EP1405037B1 - Device for optical measurement of distance over a large measuring range - Google Patents

Device for optical measurement of distance over a large measuring range Download PDF

Info

Publication number
EP1405037B1
EP1405037B1 EP02732409A EP02732409A EP1405037B1 EP 1405037 B1 EP1405037 B1 EP 1405037B1 EP 02732409 A EP02732409 A EP 02732409A EP 02732409 A EP02732409 A EP 02732409A EP 1405037 B1 EP1405037 B1 EP 1405037B1
Authority
EP
European Patent Office
Prior art keywords
detector
target object
optical
distance
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02732409A
Other languages
German (de)
French (fr)
Other versions
EP1405037A1 (en
Inventor
Dierk Schmidt
Joerg Stierle
Peter Wolf
Gunter Flinspach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1405037A1 publication Critical patent/EP1405037A1/en
Application granted granted Critical
Publication of EP1405037B1 publication Critical patent/EP1405037B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • G01C3/08Use of electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4918Controlling received signal intensity, gain or exposure of sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated

Definitions

  • the invention relates to a device for optical distance measurement according to the preamble of the independent claim.
  • Optical distance measuring devices as such have been known for quite some time and are now commercially available. These devices emit a modulated light beam that is aligned with the surface of a desired target object whose distance from the device is to be determined. The light reflected or scattered by the targeted target surface is partially re-detected by the device and used to determine the desired distance.
  • rangefinders generally includes distances in the range of a few centimeters to several hundred meters.
  • optical distance measuring devices can basically be divided into two categories according to the arrangement of the transmitter and receiver channel necessarily present in the device.
  • the transmission channel is arranged at a certain distance from the reception channel, so that the respective optical axes run parallel to one another.
  • monoaxial measuring devices in which the receiving channel runs coaxially to the transmitting channel.
  • the biaxial measuring systems have the advantage that there is no need for complex radiation division for selecting the returning measurement signal, so that, for example, optical crosstalk from the transmission channel directly into the reception channel can be better suppressed.
  • the image of the target object on the detector surface of the measuring receiver integrated in the device which is still clearly on the detector for large target distances, moves increasingly with decreasing measuring distance away from the optical axis of the receiving branch and also experiences a variation of the beam cross section in the detector plane.
  • the measurement signal can go to zero.
  • the receiving device includes a light guide with downstream opto-electronic converter.
  • the light entry surface in the fiber of the light guide is arranged in the imaging plane of the receiving lenses of this device for large object distances and displaceable from this position transverse to the optical axis.
  • the DE 43 16 348 A1 to solve the parallax problem of biaxial measuring devices to arrange the optical fiber entrance surface fixed and to ensure by optical deflection in the edge region of the receiving lens that the measuring light beams can still fall on the detector even with shorter object distance.
  • a deflection mirror which deflects the measuring beams entering the measuring device from a short distance to the detector.
  • the use of a prism, which is introduced into the edge region of the receiving lens is proposed in the same document.
  • a disadvantage of this solution to the problem must be the necessary additional components. Furthermore, a negative interaction of these additional components with the beam path of the measuring beams from a great distance can not always be ruled out, so that signal interference can also occur for this reason restrict the usable range of the rangefinder.
  • the inventive device for optical distance measurement with the features of the independent claim has the advantage of being able to dispense with additional optical elements for correcting the parallax problem and still allow for the near range enough measurement signal on the detector.
  • the shape of the photosensitive, active surface of the detector according to the invention is selected so that a signal of sufficient amplitude is present on the detector surface even in the near range.
  • the device according to the invention has the advantage that the distance traveled by the optical radiation is not influenced by the means for remedying the parallax problem, so that they do not have any negative effects on the distance measurement ,
  • the size of the photosensitive surface of the detector of the receiving unit is chosen so large that enough signal falls even in the near field on the detector. Because the measuring beam returning from the target object emanates laterally for a decreasing object distance in the common plane of the optical axis of the transmitting unit and the optical axis of the receiving unit, the detector will advantageously assume an elongated shape in this direction. In this way, the dependence of the direction of the returning measuring signal from the distance of the measuring device to the target object is taken into account by the specific inventive shape of the active, active detector surface.
  • the inventive shape of the effective detector surface also makes it possible to take into account the dependence of the strength of the returning measuring signal from the distance of the measuring device to the target object. Due to the underlying law of square law for changing the intensity as a function of the traveled distance, the returning measurement signal for the near range is significantly larger than for target objects that are far away from the measuring instrument.
  • the extent of the effective detector surface perpendicular to the common plane of the optical axes of transmitting and receiving unit can therefore decrease as the light signal increases due to the shorter running distance in the near range.
  • This has the advantage that, due to the expansion of the detector, although sufficient light from the near zone falls on the detector, but that the detector can not be overridden by the light from the near range due to its smaller in this direction active, photosensitive surface. Moving the Detector from the focus of the receiving lens along the optical receiving axis for adjusting the signal strength falling on the detector is thus no longer necessary in the device according to the invention.
  • the inventive design of the detection surface thus has the advantage that the ratio of useful light to extraneous light is significantly improved, so that increased for this reason the accuracy of the device in the immediate vicinity and thus the range of the device is extended.
  • the size of the area of the detector only has to ensure that the effective area in the area of the detector in which light from far away target objects impinges on the detector surface is large enough to detect the entire signal as far as possible. This is also a consequence of the square-law of the distance, which is subject to the detected intensity, and leads to a relatively weak detection signal for distant measuring objects.
  • the lateral extent of the detector must be correspondingly so large that enough light from the immediate vicinity of the detection reaches the detection surface. Due to the high signal level, which results from the short distance in the near range, it is not necessary in this case to detect the full signal strength.
  • a further advantage of the claimed device is that the electrical capacitive properties of the detector of the measuring device are positively influenced on account of the inventive form of an embodiment of the active detection surface. Too large a detector surface would increase the electrical capacitance of the detector, so that the temporal response characteristic, or - equivalent - the frequency response of the measuring system would no longer meet the required requirements of the time or frequency resolution of the measuring system.
  • the area of the detector used is therefore exactly as large as required by the boundary conditions outlined above.
  • a simple and inexpensive embodiment of the device according to the invention with the claimed detection surface is obtained when the effective, i. light-sensitive detection surface is formed by partial coverage of an originally larger detector surface.
  • a large area detector obtained an opaque layer in the areas that should not be used for detection, so that only the claimed form can be used as an effective, active detector surface.
  • the opaque regions can be produced, for example, by vapor deposition or coating of a layer on the detector surface. Even with a simple mechanical mask or aperture could be realized in a simple manner, the claimed shape for the active surface of the detector.
  • the inventive device for optical distance measurement can be realized by the use of a laser as a light source.
  • Lasers and in particular laser diodes are available over the entire visible spectral range of the electromagnetic waves.
  • laser diodes are suitable because of their compact size and now also high Output power for use in distance measuring devices of the claimed form.
  • the partially attached, optically opaque layer on the detector surface may in this case be, for example, an evaporated metal layer which optically deactivates the semiconductor detector used at the desired locations.
  • FIG. 1 is a schematic representation of an inventive distance measuring device with the most important components to describe its function.
  • the device 10 has a housing 11 in which a transmitting device 12 for generating a measuring signal 13 and a receiving device 14 for detecting the returning of a target object 15 measuring signal 16 are housed.
  • the transmitting device 12 includes a light source 17, which in the embodiment of the FIG. 1 is realized by a semiconductor laser diode 18.
  • the use of other light sources in the device according to the invention is also possible.
  • the laser diode 18 emits a laser beam 20 in the form of a light beam 22 visible to the human eye.
  • the laser diode 18 is operated via a control unit 24, which generates a modulation of the electrical input signal 19 of the diode 18 by a corresponding electronics.
  • a control unit 24 which generates a modulation of the electrical input signal 19 of the diode 18 by a corresponding electronics.
  • the laser beam 20 then passes through a collimating optics 26, in the form of a lens 28, which in the FIG. 1 is shown in the form of a single lens 30.
  • the objective 28 is optionally located on an adjustment mechanism 32, which in principle makes it possible to change the position of the objective in all three spatial directions, for example for adjustment purposes.
  • an amplitude-modulated measuring signal 13 in the form of a parallel light beam 37 that propagates along the optical axis 38 of the transmitting unit 12 results, as shown in FIG FIG. 1 is shown schematically.
  • the transmitting branch 12 of the device according to the invention there is also a preferably switchable beam deflection 40, which allows the measuring signal 13 to be redirected by bypassing a target object directly to the receiving unit 14 of the device 10. In this way, it is possible to generate a device-internal reference path 42, which allows a calibration of the measuring system.
  • the measuring beam 13 leaves the housing 11 of the device according to the invention through an optical window 44 in the end wall 45 of the device 10.
  • the opening of the optical window can be secured by a shutter 46.
  • the measuring device 10 is aligned with a target object 15 whose distance 48 to the measuring device is to be determined.
  • the signal 16 reflected or also scattered at the desired target object 15 forms a returning measuring beam bundle 49, 50, which returns to a certain extent back into the measuring device 10.
  • the returning measuring radiation 16 is coupled into the measuring device and in the embodiment of FIG. 1 directed to a receiving optics 52.
  • FIG. 1 For example, two returning measuring beam bundles 49 and 50 are shown for two different target object distances 48.
  • the signal returning from the target object 16 is incident parallel to the optical axis 51 of the receiving device 14.
  • This case is in the embodiment of FIG. 1 represented by the measuring beam 49.
  • the returning signal 16 incident in the measuring device is inclined more and more with respect to the optical axis 51 of the receiving unit 14 due to a parallax.
  • the beam 50 drawn drawn.
  • the receiving optics 52 which in the embodiment of the FIG. 1 is also symbolized by a single lens, the returning measurement signal 16 collimates and focuses its beam 49,50 on a receive detector 54, which may be formed as a PIN diode or CCD chip or as another, known in the art surface detector.
  • the area detector is usually aligned with its active, photosensitive surface perpendicular to the optical axis of the receiving branch.
  • the incident optical signal is converted by the reception detector 54 into an electrical signal 55, and supplied to the evaluation unit 36 for further evaluation.
  • the receiving optics 52 which in the embodiment of the FIG. 1 is mounted on a Verstellmimik 53, located approximately at a distance of its focal distance from the active surface of the detector, so that incident radiation coming from a target, which is far away from the meter, is focused exactly on the detector.
  • the imaging position for the target reflected or scattered at the target object is increasingly away from the focus of the receiving lens.
  • the focused returning measuring beam moves with decreasing distance of the target object to the measuring device always further away from the optical axis of the receiving device and thus deviates more and more from the optical axis of the transmitting device.
  • the returning measuring beam is no longer focused exactly on the detector surface due to the changed imaging conditions on the receiving lens. As the target distance becomes shorter, there is an ever-increasing spot on the detector surface.
  • the meter of course also has a control and evaluation unit 36.
  • FIG. 2 The relationships between the distance of the target object from the measuring device and the position or the size of the measuring spot on the detector surface is schematically in FIG FIG. 2 again shown to the overview.
  • FIG. 2 shows a plan view of the detector surface in the direction of returning from the measurement object measurement signal 16.
  • the position 56 indicates the common plane the optical axis 38 of the transmitting unit 12 with the optical axis 51 of the receiving unit 14.
  • the measuring spot 58 of the returning radiation 16 for very large object distances 48 lies on the optical axis of the receiving unit 14 and is focused on the surface 66 of the detector 54 to a small focal spot , Since the detector 54 is approximately at the distance of the focal length of the receiving optics 52, light that comes visually from the infinite is focused directly on the detector surface due to the optical imaging laws.
  • the returning signal 16 falls increasingly obliquely on the receiving objective 52, so that the measuring spot on the detector surface in the direction of arrow 61 in FIG. 2 emigrated.
  • FIG. 2 also drawn measuring spot 62 for a small object distance 48 of the target object 15 from the measuring device 10 has thus migrated away from the optical axis 51 of the receiving device and significantly increased in its extent.
  • a measuring spot 64 of the returning measurement signal 16 is again significantly increased and also far from the optical axis 51 of the receiving unit 14 comes to rest on the detector surface.
  • This displacement of the measuring spot with the relative distance 48 of the measuring object 15 to the measuring device 10 can cause the returning signal 16 no longer falls on the active surface of the measuring receiver 54 for very small object distances, as indicated by an indicated, dashed area 60 in FIG. 2 is hinted that the Surface of a conventional measuring receiver of the prior art should symbolize.
  • the active, photosensitive surface 66 of the detector 54 is designed accordingly.
  • the detector surface 66 should be at least so large that the entire measuring spot 58 falls completely from the far region, ie for very large target object distances 48, onto the active detector surface 66.
  • the active surface 66 of the detector 54 tapers in the embodiment of FIG. 2 increasingly in the direction 61 of the beam shift resulting from parallax of the return radiation 16 for decreasing target distances 48.
  • the detector surface 66 is so large in lateral extent that even in the case of very small distances 48 of the target object 15 to the measuring device 10, sufficient measuring signal falls on the detector 54. Due to the high signal level, the returning measuring signal from the near range, the entire measuring spot does not have to lie on the active detector surface.
  • FIG. 3 shows once again the detection surface 66 according to the invention FIG. 2 singly drawn out for the sake of clarity.
  • FIGS. 4 and 5 Further exemplary embodiments of an active, photosensitive surface of the detector 54 according to the invention are indicated which are intended to further illustrate the underlying idea of the invention, but are not to be regarded as limiting the claimed device.
  • the position 56 denotes the common plane of the optical axis 38 of the Transmitting unit 12 with the optical axis 51 of the receiving unit 14.
  • the location 38 marks the position of the optical axis of the transmitting unit 12, and the location 51, the corresponding position of the optical axis of the receiving unit 14th
  • FIG. 4 1 shows a surface 67 of a detector 54 according to the invention which has a first region 72 in which the size of the photosensitive surface in direction 61 of the beam displacement is constant due to the parallax of the returning measurement signal 16 and a second, directly adjoining region 74 of the surface 67 in that the size of the detector surface 67 continuously decreases in the direction 61 of this beam displacement.
  • the FIG. 5 discloses the photosensitive surface 68 of a detector 54 which decreases continuously and uniformly in the direction 61 of the parallax-induced beam shift, and thus takes the form of a triangle.
  • the detector 54 according to the invention may also have a trapezoidal shape, which becomes narrower with increasing distance from the optical axis of the transmitting unit, or can in Au exitsbeispiel the FIG. 4 , the rejuvenation of the detector surface are also produced by a discrete step.
  • FIG. 6 shows a possibility for realizing an embodiment of the detector 54 according to the invention. While in the chiefsbeipielen the FIGS. 2 to 5 the effective, ie photosensitive surface 66, 67, 68 of the detector 54 is equal to the total detector area, in the exemplary embodiment of FIG. 6 the active, ie effective light-sensitive detection surface 69 derived from an originally larger detector surface 78.
  • the optically sensitive surface 78 of a semiconductor detector with, for example, a circular detection surface is coated in certain areas with an optically impermeable layer 80, whereby the Semiconductor detector is deactivated in these coated areas, so that only an uncoated part surface 69 of the semiconductor detector remains as photosensitive.
  • This active part surface 69 can be in the manufacturing process any desired shape, including the forms that in the FIGS. 2 to 5
  • the vapor deposition of a metal layer can be used to the desired locations of the original detection surface.
  • Other optical deactivation measures of the semiconductor surface known to the person skilled in the art can also be used for this purpose, so that at this point it is not necessary to discuss the details of the production.
  • All designs of the exemplary embodiments shown have in common that the active, that is to say photosensitive, surface of the detector according to the invention tapers in the direction of the beam displacement due to the parallax for shorter target object distances. That is, the extension of the active area of the detector perpendicular to the common plane of the optical axes of the transmitting unit and the receiving unit decreases in the above-mentioned direction.
  • the device according to the invention is not limited to the embodiments presented in the description.
  • a convex detector surface is also conceivable.
  • the exact shape of the change in the detector surface with increasing distance from the optical axis of the transmitting device depends inter alia on the desired measuring range in which the measuring device according to the invention is to operate.
  • the exact geometry of the device and the optical imaging conditions in the receiving branch are also to be considered for optimization.
  • the taper of the active detector surface does not have to be continuous, but may also be realized discretely, for example in individual stages.

Abstract

The invention relates to a device for optical measurement of distance, comprising a transmitter unit (12), with a light source (17,18), for transmitting modulated optical radiation onto a target object (15) and with a receiver unit (14), displaced relative to the optical axis (38) of the transmitter unit (12), with at least one optical detector (54) for receiving the optical radiation (16,49,50), returning from the target object (15) and a control and evaluation unit (36) for determining the distance (48) from the device to the target object (15). According to the invention, the active light sensitive surfaces (66,67,69,82) of the detector (54) in the receiver unit (14) taper in the direction (61) of the radiation shift for receding target object separations (48) arising from the parallax of the returning radiation.

Description

Die Erfindung geht aus von einer Vorrichtung zur optischen Distanzmessung nach dem Oberbegriff des unabhängigen Anspruchs.The invention relates to a device for optical distance measurement according to the preamble of the independent claim.

Optische Entfernungsmessgeräte als solche sind seit geraumer Zeit bekannt und werden inzwischen auch kommerziell vertrieben. Diese Geräte senden einen modulierten Lichtstrahl aus, der auf die Oberfläche eines gewünschten Zielobjektes, dessen Abstand zum Gerät zu ermitteln ist, ausgerichtet wird. Das von der angepeilten Zielfläche reflektierte oder gestreute Licht wird von dem Gerät teilweise wieder detektiert und zur Ermittlung des gesuchten Abstandes verwendet.Optical distance measuring devices as such have been known for quite some time and are now commercially available. These devices emit a modulated light beam that is aligned with the surface of a desired target object whose distance from the device is to be determined. The light reflected or scattered by the targeted target surface is partially re-detected by the device and used to determine the desired distance.

Der Anwendungsbereich derartiger Entfernungsmessgeräte umfasst im Allgemeinen Entfernungen im Bereich von einigen Zentimetern bis zu mehreren hundert Metern.The scope of such rangefinders generally includes distances in the range of a few centimeters to several hundred meters.

In Abhängigkeit von den zu messenden Laufstrecken und der Rückstrahlfähigkeit des Zielobjektes ergeben sich unterschiedliche Anforderungen an die Lichtquelle, die Qualität des Messstrahls und an den Detektor.Depending on the running distances to be measured and the reflectivity of the target object, different requirements are imposed on the light source, the quality of the measuring beam and on the detector.

Die aus dem Stand der Technik bekannten optischen Entfernungsmessgeräte lassen sich grundsätzlich entsprechend der Anordnung, des im Gerät notwendigerweise vorhandenen Sende- und Empfangskanals in zwei Kategorien einteilen. Zum Einen gibt es Vorrichtungen, bei denen der Sendekanal in einem gewissen Abstand zu dem Empfangskanal angeordnet ist, so dass die jeweiligen optischen Achsen parallel zueinander verlaufen. Zum Anderen gibt es monoaxiale Messvorrichtungen, bei denen der Empfangskanal koaxial zum Sendekanal verläuft. Die biaxialen Messsysteme haben den Vorteil, dass es einer aufwendigen Strahlungsteilung zur Selektion des rücklaufenden Messsignals nicht bedarf, so dass beispielsweise auch ein optisches Übersprechen aus dem Sendekanal direkt in den Empfangskanal besser unterdrückt werden kann.The known from the prior art optical distance measuring devices can basically be divided into two categories according to the arrangement of the transmitter and receiver channel necessarily present in the device. On the one hand, there are devices in which the transmission channel is arranged at a certain distance from the reception channel, so that the respective optical axes run parallel to one another. On the other hand there are monoaxial measuring devices in which the receiving channel runs coaxially to the transmitting channel. The biaxial measuring systems have the advantage that there is no need for complex radiation division for selecting the returning measurement signal, so that, for example, optical crosstalk from the transmission channel directly into the reception channel can be better suppressed.

Andererseits besteht bei biaxialen Entfernungsmessgeräten unter Anderem der Nachteil, dass es für den Bereich kurzer Messentfernungen aufgrund einer Parallaxe zu Detektionsproblemen kommen kann:On the other hand, in the case of biaxial distance measuring devices, there is, inter alia, the disadvantage that detection problems can arise for the range of short measuring distances due to parallax:

Die Abbildung des Zielobjektes auf die Detektoroberfläche des im Gerät integrierten Messempfängers, die für große Zielentfernungen noch eindeutig auf dem Detektor liegt, wandert mit kürzer werdender Messentfernung zunehmend von der optischen Achse des Empfangsastes weg und erfährt zudem eine Variation des Strahlquerschnittes in der Detektorebene.The image of the target object on the detector surface of the measuring receiver integrated in the device, which is still clearly on the detector for large target distances, moves increasingly with decreasing measuring distance away from the optical axis of the receiving branch and also experiences a variation of the beam cross section in the detector plane.

Dies bedingt, dass ohne weitere Maßnahmen am Gerät, im Nahbereich der Detektion, das heisst für einen kleinen Abstand zwischen Zielobjekt und Messgerät, das Messsignal gegen Null gehen kann.This requires that without further measures on the device, in the vicinity of the detection, that is, for a small distance between the target and the meter, the measurement signal can go to zero.

Aus der DE 43 16 348 A1 ist eine Vorrichtung zur Distanzmessung mit einem von einem Halbleiterlaser erzeugten sichtbaren Messstrahlenbündel bekannt, deren Empfangseinrichtung einen Lichtleiter mit nachgeschaltetem opto-elektronischen Wandler enthält. Die Lichteintrittsfläche in die Faser des Lichtleiters ist in der Abbildungsebene der Empfangsobjektives dieses Gerätes für große Objektentfernungen angeordnet und aus dieser Position quer zur optischen Achse verschiebbar.From the DE 43 16 348 A1 a device for distance measurement with a generated by a semiconductor laser visible measuring beam is known, the receiving device includes a light guide with downstream opto-electronic converter. The light entry surface in the fiber of the light guide is arranged in the imaging plane of the receiving lenses of this device for large object distances and displaceable from this position transverse to the optical axis.

Auf diese Weise ist es in der Vorrichtung der DE 43 16 348 A1 möglich, die bei kurzen Objektdistanzen zunehmend schräger in das Empfangsobjektiv einfallenden Messstrahlen über die Nachführung der optischen Faser bei räumlich nicht veränderbarem Detektor auf die lichtempfindlichen Oberfläche des Detektors zu leiten.In this way it is in the device of DE 43 16 348 A1 It is possible to guide the measuring beams which are incident increasingly obliquely into the receiving lens at short object distances via the tracking of the optical fiber in the case of a spatially unchangeable detector onto the photosensitive surface of the detector.

Die notwendige elektronische Ansteuerung der Nachführung und die Verwendung von zusätzlichen und insbesondere auch beweglichen Teilen in dem offenbarten Entfernungsmessgerät der DE 43 16 348 A1 bedeuten einen nicht unerheblichen Aufwand, der die Komplexität und damit die Kosten und die Anfälligkeit eines derartigen Systems erhöht.The necessary electronic control of the tracking and the use of additional and in particular also moving parts in the disclosed distance measuring device of DE 43 16 348 A1 mean a considerable effort, which increases the complexity and thus the cost and the vulnerability of such a system.

Alternativerweise schlägt die DE 43 16 348 A1 zur Lösung des Parallaxenproblems biaxialer Messgeräte vor, die Lichtleitereintrittsfläche feststehend anzuordnen und durch optische Umlenkmittel im Randbereich des Empfangsobjektives dafür zu sorgen, dass die Messlichtstrahlen auch bei kürzer werdendem Objektabstand noch auf den Detektor fallen können. Unter Anderem wird vorgeschlagen, dazu einen Umlenkspiegel zu verwenden, der die aus kurzer Objektentfernung in das Messgerät eintretenden Messstrahlen auf den Detektor umlenkt. Zur Lösung der gleichen Aufgabe wird in derselben Schrift auch die Verwendung eines Prismas, das in den Randbereich der Empfangslinse eingebracht ist, vorgeschlagen.Alternatively, the DE 43 16 348 A1 to solve the parallax problem of biaxial measuring devices to arrange the optical fiber entrance surface fixed and to ensure by optical deflection in the edge region of the receiving lens that the measuring light beams can still fall on the detector even with shorter object distance. Among other things, it is proposed to use a deflection mirror which deflects the measuring beams entering the measuring device from a short distance to the detector. To solve the same problem, the use of a prism, which is introduced into the edge region of the receiving lens, is proposed in the same document.

Als nachteilig bei dieser Lösung des Problems müssen die notwendigen zusätzlichen Komponenten ansehen werden. Ferner ist eine negative Wechselwirkung dieser zusätzlichen Komponenten mit dem Strahlengang der Messstrahlen aus großer Entfernung nicht immer auszuschließen, so dass es auch aus diesem Grunde zu Signalbeeinträchtigungen kommen kann, die den nutzbaren Meßbereich des Entfernungsmessgerätes einschränken.A disadvantage of this solution to the problem must be the necessary additional components. Furthermore, a negative interaction of these additional components with the beam path of the measuring beams from a great distance can not always be ruled out, so that signal interference can also occur for this reason restrict the usable range of the rangefinder.

Vorteile der ErfindungAdvantages of the invention

Die erfinderische Vorrichtung zur optischen Distanzmessung mit den Merkmalen des unabhängigen Anspruchs hat demgegenüber den Vorteil, auf zusätzliche optische Elemente zur Korrektur des Parallaxenproblems verzichten zu können und trotzdem auch für den Nahbereich genügend Messsignal auf dem Detektor zu ermöglichen.The inventive device for optical distance measurement with the features of the independent claim has the advantage of being able to dispense with additional optical elements for correcting the parallax problem and still allow for the near range enough measurement signal on the detector.

Dabei wird die Form der lichtempfindlichen, aktiven Fläche des erfindungsgemäßen Detektors so gewählt, dass auch im Nahbereich ein Signal ausreichende Amplitude auf der Detektoroberfläche vorliegt.In this case, the shape of the photosensitive, active surface of the detector according to the invention is selected so that a signal of sufficient amplitude is present on the detector surface even in the near range.

Damit ist eine Erweiterung des für dieses Messgerät zugänglichen Messbereichs auf einfache und zuverlässige Weise möglichThis makes it possible to expand the measuring range accessible to this measuring device in a simple and reliable manner

Gegenüber den aus dem Stand der Technik bekannten Vorrichtungen zur optischen Distanzmessung hat die erfindungsgemäße Vorrichtung den Vorteil, dass die von der optischen Strahlung zurückgelegte Wegstrecke nicht durch die Mittel zur Behebung des Parallaxenproblems beeinflusst wird, so dass diese keine negativen Auswirkungen auf die Entfernungsmessung nach sich ziehen.Compared with the devices for optical distance measurement known from the prior art, the device according to the invention has the advantage that the distance traveled by the optical radiation is not influenced by the means for remedying the parallax problem, so that they do not have any negative effects on the distance measurement ,

Desweiteren ist keine Justage von zusätzlichen, insbesondere beweglichen Komponenten im Messgerät notwendig.Furthermore, no adjustment of additional, especially moving components in the meter is necessary.

Vorteilhafte Ausführungen der erfindungsgemäßen Vorrichtung ergeben sich aus den in den Unteransprüchen aufgeführten Merkmalen.Advantageous embodiments of the device according to the invention will become apparent from the features listed in the dependent claims.

Vorteilhafterweise wird die Größe der lichtempfindlichen Fläche des Detektors der Empfangseinheit so groß gewählt, dass noch genügend Signal auch im Nahbereich auf den Detektor fällt. Dadurch, dass der vom Zielobjekt rücklaufende Messstrahl für einen kleiner werdenden Objektabstand in der gemeinsamen Ebene der optischen Achse der Sendeeinheit und der optischen Achse der Empfangseinheit lateral auswandert, wird der Detektor vorteilhafterweise eine in dieser Richtung elongierte Form annehmen. Auf diese Weise wird der Abhängigkeit der Richtung des rücklaufenden Messsignals von der Entfernung des Messgerätes zum Zielobjekt durch die konkrete erfindungsgemäße Form der wirksamen, aktiven Detektorfläche Rechnung getragen.Advantageously, the size of the photosensitive surface of the detector of the receiving unit is chosen so large that enough signal falls even in the near field on the detector. Because the measuring beam returning from the target object emanates laterally for a decreasing object distance in the common plane of the optical axis of the transmitting unit and the optical axis of the receiving unit, the detector will advantageously assume an elongated shape in this direction. In this way, the dependence of the direction of the returning measuring signal from the distance of the measuring device to the target object is taken into account by the specific inventive shape of the active, active detector surface.

Die erfindungsgemäße Form der wirksamen Detektorfläche ermöglicht es darüber hinaus, auch der Abhängigkeit der Stärke des rücklaufenden Messsignals von der Entfernung des Messgerätes zum Zielobjekt Rechnung zu tragen. Aufgrund des zugrundeliegenden Abstandsquadratgesetzes für die Änderung der Intenstiät in Abhängigkeit von der zurückgelegten Laufstrecke ist das rücklaufende Messsignal für den Nahbereich deutlich größer als für Zielobjekte, die sich weit entfernt vom Messgerät befinden.The inventive shape of the effective detector surface also makes it possible to take into account the dependence of the strength of the returning measuring signal from the distance of the measuring device to the target object. Due to the underlying law of square law for changing the intensity as a function of the traveled distance, the returning measurement signal for the near range is significantly larger than for target objects that are far away from the measuring instrument.

Die Ausdehnung der wirksamen Detektorfläche senkrecht zur gemeinsamen Ebene der optischen Achsen von Sende- und Empfangseinheit kann daher in dem Maße abnehmen, wie das Lichtsignal aufgrund der kürzeren Laufstrecke im Nahbereich zunimmt. Dies hat den Vorteil, dass aufgrund der Ausdehnung des Detektors zwar noch genügend Licht aus dem Nahbereich auf den Detektor fällt, dass aber der Detektor aufgrund seiner in dieser Richtung kleiner werdenden aktiven, lichtempfindlichen Fläche nicht durch das Licht aus dem Nahbereich übersteuert werden kann. Ein Verschieben des Detektors aus dem Fokus der Empfangslinse entlang der optischen Empfangsachse zur Anpassung der auf den Detektor fallenden Signalstärke, ist somit in der erfindungsgemäßen Vorrichtung nicht mehr nötig.The extent of the effective detector surface perpendicular to the common plane of the optical axes of transmitting and receiving unit can therefore decrease as the light signal increases due to the shorter running distance in the near range. This has the advantage that, due to the expansion of the detector, although sufficient light from the near zone falls on the detector, but that the detector can not be overridden by the light from the near range due to its smaller in this direction active, photosensitive surface. Moving the Detector from the focus of the receiving lens along the optical receiving axis for adjusting the signal strength falling on the detector is thus no longer necessary in the device according to the invention.

Die erfindungsgemäße Ausführung der Detektionsfläche hat somit auch den Vorteil, dass das Verhältnis von Nutzlicht zu Fremdlicht deutlich verbessert wird, so dass auch aus diesem Grunde die Messgenauigkeit des Gerätes im unmittelbaren Nahbereich erhöht und damit der Meßbereich des Gerätes erweitert wird.The inventive design of the detection surface thus has the advantage that the ratio of useful light to extraneous light is significantly improved, so that increased for this reason the accuracy of the device in the immediate vicinity and thus the range of the device is extended.

Bei der Größe der Fläche des Detektors muss nur sichergestellt sein, dass die wirksame Fläche in dem Bereich des Detektors, in dem Licht von weit entfernten Zielobjekten auf die Detektoroberfläche auftrifft, groß genug ist, um möglichst dass gesamte Signal zu detektieren. Dies ist ebenfalls eine Konsequenz aus dem Abstandsquadrat-Gesetzes, dem die detektierte Intensität unterliegt, und zu einem relativ schwachen Detektionssignal für weit entfernte Messobjekte führt.The size of the area of the detector only has to ensure that the effective area in the area of the detector in which light from far away target objects impinges on the detector surface is large enough to detect the entire signal as far as possible. This is also a consequence of the square-law of the distance, which is subject to the detected intensity, and leads to a relatively weak detection signal for distant measuring objects.

Die laterale Ausdehnung des Detektors muss entsprechend so groß sein, dass noch genügend Licht aus dem unmittelbaren Nahbereich der Detektion auf die Detektionsfläche gelangt. Aufgrund des hohen Signalpegels, welches sich aufgrund der kurzen Wegstrecke im Nahbereichs ergibt, ist es in diesem Fall nicht notwendig, die volle Signalstärke zu detektieren.The lateral extent of the detector must be correspondingly so large that enough light from the immediate vicinity of the detection reaches the detection surface. Due to the high signal level, which results from the short distance in the near range, it is not necessary in this case to detect the full signal strength.

Ein weiterer Vorteil der beanspruchten Vorrichtung ist der, dass die elektrisch-kapazitiven Eigenschaften des Detektors des Messgerätes aufgrund der erfindungsgemäßen Form eines Ausführungsbeispiels der aktiven Detektionsfläche positiv beeinflusst werden. Eine zu große Detektoroberfläche würde die elektrische Kapazität des Detektors erhöhen, so dass die zeitliche Ansprechcharakteristik, beziehungsweise - äqivalent dazu - der Frequenzgang des Messsystems nicht mehr den benötigten Erfordernissen der Zeit- beziehungsweise Frequenzauflösung des Messsystems entsprechen würde.A further advantage of the claimed device is that the electrical capacitive properties of the detector of the measuring device are positively influenced on account of the inventive form of an embodiment of the active detection surface. Too large a detector surface would increase the electrical capacitance of the detector, so that the temporal response characteristic, or - equivalent - the frequency response of the measuring system would no longer meet the required requirements of the time or frequency resolution of the measuring system.

In einer vorteilhaften Ausführung der erfindungsgemäßen Vorrichtung ist die Fläche des verwendeten Detektors daher genau so groß, wie es die oben skizzierten Randbedingungen erfordern.In an advantageous embodiment of the device according to the invention, the area of the detector used is therefore exactly as large as required by the boundary conditions outlined above.

Eine einfache und preiswerte Ausgestaltung der erfindungsgemäßen Vorrichtung mit der beanspruchten Detektionsfläche ergibt sich, wenn die wirksame, d.h. lichtempfindliche Detektionsfläche durch teilweise Abdeckung einer ursprünglich größeren Detektorfläche ausgebildet wird. Dazu kann beispielsweise ein großer Flächendetektor eine lichtundurchlässige Schicht in den Bereichen erhalten, die zur Detektion nicht genutzt werden sollen, so dass lediglich die beanspruchte Form als wirksame, aktive Detektorfläche genutzt werden kann. Die lichtundurchlässigen Bereiche lassen sich je nach verwendeter Wellenlänge des Messsignals und entsprechend gewähltem Detektor beispielsweise durch Aufdampfen oder Lackieren einer Schicht auf der Detektoroberfläche erzeugen. Auch mit einer einfachen mechanischen Maske oder Blende ließe sich in einfacher Weise die beanspruchte Form für die aktive Fläche des Detektors realisieren.A simple and inexpensive embodiment of the device according to the invention with the claimed detection surface is obtained when the effective, i. light-sensitive detection surface is formed by partial coverage of an originally larger detector surface. For this purpose, for example, a large area detector obtained an opaque layer in the areas that should not be used for detection, so that only the claimed form can be used as an effective, active detector surface. Depending on the wavelength of the measurement signal used and the detector selected, the opaque regions can be produced, for example, by vapor deposition or coating of a layer on the detector surface. Even with a simple mechanical mask or aperture could be realized in a simple manner, the claimed shape for the active surface of the detector.

In vorteilhafter Weise lässt sich die erfindungsgemäße Vorrichtung zur optischen Distanzmessung durch die Verwendung eines Lasers als Lichtquelle realisieren. Laser und im speziellen Laserdioden sind über den gesamten sichtbaren Spektralbereich der elektromagnetischen Wellen erhältlich. Im Besonderen eignen sich Laserdioden wegen ihrer kompakten Größe und mittlerweile auch hohen Ausgangsleistungen für die Verwendung in Abstandsmessgeräten der beanspruchten Form.Advantageously, the inventive device for optical distance measurement can be realized by the use of a laser as a light source. Lasers and in particular laser diodes are available over the entire visible spectral range of the electromagnetic waves. In particular, laser diodes are suitable because of their compact size and now also high Output power for use in distance measuring devices of the claimed form.

Die partiell angebrachte, optisch undurchsichtige Schicht auf der Detektorfläche kann für diesem Fall beispielsweise eine aufgedämpfte Metalllage sein, die den verwendeten Halbleiterdetektor an den gewünschten Stellen optisch deaktiviert.The partially attached, optically opaque layer on the detector surface may in this case be, for example, an evaporated metal layer which optically deactivates the semiconductor detector used at the desired locations.

Zeichnungdrawing

Weitere Vorteile ergeben sich aus der folgenden Beschreibung. In der Zeichnung sind Ausführungsbeispiele der erfindungsgemäßen Vorrichtung dargestellt. Die Beschreibung, die Zeichnungen und die Ansprüche enthalten zahlreiche Merkmale in Kombination. Ein Fachmann wird diese Merkmale auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammenfassen.Further advantages will become apparent from the following description. In the drawings, embodiments of the device according to the invention are shown. The description, drawings and claims contain numerous features in combination. A person skilled in the art will also consider these features individually and combine them into meaningful further combinations.

Es zeigen:

  • Figur 1 die schematische Aufsicht auf ein Ausführungsbeispiel des erfindungsgemäßen Messgerätes,
  • Figur 2 eine Aufsicht auf die erfindungsgemäße Detektoroberfläche mit eingezeichneten Messstrahlenbündeln bei unterschiedlichen Entfernungen des Messgerätes zum Messobjekt,
  • Figur 3 die erfindungsgemäße Detektoroberfläche aus Figur 2 in einer Einzeldarstellung,
  • Figur 4 ein alternatives Ausführungsbeispiel der erfindungsgemäßen aktiven Detektionsfläche,
  • Figur 5 ein weiteres Ausführungsbeispiel der erfindungsgemäßen aktiven Detektionsfläche
  • und
  • Figur 6 die Aufsicht auf ein Ausführungsbeispiel einer erfindungsgemäßen Detektorfläche,
Show it:
  • FIG. 1 the schematic plan view of an embodiment of the measuring device according to the invention,
  • FIG. 2 a plan view of the detector surface according to the invention with marked measuring beams at different distances of the measuring device to the measured object,
  • FIG. 3 the detector surface according to the invention FIG. 2 in a single presentation,
  • FIG. 4 an alternative embodiment of the active detection surface according to the invention,
  • FIG. 5 a further embodiment of the active detection surface according to the invention
  • and
  • FIG. 6 the plan view of an embodiment of a detector surface according to the invention,

In der Figur 1 ist in schematischer Weise ein erfindungsgemäßes Entfernungsmessgerät mit den wichtigsten Komponenten zur Beschreibung seiner Funktion dargestellt.In the FIG. 1 is a schematic representation of an inventive distance measuring device with the most important components to describe its function.

Das erfindungsgemäße Gerät 10 weist ein Gehäuse 11 auf, in dem eine Sendeeinrichtung 12 zur Erzeugung eines Messsignals 13 sowie eine Empfangseinrichtung 14 zur Detektion des von einem Zielobjekt 15 rücklaufenden Messsignals 16 untergebracht sind.The device 10 according to the invention has a housing 11 in which a transmitting device 12 for generating a measuring signal 13 and a receiving device 14 for detecting the returning of a target object 15 measuring signal 16 are housed.

Die Sendeeinrichtung 12 beinhaltet eine Lichtquelle 17, die im Ausführungsbeispiel der Figur 1 durch eine Halbleiterlaserdiode 18 realisiert ist. Die Verwendung anderer Lichtquellen in der erfindungsgemäßen Vorrichtung ist ebenso möglich. Die Laserdiode 18 sendet einen Laserstrahl 20 in Form eines für das menschliche Auge sichtbaren Lichtbündels 22 aus.The transmitting device 12 includes a light source 17, which in the embodiment of the FIG. 1 is realized by a semiconductor laser diode 18. The use of other light sources in the device according to the invention is also possible. The laser diode 18 emits a laser beam 20 in the form of a light beam 22 visible to the human eye.

Die Laserdiode 18 wird über ein Steuergerät 24 betrieben, das durch eine entsprechende Elektronik eine Modulation des elektrischen Eingangssignals 19 der Diode 18 erzeugt. Durch eine derartige Modulation des Diodenstroms lässt sich erreichen, dass das optische Messsignal 13 zur Entfernungsbestimmung ebenfalls in gewünschter Weise moduliert ist.The laser diode 18 is operated via a control unit 24, which generates a modulation of the electrical input signal 19 of the diode 18 by a corresponding electronics. By means of such a modulation of the diode current, it is possible to achieve that the optical measuring signal 13 for determining the distance is likewise modulated in the desired manner.

Das Laserstrahlbündel 20 durchläuft anschließend eine Kollimationsoptik 26, in Form eines Objektivs 28, das in der Figur 1 in Form einer einzelnen Linse 30 dargestellt ist. Das Objektiv 28 befindet sich in diesem Ausführungsbeispiel optional auf einer Verstellmimik 32, die prinzipiell eine Änderung der Position des Objektivs in allen drei Raumrichtungen beispielsweise zu Justagezwecken ermöglicht.The laser beam 20 then passes through a collimating optics 26, in the form of a lens 28, which in the FIG. 1 is shown in the form of a single lens 30. In this exemplary embodiment, the objective 28 is optionally located on an adjustment mechanism 32, which in principle makes it possible to change the position of the objective in all three spatial directions, for example for adjustment purposes.

Nach Durchlaufen des Objektivs 28 ergibt sich beispielsweise ein amplitudenmoduliertes Messsignal 13 in Form eines parallelen Lichtbündels 37, dass sich entlang der optischen Achse 38 der Sendeeinheit 12 ausbreitet, wie es in Figur 1 schematisch dargestellt ist.After passing through the objective 28, for example, an amplitude-modulated measuring signal 13 in the form of a parallel light beam 37 that propagates along the optical axis 38 of the transmitting unit 12 results, as shown in FIG FIG. 1 is shown schematically.

Im Sendeast 12 der erfindungsgemäßen Vorrichtung befindet sich zudem noch eine vorzugsweise schaltbare Strahlumlenkung 40, die es gestattet, das Messsignal 13 unter Umgehung eines Zielobjektes direkt auf die Empfangseinheit 14 des Geräts 10 umzulenken. Auf diese Weise ist es möglich, eine geräteinterne Referenzstrecke 42 zu erzeugen, die eine Kalibrierung des Messsystems gestattet.In the transmitting branch 12 of the device according to the invention there is also a preferably switchable beam deflection 40, which allows the measuring signal 13 to be redirected by bypassing a target object directly to the receiving unit 14 of the device 10. In this way, it is possible to generate a device-internal reference path 42, which allows a calibration of the measuring system.

Soll eine Messung durchgeführt werden, so verlässt der Messstrahl 13 das Gehäuse 11 der erfindungsgemäßen Vorrichtung durch ein optisches Fenster 44 in der Stirnwand 45 des Gerätes 10. Die Öffnung des optischen Fensters kann durch einen Shutter 46 gesichert werden.If a measurement is to be carried out, the measuring beam 13 leaves the housing 11 of the device according to the invention through an optical window 44 in the end wall 45 of the device 10. The opening of the optical window can be secured by a shutter 46.

Zur Messung wird das Messgerät 10 auf ein Zielobjekt 15 ausgerichtet, dessen Entfernung 48 zum Messgerät ermittelt werden soll. Das an dem gewünschten Zielobjekt 15 reflektierte oder auch gestreute Signal 16 bildet ein rücklaufende Messstrahlbündel 49,50, das zu einem gewissen Teil wieder in das Messgerät 10 zurück gelangt.For measurement, the measuring device 10 is aligned with a target object 15 whose distance 48 to the measuring device is to be determined. The signal 16 reflected or also scattered at the desired target object 15 forms a returning measuring beam bundle 49, 50, which returns to a certain extent back into the measuring device 10.

Durch ein Eintrittsfenster 47 in der Stirnseite 45 des Gerätes 10 wird die rücklaufende Messstrahlung 16 in das Messgerät eingekoppelt und im Ausführungsbeispiel der Figur 1 auf eine Empfangsoptik 52 gelenkt.Through an entrance window 47 in the end face 45 of the device 10, the returning measuring radiation 16 is coupled into the measuring device and in the embodiment of FIG. 1 directed to a receiving optics 52.

In Figur 1 sind exemplarisch zwei rücklaufende Messstrahlbündel 49 beziehungsweise 50 für zwei unterschiedliche Zielobjektabstände 48 eingezeichnet. Für große Objektabstände, und groß heisst in diesem Fall groß gegenüber der Brennweite der Empfangsoptik, fällt das vom Zielobjekt rücklaufende Signal 16 parallel zur optischen Achse 51 der Empfangseinrichtung 14 ein. Dieser Fall ist im Ausführungsbeispiel der Figur 1 durch das Messstrahlenbündel 49 repräsentiert. Mit kleiner werdendem Objektabstand wird das in das Messgerät einfallende, rücklaufende Signal 16 aufgrund einer Parallaxe immer mehr gegenüber der optischen Achse 51 der Empfangseinheit 14 geneigt. Als Beispiel eines rücklaufenden Messstrahlenbündels aus dem Nahbereich des Entfernungsmessgerätes ist in Figur 1 das Strahlenbündel 50 eingezeichnet.In FIG. 1 For example, two returning measuring beam bundles 49 and 50 are shown for two different target object distances 48. For large object distances, and large in this case means large compared to the focal length of the receiving optics, the signal returning from the target object 16 is incident parallel to the optical axis 51 of the receiving device 14. This case is in the embodiment of FIG. 1 represented by the measuring beam 49. With decreasing object distance, the returning signal 16 incident in the measuring device is inclined more and more with respect to the optical axis 51 of the receiving unit 14 due to a parallax. As an example of a returning measuring beam from the vicinity of the distance measuring device is in FIG. 1 the beam 50 drawn.

Die Empfangsoptik 52, die im Ausführungsbeispiel der Figur 1 ebenfalls durch eine einzelne Linse symbolisiert ist, kollimiert das rücklaufende Messsignals 16 und fokussiert dessen Strahlenbündel 49,50 auf einen Empfangsdetektor 54, der als PIN-Diode oder CCD-Chip oder auch als ein anderer, dem Fachmann bekannter Flächendetektor ausgebildet sein kann. Der Flächendetektor ist in den Regel mit seiner aktiven, lichtempfindlichen Oberfläche senkrecht auf die optische Achse des Empfangsastes ausgerichtet. Das einfallende optische Signal wird durch den Empfangsdetektor 54 in ein elektrisches Signal 55 umwandelt, und der weiteren Auswertung in Auswerteeinheit 36 zugeführt.The receiving optics 52, which in the embodiment of the FIG. 1 is also symbolized by a single lens, the returning measurement signal 16 collimates and focuses its beam 49,50 on a receive detector 54, which may be formed as a PIN diode or CCD chip or as another, known in the art surface detector. The area detector is usually aligned with its active, photosensitive surface perpendicular to the optical axis of the receiving branch. The incident optical signal is converted by the reception detector 54 into an electrical signal 55, and supplied to the evaluation unit 36 for further evaluation.

Die Empfangsoptik 52, die im Ausführungsbeispiel der Figur 1 auf einer Verstellmimik 53 angebracht ist, befindet sich ungefähr im Abstand ihrer Brennweite von der aktiven Fläche des Detektors entfernt, so dass einfallende Strahlung, die von einem Zielobjekt kommt, welches weit entfernt vom Messgerät liegt, genau auf den Detektor fokussiert wird. Für kleine Anstände zum Zielobjekt ist jedoch zu beobachten, dass die Abbildungsposition für den am Zielobjekt reflektierten oder gestreuten Messfleck sich zunehmend vom Fokus der Empfangslinse entfernt. So wandert der fokussierte rücklaufende Messstrahl mit kleiner werdendem Abstand des Zielobjektes zum Messgerät immer weiter von der optischen Achse der Empfangseinrichtung weg und weicht somit auch immer mehr von der optischen Achse der Sendeeinrichtung ab. Zudem wird das rücklaufende Messstrahlenbündel aufgrund der geänderten Abbildungsverhältnisse am Empfangsobjektiv nicht mehr genau auf die Detektorfläche fokussiert. Mit kürzer werdendem Zielobjektabstand ergibt sich ein immer größer werdenden Messfleck auf der Detektoroberfläche.The receiving optics 52, which in the embodiment of the FIG. 1 is mounted on a Verstellmimik 53, located approximately at a distance of its focal distance from the active surface of the detector, so that incident radiation coming from a target, which is far away from the meter, is focused exactly on the detector. However, for small distances to the target, it is observed that the imaging position for the target reflected or scattered at the target object is increasingly away from the focus of the receiving lens. Thus, the focused returning measuring beam moves with decreasing distance of the target object to the measuring device always further away from the optical axis of the receiving device and thus deviates more and more from the optical axis of the transmitting device. In addition, the returning measuring beam is no longer focused exactly on the detector surface due to the changed imaging conditions on the receiving lens. As the target distance becomes shorter, there is an ever-increasing spot on the detector surface.

Auf weitere im Messgerät vorhandene Komponenten, die aber für das Verständnis der erfindungsgemäßen Vorrichtung nicht unbedingt notwendig sind, soll in diesem Zusammenhang nicht weiter eingegangen werden. Es sei nur angemerkt, dass das Messgerät natürlich auch über eine Steuer- und Auswerteeinheit 36 verfügt.On other existing in the meter components, but for the understanding of the device according to the invention are not absolutely necessary, will not be discussed further in this context. It should only be noted that the meter of course also has a control and evaluation unit 36.

Die Zusammenhänge zwischen dem Abstand des Zielobjektes vom Messgerät und der Position beziehungsweise der Größe des Messflecks auf der Detektoroberfläche ist in schematischer Weise in Figur 2 nochmals zur Übersicht dargestellt.The relationships between the distance of the target object from the measuring device and the position or the size of the measuring spot on the detector surface is schematically in FIG FIG. 2 again shown to the overview.

Figur 2 zeigt eine Aufsicht auf die Detektoroberfläche in Blickrichtung des vom Messobjekt rücklaufenden Messsignals 16. Die Position 56 bezeichnet dabei die gemeinsame Ebene der optischen Achse 38 der Sendeeinheit 12 mit der optischen Achse 51 der Empfangseinheit 14. Der Messfleck 58 der rücklaufenden Strahlung 16 für sehr große Objektabstände 48 liegt auf der optischen Achse der Empfangseinheit 14 und wird auf der Oberfläche 66 des Detektors 54 zu einem kleinem Brennfleck fokussiert. Da der Detektor 54 in etwa im Abstand der Brennweite der Empfangsoptik 52 steht, wird Licht, dass optisch gesehen aus dem Unendlichen kommt, aufgrund der optischen Abbildungsgesetze direkt auf die Detektoroberfläche fokussiert. FIG. 2 shows a plan view of the detector surface in the direction of returning from the measurement object measurement signal 16. The position 56 indicates the common plane the optical axis 38 of the transmitting unit 12 with the optical axis 51 of the receiving unit 14. The measuring spot 58 of the returning radiation 16 for very large object distances 48 lies on the optical axis of the receiving unit 14 and is focused on the surface 66 of the detector 54 to a small focal spot , Since the detector 54 is approximately at the distance of the focal length of the receiving optics 52, light that comes visually from the infinite is focused directly on the detector surface due to the optical imaging laws.

Mit abnehmender Distanz 48 des Messgerätes 10 vom Zielobjekt 15 fällt das rücklaufende Signal 16 zunehmend schräger auf das Empfangsobjektiv 52 ein, so dass auch der Messfleck auf der Detektoroberfläche in Richtung des Pfeils 61 in Figur 2 wandert.With decreasing distance 48 of the measuring device 10 from the target object 15, the returning signal 16 falls increasingly obliquely on the receiving objective 52, so that the measuring spot on the detector surface in the direction of arrow 61 in FIG. 2 emigrated.

Der in Figur 2 ebenfalls eingezeichnete Messfleck 62 für einen kleinen Objektabstand 48 des Zielobjektes 15 vom Messgerät 10 ist somit von der optischen Achse 51 der Empfangseinrichtung weggewandert und in seiner Ausdehnung deutlich vergrößert. Bei sehr kleinem Messabstand 48 des Messobjektes 15 zum Messgerät 10 ergibt sich auf der Detektoroberfläche ein Messfleck 64 des rücklaufenden Messsignals 16 der nochmals deutlich vergrößert ist und auch weiter entfernt von der optischen Achse 51 der Empfangseinheit 14 auf der Detektorfläche zu liegen kommt.The in FIG. 2 also drawn measuring spot 62 for a small object distance 48 of the target object 15 from the measuring device 10 has thus migrated away from the optical axis 51 of the receiving device and significantly increased in its extent. At a very small measuring distance 48 of the measuring object 15 to the measuring device 10 results on the detector surface, a measuring spot 64 of the returning measurement signal 16 is again significantly increased and also far from the optical axis 51 of the receiving unit 14 comes to rest on the detector surface.

Diese Verschiebung des Messflecks mit dem relativen Abstand 48 des Messobjektes 15 zum Messgerät 10 kann dazu führen, dass für sehr kleine Objektabstände das rücklaufende Signal 16 nicht mehr auf die aktive Fläche des Messempfängers 54 fällt, wie dies durch eine angedeutete, gestrichelt eingezeichnete Fläche 60 in Figur 2 angedeutet ist, die die Oberfläche eines herkömmlichen Messempfängers des Standes der Technik symbolisieren soll.This displacement of the measuring spot with the relative distance 48 of the measuring object 15 to the measuring device 10 can cause the returning signal 16 no longer falls on the active surface of the measuring receiver 54 for very small object distances, as indicated by an indicated, dashed area 60 in FIG. 2 is hinted that the Surface of a conventional measuring receiver of the prior art should symbolize.

Um der Variation in der Größe und Lage des Messflecks in der Detektionsebene der Empfangseinheit 14 Rechnung zu tragen, ist die aktive, lichtempfindliche Oberfläche 66 des erfindungsgemäßen Detektors 54 entsprechend gestaltet. Im Bereich der optischen Achse 51 der Empfangseinheit 14 sollte die Detektorfläche 66 zumindest so groß sein, dass der gesamte Messfleck 58 aus dem Fernbereich, das heisst für sehr große Zielobjektabstände 48, vollständig auf die aktive Detektorfläche 66 fällt.In order to take account of the variation in the size and position of the measuring spot in the detection plane of the receiving unit 14, the active, photosensitive surface 66 of the detector 54 according to the invention is designed accordingly. In the region of the optical axis 51 of the receiving unit 14, the detector surface 66 should be at least so large that the entire measuring spot 58 falls completely from the far region, ie for very large target object distances 48, onto the active detector surface 66.

Die aktive Fläche 66 des Detektors 54 verjüngt sich im Ausführungsbeispiel der Figur 2 zunehmend in Richtung 61 der Strahlverschiebung, die sich aufgrund einer Parallaxe der rücklaufenden Strahlung 16 für kleiner werdende Zielobjektabstände 48 ergibt. Dabei ist die Detektorfläche 66 in lateraler Ausdehnung so groß, dass auch noch für den Fall sehr kleiner Abstände 48 des Zielobjektes 15 zum Messgerät 10 genügend Messsignal auf den Detektor 54 fällt. Aufgrund des hohen Signalpegels, des rücklaufenden Messsignals aus dem Nahbereich muss nicht der gesamte Messfleck auf der aktiven Detektorfläche zu liegen kommen.The active surface 66 of the detector 54 tapers in the embodiment of FIG. 2 increasingly in the direction 61 of the beam shift resulting from parallax of the return radiation 16 for decreasing target distances 48. In this case, the detector surface 66 is so large in lateral extent that even in the case of very small distances 48 of the target object 15 to the measuring device 10, sufficient measuring signal falls on the detector 54. Due to the high signal level, the returning measuring signal from the near range, the entire measuring spot does not have to lie on the active detector surface.

Figur 3 zeigt noch einmal die erfindungsgemäße Detektionsfläche 66 gemäß Figur 2 der Übersicht halber einzeln herausgezeichnet. FIG. 3 shows once again the detection surface 66 according to the invention FIG. 2 singly drawn out for the sake of clarity.

In den Figuren 4 und 5 sind weitere Ausführungsbeispiele einer aktiven, lichtempfindlichen Oberfläche des erfindungsgemäßen Detektors 54 angegeben, die den zugrundeliegenden Erfindungsgedanken weiter illustrieren sollen, nicht aber als Beschränkung der beanspruchten Vorrichtung angesehen werden dürfen. In den Figuren 4 und 5 bezeichnet die Position 56 jeweils die gemeinsame Ebene der optischen Achse 38 der Sendeeinheit 12 mit der optischen Achse 51 der Empfangseinheit 14. Die Stelle 38 markiert die Lage der optischen Achse der Sendeeinheit 12, und die Stelle 51 die entsprechende Lage der optischen Achse der Empfangseinheit 14.In the FIGS. 4 and 5 Further exemplary embodiments of an active, photosensitive surface of the detector 54 according to the invention are indicated which are intended to further illustrate the underlying idea of the invention, but are not to be regarded as limiting the claimed device. In the FIGS. 4 and 5 the position 56 denotes the common plane of the optical axis 38 of the Transmitting unit 12 with the optical axis 51 of the receiving unit 14. The location 38 marks the position of the optical axis of the transmitting unit 12, and the location 51, the corresponding position of the optical axis of the receiving unit 14th

Das Ausführungsbeispiel der Figur 4 zeigt eine Oberfläche 67 eines erfindungsgemäßen Detektors 54, die einen ersten Bereich 72 aufweist, in dem die Größe der lichtempfindlichem Fläche in Richtung 61 der Strahlverschiebung aufgrund der Parallaxe des rücklaufenden Messsignals 16 konstant ist und einen zweiten, sich direkt daran anschließenden Bereich 74 der Oberfläche 67, in dem die Größe der Detektorfläche 67 in Richtung 61 dieser Strahlverschiebung kontinuierlich abnimmt.The embodiment of FIG. 4 1 shows a surface 67 of a detector 54 according to the invention which has a first region 72 in which the size of the photosensitive surface in direction 61 of the beam displacement is constant due to the parallax of the returning measurement signal 16 and a second, directly adjoining region 74 of the surface 67 in that the size of the detector surface 67 continuously decreases in the direction 61 of this beam displacement.

Die Figur 5 offenbart die lichtempfindlichen Oberfläche 68 eines Detektors 54, die kontinuierlich und gleichmässig in Richtung 61 der parallaxenbedingten Strahlverschiebung abnimmt, und somit die Form eines Dreiecks annimmt. Selbstverständlich kann der erfindungsgemäße Detektor 54 auch eine Trapezform haben, die mit zunehmender Entfernung von der optischen Achse der Sendeeinheit schmaler wird, beziehungsweise kann im Auführungsbeispiel der Figur 4, die Verjüngung der Detektorfläche auch durch eine diskrete Stufe erzeugt werden.The FIG. 5 discloses the photosensitive surface 68 of a detector 54 which decreases continuously and uniformly in the direction 61 of the parallax-induced beam shift, and thus takes the form of a triangle. Of course, the detector 54 according to the invention may also have a trapezoidal shape, which becomes narrower with increasing distance from the optical axis of the transmitting unit, or can in Auführungsbeispiel the FIG. 4 , the rejuvenation of the detector surface are also produced by a discrete step.

Figur 6 zeigt eine Möglichkeit zur Realisierung eines Ausführungsbeispiels des erfindungsgemäßen Detektors 54. Während in den Ausführungsbeipielen der Figuren 2 bis 5 die wirksame,d.h. lichtempfindliche Oberfläche 66,67,68 des Detektors 54 gleich der gesamten Detektorfläche ist, wird in dem Ausführungsbeispiel der Figur 6 die aktive, d.h. wirksam lichtempfindliche Detektionsfläche 69 aus einer ursprünglich größeren Detektorfläche 78 abgeleitet. Dazu wird die optisch sensitive Fläche 78 eines Halbleiterdetektors mit beispielsweise einer kreisrunden Detektionsfläche in gewissen Bereichen mit einer optisch undurchlässigen Schicht 80 überzogen, womit der Halbleiterdetektor in diesen beschichteten Bereichen deaktiviert ist, so dass nur noch eine nichtbeschichtete Teilfläche 69 des Halbleiterdetektors als lichtempfindlich verbleibt. Dieser aktiven Teilfläche 69 lässt sich im Herstellungsverfahren jede gewünschte Form geben, darunter auch die Formen, der in den Figuren 2 bis 5 aufgezeigten Detektorflächen 66,67 und 68. Zur Erzeugung dieser lichtundurchlässigen Schicht kann beispielsweise das Aufdampfen einer Metallschicht auf die gewünschten Stellen der ursprünglichen Detektionsfläche genutzt werden. Auch andere, dem Fachmann bekannte optische Deaktivierungsmaßnahmen der Halbleiteroberfläche können zu diesem Zweck benutzt werden, so dass an dieser Stelle nicht auf die Details der Herstellung eingegangen zu werden braucht. FIG. 6 shows a possibility for realizing an embodiment of the detector 54 according to the invention. While in the Ausführungsbeipielen the FIGS. 2 to 5 the effective, ie photosensitive surface 66, 67, 68 of the detector 54 is equal to the total detector area, in the exemplary embodiment of FIG FIG. 6 the active, ie effective light-sensitive detection surface 69 derived from an originally larger detector surface 78. For this purpose, the optically sensitive surface 78 of a semiconductor detector with, for example, a circular detection surface is coated in certain areas with an optically impermeable layer 80, whereby the Semiconductor detector is deactivated in these coated areas, so that only an uncoated part surface 69 of the semiconductor detector remains as photosensitive. This active part surface 69 can be in the manufacturing process any desired shape, including the forms that in the FIGS. 2 to 5 To produce this opaque layer, for example, the vapor deposition of a metal layer can be used to the desired locations of the original detection surface. Other optical deactivation measures of the semiconductor surface known to the person skilled in the art can also be used for this purpose, so that at this point it is not necessary to discuss the details of the production.

Allen Bauformen der aufgezeigten Ausführungsbeispiele ist gemein, dass sich die aktive, das heisst lichtempfindliche Fläche des erfindungsgemäßen Detektors in Richtung der Strahlverschiebung aufgrund der Parallaxe für kürzer werdende Zielobjektabstände verjüngt. Das heisst, die Ausdehnung der aktiven Fläche des Detektors senkrecht zur gemeinsamen Ebene der optischen Achsen von Sendeeinheit und Empfangseinheit nimmt in der oben genannten Richtung ab.All designs of the exemplary embodiments shown have in common that the active, that is to say photosensitive, surface of the detector according to the invention tapers in the direction of the beam displacement due to the parallax for shorter target object distances. That is, the extension of the active area of the detector perpendicular to the common plane of the optical axes of the transmitting unit and the receiving unit decreases in the above-mentioned direction.

Die erfindungsgemäße Vorrichtung ist nicht auf die in der Beschreibung vorgestellte Ausführungsbeispiele begrenzt.The device according to the invention is not limited to the embodiments presented in the description.

Explizit sei angemerkt, dass auch eine konvexe Detektorfläche vorstellbar ist. Die genaue Form der Änderung der Detektorfläche mit zunehmendem Abstand von der optischen Achse der Sendeeinrichtung hängt unter Anderem von dem gewünschten Messbereich ab, in dem das erfindungsgemäße Messgerät arbeiten soll. Auch die genaue Geometrie des Gerätes und die optischen Abbildungsverhältnisse im Empfangsast sind hierbei zur Optimierung zu berücksichtigen.It should be noted explicitly that a convex detector surface is also conceivable. The exact shape of the change in the detector surface with increasing distance from the optical axis of the transmitting device depends inter alia on the desired measuring range in which the measuring device according to the invention is to operate. The exact geometry of the device and the optical imaging conditions in the receiving branch are also to be considered for optimization.

Auch muss die Verjüngung der aktiven Detektorfläche nicht kontinuierlich erfolgen, sondern kann auch diskret, beispielsweise in einzelnen Stufen realisiert sein.Also, the taper of the active detector surface does not have to be continuous, but may also be realized discretely, for example in individual stages.

Claims (7)

  1. Device for optical distance measurement having a transmitting unit (12) with a light source (17, 18) for emitting modulated, optical radiation (13, 20, 22) onto a target object (15), and having a receiving unit (14), spaced apart from the optical axis (38) of the transmitting unit (12), with at least one optical detector (54) for receiving the optical radiation (16, 49, 50) returning from the target object (15), and having a control and evaluation unit (36) for determining the distance (48) of the device from the target object (15), characterized in that the active, photosensitive surface (66, 67, 68, 69) of the detector (54) of the receiving unit (14) tapers in the direction (61) of a beam displacement for decreasing target object distances (48) which results from a parallax of the returning variation (16).
  2. Device according to Claim 1, characterized in that the photosensitive surface (66, 67, 68, 69) of the detector (54) is at least so large that the measurement spot (58) of the returning radiation (16, 49) from a target object (15) with a large object distance is completely detected.
  3. Device according to Claim 1 or 2, characterized in that the extent of the photosensitive surface (66, 67, 68, 69) of the detector (54) in a direction perpendicular to the optical axis (51) of the receiving unit (14) is at least so large that the measuring beam (50) returning from a target object (15) at close range still falls at least partially onto the photosensitive surface (66, 67, 68, 69).
  4. Device according to one of the preceding claims, characterized in that the photosensitive surface (66, 67, 68, 69) of the detector (55) has an axis of symmetry which lies in the common plane (56) of the optical axes of the transmitting unit (38) and receiving unit (51).
  5. Device according to one of the preceding claims, characterized in that the active, photosensitive surface (66, 67, 68, 69) of the detector (54) is formed by partially covering a relatively large, optically sensitive detector surface (78).
  6. Device according to Claim 4, characterized in that the active, photosensitive surface (66, 67, 68, 69) of the detector (54) is formed by partially applying an optically opaque layer (80) to the originally larger, optically sensitive detector surface (78).
  7. Device according to one of the preceding claims, characterized in that the light source (17, 18) is a laser, in particular a laser diode (18) which emits radiation in the wavelength region of the spectrum of electromagnetic waves which is visible to the human eye.
EP02732409A 2001-06-26 2002-04-27 Device for optical measurement of distance over a large measuring range Expired - Lifetime EP1405037B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10130763 2001-06-26
DE10130763A DE10130763A1 (en) 2001-06-26 2001-06-26 Device for optical distance measurement over a large measuring range
PCT/DE2002/001553 WO2003002939A1 (en) 2001-06-26 2002-04-27 Device for optical measurement of distance over a large measuring range

Publications (2)

Publication Number Publication Date
EP1405037A1 EP1405037A1 (en) 2004-04-07
EP1405037B1 true EP1405037B1 (en) 2011-07-06

Family

ID=7689488

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02732409A Expired - Lifetime EP1405037B1 (en) 2001-06-26 2002-04-27 Device for optical measurement of distance over a large measuring range

Country Status (5)

Country Link
US (1) US6833909B2 (en)
EP (1) EP1405037B1 (en)
JP (1) JP2004521355A (en)
DE (1) DE10130763A1 (en)
WO (1) WO2003002939A1 (en)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4222792B2 (en) * 2002-06-26 2009-02-12 シャープ株式会社 Ranging sensor, electronic device using the same, and manufacturing method of ranging sensor
DE10232878B4 (en) * 2002-07-19 2012-02-23 Robert Bosch Gmbh Apparatus and method for distance measurement
DE10314772A1 (en) * 2003-03-31 2004-10-14 Robert Bosch Gmbh Device for adjusting an optical mirror
US7463339B2 (en) 2003-12-19 2008-12-09 Leica Geosystems Ag Device for measuring the distance to far-off objects and close objects
US20060028351A1 (en) * 2004-08-09 2006-02-09 Lewis James M Docking monitor
US7408627B2 (en) * 2005-02-08 2008-08-05 Canesta, Inc. Methods and system to quantify depth data accuracy in three-dimensional sensors using single frame capture
DE102005043418A1 (en) * 2005-09-13 2007-03-22 Robert Bosch Gmbh Electro-optical measuring device
DE102006013292A1 (en) * 2006-03-23 2007-09-27 Robert Bosch Gmbh Device for optical distance measurement
DE102006013290A1 (en) * 2006-03-23 2007-09-27 Robert Bosch Gmbh Device for optical distance measurement and method for operating such a device
DE102007007903A1 (en) * 2007-02-14 2008-08-21 Sick Ag Optoelectronic sensor arrangement and method for checking the functioning and / or adjustment of an optoelectronic sensor arrangement
DE102007017631B3 (en) * 2007-04-13 2008-07-10 Sick Ag Optoelectronic sensor, has transmission line for differential transmission of electrical transmission pattern, which is designed with multiple single conductors and two external single conductors differentially transfers signal with sign
DE112008000815A5 (en) * 2007-07-24 2010-01-07 Adc Automotive Distance Control Systems Gmbh Sensor system with means for preventing glare of the sensor system by nearby objects
US8103121B2 (en) 2007-08-31 2012-01-24 Adobe Systems Incorporated Systems and methods for determination of a camera imperfection for an image
FR2920336B1 (en) * 2007-09-05 2012-09-28 Eads Europ Aeronautic Defence METHOD AND DEVICE FOR ANALYZING PROCESSES FOR PRODUCING COMPOSITE MATERIAL PARTS BY INFUSION OR INJECTION AND CHARACTERIZING THESE COMPOSITE MATERIALS.
JPWO2009031550A1 (en) * 2007-09-05 2010-12-16 株式会社 ニコンビジョン Ranging device
DE102007053852A1 (en) 2007-11-12 2009-05-14 Robert Bosch Gmbh Device for optical distance measurement
DE102007055771A1 (en) 2007-12-12 2009-06-18 Hilti Aktiengesellschaft Laser Distance Meter
US8107056B1 (en) 2008-09-17 2012-01-31 University Of Central Florida Research Foundation, Inc. Hybrid optical distance sensor
DE102008054790A1 (en) 2008-12-17 2010-07-01 Robert Bosch Gmbh Optical receiver lens and optical rangefinder
US8213022B1 (en) 2009-03-04 2012-07-03 University Of Central Florida Research Foundation, Inc. Spatially smart optical sensing and scanning
DE102009029364A1 (en) 2009-09-11 2011-03-24 Robert Bosch Gmbh Measuring device for measuring a distance between the measuring device and a target object by means of optical measuring radiation
US8390791B2 (en) * 2009-11-30 2013-03-05 General Electric Company Light detection and ranging system
KR101839641B1 (en) * 2011-02-15 2018-03-16 바스프 에스이 Detector for optically detecting at least one object
US9001029B2 (en) * 2011-02-15 2015-04-07 Basf Se Detector for optically detecting at least one object
JP2013195079A (en) * 2012-03-15 2013-09-30 Omron Corp Reflective optical sensor
DE102012006869A1 (en) 2012-04-04 2013-10-10 Valeo Schalter Und Sensoren Gmbh Optoelectronic sensor device, in particular laser scanner, with an adapted receiving unit for optimized reception level reduction
DE102012208308A1 (en) * 2012-05-18 2013-11-21 Robert Bosch Gmbh Optical rangefinder with calibration device to account for crosstalk
JP5998808B2 (en) * 2012-09-28 2016-09-28 株式会社デンソーウェーブ Laser radar equipment
EP2936052B1 (en) 2012-12-19 2021-04-28 Basf Se Detector for optically detecting at least one object
WO2014129210A1 (en) * 2013-02-25 2014-08-28 株式会社ニコンビジョン Distance measuring device and calibration method
JP6440696B2 (en) 2013-06-13 2018-12-19 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Detector for optically detecting the orientation of at least one object
EP3008485A1 (en) 2013-06-13 2016-04-20 Basf Se Detector for optically detecting at least one object
WO2015024870A1 (en) 2013-08-19 2015-02-26 Basf Se Detector for determining a position of at least one object
KR102191139B1 (en) 2013-08-19 2020-12-15 바스프 에스이 Optical detector
US11041718B2 (en) 2014-07-08 2021-06-22 Basf Se Detector for determining a position of at least one object
US9599711B2 (en) * 2014-07-15 2017-03-21 Honeywell International Inc. Active blade tracker and related systems and methods
US10094927B2 (en) 2014-09-29 2018-10-09 Basf Se Detector for optically determining a position of at least one object
JP6637980B2 (en) 2014-12-09 2020-01-29 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Optical detector
KR102496245B1 (en) 2015-01-30 2023-02-06 트리나미엑스 게엠베하 Detector for optical detection of one or more objects
JP2016170114A (en) * 2015-03-13 2016-09-23 株式会社東芝 Distance measuring device and photodetector
US10955936B2 (en) 2015-07-17 2021-03-23 Trinamix Gmbh Detector for optically detecting at least one object
CN108141579B (en) 2015-09-14 2020-06-12 特里纳米克斯股份有限公司 3D camera
DE102016106154B3 (en) * 2016-04-05 2017-02-16 Sick Ag Opto-electronic sensor and method for detecting and determining the distance of an object
US10234284B2 (en) * 2016-05-13 2019-03-19 Bae Systems Information And Electronic Systems Integration Inc. Multifunctional rangefinder with at least two modes of operation
JP2019523562A (en) 2016-07-29 2019-08-22 トリナミクス ゲゼルシャフト ミット ベシュレンクテル ハフツング Optical sensor and detector for optical detection
US10890491B2 (en) 2016-10-25 2021-01-12 Trinamix Gmbh Optical detector for an optical detection
US11428787B2 (en) 2016-10-25 2022-08-30 Trinamix Gmbh Detector for an optical detection of at least one object
EP3571522B1 (en) 2016-11-17 2023-05-10 trinamiX GmbH Detector for optically detecting at least one object
US11860292B2 (en) 2016-11-17 2024-01-02 Trinamix Gmbh Detector and methods for authenticating at least one object
JP7204667B2 (en) 2017-04-20 2023-01-16 トリナミクス ゲゼルシャフト ミット ベシュレンクテル ハフツング photodetector
EP3645965B1 (en) 2017-06-26 2022-04-27 trinamiX GmbH Detector for determining a position of at least one object
EP3428574A1 (en) * 2017-07-11 2019-01-16 Fondazione Bruno Kessler Device for measuring a distance and method for measuring said distance
DE102017222972A1 (en) * 2017-12-15 2019-07-04 Ibeo Automotive Systems GmbH Receiving arrangement for receiving light signals
DE102017222974A1 (en) 2017-12-15 2019-06-19 Ibeo Automotive Systems GmbH Arrangement and method for determining a distance of at least one object with light signals
DE102018109544A1 (en) * 2018-04-20 2019-10-24 Sick Ag Optoelectronic sensor and method for distance determination
JP2020042049A (en) * 2019-12-12 2020-03-19 株式会社東芝 Distance measuring device and photodetector
DE102022113337B3 (en) 2022-05-25 2023-05-11 Wenglor sensoric elektronische Geräte GmbH OPTICAL PROXIMITY SWITCH

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4105332A (en) 1977-03-14 1978-08-08 Precision International, Inc. Apparatus for producing a light beam having a uniform phase front and distance measuring apparatus
US5354983A (en) * 1990-04-10 1994-10-11 Auto-Sense, Limited Object detector utilizing a threshold detection distance and suppression means for detecting the presence of a motor vehicle
DE4316348A1 (en) 1993-05-15 1994-11-17 Wild Heerbrugg Ag Distance measuring device
US5530548A (en) * 1994-11-07 1996-06-25 Automotive Systems Laboratory, Inc. Calibratable optical distance sensing system and method
JPH1184003A (en) * 1997-09-04 1999-03-26 Nikon Corp Light wave distance-measuring device
US6259516B1 (en) 1998-05-06 2001-07-10 Quantum Imaging, Inc. Dual sensor distance measuring apparatus and method

Also Published As

Publication number Publication date
EP1405037A1 (en) 2004-04-07
DE10130763A1 (en) 2003-01-02
US20030128351A1 (en) 2003-07-10
US6833909B2 (en) 2004-12-21
WO2003002939A1 (en) 2003-01-09
JP2004521355A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
EP1405037B1 (en) Device for optical measurement of distance over a large measuring range
EP2002281B1 (en) Device for optically measuring distance
EP2002208B1 (en) Device for optically measuring distance and method for operating said type of device
EP2476013B1 (en) Photon detector with an immobilisable photon-sensitive element, in particular spad, and distancing measuring device comprising said type of photon detector
DE19960653B4 (en) Method and device for the detection or orientation of edges
EP2686700B1 (en) Measurement device for measuring a distance between the measurement device and a target object using an optical measurement beam
EP1927014B1 (en) Electro-optical measuring device
DE102008029459B4 (en) Method and device for non-contact distance measurement
WO2006024566A1 (en) Device and method for optically measuring distance
DE202014005508U1 (en) Distance measuring device
EP1395853A1 (en) Device for optically measuring distances
EP2210124B1 (en) Device for optical distance measurement
EP0190624A2 (en) Opto-electronic rangefinder
EP1480015A1 (en) Method and device for measuring a modulated light signal
DE10051302C5 (en) Laser distance measuring device for the near and far range with special receiver
DE2257445B2 (en) VISUALLY ALIGNMENTABLE ELECTRO-OPTICAL RUNNING TIME RANGEFINDER WITH INTENSITY CONTROL
WO2005064359A1 (en) Device for measuring the distance to far-off objects and close objects
EP1743139B1 (en) Target acquisition device
DE60106555T2 (en) Sensor using attenuated total reflection
EP1903352A1 (en) Opto-electronic sensor unit and method for operating an opto-electronic sensor unit
DE102022200642A1 (en) Optical system and LiDAR system
DE102020105456A1 (en) Device for determining the speed and / or the length of a product
DE102022004473A1 (en) Sensor arrangement for detecting at least a first torsion of a rotor blade of a wind turbine
EP4194890A1 (en) Optical sensor
CH611039A5 (en) Distance meter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20100125

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB IT LI

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB IT LI

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50215118

Country of ref document: DE

Effective date: 20110825

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120411

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50215118

Country of ref document: DE

Effective date: 20120411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130424

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20140422

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140427

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190423

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190424

Year of fee payment: 18

Ref country code: DE

Payment date: 20190627

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50215118

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201103

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200427