a method for manufacturing the same
SI0821920T2 (en) 1994-02-25 2006-08-31 Fischell Robert Stent
US5798042A (en) 1994-03-07 1998-08-25 Regents Of The University Of California Microfabricated filter with specially constructed channel walls, and containment well and capsule constructed with such filters
US5605714A (en) 1994-03-29 1997-02-25 Southwest Research Institute Treatments to reduce thrombogeneticity in heart valves made from titanium and its alloys
US5725573A (en) 1994-03-29 1998-03-10 Southwest Research Institute Medical implants made of metal alloys bearing cohesive diamond like carbon coatings
US6165210A (en) 1994-04-01 2000-12-26 Gore Enterprise Holdings, Inc. Self-expandable helical intravascular stent and stent-graft
US5765418A (en) 1994-05-16 1998-06-16 Medtronic, Inc. Method for making an implantable medical device from a refractory metal
US5725552A (en) 1994-07-08 1998-03-10 Aga Medical Corporation Percutaneous catheter directed intravascular occlusion devices
US5846261A (en) 1994-07-08 1998-12-08 Aga Medical Corp. Percutaneous catheter directed occlusion devices
US5984905A (en) 1994-07-11 1999-11-16 Southwest Research Institute Non-irritating antimicrobial coating for medical implants and a process for preparing same
DE4429380C1 (en) 1994-08-15 1996-04-25 Biotronik Mess & Therapieg A process for preparing a nichtkollabierenden intravascular stent graft (stent)
US6015429A (en) 1994-09-08 2000-01-18 Gore Enterprise Holdings, Inc. Procedures for introducing stents and stent-grafts
US5545210A (en) 1994-09-22 1996-08-13 Advanced Coronary Technology, Inc. Method of implanting a permanent shape memory alloy stent
CA2163824C (en) 1994-11-28 2000-06-20 Richard J. Saunders Method and apparatus for direct laser cutting of metal stents
US5824064A (en) 1995-05-05 1998-10-20 Taheri; Syde A. Technique for aortic valve replacement with simultaneous aortic arch graft insertion and apparatus therefor
EP1018977B1 (en) 1995-05-26 2004-12-08 SurModics, Inc. Method and implantable article for promoting endothelialization
US5593442A (en) 1995-06-05 1997-01-14 Localmed, Inc. Radially expansible and articulated vessel scaffold
US5609629A (en) 1995-06-07 1997-03-11 Med Institute, Inc. Coated implantable medical device
CA2178541C (en) 1995-06-07 2009-11-24 Neal E. Fearnot Implantable medical device
US5607475A (en) 1995-08-22 1997-03-04 Medtronic, Inc. Biocompatible medical article and method
US5776161A (en) 1995-10-16 1998-07-07 Instent, Inc. Medical stents, apparatus and method for making same
US5628788A (en) 1995-11-07 1997-05-13 Corvita Corporation Self-expanding endoluminal stent-graft
US5788558A (en) 1995-11-13 1998-08-04 Localmed, Inc. Apparatus and method for polishing lumenal prostheses
US5913896A (en) 1995-11-28 1999-06-22 Medtronic, Inc. Interwoven dual sinusoidal helix stent
US5840009A (en) 1995-12-05 1998-11-24 Isostent, Inc. Radioisotope stent with increased radiation field strength at the ends of the stent
US5723219A (en) 1995-12-19 1998-03-03 Talison Research Plasma deposited film networks
US5843289A (en) 1996-01-22 1998-12-01 Etex Corporation Surface modification of medical implants
US5938682A (en) 1996-01-26 1999-08-17 Cordis Corporation Axially flexible stent
US5895406A (en) 1996-01-26 1999-04-20 Cordis Corporation Axially flexible stent
DE69716779D1 (en) 1996-01-30 2002-12-05 Medtronic Inc Products and methods for production of dilators
US5843117A (en) 1996-02-14 1998-12-01 Inflow Dynamics Inc. Implantable vascular and endoluminal stents and process of fabricating the same
US5772864A (en) 1996-02-23 1998-06-30 Meadox Medicals, Inc. Method for manufacturing implantable medical devices
US5932299A (en) 1996-04-23 1999-08-03 Katoot; Mohammad W. Method for modifying the surface of an object
US5855802A (en) 1996-05-30 1999-01-05 International Business Machines Corporation Method and apparatus for forming a tubular article having a perforated annular wall
US5811151A (en) 1996-05-31 1998-09-22 Medtronic, Inc. Method of modifying the surface of a medical device
US5855601A (en) 1996-06-21 1999-01-05 The Trustees Of Columbia University In The City Of New York Artificial heart valve and method and device for implanting the same
US5951881A (en) 1996-07-22 1999-09-14 President And Fellows Of Harvard College Fabrication of small-scale cylindrical articles
US5741297A (en) 1996-08-28 1998-04-21 Simon; Morris Daisy occluder and method for septal defect repair
US5895419A (en) 1996-09-30 1999-04-20 St. Jude Medical, Inc. Coated prosthetic cardiac device
US5824045A (en) 1996-10-21 1998-10-20 Inflow Dynamics Inc. Vascular and endoluminal stents
US5868782A (en) 1996-12-24 1999-02-09 Global Therapeutics, Inc. Radially expandable axially non-contracting surgical stent
US5858556A (en) 1997-01-21 1999-01-12 Uti Corporation Multilayer composite tubular structure and method of making
US5919224A (en) 1997-02-12 1999-07-06 Schneider (Usa) Inc Medical device having a constricted region for occluding fluid flow in a body lumen
US5957949A (en) 1997-05-01 1999-09-28 World Medical Manufacturing Corp. Percutaneous placement valve stent
US5855597A (en) 1997-05-07 1999-01-05 Iowa-India Investments Co. Limited Stent valve and stent graft for percutaneous surgery
US5891507A (en) 1997-07-28 1999-04-06 Iowa-India Investments Company Limited Process for coating a surface of a metallic stent
US5855600A (en) 1997-08-01 1999-01-05 Inflow Dynamics Inc. Flexible implantable stent with composite design
US5899935A (en) 1997-08-04 1999-05-04 Schneider (Usa) Inc. Balloon expandable braided stent with restraint
US5897911A (en) 1997-08-11 1999-04-27 Advanced Cardiovascular Systems, Inc. Polymer-coated stent structure
US5954766A (en) 1997-09-16 1999-09-21 Zadno-Azizi; Gholam-Reza Body fluid flow control device
US5925063A (en) * 1997-09-26 1999-07-20 Khosravi; Farhad Coiled sheet valve, filter or occlusive device and methods of use
US6254642B1 (en) * 1997-12-09 2001-07-03 Thomas V. Taylor Perorally insertable gastroesophageal anti-reflux valve prosthesis and tool for implantation thereof
US5955588A (en) 1997-12-22 1999-09-21 Innerdyne, Inc. Non-thrombogenic coating composition and methods for using same
US6254635B1 (en) * 1998-02-02 2001-07-03 St. Jude Medical, Inc. Calcification-resistant medical articles
US5938697A (en) 1998-03-04 1999-08-17 Scimed Life Systems, Inc. Stent having variable properties
US6334873B1 (en) * 1998-09-28 2002-01-01 Autogenics Heart valve having tissue retention with anchors and an outer sheath
WO2000023124A1 (en) * 1998-10-22 2000-04-27 Edwards Lifesciences Corporation Multi-functional coatings for medical devices
US6425916B1 (en) * 1999-02-10 2002-07-30 Michi E. Garrison Methods and devices for implanting cardiac valves
NO308575B1 (en) * 1999-02-17 2000-10-02 Sumit Roy multipurpose valve
US6299637B1 (en) * 1999-08-20 2001-10-09 Samuel M. Shaolian Transluminally implantable venous valve
JP4409803B2 (en) * 1999-09-10 2010-02-03 クック・インコーポレイテッドCook Incorporated Method of making a valve assembly and the valve assembly for use within the lumen of a vessel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3197788A (en) * 1962-04-23 1965-08-03 Inst Of Medical Sciences Prosthetic valve for cardiac surgery
EP0850607A1 (en) * 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
WO1998057599A2 (en) * 1997-06-17 1998-12-23 Sante Camilli Implantable valve for blood vessels
WO2002024119A1 (en) * 2000-09-21 2002-03-28 St. Jude Medical, Inc. Valved prostheses with reinforced polymer leaflets

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO03003943A3 *

Also Published As

Publication number Publication date
WO2003003943A2 (en) 2003-01-16
US20030023303A1 (en) 2003-01-30
JP2004531355A (en) 2004-10-14
CA2452571C (en) 2010-12-14
WO2003003943A3 (en) 2003-11-06
EP2298252A1 (en) 2011-03-23
AT492242T (en) 2011-01-15
EP1408895B1 (en) 2010-12-22
CA2452571A1 (en) 2003-01-16
AU2002319631B2 (en) 2007-12-06
US7195641B2 (en) 2007-03-27
EP1408895A2 (en) 2004-04-21
EP2298252B1 (en) 2015-04-22
DE60238680D1 (en) 2011-02-03
JP4636794B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
US9220613B2 (en) Apparatus and method for deploying an implantable device within the body
JP4739223B2 (en) Implantable valve-like artificial organs
JP5685183B2 (en) Stented heart valve device
EP1667614B1 (en) Implantable prosthetic valve with non-laminar flow
US6893460B2 (en) Implantable prosthetic valve
EP2119417B1 (en) Atraumatic prosthetic heart valve prosthesis
EP2967852B1 (en) Anti-paravalvular leakage component for a transcatheter valve prosthesis
US9827090B2 (en) Prosthetic heart valve devices and methods of valve replacement
US6440164B1 (en) Implantable prosthetic valve
US10105249B2 (en) Apparatus and method for deploying an implantable device within the body
EP2444031B1 (en) Stent delivery device
DK2254514T3 (en) Stents for heart valve prostheses
US7967853B2 (en) Percutaneous valve, system and method
JP5238932B2 (en) Aortic valve stent graft
US8070800B2 (en) Transcatheter heart valve prostheses
CN105473105B (en) Conduit guiding valve replacement device and method
CA2604941C (en) Valve apparatus, system and method
US20090264991A1 (en) Branched vessel prosthesis
US7226477B2 (en) Apparatuses and methods for heart valve repair
EP2117469B1 (en) Percutaneous valve system
US8747459B2 (en) System and method for transapical delivery of an annulus anchored self-expanding valve
US8500799B2 (en) Prosthetic heart valves, support structures and systems and methods for implanting same
JP6133885B2 (en) Continuously expanded transcatheter mitral valve prosthesis
US20050154447A1 (en) Ostium stent system
US7717952B2 (en) Artificial prostheses with preferred geometries

Legal Events

Date Code Title Description
AK Designated contracting states:

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

17P Request for examination filed

Effective date: 20040123

AX Request for extension of the european patent to

Extension state: AL LT LV MK RO SI

111L Licences

Free format text: 0100 CORDIS CORPORATION

Effective date: 20040621

A4 Despatch of supplementary search report

Effective date: 20080408

RIC1 Classification (correction)

Ipc: A61F 2/24 20060101ALI20080402BHEP

Ipc: A61F 6/00 20060101AFI20030118BHEP

17Q First examination report

Effective date: 20080623

RIC1 Classification (correction)

Ipc: A61F 2/24 20060101AFI20100409BHEP

RTI1 Title (correction)

Free format text: VALVULAR PROSTHESES HAVING METAL OR PSEUDOMETALLIC CONSTRUCTION

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

AK Designated contracting states:

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: PK

Free format text: ERGAENZUNG LIZENZEINTRAG: AUSSCHLIESSLICHE LIZENZ

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60238680

Country of ref document: DE

Date of ref document: 20110203

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60238680

Country of ref document: DE

Effective date: 20110203

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101222

PG25 Lapsed in a contracting state announced via postgrant inform. from nat. office to epo

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110322

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

PG25 Lapsed in a contracting state announced via postgrant inform. from nat. office to epo

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110402

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110422

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

PG25 Lapsed in a contracting state announced via postgrant inform. from nat. office to epo

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

PG25 Lapsed in a contracting state announced via postgrant inform. from nat. office to epo

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

26N No opposition filed

Effective date: 20110923

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60238680

Country of ref document: DE

Effective date: 20110923

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state announced via postgrant inform. from nat. office to epo

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

PG25 Lapsed in a contracting state announced via postgrant inform. from nat. office to epo

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

PG25 Lapsed in a contracting state announced via postgrant inform. from nat. office to epo

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110703

PG25 Lapsed in a contracting state announced via postgrant inform. from nat. office to epo

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Postgrant: annual fees paid to national office

Ref country code: DE

Payment date: 20151126

Year of fee payment: 14

Ref country code: IT

Payment date: 20151126

Year of fee payment: 14

Ref country code: IE

Payment date: 20151126

Year of fee payment: 14

Ref country code: GB

Payment date: 20151104

Year of fee payment: 14

PGFP Postgrant: annual fees paid to national office

Ref country code: FR

Payment date: 20151126

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60238680

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160703

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170331

PG25 Lapsed in a contracting state announced via postgrant inform. from nat. office to epo

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160801

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state announced via postgrant inform. from nat. office to epo

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160703

PG25 Lapsed in a contracting state announced via postgrant inform. from nat. office to epo

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160703

PG25 Lapsed in a contracting state announced via postgrant inform. from nat. office to epo

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160703