EP1395096A2 - Method to control fluorescent lamps - Google Patents

Method to control fluorescent lamps Download PDF

Info

Publication number
EP1395096A2
EP1395096A2 EP03017859A EP03017859A EP1395096A2 EP 1395096 A2 EP1395096 A2 EP 1395096A2 EP 03017859 A EP03017859 A EP 03017859A EP 03017859 A EP03017859 A EP 03017859A EP 1395096 A2 EP1395096 A2 EP 1395096A2
Authority
EP
European Patent Office
Prior art keywords
control loop
fluorescent lamp
time intervals
actual value
power consumption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03017859A
Other languages
German (de)
French (fr)
Other versions
EP1395096B1 (en
EP1395096A3 (en
Inventor
Markus Ziegler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP1395096A2 publication Critical patent/EP1395096A2/en
Publication of EP1395096A3 publication Critical patent/EP1395096A3/en
Application granted granted Critical
Publication of EP1395096B1 publication Critical patent/EP1395096B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • H05B41/3925Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations by frequency variation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • H05B41/298Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2988Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the lamp against abnormal operating conditions

Definitions

  • the invention relates to a method for operating fluorescent lamps according to of the preamble of claim 1 and a ballast for performing the Process.
  • the inventive method for operating fluorescent lamps with the help of a ballast that has an inverter with semiconductor switches in a Bridge circuit are arranged, and with a control device for the semiconductor switch and at least one connected to the inverter as a resonance circuit trained load circuit in which at least one fluorescent lamp is operated, the at least one fluorescent lamp from the inverter a high-frequency current is applied and the power consumption the at least one fluorescent lamp by means of a first control loop by varying the frequency of the high-frequency current to a predeterminable one Value is characterized by the fact that by means of a second control loop which is run in shorter time intervals than the first control loop, the power consumption of the at least one fluorescent lamp on the predeterminable Value is stabilized.
  • the second control loop ensures that the fluorescent lamps also in the critical power range, which approx. 25% to 10% of their nominal luminous flux corresponds, can be operated safely without the occurrence of significant Fluctuations in the power consumption or brightness of the fluorescent lamps.
  • the second control loop is in significantly shorter time intervals than the go through first control loop and can therefore make rapid changes in power consumption of fluorescent lamps, as in the aforementioned critical area counteract.
  • the time intervals for going through the second control loop are advantageously 50 ⁇ s to 200 ⁇ s, while the Time intervals for passing through the first control loop with preferably 1 ms to 2 ms are significantly longer.
  • the method according to the invention is advantageously used for implementation of the first control loop, a setpoint which is adjustable in size in predetermined Time intervals compared with an actual value, which is based on the time-average power consumption deriving at least one fluorescent lamp, and therefrom a first manipulated variable is formed for the control device while performing the second control loop at predetermined time intervals that are shorter than the time intervals the first control loop, the change in power consumption at least one fluorescent lamp for generating a second manipulated variable for the Control device is evaluated, and both manipulated values for generating control signals be evaluated for the control of the switching frequency of the semiconductor switch.
  • control variables are advantageously both for the first as well as for the second control loop from the one flowing through the bridge circuit Current derived because the time average of this current is proportional to the power consumption the fluorescent lamp is.
  • the controlled variables that is, the actual values, Both control loops are, for example, using a low-pass filter from the over the Bridge circuit derived current flowing, the time constant of the second Second low-pass filter belonging to the control loop is smaller than the time constant of the first low-pass filter belonging to the first control loop.
  • the time constants are each adapted to the above-mentioned time intervals of the control loops.
  • the functions of the two low-pass filters are each digital Filters taken with different, at the above-mentioned time intervals adjusted sampling frequencies work.
  • the second control loop is advantageously designed as a target / actual value comparison, which is repeated continuously at predetermined time intervals, on End of each time interval from that flowing through the bridge circuit Current an actual value is derived and this with the actual value serving as the setpoint of the immediately preceding time interval is compared in order to derive the generate second manipulated variable for the control device of the inverter.
  • the ballast according to the invention has an inverter with semiconductor switches, which are arranged in a bridge circuit, a control device for the semiconductor switches and at least one connected to the inverter, designed as a resonant circuit load circuit with connections for at least one Fluorescent lamp on, wherein the control device means for varying the switching frequency the semiconductor switch has the minimum power consumption set a fluorescent lamp to a predeterminable value, and the control device Means for stabilizing the power consumption of the at least one Has fluorescent lamp to the predetermined value.
  • the means for stabilizing the power consumption of the at least one fluorescent lamp are preferably designed as differential controllers, also called D controllers, the change in the power consumption of the at predetermined time intervals monitors at least one fluorescent lamp and, depending on it, one Control value for the control device for stabilizing the power consumption on the predeterminable value generated.
  • D controllers differential controllers
  • the at least one fluorescent lamp has the desired value according to the invention Ballast preferably a slow compared to the D controller Proportional-integral controller, also called PI controller, on which the temporal average power consumption of the at least one fluorescent lamp with one predeterminable target value compares.
  • Both controllers are advantageously a component a microprocessor, which in turn is part of the control device is.
  • the manipulated values generated by both controllers are superimposed and in one digital data register of the microprocessor stored.
  • FIG. 1 schematically shows the structure of an electronic device according to the invention Ballast shown for operating a fluorescent lamp.
  • This ballast has a half-bridge inverter with two half switches, in particular Transistors T1, T2, a control device ST for the semiconductor switch T1, T2 and two connections +, - for the DC voltage supply of the half-bridge inverter.
  • a Load circuit designed as a resonant circuit.
  • the load circuit includes the Resonance inductance L1, the resonance capacitor C1, the coupling capacitor C2, the discharge resistor R1 and arranged parallel to the coupling capacitor C2 Connections for the electrode filaments E1, E2 of a fluorescent lamp LP.
  • the Fluorescent lamp LP is arranged in the load circuit in such a way that its discharge path is connected in parallel with the resonance capacitor C1 and the electrode filaments E1, E2 are connected in series with the resonance capacitor C1.
  • This Circuit arrangement is disclosed for example in the patent specification EP 0 422 255 B1.
  • the semiconductor switches T1, T2 are alternated by means of the control device ST activated and deactivated so that the load circuit and the lamp LP with one high-frequency current, the frequencies of which are in the range of approx. 40 kHz and 150 kHz are.
  • the one for igniting the gas discharge in the fluorescent lamp LP required ignition voltage is determined using the method of excessive resonance provided on the resonance capacitor C1.
  • the impedance of the discharge path of the fluorescent lamp LP and their power consumption depend on the frequency of the lamp LP flowing electricity.
  • This fact can regulate the power consumption of the Fluorescent lamp and thus also used for its brightness control, by switching frequency of the semiconductor switches T1, T2 by means of the control device ST is varied accordingly so that it is a more or less large distance to the resonant frequency of the damped resonant circuit.
  • This actual value is specified in the proportional-integral controller IR with a predefinable one Setpoint value SW compared, that of the control device ST from the outside, for example from a dimming potentiometer or another dimming device becomes.
  • the setpoint SW represents the desired brightness level or power level the fluorescent lamp LP.
  • the proportional-integral controller IR a first manipulated variable to control the Switching frequency of the semiconductor switches T1, T2.
  • the first manipulated variable is in the 14 bit data register S1 stored and read out by the driver switch TR, the control signals generated for the base or gate electrode of the semiconductor switch T1, T2.
  • the first control loop is executed at 1 ms intervals. The means that after every 1 ms, a new actual value is generated using the first low pass R3, C3 fed into the proportional-integral controller IR, with the specifiable setpoint SW compared and an updated first manipulated variable written in the data register S1.
  • the frequency dependence of the half-bridge current is shown qualitatively in FIG.
  • the fluorescent lamp has its greatest brightness and Luminous flux is therefore 100% of their nominal luminous flux. If the frequency is increased, so takes the half-bridge current and thus the power consumption as well Luminous flux of the fluorescent lamp.
  • ⁇ f which corresponds to a luminous flux corresponds to approx. 25% to 10% of the nominal luminous flux, shows the half-bridge current an extremely strong frequency dependency, making this region unstable Operating conditions can occur.
  • the differential regulator DR To avoid oscillations of the fluorescent lamp between several operating states is avoided by means of the second low-pass filter R4, C4, the differential regulator DR, the data memory S2 and the data register S1 a second control loop realized, which is run much faster than the first control loop. through of the low-pass filter R4, C4 changes in the time intervals of 100 microseconds half-bridge current flowing through the resistor R2 is detected.
  • the differential Controller DR carries out a setpoint / actual value comparison at intervals of 100 ⁇ s through, the actual value being evaluated by the low-pass filter R4, C4 Half-bridge current is used and temporarily as the setpoint in data memory S2 stored actual value of the immediately preceding time interval is used becomes.
  • the differential Controller DR Depending on the target / actual value comparison, the differential Controller DR generates a second manipulated variable that corresponds to the 14-bit data register S1 is supplied and added to the first manipulated variable. From the sum of the two The driver circuit determines control values for frequency control of the signals Semiconductor switch T1, T2. The half-bridge current is generated by means of the second control loop and thus the power consumption and the brightness of the fluorescent lamp stabilized to the desired value.
  • the differential controller DR outside this critical operating area can be deactivated. This happens because that the actual value of the second control loop is compared with a target / actual value comparison Gain factor K is multiplied, which depends on the selected brightness level, that is, from the setpoint SW of the first control loop. During operation the fluorescent lamp LP with more than 25% of its nominal luminous flux can Gain factor K can be reduced to zero.
  • Both controllers IR, DR are algorithms of a program-controlled Microprocessor formed, which is part of the control device ST.
  • particularly preferred embodiment of the invention are first C3, R3 and second low-pass filter C4, R4 replaced by one digital filter each, wherein the first digital filter functions as the first low-pass filter C3, R3 and the second digital filter takes over the function of the second low-pass filter C4, R4.
  • the digital filters are part of the control device ST and in particular as part of the aforementioned, program-controlled microprocessor educated. Both digital filters evaluate the through the bridge circuit flowing current, that is, the voltage drop across resistor R2. Your filter properties are determined by the software implemented in the microprocessor. In all other details, this exemplary embodiment agrees with the above explained first embodiment.

Abstract

The method involves using a voltage adapter, a controller and at least one load circuit connected to the adapter's inverter forming a resonant circuit in which at least one lamp is operated with a HF current from the inverter whose frequency is varied to set the power taken by the lamp by a first control loop. A second control loop with a shorter cycle than the first stabilizes the power take-up of the at least one lamp to a defined value. The method involves using a voltage adapter, a controller (ST) and at least one load circuit connected to the adapter's inverter forming a resonant circuit in which at least one lamp (LP) is operated with a high frequency current from the inverter whose frequency is varied to set the power taken by the lamp by a first control loop. A second control loop with a shorter cycle than the first stabilizes the power take-up of the at least one lamp to a defined value. AN Independent claim is also included for the following: (a) a voltage adapter for operating fluorescent lamps

Description

Die Erfindung betrifft ein Verfahren zum Betreiben von Leuchtstofflampen gemäß des Oberbegriffs des Patentanspruchs 1 und ein Vorschaltgerät zur Durchführung des Verfahrens.The invention relates to a method for operating fluorescent lamps according to of the preamble of claim 1 and a ballast for performing the Process.

I. Stand der Technik I. State of the art

Ein derartiges Verfahren ist beispielsweise in der Patentschrift EP 0 422 255 B1 offenbart. Diese Schrift beschreibt ein elektronisches Vorschaltgerät zum Betreiben von Leuchtstofflampen, das eine Helligkeits- und Leistungsregelung der Leuchtstofflampen durch Variieren der Schaltfrequenz der Wechselrichterschalter ermöglicht. Um ein Erlöschen der Leuchtstofflampe bei geringer Helligkeit, das heißt, beim Betrieb mit nur 1% des Nennlichtstroms, zu verhindern, wird zusätzlich zur Leistung der momentane Entladungswiderstand der Leuchtstofflampe überwacht und aus dem bei abnehmender Helligkeit der Leuchtstofflampe anwachsenden Entladungswiderstands eine Hilfsregelgröße für die Steuerung der Wechselrichterschalter abgeleitet.Such a method is disclosed, for example, in the patent specification EP 0 422 255 B1. This document describes an electronic ballast for operation of fluorescent lamps, which regulates the brightness and power of fluorescent lamps by varying the switching frequency of the inverter switches. To make the fluorescent lamp go out at low brightness, that is, during operation with only 1% of the nominal luminous flux, in addition to the power the current discharge resistance of the fluorescent lamp is monitored and from the as the brightness of the fluorescent lamp decreases, the discharge resistance increases derived an auxiliary control variable for the control of the inverter switches.

Es hat sich gezeigt, dass bei Leuchtstofflampen Schwankungen des Betriebszustandes bzw. instabile Betriebszustände auftreten, wenn ihr Lichtstrom mittels des oben erläuterten Verfahrens auf ca. 25% bis 10% ihres Nennlichtstroms geregelt wird. Ursache dieser instabilen Betriebszustände ist eine nicht-lineare Abhängigkeit der Leistungsaufnahme der Leuchtstofflampe von der Frequenz des vom Wechselrichter generierten Stroms. Im ungünstigen Fall können in dem vorgenannten Bereich bereits geringste Änderungen der Schaltfrequenz des Wechselrichters und damit der Frequenz des durch die Brückenschaltung fließenden Stroms starke Änderungen der Lampenleistung bewirken. It has been shown that fluctuations in the operating state of fluorescent lamps or unstable operating conditions occur when their luminous flux is increased using the above explained method is regulated to about 25% to 10% of their nominal luminous flux. The cause of these unstable operating states is a non-linear dependency of the Power consumption of the fluorescent lamp from the frequency of the inverter generated electricity. In the worst case, you can already in the aforementioned area slightest changes in the switching frequency of the inverter and thus the Frequency of the current flowing through the bridge circuit changes greatly Effect lamp power.

II. Darstellung der Erfindung II. Presentation of the invention

Es ist die Aufgabe der Erfindung, ein Verfahren zur stabilen Regelung der Leistungsaufnahme und der Helligkeit von Leuchtstofflampen bereitzustellen.It is the object of the invention to provide a method for stable control of the power consumption and the brightness of fluorescent lamps.

Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Patentanspruchs 1 gelöst. Besonders vorteilhafte Ausführungen der Erfindung sind in den abhängigen Patentansprüchen beschrieben.This object is achieved according to the invention by the features of patent claim 1 solved. Particularly advantageous embodiments of the invention are in the dependent Claims described.

Das erfindungsgemäße Verfahren zum Betreiben von Leuchtstofflampen mit Hilfe eines Vorschaltgerätes, das einen Wechselrichter mit Halbleiterschaltern, die in einer Brückenschaltung angeordnet sind, und mit einer Steuervorrichtung für die Halbleiterschalter und mindestens einen an den Wechselrichter angeschlossenen, als Resonanzkreis ausgebildeten Lastkreis aufweist, in dem mindestens eine Leuchtstofflampe betrieben wird, wobei die mindestens eine Leuchtstofflampe von dem Wechselrichter mit einem hochfrequenten Strom beaufschlagt wird und die Leistungsaufnahme der mindestens einen Leuchtstofflampe mittels einer ersten Regelschleife durch Variieren der Frequenz des hochfrequenten Stroms auf einen vorgebbaren Wert eingestellt wird, zeichnet sich dadurch aus, dass mittels einer zweiten Regelschleife die in kürzeren Zeitintervallen durchlaufen wird als die erste Regelschleife, die Leistungsaufnahme der mindestens einen Leuchtstofflampe auf den vorgebbaren Wert stabilisiert wird. Die zweite Regelschleife gewährleistet, dass die Leuchtstofflampen auch in dem kritischen Leistungsbereich, der ca. 25% bis 10% ihres Nennlichtstroms entspricht, sicher betrieben werden können, ohne das Auftreten von erheblichen Schwankungen der Leistungsaufnahme bzw. Helligkeit der Leuchtstofflampen. Die zweite Regelschleife wird in deutlich kürzeren Zeitintervallen, als die erste Regelschleife durchlaufen und kann daher schnellen Änderungen der Leistungsaufnahme der Leuchtstofflampen, wie sie in dem vorgenannten kritischen Bereich auftreten können, entgegensteuern. Die Zeitintervalle zum Durchlaufen der zweiten Regelschleife betragen vorteilhafterweise 50 µs bis 200 µs, während die Zeitintervalle zum Durchlaufen der ersten Regelschleife mit vorzugsweise 1 ms bis 2 ms deutlich länger sind. The inventive method for operating fluorescent lamps with the help of a ballast that has an inverter with semiconductor switches in a Bridge circuit are arranged, and with a control device for the semiconductor switch and at least one connected to the inverter as a resonance circuit trained load circuit in which at least one fluorescent lamp is operated, the at least one fluorescent lamp from the inverter a high-frequency current is applied and the power consumption the at least one fluorescent lamp by means of a first control loop by varying the frequency of the high-frequency current to a predeterminable one Value is characterized by the fact that by means of a second control loop which is run in shorter time intervals than the first control loop, the power consumption of the at least one fluorescent lamp on the predeterminable Value is stabilized. The second control loop ensures that the fluorescent lamps also in the critical power range, which approx. 25% to 10% of their nominal luminous flux corresponds, can be operated safely without the occurrence of significant Fluctuations in the power consumption or brightness of the fluorescent lamps. The second control loop is in significantly shorter time intervals than the go through first control loop and can therefore make rapid changes in power consumption of fluorescent lamps, as in the aforementioned critical area counteract. The time intervals for going through the second control loop are advantageously 50 µs to 200 µs, while the Time intervals for passing through the first control loop with preferably 1 ms to 2 ms are significantly longer.

Bei dem erfindungsgemäßen Verfahren wird vorteilhafterweise zur Durchführung der ersten Regelschleife ein in seiner Größe einstellbarer Sollwert in vorgegebenen Zeitabständen mit einem Istwert verglichen, der aus der zeitlich gemittelten Leistungsaufnahme der mindestens einen Leuchtstofflampe abgeleitet wird, und daraus ein erster Stellwert für die Steuervorrichtung gebildet, während zur Durchführung der zweiten Regelschleife in vorgegebenen Zeitintervallen, die kürzer als die Zeitabstände der ersten Regelschleife sind, die Änderung der Leistungsaufnahme der mindestens einen Leuchtstofflampe zur Erzeugung eines zweiten Stellwertes für die Steuervorrichtung ausgewertet wird, und beide Stellwerte zum Erzeugen von Steuersignalen für die Regelung der Schaltfrequenz der Halbleiterschalter ausgewertet werden. Auf diese Weise kann mittels der ersten Regelschleife bei den Leuchtstofflampen die gewünschte Leistungsaufnahme und Helligkeit eingestellt werden und mittels der zweiten Regelschleife unerwünschte Schwankungen der Leistungsaufnahme der Leuchtstofflampen, insbesondere in dem obengenannten kritischen Betriebsbereich, verhindert werden. Vorteilhafterweise werden die Regelgrößen sowohl für die erste als auch für die zweite Regelschleife aus dem durch die Brückenschaltung fließenden Strom abgeleitet, weil der zeitliche Mittelwert dieses Stroms proportional zur Leistungsaufnahme der Leuchtstofflampen ist. Die Regelgrößen, das heißt, die Istwerte, beider Regelschleifen werden beispielsweise mittels Tiefpassfilter aus dem über die Brückenschaltung fließenden Strom abgeleitet, wobei die Zeitkonstante des zur zweiten Regelschleife gehörenden zweiten Tiefpassfilters kleiner als die Zeitkonstante des zur ersten Regelschleife gehörenden ersten Tiefpassfilters ist. Die Zeitkonstanten sind jeweils an die obengenannten Zeitintervalle der Regelschleifen angepasst. Vorzugsweise werden die Funktionen der beiden Tiefpassfilter von jeweils einem digitalen Filter übernommen, die mit unterschiedlichen, an die obengenannten Zeitintervalle angepassten Abtastfrequenzen arbeiten. Durch die Verwendung digitaler Filter vereinfacht sich der Aufbau der Schaltungsanordnung, weil sie als Bestandteil eines Mikroprozessors ausgebildet werden können.The method according to the invention is advantageously used for implementation of the first control loop, a setpoint which is adjustable in size in predetermined Time intervals compared with an actual value, which is based on the time-average power consumption deriving at least one fluorescent lamp, and therefrom a first manipulated variable is formed for the control device while performing the second control loop at predetermined time intervals that are shorter than the time intervals the first control loop, the change in power consumption at least one fluorescent lamp for generating a second manipulated variable for the Control device is evaluated, and both manipulated values for generating control signals be evaluated for the control of the switching frequency of the semiconductor switch. In this way, by means of the first control loop in the fluorescent lamps the desired power consumption and brightness can be set and by means of the second control loop unwanted fluctuations in the power consumption of the Fluorescent lamps, particularly in the critical operating range mentioned above, be prevented. The control variables are advantageously both for the first as well as for the second control loop from the one flowing through the bridge circuit Current derived because the time average of this current is proportional to the power consumption the fluorescent lamp is. The controlled variables, that is, the actual values, Both control loops are, for example, using a low-pass filter from the over the Bridge circuit derived current flowing, the time constant of the second Second low-pass filter belonging to the control loop is smaller than the time constant of the first low-pass filter belonging to the first control loop. The time constants are each adapted to the above-mentioned time intervals of the control loops. Preferably the functions of the two low-pass filters are each digital Filters taken with different, at the above-mentioned time intervals adjusted sampling frequencies work. By using digital filters the structure of the circuit arrangement is simplified because it is part of a Microprocessor can be trained.

Vorteilhafterweise ist die zweite Regelschleife als ein Soll-lstwertvergleich ausgebildet, der in vorgegebenen Zeitintervallen fortlaufend wiederholt wird, wobei am Ende eines jeden Zeitintervalls aus dem durch die Brückenschaltung fließenden Strom ein Istwert abgeleitet wird und dieser mit dem als Sollwert dienenden Istwert des unmittelbar vorangegangenen Zeitintervalls verglichen wird, um daraus den zweiten Stellwert für die Steuervorrichtung des Wechselrichters zu generieren.The second control loop is advantageously designed as a target / actual value comparison, which is repeated continuously at predetermined time intervals, on End of each time interval from that flowing through the bridge circuit Current an actual value is derived and this with the actual value serving as the setpoint of the immediately preceding time interval is compared in order to derive the generate second manipulated variable for the control device of the inverter.

Das erfindungsgemäße Vorschaltgerät weist einen Wechselrichter mit Halbleiterschaltern, die in einer Brückenschaltung angeordnet sind, eine Steuervorrichtung für die Halbleiterschalter und mindestens einen an den Wechselrichter angeschlossenen, als Resonanzkreis ausgebildeten Lastkreis mit Anschlüssen für mindestens eine Leuchtstofflampe auf, wobei die Steuervorrichtung Mittel zur Variation der Schaltfrequenz der Halbleiterschalter besitzt, um die Leistungsaufnahme der mindestens einen Leuchtstofflampe auf einen vorgebbaren Wert einzustellen, und die Steuervorrichtung Mittel zur Stabilisierung der Leistungsaufnahme der mindestens einen Leuchtstofflampe auf den vorgebbaren Wert besitzt.The ballast according to the invention has an inverter with semiconductor switches, which are arranged in a bridge circuit, a control device for the semiconductor switches and at least one connected to the inverter, designed as a resonant circuit load circuit with connections for at least one Fluorescent lamp on, wherein the control device means for varying the switching frequency the semiconductor switch has the minimum power consumption set a fluorescent lamp to a predeterminable value, and the control device Means for stabilizing the power consumption of the at least one Has fluorescent lamp to the predetermined value.

Die Mittel zur Stabilisierung der Leistungsaufnahme der mindestens einen Leuchtstofflampe sind vorzugsweise als Differential-Regler, auch D-Regler genannt, ausgebildet, der in vorgegebenen Zeitintervallen die Änderung der Leistungsaufnahme der mindestens einen Leuchtstofflampe überwacht und in Abhängigkeit davon einen Stellwert für die Steuervorrichtung zur Stabilisierung der Leistungsaufnahme auf den vorgebbaren Wert generiert. Zum Einstellen der Helligkeit bzw. Leistungsaufnahme der mindestens einen Leuchtstofflampe auf den gewünschten Wert weist das erfindungsgemäße Vorschaltgerät vorzugsweise einen, im Vergleich zum D-Regler langsamen Proportional-Integral-Regler, auch PI-Regler genannt, auf, der die zeitlich gemittelte Leistungsaufnahme der mindestens einen Leuchtstofflampe mit einem vorgebbaren Sollwert vergleicht. Beide Regler sind vorteilhafterweise als Bestandteil eines Mikroprozessors ausgebildet, der wiederum Bestandteil der Steuervorrichtung ist. Die von beiden Reglern generierten Stellwerte werden überlagert und in einem digitalen Datenregister des Mikroprozessors gespeichert.The means for stabilizing the power consumption of the at least one fluorescent lamp are preferably designed as differential controllers, also called D controllers, the change in the power consumption of the at predetermined time intervals monitors at least one fluorescent lamp and, depending on it, one Control value for the control device for stabilizing the power consumption on the predeterminable value generated. For setting the brightness or power consumption the at least one fluorescent lamp has the desired value according to the invention Ballast preferably a slow compared to the D controller Proportional-integral controller, also called PI controller, on which the temporal average power consumption of the at least one fluorescent lamp with one predeterminable target value compares. Both controllers are advantageously a component a microprocessor, which in turn is part of the control device is. The manipulated values generated by both controllers are superimposed and in one digital data register of the microprocessor stored.

III. Beschreibung des bevorzugten Ausführungsbeispiels III. Description of the preferred embodiment

Nachstehend wird die Erfindung anhand eines bevorzugten Ausführungsbeispiels näher erläutert. Es zeigen:

Figur 1
Eine schematische Darstellung des erfindungsgemäßen Vorschaltgerätes
Figur 2
Eine schematische Darstellung der Abhängigkeit des Halbbrückenstroms von der Frequenz des Wechselrichters
The invention is explained in more detail below on the basis of a preferred exemplary embodiment. Show it:
Figure 1
A schematic representation of the ballast according to the invention
Figure 2
A schematic representation of the dependence of the half-bridge current on the frequency of the inverter

In der Figur 1 ist schematisch der Aufbau eines erfindungsgemäßen elektronischen Vorschaltgerätes zum Betreiben von einer Leuchtstofflampe dargestellt. Dieses Vorschaltgerät besitzt einen Halbbrückenwechselrichter mit zwei Halbschaltern, insbesondere Transistoren T1, T2, einer Steuervorrichtung ST für die Halbleiterschalter T1, T2 und zwei Anschlüssen +, - für die Gleichspannungsversorgung des Halbbrückenwechselrichters. An den Mittenabgriff M des Halbbrückenwechselrichters ist ein als Resonanzkreis ausgebildeter Lastkreis angeschlossen. Der Lastkreis umfasst die Resonanzinduktivität L1, den Resonanzkondensator C1, den Koppelkondensator C2, den parallel zum Koppelkondensator C2 angeordneten Entladewiderstand R1 und Anschlüsse für die Elektrodenwendeln E1, E2 einer Leuchtstofflampe LP. Die Leuchtstofflampe LP ist derart in dem Lastkreis angeordnet, dass ihre Entladungsstrecke parallel zu dem Resonanzkondensator C1 geschaltet ist und die Elektrodenwendeln E1, E2 in Serie zu dem Resonanzkondensator C1 geschaltet sind. Diese Schaltungsanordnung ist beispielsweise in der Patentschrift EP 0 422 255 B1 offenbart. Die Halbleiterschalter T1, T2 werden mittels der Steuervorrichtung ST alternierend aktiviert und deaktiviert, so dass der Lastkreis und die Lampe LP mit einem hochfrequenten Strom beaufschlagt werden, dessen Frequenzen im Bereich von ca. 40 kHz und 150 kHz liegen. Die zum Zünden der Gasentladung in der Leuchtstofflampe LP erforderliche Zündspannung wird mittels der Methode der Resonanzüberhöhung am Resonanzkondensator C1 bereitgestellt. Zu diesem Zweck wird die Schaltfrequenz der Halbleiterschalter T1, T2 und damit auch die Frequenz des Stroms im Lastkreis auf einen Wert nahe der Resonanzfrequenz der Resonanzbauteile L1, C1 eingestellt. Nach erfolgter Zündung der Gasentladung in der Leuchtstofflampe LP wird der als Resonanzkreis ausgebildete Lastkreis durch die Impedanz der nun leitfähigen Entladungsstrecke zwischen den Elektroden E1, E2 der Leuchtstofflampe LP bedämpft. Die Impedanz der Entladungsstrecke der Leuchtstofflampe LP und ihre Leistungsaufnahme sind abhängig von der Frequenz des durch die Lampe LP fließenden Stroms. Diese Tatsache kann zur Regelung der Leistungsaufnahme der Leuchtstofflampe und damit auch zu ihrer Helligkeitsregelung ausgenutzt werden, indem die Schaltfrequenz der Halbleiterschalter T1, T2 mittels der Steuervorrichtung ST entsprechend variiert wird, so dass sie einen mehr oder minder großen Abstand zur Resonanzfrequenz des bedämpften Resonanzkreises besitzt.1 schematically shows the structure of an electronic device according to the invention Ballast shown for operating a fluorescent lamp. This ballast has a half-bridge inverter with two half switches, in particular Transistors T1, T2, a control device ST for the semiconductor switch T1, T2 and two connections +, - for the DC voltage supply of the half-bridge inverter. At the center tap M of the half-bridge inverter is a Load circuit designed as a resonant circuit. The load circuit includes the Resonance inductance L1, the resonance capacitor C1, the coupling capacitor C2, the discharge resistor R1 and arranged parallel to the coupling capacitor C2 Connections for the electrode filaments E1, E2 of a fluorescent lamp LP. The Fluorescent lamp LP is arranged in the load circuit in such a way that its discharge path is connected in parallel with the resonance capacitor C1 and the electrode filaments E1, E2 are connected in series with the resonance capacitor C1. This Circuit arrangement is disclosed for example in the patent specification EP 0 422 255 B1. The semiconductor switches T1, T2 are alternated by means of the control device ST activated and deactivated so that the load circuit and the lamp LP with one high-frequency current, the frequencies of which are in the range of approx. 40 kHz and 150 kHz are. The one for igniting the gas discharge in the fluorescent lamp LP required ignition voltage is determined using the method of excessive resonance provided on the resonance capacitor C1. For this purpose the Switching frequency of the semiconductor switches T1, T2 and thus also the frequency of the Current in the load circuit to a value close to the resonance frequency of the resonance components L1, C1 set. After the gas discharge in the fluorescent lamp has been ignited LP is the load circuit designed as a resonance circuit by the impedance of the now conductive discharge path between the electrodes E1, E2 of the fluorescent lamp LP dampened. The impedance of the discharge path of the fluorescent lamp LP and their power consumption depend on the frequency of the lamp LP flowing electricity. This fact can regulate the power consumption of the Fluorescent lamp and thus also used for its brightness control, by switching frequency of the semiconductor switches T1, T2 by means of the control device ST is varied accordingly so that it is a more or less large distance to the resonant frequency of the damped resonant circuit.

Zur Überwachung der Leistungsaufnahme der Leuchtstofflampe LP wird mittels zweier Tiefpassfilter R3, C3 und R4, C4 der durch den Widerstand R2 fließende Halbbrückenstrom ausgewertet, da der durch den Widerstand R2 fließende Halbbrückenstrom während einer Halbwelle - nämlich bei geschlossenem Schalter T2 - mit dem durch die Leuchtstofflampe LP fließenden Strom identisch ist. Der als Integrationsglied wirkende erste Tiefpassfilter R3, C3 bildet am Kondensator C3 einen über mehrere der obengenannten Halbwellen gemittelten Spannungsabfall, der proportional zur Leistungsaufnahme der Leuchtstofflampe LP ist und als Istwert für eine erste Regelschleife zur Helligkeitsregelung und Regelung der Leistungsaufnahme der Leuchtstofflampe dem Eingang des Proportional-Integral-Reglers IR zugeführt wird. Dieser Istwert wird in dem Proportional-Integral-Regler IR mit einem vorgebbaren Sollwert SW verglichen, der der Steuervorrichtung ST von außen, beispielsweise von einem Dimm-Potentiometer oder einer anderen Dimm-Vorrichtung, vorgegeben wird. Der Sollwert SW repräsentiert die gewünschte Helligkeitsstufe oder Leistungsstufe der Leuchtstofflampe LP. In Abhängigkeit von dem Soll-Istwertvergleich ermittelt der Proportional-Integral-Regler IR einen ersten Stellwert zur Steuerung der Schaltfrequenz der Halbleiterschalter T1, T2. Der erste Stellwert wird in dem 14 Bit-Datenregister S1 gespeichert und von der Treiberschalter TR ausgelesen, die Steuersignale für die Basis- bzw.- Gate-Elektrode der Halbleiterschalter T1, T2 generiert. Die erste Regelschleife wird in Zeitabständen von jeweils 1 ms ausgeführt. Das heißt, nach jeweils 1 ms wird mittels des ersten Tiefpasses R3, C3 ein neuer Istwert in den Proportional-Integral-Regler IR eingespeist, mit dem vorgebbaren Sollwert SW verglichen und ein aktualisierter erster Stellwert in das Datenregister S1 geschrieben. To monitor the power consumption of the fluorescent lamp LP is by means of two low-pass filters R3, C3 and R4, C4 the one flowing through the resistor R2 Half-bridge current evaluated because the half-bridge current flowing through resistor R2 during a half-wave - namely with switch T2 closed - with the current flowing through the fluorescent lamp LP is identical. The one as an integrator acting first low-pass filters R3, C3 form a capacitor C3 several of the above half waves averaged voltage drop, which is proportional for the power consumption of the fluorescent lamp LP and as an actual value for a first one Control loop for brightness control and regulation of the power consumption of the Fluorescent lamp is fed to the input of the proportional integral controller IR. This actual value is specified in the proportional-integral controller IR with a predefinable one Setpoint value SW compared, that of the control device ST from the outside, for example from a dimming potentiometer or another dimming device becomes. The setpoint SW represents the desired brightness level or power level the fluorescent lamp LP. Determined as a function of the target / actual value comparison the proportional-integral controller IR a first manipulated variable to control the Switching frequency of the semiconductor switches T1, T2. The first manipulated variable is in the 14 bit data register S1 stored and read out by the driver switch TR, the control signals generated for the base or gate electrode of the semiconductor switch T1, T2. The first control loop is executed at 1 ms intervals. The means that after every 1 ms, a new actual value is generated using the first low pass R3, C3 fed into the proportional-integral controller IR, with the specifiable setpoint SW compared and an updated first manipulated variable written in the data register S1.

In Figur 2 ist die Frequenzabhängigkeit des Halbbrückenstroms qualitativ dargestellt. Bei der Frequenz fl besitzt die Leuchtstofflampe ihre größte Helligkeit und der Lichtstrom beträgt daher 100% ihres Nennlichtstroms. Wird die Frequenz erhöht, so nimmt der Halbbrückenstrom und damit auch die Leistungsaufnahme sowie der Lichtstrom der Leuchtstofflampe ab. In dem Frequenzbereich Δf, der einem Lichtstrom von ca. 25% bis 10% des Nennlichtstroms entspricht, zeigt der Halbbrückenstrom eine extrem starke Frequenzabhängigkeit, so dass in diesem Bereich instabile Betriebszustände auftreten können.The frequency dependence of the half-bridge current is shown qualitatively in FIG. At frequency fl, the fluorescent lamp has its greatest brightness and Luminous flux is therefore 100% of their nominal luminous flux. If the frequency is increased, so takes the half-bridge current and thus the power consumption as well Luminous flux of the fluorescent lamp. In the frequency range Δf, which corresponds to a luminous flux corresponds to approx. 25% to 10% of the nominal luminous flux, shows the half-bridge current an extremely strong frequency dependency, making this region unstable Operating conditions can occur.

Um Oszillationen der Leuchtstofflampe zwischen mehreren Betriebszuständen zu vermeiden, wird mittels des zweiten Tiefpassfilters R4, C4, des Differentiellen Reglers DR, des Datenspeichers S2 und des Datenregisters S1 eine zweite Regelschleife realisiert, die deutlich schneller durchlaufen wird als die erste Regelschleife. Mittels des Tiefpassfilters R4, C4 werden in Zeitintervallen von 100 µs Änderungen des durch den Widerstand R2 fließenden Halbbrückenstroms detektiert. Der Differentielle Regler DR führt in zeitlichen Abständen von 100 µs einen Soll-Istwertvergleich durch, wobei als Istwert der jeweils aktuelle, vom Tiefpassfilter R4, C4 ausgewertete Halbbrückenstrom verwendet wird und als Sollwert der im Datenspeicher S2 temporär gespeicherte Istwert des jeweils unmittelbar vorangegangenen Zeitintervalls herangezogen wird. In Abhängigkeit von dem Soll-Istwertvergleich wird von dem Differentiellen Regler DR ein zweiter Stellwert generiert, der dem 14 Bit-Datenregister S1 zugeführt und zu dem ersten Stellwert addiert wird. Aus der Summe der beiden Stellwerte ermittelt die Treiberschaltung TR Signale zur Frequenzsteuerung der Halbleiterschalter T1, T2. Mittels der zweiten Regelschleife wird der Halbbrückenstrom und damit die Leistungsaufnahme sowie die Helligkeit der Leuchtstofflampe auf den gewünschten Wert stabilisiert.To avoid oscillations of the fluorescent lamp between several operating states is avoided by means of the second low-pass filter R4, C4, the differential regulator DR, the data memory S2 and the data register S1 a second control loop realized, which is run much faster than the first control loop. through of the low-pass filter R4, C4 changes in the time intervals of 100 microseconds half-bridge current flowing through the resistor R2 is detected. The differential Controller DR carries out a setpoint / actual value comparison at intervals of 100 µs through, the actual value being evaluated by the low-pass filter R4, C4 Half-bridge current is used and temporarily as the setpoint in data memory S2 stored actual value of the immediately preceding time interval is used becomes. Depending on the target / actual value comparison, the differential Controller DR generates a second manipulated variable that corresponds to the 14-bit data register S1 is supplied and added to the first manipulated variable. From the sum of the two The driver circuit determines control values for frequency control of the signals Semiconductor switch T1, T2. The half-bridge current is generated by means of the second control loop and thus the power consumption and the brightness of the fluorescent lamp stabilized to the desired value.

Da Oszillationen zwischen unterschiedlichen Betriebszuständen nur in dem oben erwähnten kritischen Betriebsbereich von ca. 25% bis 10% des Nennlichtstroms der Leuchtstofflampe zu erwarten sind, kann der Differentielle Regler DR außerhalb dieses kritischen Betriebsbereiches deaktiviert werden. Dieses geschieht dadurch, dass der Istwert der zweiten Regelschleife vor dem Soll-lstwertvergleich mit einem Verstärkungsfaktor K multipliziert wird, der abhängig von der gewählten Helligkeitsstufe, das heißt, von dem Sollwert SW der ersten Regelschleife, ist. Beim Betrieb der Leuchtstofflampe LP mit mehr als 25% ihres Nennlichtstroms kann der Verstärkungsfaktor K auf Null reduziert werden.Because oscillations between different operating states only in the above critical operating range of approx. 25% to 10% of the nominal luminous flux of the Fluorescent lamp can be expected, the differential controller DR outside this critical operating area can be deactivated. This happens because that the actual value of the second control loop is compared with a target / actual value comparison Gain factor K is multiplied, which depends on the selected brightness level, that is, from the setpoint SW of the first control loop. During operation the fluorescent lamp LP with more than 25% of its nominal luminous flux can Gain factor K can be reduced to zero.

Beide Regler IR, DR sind als Algorithmen eines programmgesteuert arbeitenden Mikroprozessors ausgebildet, der Bestandteil der Steuervorrichtung ST ist. Gemäß eines weiteren, besonders bevorzugten Ausführungsbeispiels der Erfindung sind das erste C3, R3 und zweite Tiefpassfilter C4, R4 durch jeweils ein digitales Filter ersetzt, wobei das erste digitale Filter die Funktion des ersten Tiefpassfilters C3, R3 und das zweite digitale Filter die Funktion des zweiten Tiefpassfilters C4, R4 übernimmt. Die digitalen Filter sind als Bestandteil der Steuervorrichtung ST und insbesondere als Bestandteil des vorgenannten, programmgesteuert arbeitenden Mikroprozessors ausgebildet. Beide digitalen Filter werten den durch die Brückenschaltung fließenden Strom, das heißt, den Spannungsabfall am Widerstand R2, aus. Ihre Filtereigenschaften sind durch die im Mikroprozessor implementierte Software bestimmt. In allen anderen Details stimmt dieses Ausführungsbeispiel mit dem oben erläuterten ersten Ausführungsbeispiel überein.Both controllers IR, DR are algorithms of a program-controlled Microprocessor formed, which is part of the control device ST. According to a further, particularly preferred embodiment of the invention are first C3, R3 and second low-pass filter C4, R4 replaced by one digital filter each, wherein the first digital filter functions as the first low-pass filter C3, R3 and the second digital filter takes over the function of the second low-pass filter C4, R4. The digital filters are part of the control device ST and in particular as part of the aforementioned, program-controlled microprocessor educated. Both digital filters evaluate the through the bridge circuit flowing current, that is, the voltage drop across resistor R2. Your filter properties are determined by the software implemented in the microprocessor. In all other details, this exemplary embodiment agrees with the above explained first embodiment.

Claims (11)

Verfahren zum Betreiben von Leuchtstofflampen mit Hilfe eines Vorschaltgerätes, das einen Wechselrichter mit Halbleiterschaltern (T1, T2), die in einer Brückenschaltung angeordnet sind, und mit einer Steuervorrichtung (ST) für die Halbleiterschalter (T1, T2) und mindestens einen an den Wechselrichter angeschlossenen, als Resonanzkreis ausgebildeten Lastkreis aufweist, in dem mindestens eine Leuchtstofflampe (LP) betrieben wird, wobei die mindestens eine Leuchtstofflampe (LP) von dem Wechselrichter mit einem hochfrequenten Strom beaufschlagt wird und die Leistungsaufnahme der mindestens einen Leuchtstofflampe (LP) mittels einer ersten Regelschleife durch Variieren der Frequenz des hochfrequenten Stroms auf einen vorgebbaren Wert eingestellt wird,
dadurch gekennzeichnet, dass zusätzlich mittels einer zweiten Regelschleife, die in kürzeren Zeitintervallen durchlaufen wird als die erste Regelschleife, die Leistungsaufnahme der mindestens einen Leuchtstofflampe (LP) auf den vorgebbaren Wert stabilisiert wird.
Method for operating fluorescent lamps with the aid of a ballast, which has an inverter with semiconductor switches (T1, T2) arranged in a bridge circuit, and with a control device (ST) for the semiconductor switches (T1, T2) and at least one connected to the inverter , designed as a resonant circuit load circuit in which at least one fluorescent lamp (LP) is operated, the at least one fluorescent lamp (LP) being acted upon by the inverter with a high-frequency current and the power consumption of the at least one fluorescent lamp (LP) by means of a first control loop Varying the frequency of the high-frequency current is set to a predeterminable value
characterized in that the power consumption of the at least one fluorescent lamp (LP) is additionally stabilized to the predeterminable value by means of a second control loop which is run through in shorter time intervals than the first control loop.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zur Durchführung der ersten Regelschleife ein in seiner Größe einstellbarer Sollwert in vorgegebenen Zeitabständen mit einem lstwert verglichen wird, der aus der zeitlich gemittelten Leistungsaufnahme der mindestens einen Leuchtstofflampe (LP) abgeleitet wird, und daraus ein erster Stellwert für die Steuervorrichtung (ST) gebildet wird, und wobei zur Durchführung der zweiten Regelschleife in vorgegebenen Zeitintervallen, die kürzer als die Zeitabstände der ersten Regelschleife sind, die Änderung der Leistungsaufnahme der mindestens einen Leuchtstofflampe (LP) zur Erzeugung eines zweiten Stellwertes für die Steuervorrichtung (ST) ausgewertet wird, und beide Stellwerte zum Erzeugen von Steuersignalen für die Regelung der Schaltfrequenz der Halbleiterschalter (T1, T2) ausgewertet werden. Method according to Claim 1, characterized in that, in order to carry out the first control loop, a setpoint value which can be adjusted in size is compared at predetermined time intervals with an actual value which is derived from the time-averaged power consumption of the at least one fluorescent lamp (LP), and a first manipulated value therefrom is formed for the control device (ST), and the change in the power consumption of the at least one fluorescent lamp (LP) for generating a second manipulated variable for the control device () in order to carry out the second control loop at predetermined time intervals which are shorter than the time intervals of the first control loop. ST) is evaluated, and both manipulated values for generating control signals for regulating the switching frequency of the semiconductor switches (T1, T2) are evaluated. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zur Durchführung der ersten Regelschleife ein in seiner Größe einstellbarer Sollwert (SW) in vorgegebenen Zeitabständen mit einem Istwert verglichen wird, der aus dem durch die Brückenschaltung fließenden Strom abgeleitet wird, und wobei zur Durchführung der zweiten Regelschleife in vorgegebenen Zeitintervallen, die kürzer als die Zeitabstände der ersten Regelschleife sind, die Änderung des durch die Brückenschaltung fließenden Stroms ausgewertet wird.A method according to claim 1 or 2, characterized in that for carrying out the first control loop, a setpoint value (SW) which can be adjusted in size is compared at predetermined time intervals with an actual value which is derived from the current flowing through the bridge circuit, and wherein for carrying out the second control loop at predetermined time intervals that are shorter than the time intervals of the first control loop, the change in the current flowing through the bridge circuit is evaluated. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Istwert für die erste Regelschleife mittels eines ersten Tiefpassfilters (R3, C3) aus dem durch die Brückenschaltung fließenden Strom abgeleitet wird.Method according to claim 3, characterized in that the actual value for the first control loop is derived from the current flowing through the bridge circuit by means of a first low-pass filter (R3, C3). Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Istwert für die erste Regelschleife mittels eines ersten digitalen Filters aus dem durch die Brückenschaltung fließenden Strom abgeleitet wird.A method according to claim 3, characterized in that the actual value for the first control loop is derived from the current flowing through the bridge circuit by means of a first digital filter. Verfahren nach den Ansprüchen 2 und 3, dadurch gekennzeichnet, dass während der zweiten Regelschleife ein Soll-Istwertvergleich durchgeführt wird, wobei am Ende eines jeden vorgegebenen Zeitintervalls aus dem durch die Brückenschaltung fließenden Strom ein Istwert abgeleitet wird und dieser mit dem als Sollwert dienenden, Istwert des unmittelbar vorangegangenen Zeitintervalls verglichen wird und daraus der zweite Stellwert für die Steuervorrichtung generiert wird.Method according to claims 2 and 3, characterized in that a setpoint / actual value comparison is carried out during the second control loop, an actual value being derived from the current flowing through the bridge circuit at the end of each predetermined time interval and this with the actual value serving as setpoint value of the immediately preceding time interval is compared and the second manipulated variable for the control device is generated therefrom. Verfahren nach den Ansprüchen 4 und 6, dadurch gekennzeichnet, dass der Istwert für die zweite Regelschleife mittels eines zweiten Tiefpassfilters (R4, C4) aus dem durch die Brückenschaltung fließenden Strom abgeleitet wird, wobei die Zeitkonstante des zweiten Tiefpassfilters kleiner als die Zeitkonstante des ersten Tiefpassfilters ist.Method according to claims 4 and 6, characterized in that the actual value for the second control loop is derived from the current flowing through the bridge circuit by means of a second low-pass filter (R4, C4), the time constant of the second low-pass filter being less than the time constant of the first low-pass filter is. Verfahren nach den Ansprüchen 5 und 6, dadurch gekennzeichnet, dass der Istwert für die zweite Regelschleife mittels eines zweiten Tiefpassfilters (R4, C4) aus dem durch die Brückenschaltung fließenden Strom abgeleitet wird, wobei die Zeitkonstante des zweiten Tiefpassfilters kleiner als die Zeitkonstante des ersten Tiefpassfilters ist.Method according to claims 5 and 6, characterized in that the actual value for the second control loop is derived from the current flowing through the bridge circuit by means of a second low-pass filter (R4, C4), the time constant of the second low-pass filter being less than the time constant of the first low-pass filter is. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die vorgegebenen Zeitabstände der ersten Regelschleife eine Länge von 1 ms bis 2 ms besitzen.A method according to claim 1, characterized in that the predetermined time intervals of the first control loop have a length of 1 ms to 2 ms. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die vorgegebenen Zeitintervalle der zweiten Regelschleife eine Länge von 50 µs bis 200 µs besitzen.A method according to claim 1, characterized in that the predetermined time intervals of the second control loop have a length of 50 µs to 200 µs. Vorschaltgerät zum Betrieb von Leuchtstofflampen, wobei das Vorschaltgerät einen Wechselrichter mit Halbleiterschaltern (T1, T2), die in einer Brückenschaltung angeordnet sind, eine Steuervorrichtung (ST) für die Halbleiterschalter (T1, T2) und mindestens einen an den Wechselrichter angeschlossenen, als Resonanzkreis ausgebildeten Lastkreis mit Anschlüssen für mindestens eine Leuchtstofflampe (LP) aufweist, wobei die Steuervorrichtung (ST) Mittel zur Variation der Schaltfrequenz der Halbleiterschalter (T1, T2) besitzt, um die Leistungsaufnahme der mindestens einen Leuchtstofflampe (LP) auf einen vorgebbaren Wert einzustellen,
dadurch gekennzeichnet, dass die Steuervorrichtung Mittel (R4, C4, DR, S2) zur Stabilisierung der Leistungsaufnahme (LP) der mindestens einen Leuchtstofflampe (LP) auf den vorgebbaren Wert besitzt.
Ballast for operating fluorescent lamps, the ballast being an inverter with semiconductor switches (T1, T2) arranged in a bridge circuit, a control device (ST) for the semiconductor switches (T1, T2) and at least one connected to the inverter and designed as a resonant circuit Load circuit with connections for at least one fluorescent lamp (LP), the control device (ST) having means for varying the switching frequency of the semiconductor switches (T1, T2) in order to set the power consumption of the at least one fluorescent lamp (LP) to a predeterminable value,
characterized in that the control device has means (R4, C4, DR, S2) for stabilizing the power consumption (LP) of the at least one fluorescent lamp (LP) to the predeterminable value.
EP03017859A 2002-08-30 2003-08-05 Method to control fluorescent lamps Expired - Lifetime EP1395096B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10240807 2002-08-30
DE10240807A DE10240807A1 (en) 2002-08-30 2002-08-30 Process for operating fluorescent lamps and ballast

Publications (3)

Publication Number Publication Date
EP1395096A2 true EP1395096A2 (en) 2004-03-03
EP1395096A3 EP1395096A3 (en) 2005-09-07
EP1395096B1 EP1395096B1 (en) 2011-04-20

Family

ID=31197599

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03017859A Expired - Lifetime EP1395096B1 (en) 2002-08-30 2003-08-05 Method to control fluorescent lamps

Country Status (6)

Country Link
US (1) US6933682B2 (en)
EP (1) EP1395096B1 (en)
AT (1) ATE506837T1 (en)
CA (1) CA2437995A1 (en)
DE (2) DE10240807A1 (en)
TW (1) TWI273863B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070470A1 (en) 2009-12-08 2011-06-16 Koninklijke Philips Electronics N.V. Method and device for driving a fluorescent lamp

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050062852A (en) * 2003-12-19 2005-06-28 삼성전자주식회사 Liquid crystal device, driving device and method of light source for display device
DE102005008483A1 (en) * 2005-02-24 2006-08-31 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH ECG for high pressure discharge lamp with current measuring device
DE102005018764A1 (en) * 2005-04-22 2006-10-26 Tridonicatco Gmbh & Co. Kg Illuminant e.g. electric discharge lamp, output controlling method, involves controlling lamp output based on results of threshold discrimination on output parameter or further parameter as actual value
US8093836B2 (en) * 2006-09-25 2012-01-10 Osram Ag Circuit arrangement and method for striking a discharge lamp
US7489531B2 (en) * 2006-09-28 2009-02-10 Osram Sylvania, Inc. Inverter with improved overcurrent protection circuit, and power supply and electronic ballast therefor
US8049430B2 (en) * 2008-09-05 2011-11-01 Lutron Electronics Co., Inc. Electronic ballast having a partially self-oscillating inverter circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0287360A2 (en) 1987-04-13 1988-10-19 Sharp Kabushiki Kaisha An apparatus for driving a semiconductor laser device
US4894587A (en) 1984-08-17 1990-01-16 Lutron Electronics Co., Inc. High frequency gas discharge lamp dimming ballast
EP0422255B1 (en) 1989-10-09 1994-03-02 Siemens Aktiengesellschaft Electronic ballast

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4463287A (en) * 1981-10-07 1984-07-31 Cornell-Dubilier Corp. Four lamp modular lighting control
US5063490A (en) * 1989-04-25 1991-11-05 Matsushita Electric Works Ltd. Regulated chopper and inverter with shared switches
US5118997A (en) * 1991-08-16 1992-06-02 General Electric Company Dual feedback control for a high-efficiency class-d power amplifier circuit
EP0677982B1 (en) * 1994-04-15 2000-02-09 Knobel Ag Lichttechnische Komponenten Process for operating a discharge lamp ballast
KR0157093B1 (en) * 1994-12-22 1998-12-15 김광호 Feedback dimming control circuit
US5798620A (en) * 1996-12-17 1998-08-25 Philips Electronics North America Corporation Fluorescent lamp dimming
US6040661A (en) * 1998-02-27 2000-03-21 Lumion Corporation Programmable universal lighting system
JP3600976B2 (en) * 1998-07-14 2004-12-15 三菱電機株式会社 Discharge lamp lighting device
TW520618B (en) * 1999-10-21 2003-02-11 Matsushita Electric Ind Co Ltd Fluorescent lamp operating apparatus and compact self-ballasted fluorescent lamp
JP2002043087A (en) * 2000-07-26 2002-02-08 Toshiba Lighting & Technology Corp Discharge lamp lighting device and lighting system
US6414449B1 (en) * 2000-11-22 2002-07-02 City University Of Hong Kong Universal electronic ballast

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4894587A (en) 1984-08-17 1990-01-16 Lutron Electronics Co., Inc. High frequency gas discharge lamp dimming ballast
EP0287360A2 (en) 1987-04-13 1988-10-19 Sharp Kabushiki Kaisha An apparatus for driving a semiconductor laser device
EP0422255B1 (en) 1989-10-09 1994-03-02 Siemens Aktiengesellschaft Electronic ballast

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070470A1 (en) 2009-12-08 2011-06-16 Koninklijke Philips Electronics N.V. Method and device for driving a fluorescent lamp
CN102640572A (en) * 2009-12-08 2012-08-15 皇家飞利浦电子股份有限公司 Method and device for driving a fluorescent lamp
US8664894B2 (en) 2009-12-08 2014-03-04 Koninklijke Philips N.V. Method and device for driving a fluorescent lamp

Also Published As

Publication number Publication date
US6933682B2 (en) 2005-08-23
TWI273863B (en) 2007-02-11
EP1395096B1 (en) 2011-04-20
US20040051481A1 (en) 2004-03-18
TW200407055A (en) 2004-05-01
ATE506837T1 (en) 2011-05-15
DE10240807A1 (en) 2004-03-11
EP1395096A3 (en) 2005-09-07
DE50313622D1 (en) 2011-06-01
CA2437995A1 (en) 2004-03-30

Similar Documents

Publication Publication Date Title
DE3407067C2 (en) Control circuit for gas discharge lamps
EP0422255B1 (en) Electronic ballast
DE19805732A1 (en) Control method for output power of fluorescent lamps
DE10250229B4 (en) Power control for high frequency amplifiers
EP0965251B1 (en) Method and device for controlling the operation of gas discharge lamps
DE60224094T2 (en) ELECTRONIC CIRCUIT AND METHOD FOR OPERATING A HIGH-PRESSURE LAMP
EP1330946A1 (en) Circuit arrangement for operating several gas discharge lamps
EP1395096B1 (en) Method to control fluorescent lamps
EP1330945B1 (en) Electronic ballast comprising a full bridge circuit
EP1276355B1 (en) Circuit arrangement to determine the pre-heating power
EP1045619A1 (en) Calibration method of operating parameters of a lamp ballast
EP1900262B1 (en) Device and method for operating a high-pressure discharge lamp
EP0679047B1 (en) Circuit for operating a discharge lamp with pulses
DE3704511C2 (en)
EP1476003A2 (en) Power supply and method for driving discharge lamps
DE3208607C2 (en)
DE202005005791U1 (en) Circuit for operating miniature short arc lamps with alternating current
EP1189488B1 (en) Electronic self-calibrating ballast and method for calibrating a ballast
EP1708549B1 (en) Ballast with dimming device
DE60225818T2 (en) CIRCUIT
EP2005804B1 (en) Circuit arrangement and method for operating a discharge lamp
DE10045712A1 (en) Electronic ballast
DE102010029981A1 (en) Electronic control device for gas discharge lamps with reduced power loss and method for operating the operating device
DE102004023750A1 (en) Gas laser operation, comprises supplying the discharge line with a periodic high frequency voltage with an amplitude controlled as a function of the probing ratio
EP1324643A1 (en) Electronic ballast with over temperature protection

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20050922

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50313622

Country of ref document: DE

Date of ref document: 20110601

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50313622

Country of ref document: DE

Effective date: 20110601

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110822

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110721

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110731

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50313622

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: PATENT-TREUHAND-GESELLSCHAFT FUER ELEKTRISCHE GLUEHLAMPEN MBH, 81543 MUENCHEN, DE

Effective date: 20110324

Ref country code: DE

Ref legal event code: R081

Ref document number: 50313622

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

26N No opposition filed

Effective date: 20120123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50313622

Country of ref document: DE

Effective date: 20120123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50313622

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20130205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50313622

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20130815

Year of fee payment: 11

Ref country code: AT

Payment date: 20130813

Year of fee payment: 11

Ref country code: CH

Payment date: 20130821

Year of fee payment: 11

Ref country code: SE

Payment date: 20130821

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130821

Year of fee payment: 11

Ref country code: FR

Payment date: 20130823

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140826

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20140820

Year of fee payment: 12

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150301

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 506837

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140805

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140806

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140805

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170822

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50313622

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190301