EP1370495B1 - Verfahren zur herstellung eines quarzglastiegels - Google Patents

Verfahren zur herstellung eines quarzglastiegels Download PDF

Info

Publication number
EP1370495B1
EP1370495B1 EP02748301A EP02748301A EP1370495B1 EP 1370495 B1 EP1370495 B1 EP 1370495B1 EP 02748301 A EP02748301 A EP 02748301A EP 02748301 A EP02748301 A EP 02748301A EP 1370495 B1 EP1370495 B1 EP 1370495B1
Authority
EP
European Patent Office
Prior art keywords
inner layer
reducing
mol
quartz glass
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02748301A
Other languages
English (en)
French (fr)
Other versions
EP1370495A1 (de
Inventor
Gabriele Korus
Hilmar Laudahn
Martin Arndt
Udo Gertig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Quarzglas GmbH and Co KG
Original Assignee
Heraeus Quarzglas GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10139648A external-priority patent/DE10139648B4/de
Application filed by Heraeus Quarzglas GmbH and Co KG filed Critical Heraeus Quarzglas GmbH and Co KG
Publication of EP1370495A1 publication Critical patent/EP1370495A1/de
Application granted granted Critical
Publication of EP1370495B1 publication Critical patent/EP1370495B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • C03B19/095Other methods of shaping glass by fusing powdered glass in a shaping mould by centrifuging, e.g. arc discharge in rotating mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0009Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt

Definitions

  • the invention relates to a method for producing a quartz glass crucible for use in a silicon crystal drawing process according to the Czochralski method, in which at least partially an inner layer of SiO 2 is melted using a arc melting process on a crucible base body made of quartz glass, which in the intended use of the quartz glass crucible with a molten metal is in contact, and in which a cristobalite formation is brought about using a crystallization promoter.
  • Such quartz glass crucibles are used for example for receiving the molten metal during the pulling of single crystals by the so-called Czochralski method.
  • a seed crystal with a predetermined orientation direction is dipped in the melt and then slowly pulled up.
  • the seed crystal and the melt rotate in opposite directions.
  • the surface tension between the seed crystal and the melt causes a small amount of melt to be drawn off with the seed crystal, which gradually cools and thereby solidifies to the steadily growing single crystal.
  • the quartz glass crucible is subject to high mechanical, chemical and thermal stresses, which the quartz glass crucible has to withstand for several hours without noticeable plastic deformation.
  • the melting temperature is more than 1400 ° C.
  • the quartz glass crucibles produced by the known method withstand long process times when pulling silicon single crystals only limited.
  • the thickness of the crystallized surface layer is usually less than 1 mm and is therefore relatively thin. It has been found that after a certain time a gradual detachment of the crystallized surface layer begins, wherein the crystallized surface is dissolved less rapidly than the untreated glassy surface.
  • the cristobalite particles peeling off under the thinning cristobalite layer reach the silicon melt and can lead to dislocations in the silicon monocrystal.
  • the known method is not yet suitable for the production of large quartz glass crucibles - which are intended to accommodate a large melt volume and therefore must withstand long process times and thus strong bubble growth.
  • quartz glass crucible crystallization promoter can be abraded.
  • No. 5,389,582 A describes a method for producing a quartz glass crucible by means of slip casting, wherein a quartz glass raw material provided with a crystallization promoter is introduced and introduced into the crucible wall.
  • the substances mentioned as crystallization promoters form stable oxides during slip casting, in particular aluminum oxides
  • the invention is based on the object of specifying a cost-effective method for producing quartz glass crucibles with reproducible properties for a long service life. This object is based on the method mentioned at the outset According to the invention solved in that in the inner layer of the crystallization promoter and a during the drawing process with gaseous oxygen to form an oxidized solid reacting reducing substance are introduced.
  • the method according to the invention has the following essential distinguishing features compared to the known method described above:
  • the crystallization promoter is introduced into the inner layer.
  • the Crystallization promoter is thus contained in the inner layer and acts in such a way that it leads to cristobalite formation during heating of the quartz glass crucible, for example when used as intended.
  • An unintended change in concentration - such as abrasion during transport or handling of the quartz glass crucible - is excluded.
  • the method according to the invention makes it possible to set a predetermined thickness of the crystallized inner layer in a defined manner by the corresponding distribution and concentration of the crystallization promoter in the inner layer.
  • a stronger and more stable crystallized layer is obtained in a simple manner than in the known method. Layer thicknesses of several millimeters are achievable. These resist bladder growth for a longer time.
  • a reducing substance is introduced into the inner layer.
  • the substance develops at least during the introduction into the inner layer a reducing effect, which can still persist or reuse during the intended use of the quartz glass crucible. This leads to a surprising effect with regard to the service life of the quartz glass crucible, which is explained in more detail below:
  • the opaque crucible wall contains a multiplicity of bubbles in which gases can also be enclosed. Due to the high temperature when using the crucible and especially during long process times, there is a growth of gas-containing bubbles, which is facilitated by the low viscosity of the quartz glass at these temperatures. If a growing bubble touches a thin layer of cristobalite, it does mechanical stresses and local flaking of the cristobalite layer, and the sooner the thinner the cristobalite layer is.
  • a reducing substance is present in the inner layer, it reacts-at least during the introduction into the inner layer, but preferably also during the drawing process, again or again-with oxygen or the introduced nitrogen to form an oxidized solid.
  • the solid does not contribute to the total gas volume. This "gettering effect" of the reducing substance thus reduces blistering caused by excess or evolved oxygen during the drawing process.
  • the reducing substance is produced at least during the production of the inner layer, so that it unfolds the described bubble-reducing getter effect in the region of the inner wall of the crucible. Especially there, it proves to be essential because it also prevents the blistering caused by chipping cristobalite and thus the life of the quartz glass crucible is extended.
  • the method according to the invention thus enables on the one hand a defined and reproducible formation of cristobalite in the region of the inner wall of the quartz glass crucible, and on the other hand, the method ensures that this cristobalite layer remains intact during the intended use of the quartz glass crucible.
  • the quartz glass crucible produced by means of the method according to the invention therefore withstands long process times.
  • the use of large quartz glass crucibles - which have to withstand particularly long process times during their use - is made possible with a crystallized inner layer, with the method according to the invention not precluding additional application of crystallization promoters on the inner layer of the quartz glass crucible.
  • a variant of the method according to the invention is preferred in which at least a portion of the crystallization promoter is simultaneously introduced into the inner layer to form the reducing substance.
  • the crystallization promoter fulfills both functions mentioned above, by promoting the formation of cristobalite in the region of the inner wall during the reheating of the quartz glass crucible and at the same time contributing to the formation of the reducing substance, which reduces the growth of bubbles by its "gettering effect", thus providing firm hold Cristobalit harsh and thus ensures a long service life of the quartz glass crucible.
  • either one and the same chemical substance acts as an element or in a chemical compound simultaneously promoting crystallization and bubble-reducing - ie simultaneously as a crystallization promoter and as a reducing substance.
  • it is a chemical compound, some of which unfolds an effect as a crystallization promoter and another part of an action as a reducing substance in the context of this invention.
  • reducing substances are primarily metals or metallic compounds in question, but also those chemical compounds that can be incorporated into the inner layer in less than their highest oxidation state. It is essential that the chemical compounds formed by the oxidation of the reducing substance occur as a solid and thus do not contribute to the gas volume within the inner layer and thus to bubble formation.
  • a starting substance is reduced during the production of the inner layer to the reducing substance.
  • the redox potential of the starting substance differs from the redox potential of silicon (IV), so that a reduction of the starting substance is possible, without SiO 2 is reduced to a noticeable extent.
  • Reducing conditions during the production of the inner layer can be adjusted particularly easily by a reducing atmosphere. This makes it possible to form the reducing substance from a starting substance (chemical compound) which is in a high or even in its highest oxidation state, provided that this starting substance is reduced as a result of the reducing atmosphere. This is the case in particular for chemical compounds which easily change their oxidation state and can be reduced by CO, as will be explained in more detail below.
  • the reducing substance is preferably formed from a starting material containing one or more of the elements titanium, tungsten, molybdenum, silicon, zirconium or a compound of these elements. More preferably, the inner layer of the quartz glass crucible is formed by arc melting in one Arc introduced bedding material is thrown against the inner wall of the crucible base body and melted there, being used as starting materials for the reducing substance barium titanate (BaTiO 3 ) or barium zirconate (BaZrO 3 ) in a concentration between 0.003 mol% to 0.02 mol% , The concentration refers to the concentration in the bedding material.
  • Barium titanate or barium zirconate as reducing substances in the sense of the invention, not only contribute to a reduction in the size of the bubbles but also have a crystallization-promoting effect.
  • the crystallization is promoted by the barium content of these compounds, while the bubble-reducing effect by the component -TiO 3 or -ZrO 3 in combination with reducing conditions in the production of the inner layer, by adding these components to sub-oxides or to the metals be reduced.
  • This is possible because the redox potentials of titanium (IV) and silicon (IV) differ greatly, so that titanium (IV) is easier to reduce than silicon (IV) and therefore in the production of the inner layer of the oxidation state IV in significant quantities is reduced to the oxidation state II or III.
  • barium and titanium and zirconium are characterized by a relatively small distribution coefficient in silicon. At concentrations below said lower limit for the preferred concentration range, complete crystallization of the inner layer is not achieved. This applies to the case of an inner layer of very pure, synthetic SiO 2 . Impurities in the SiO 2 of the Inner layer usually promote the formation of cristobalite, so that with contaminated SiO 2 complete crystallization of the inner layer even at a
  • BaTiO 3 or BaZrO 3 content of less than 0.003 mol% is to be expected.
  • the specified upper limit of the preferred concentration range results from the fact that the inner layer is gradually dissolved during the crucible insert, so that the substances contained therein can get into the molten metal and contaminate it.
  • Particularly preferred is a concentration range for barium titanate or barium zirconate, which is between 0.005 mol% to 0.01 mol%.
  • titanium silicide and / or tungsten silicide in a concentration between 0.002 mol% to 0.5 mol% has proven to be beneficial as a reducing substance. Due to the silicon content, silicides contribute less to the contamination of a silicon melt.
  • concentration range for titanium silicide and / or tungsten silicide is between 0.004 mol% to 0.4 mol%.
  • barium silicides prove to be a particularly suitable reducing substance in the inner layer, in particular with regard to a high crystallization-promoting effect with at the same time the least possible contamination of the silicon melt.
  • barium silicides are not stable to moist air and therefore require use under a protective gas atmosphere.
  • a suitability as a reducing substance and concomitantly a bubble-reducing getter effect is expected in particular for the following metals: W, Mo, Ba, Ti, Ga, Ge, In, Sn, Ti, Pb, Zr, Si, alkaline earth metals, rare earth metals and Fe, as well as for under the conditions of the crystal pulling process per se reducing chemical compounds in the form of hydrides, nitrides, silicides.
  • Chemical compounds in the form of oxides, carbonates, titanates, zirconates, tungstates, Molybchal, ferrates, cobaltates, nickelates, vanadates, niobates, tantalates and chromates are under the condition of reducing conditions in the production of the inner layer, - in particular a reducing atmosphere - as starting materials for the Forming a reducing substance in the context of this invention suitable, as explained above.
  • the cations of the alkaline earth metals and oxides of the rare earth metals as well as Ti, Al and Zr also have a crystallization-promoting effect in quartz glass.
  • the reducing substance can be introduced into the inner layer in solid, liquid or gaseous form.
  • it has proved to be particularly favorable to produce the inner layer by means of SiO 2 grains, which contains the reducing substance or a starting material for forming the same in the form of a dopant. This ensures a particularly homogeneous and in particular a defined distribution of the substance within the inner layer.
  • the reducing substance or the starting material for it can be present in any oxidation state, as long as it is ensured that a reducing effect is achieved when introducing the substance into the inner layer.
  • the reducing substance can have a homogeneous concentration profile over the crucible wall and in particular over the thickness of the inner layer. However, it has also proved to be favorable to adjust a concentration gradient of the reducing substance in the inner layer. In this case, the reducing substance over the inner layer shows a concentration gradient, with a preferably from inside to outside increasing concentration.
  • a concentration gradient When cristobalite is detached from the inner layer, as little as possible of the reducing substance passes into the molten metal. Since higher temperatures prevail on the inner wall during the crystal pulling process than in the interior of the crucible wall, a lower concentration of the crystallization promoter (in the form of the reducing substance) is also sufficient for the formation of a dense cristobalite layer.
  • the reducing substance in the area of the bubble-containing outer layer of the quartz glass crucible exhibits a stronger "getter effect" due to its higher concentration in this area.
  • the crystallization promoter Al 2 O 3 molar in a concentration from 0.15 to 0.5%, preferably between 0.2 and 0.3 mol%, are used.
  • concentration of Al 2 O 3 for setting a complete crystallization of the inner layer is surprisingly high, which is due to the low crystallization tendency of the inner layer due to their high purity.
  • the crystallization promoter is introduced not only into the inner layer, but also into the crucible base body.
  • the crystallization promoter is distributed over the entire wall thickness of the crucible base body, or only over part of the wall.
  • the crucible base body consists of a bottom portion and a cylindrical side wall. The crystallization promoter is incorporated in the
  • a crucible base body is produced by the known method.
  • crystalline grain size of natural quartz with a grain size in the range of 90 microns to 315 microns is cleaned by means of hot chlorination and filled in a metal mold which rotates about its longitudinal axis. Under the action of the centrifugal force and with the aid of a template, a rotationally symmetric, uniformly thick quartz granulation layer is formed from the bulk material on the inner wall of the metal mold.
  • a transparent inner layer is produced on the inner wall of the quartz granulation layer by means of so-called "arc melting".
  • arc melting high-purity SiO 2 grain is scattered into the metal mold with continuous rotation and softened by means of an arc, which is lowered from above into the metal mold, thrown against the inner wall of the crucible base body and melted thereon.
  • a maximum temperature of over 2100 ° C is reached.
  • An enamel front progresses outwardly, toward the metal mold, as a result of which the inner layer is melted to a transparent quartz glass and the quartz granulation layer is sintered to form the opaque quartz glass crucible base body. The melting is completed before the melt front reaches the metal mold.
  • the arc is ignited under atmospheric conditions (in air) by three graphite electrodes.
  • graphite form CO 2 and CO, where due to the high temperatures of several thousand degrees Celsius, the Boudouard equilibrium is shifted significantly in favor of CO formation, so that sets in the area of the arc, a reducing atmosphere.
  • a reducing substance and a crystallization promoter in the context of the present invention are introduced into the inner layer.
  • the Preparation of the inner layer and the introduction of the crystallization promoter and the reducing substance are explained in more detail below with reference to exemplary embodiments:
  • SiO 2 grains are mixed with 0.1% by weight of a Fe 2 O 3 powder.
  • the mixture is sprinkled into the opaque crucible base body and thereby melted by means of the so-called “bedding process” using graphite electrodes, between which an arc is generated, and thrown onto the crucible inner wall to form a transparent inner layer.
  • the inner layer extends over the entire base of the crucible and has a thickness of 2 mm.
  • the inner layer thus produced was then subjected to a so-called "vacuum bake test", wherein the pressure and temperature conditions are simulated during the crystal pulling process.
  • This sample was compared with a comparative sample in which the inner layer was melted using an arc but without the addition of a dopant.
  • the Fe 2 O 3 -doped inner layer exhibited significantly lower bubble growth in the region of the inner layer, while the surface of the inner layer exhibited cristobalite formation.
  • reduced atmosphere indicates that the substance in question has its bladder-reducing effect on condition receives reducing conditions in the manufacture of the inner layer.
  • Addition of Al 2 O 3 merely produces cristobalite formation in the region of the inner layer, but no reduction in bubble growth is achieved. This substance is thus suitable for carrying out the method according to the invention only in conjunction with a reducing substance.
  • concentration of Al 2 O 3 to complete complete crystallization is surprisingly high; the particularly preferred concentration range here is between 0.2 and 0.3 mol%. This is attributed to the high purity of the SiO 2 grain used.
  • the metals tungsten and molybdenum and their metallic compounds mentioned in Table 1 show a significant bubble-reducing effect, whereas here lacks the crystallization-promoting effect. These substances are thus suitable for carrying out the process according to the invention only in conjunction with a suitable crystallization promoter.
  • molybdenum it should be noted that some oxide compounds of this high oxidation state metal (especially MoO 3 ) are volatile at comparatively low temperatures and may adversely affect the bubble reduction. Under reducing conditions, however, it is easy to ensure that metallic molybdenum gets into the inner layer, during the oxidation of which oxides or nitrides are formed which are solid at the temperature of the silicon melt.
  • SiO 2 granules are mixed with 0.5% by weight of a BaTiO 3 powder and from the mixture - as in Example 1 described by means of SiO 2 grain - produced by means of the so-called "litter” a transparent inner layer using an arc.
  • This inner layer also extends over the entire base of the crucible and has a thickness of 3 mm.
  • the compound BaTiO 3 consists of a crystallization-promoting component, namely the barium portion, and a component having a bubble-reducing effect, namely the titanate portion (TiO 3 ), wherein this effect only when producing the inner layer by the introduction into the inner layer under reducing conditions.
  • the arc reduces the TiO 3 content.
  • the inner layer thus produced was subjected to a crystallization test, wherein the temperature conditions of the melting phase are simulated at the beginning of the crystal growth. In this case, a very pronounced crystallization of the inner layer was found, which made it difficult to determine the effect on bubble growth. As far as measurable under these conditions, no significant bubble growth took place. However, the concentration of BaTiO 3 has proven to be unnecessarily high.
  • an inner layer in a silica glass crucible the SiO 2 granules used was a BaTiO merely mixed with 0.01 mol% (about 0.05 wt .-%) 3 powder in a further test for the production and from the mixture - as in Example 2 described on the basis of SiO 2 grains - produced by means of the so-called "litter” a transparent inner layer using an arc.
  • This inner layer also extends over the entire base of the crucible and has a thickness of 3 mm.
  • the inner layer thus produced was subjected to a crystallization test. In this case, an almost comparable crystallization of the inner layer was found, which could be classified qualitatively as optimal.
  • SiO 2 grains are mixed with 0.005 mol% of a BaWO 4 powder and from the mixture - as described in Example 1 using SiO 2 grains - a transparent inner layer by means of the so-called "litter method" Use of an arc generated.
  • This inner layer also extends over the entire base of the crucible and has a thickness of 3 mm.
  • the compound BaWO 4 consists of a crystallization-promoting component, namely the barium fraction, and a component with bubble-reducing effect, namely the tungstate fraction (WO 4 ), wherein this effect only when producing the inner layer by the introduction into the inner layer under reducing conditions.
  • the arc reduces the WO 4 content.
  • the inner layer thus produced was subjected to a crystallization test.
  • a comparable crystallization of the inner layer was found as in Example 3.
  • SiO 2 granules are mixed with 0.01 mol% of a TiSi 2 powder and from the mixture - as described in Example 1 using SiO 2 grains - a transparent by means of the so-called "litter method" Inner layer produced using an arc. This inner layer also extends over the entire base of the crucible and has a thickness of 3 mm.
  • the inner layer thus produced was subjected to a vacuum bake test. A significant reduction of the bubble growth was found.
  • Crystalline granules of natural quartz having a particle size in the range of 90 ⁇ m to 315 ⁇ m are purified by means of hot chlorination and mixed with 0.01 mol% (about 0.05% by weight) BaTiO 3 granules having a similar grain size spectrum.
  • the mixture is poured into a metal mold which rotates about its longitudinal axis. Under the effect of the centrifugal force and with the aid of a template, a rotationally symmetric, uniformly thick quartz grain layer homogeneously doped with BaTiO 3 is produced from the bulk material on the inner wall of the metal mold.
  • a transparent inner layer according to Example 3 is subsequently produced by "arc melting".
  • the reducing atmosphere (CO formation) causes a reduction of titanate to suboxides of TiO 3 , both in the inner layer and in the quartz granule layer.
  • the area of the quartz granulation layer forms the "crucible base body" in the quartz glass crucible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung eines Quarzglastiegels zum Einsatz in einem Siliciumkristall-Ziehprozess nach dem Czochralski-Verfahren, in dem auf einem Tiegelbasiskörper aus Quarzglas mindestens teilweise eine Innenschicht aus SiO2 unter Einsatz eines Lichtbogenschmelzverfahrens aufgeschmolzen wird, die beim bestimmungsgemäßen Einsatz des Quarzglastiegels mit einer Metallschmelze in Kontakt ist, und in welcher dabei unter Einsatz eines Kristallisationspromotors eine Cristobalitbildung herbeigeführt wird.
  • Derartige Quarzglastiegel werden beispielsweise zur Aufnahme der Metallschmelze beim Ziehen von Einkristallen nach dem sogenannten Czochralski-Verfahren eingesetzt. Bei diesem Verfahren wird ein Impfkristall mit vorgegebener Orientierungsrichtung in die Schmelze eingetaucht und dann langsam hochgezogen. Impfkristall und Schmelze rotieren dabei gegenläufig. Die Oberflächenspannung zwischen Impfkristall und Schmelze bewirkt, dass mit dem Impfkristall auch ein wenig Schmelze abgezogen wird, die allmählich erkaltet und dadurch zu dem stetig weiterwachsenden Einkristall erstarrt. Bei diesem Ziehprozess unterliegt der Quarzglastiegel hohen mechanischen, chemischen und thermischen Belastungen, denen der Quarzglastiegel über mehrere Stunden ohne merkliche plastische Verformungen standhalten muss. Im Fall einer Siliziumschmelze beträgt die Schmelztemperatur beispielsweise mehr als 1400°C.
  • Um die thermische Stabilität der Quarzglastiegel zu erhöhen ist daher vorgeschlagen worden, diese mit einer Oberflächenschicht aus Cristobalit zu versehen. Der Schmelzpunkt von Cristobalit liegt bei etwa 1720 °C. Ein derartiges Verfahren ist in der EP-A 748 885 beschrieben. Dabei wird die glasige Außenwandung eines handelsüblichen Tiegels aus opakem, blasenhaltigem Quarzglas mit einer chemischen Lösung behandelt, die Substanzen enthält, die eine Entglasung von Quarzglas zu Cristobalit fördern. Als kristallisationsfördernde Substanzen (im folgenden auch als "Kristallisationspromotor" bezeichnet) werden Bor-, Erdalkali- und Phosphorverbindungen empfohlen. Bevorzugt wird Bariumhydroxid eingesetzt. Beim Aufheizen des Quarzglastiegels - zum Beispiel während des bestimmungsgemäßen Einsatzes beim Ziehprozess - kristallisiert die vorbehandelte Tiegelwandung unter Bildung von Cristobalit aus, was zu einer höheren mechanischen und thermischen Festigkeit des Quarzglastiegels führt.
  • Die mittels des bekannten Verfahrens hergestellten Quarzglastiegel halten langen Prozessdauern beim Ziehen von Silizium-Einkristallen jedoch nur beschränkt stand. Die Stärke der kristallisierten Oberflächenschicht beträgt in der Regel weniger als 1 mm und ist damit relativ dünn. Es hat sich gezeigt, dass nach einer gewissen Zeit eine allmähliche Ablösung der kristallisierten Oberflächenschicht einsetzt, wobei die kristallisierte Oberfläche weniger schnell aufgelöst wird als die unbehandelte glasige. Durch das unter der dünner werdenden Cristobalitschicht einsetzende Blasenwachstum abplatzende Cristobalitteilchen gelangen dabei in die Siliziumschmelze und können zu Versetzungen im Silizium-Einkristall führen. Aus diesem Grund ist das bekannte Verfahren bisher für die Herstellung von großen Quarzglastiegeln - die zur Aufnahme eines großen Schmelzvolumens vorgesehen sind und daher bestimmungsgemäß langen Prozesszeiten und damit starkem Blasenwachstum standhalten müssen - nicht geeignet.
  • Darüber hinaus kann beim Transport oder Handling des Quarzglastiegels Kristallisationspromotor abgerieben werden.
  • In der US 5,389,582 A ist ein Verfahren zur Herstellung eines Quarzglastiegels mittels Schlickergießen beschrieben, wobei ein mit einem Kristallisationspromotor versehener Quarzglasrohstoff eingesetzt und in die Tiegelwandung eingebracht wird. Die als Kristallisationspromotoren genannten Substanzen bilden beim Schlickergießen stabile Oxide, insbesondere Aluminiumoxide
  • Aus der gemäß Art. 54 (3) in Verbindung mit Art. 158 (1) und (2) zum Stand der Technik gehörenden WO 02 16677 A, und aus der EP 0 911 429 A1 sind Verfahren zur Herstellung eines Quarzglastiegels zum Einsatz in einem Siliciumkristall-Ziehprozess nach dem Czochralski-Verfahren Verfahren bekannt, bei denen ein Kristallisationspromotor in eine Zwischenschicht eingebracht wird, die sich zwischen dem Tiegelbasiskörper und der Innenschicht befindet. Während des bestimmungsgemäßen Einsatzes des Quarzglastiegels kommt aus ausgehend von dieser Zwischenschicht zu einer in Richtung auf die Innenoberfläche des Tiegels fortschreitenden Kristallisation. In der EP 0 911 429 A1 werden als Kristallisationspromotoren die Elemente der Gruppen 2a, 3a oder 3b des Periodensystems genannt.
  • Diese Verfahren haben den Nachteil, dass es zum Abplatzen von Teilen der Cristobalitschicht kommen kann. Dies ist insbesondere bei großvolumigen Quarzglastiegeln der Fall, die wegen ihrer großen Füllmenge langen Prozesszeiten standhalten müssen.Der Erfindung liegt die Aufgabe zugrunde, ein kostengünstiges Verfahren zur Herstellung von Quarzglastiegeln mit reproduzierbaren Eigenschaften für lange Standzeiten anzugeben.Diese Aufgabe wird ausgehend von dem eingangs genannten Verfahren erfindungsgemäß dadurch gelöst, dass in die Innenschicht der Kristallisationspromotor und eine während des Ziehprozesses mit gasfömigem Sauerstoff unter Bildung eines aufoxidierten Feststoffes reagierende reduzierend wirkende Substanz eingebracht werden.
  • Das erfindungsgemäße Verfahren weist gegenüber dem eingangs beschriebenen, bekannten Verfahren die folgenden wesentlichen Unterscheidungsmerkmale auf:
  • Erstens wird der Kristallisationspromotor in die Innenschicht eingebracht. Der Kristallisationspromotor ist somit in der Innenschicht enthalten und wirkt derart, dass er beim Aufheizen des Quarzglastiegels - etwa beim bestimmungsgemäßen Einsatz - zur Cristobalitbildung führt. Damit einhergehend kommt es zu der bekannten Wirkung der Cristobalitschicht, nämlich zu einer Verfestigung der Innenwandung und damit zu einer Erhöhung der thermischen Stabilität und der chemischen Beständigkeit des Tiegels. Eine unbeabsichtigte Veränderung der Konzentration - etwa durch Abrieb bei Transport oder Handling des Quarzglastiegels - ist ausgeschlossen.
  • Darüber hinaus erlaubt es das erfindungsgemäße Verfahren, eine vorgegebene Dicke der kristallisierten Innenschicht durch die entsprechende Verteilung und Konzentration des Kristallisationspromotors in der Innenschicht definiert einzustellen. Insbesondere wird auf einfache Art und Weise eine stärkere und stabilere kristallisierte Schicht als bei dem bekannten Verfahren erhalten. Schichtdicken von mehreren Millimetern sind erreichbar. Diese halten einem Blasenwachstum länger stand.
  • 2. Zweitens wird in die Innenschicht eine reduzierend wirkende Substanz eingebracht. Die Substanz entfaltet mindestens während des Einbringens in die Innenschicht eine reduzierende Wirkung, die aber auch während des bestimmungsgemäßen Einsatzes des Quarzglastiegels noch fortbestehen oder wieder einsetzen kann. Dies führt zu einem überraschenden Effekt hinsichtlich der Standzeiten des Quarzglastiegels, was im Folgenden näher erläutert wird:
  • Es hat sich nämlich gezeigt, dass während des eingangs erwähnten allmählichen Ablösens der kristallisierten Innenschicht das Blasenwachstum in der Tiegelwandung grundlegende Bedeutung für die Haltbarkeit der kristallisierten Oberfläche hat. In der opaken Tiegelwandung ist eine Vielzahl von Blasen enthalten, in denen auch Gase eingeschlossen sein können. Infolge der hohen Temperatur beim Einsatz des Tiegels und insbesondere bei langen Prozesszeiten kommt es zu einem Wachsen gashaltiger Blasen, was durch die geringe Viskosität des Quarzglases bei diesen Temperaturen erleichtert wird. Wenn eine wachsende Blase eine dünne Cristobalitschicht berührt, führt das zu mechanischen Spannungen und zu lokalen Abplatzungen der Cristobalitschicht, und zwar umso eher, je dünner die Cristobalitschicht ist. Unter der Annahme, dass das Blasenwachstum maßgeblich durch sich bildenden Sauerstoff beeinflusst ist, könnte die dabei ablaufende chemische Reaktion anhand folgender Gesamtreaktionsgleichung beschrieben werden:

            (1) 4 SiO2(s) + C(s) + 2 N2(g) → Si3N4(s) + SiC(s) + 4 O2(g) s=solid (fest), g=gasförmig

  • Danach bilden sich unter Mitwirkung von Luftstickstoff und Kohlenstoff, der in kleinen Mengen in den Ausgangssubstanzen enthalten ist oder der während des Herstellungsprozesse in die Tiegelwandung eingetragen werden kann, aus jedem Mol Stickstoff das doppelte Volumen an Sauerstoff.
  • Ist jedoch eine reduzierend wirkende Substanz in der Innenschicht vorhanden, reagiert diese - mindestens während des Einbringens in die Innenschicht, vorzugsweise aber während des Ziehprozesses auch noch oder wieder - mit Sauerstoff bzw. dem eingebrachten Stickstoff unter Bildung eines aufoxidierten Feststoffes. Der Feststoff trägt zum Gesamt-Gasvolumen nicht bei. Diese "Getterwirkung" der reduzierend wirkenden Substanz vermindert somit die durch überschüssigen oder während des Ziehprozesses entstehenden Sauerstoff verursachte Blasenbildung.
  • Je stärker die reduzierende Wirkung der reduzierend wirkenden Substanz ist, umso besser wird ein Blasenwachstum verhindert. Ein etwaig vorhandener Sauerstoffunterschuss in der Quarzglasstruktur entfaltet diese Wirkung nicht. Erfindungsgemäß wird die reduzierend wirkende Substanz mindestens bei der Herstellung der Innenschicht erzeugt, so dass sie im Bereich der Innenwandung des Tiegels die beschriebene blasenmindernde Getterwirkung entfaltet. Gerade dort erweist sie sich als wesentlich, weil damit auch das durch Blasenwachstum hervorgerufene Abplatzen von Cristobalit vermieden und somit die Standzeit des Quarzglastiegels verlängert wird.
  • Das erfindungsgemäße Verfahren ermöglicht somit einerseits eine definierte und reproduzierbare Cristobalitbildung im Bereich der Innenwandung des Quarzglastiegels, und andererseits gewährleistet das Verfahren, dass diese Cristobalitschicht während des bestimmungsgemäßen Einsatzes des Quarzglastiegels möglichst unbeschädigt erhalten bleibt. Der mittels des erfindungsgemäßen Verfahrens hergestellte Quarzglastiegel hält daher langen Prozesszeiten stand. Erstmals wird der Einsatz großer Quarzglastiegel - die während ihres Einsatzes besonders langen Prozesszeiten standhalten müssen - mit kristallisierter Innenschicht ermöglicht, wobei das erfindungsgemäße Verfahren ein zusätzliches Aufbringen von Kristallisationspromotoren auf der Innenschicht des Quarzglastiegels nicht ausschließt.
  • Es wird eine Variante des erfindungsgemäßen Verfahrens bevorzugt, bei welcher mindestens ein Teil des Kristallisationspromotors gleichzeitig zur Bildung der reduzierend wirkenden Substanz in die Innenschicht eingebracht wird. Hierbei erfüllt der Kristallisationspromotor beide oben genannten Funktionen, indem er zum einen die Cristobalitbildung im Bereich der Innenwandung beim Wiederaufheizen des Quarzglastiegels fördert und gleichzeitig zur Bildung der reduzierend wirkenden Substanz beiträgt, die durch ihre "Getterwirkung" das Blasenwachstum mindert, und so einen festen Halt der Cristobalitschicht und damit eine lange Standzeit des Quarzglastiegels gewährleistet. Dabei wirkt entweder ein und dieselbe chemische Substanz als Element oder in einer chemischen Verbindung gleichzeitig kristallisationsfördernd und blasenreduzierend - also gleichzeitig als Kristallisationspromotor und als reduzierend wirkende Substanz. Oder es handelt sich dabei um eine chemische Verbindung, von der ein Teil eine Wirkung als Kristallisationspromotor und ein anderer Teil eine Wirkung als reduzierend wirkende Substanz im Sinn dieser Erfindung entfaltet.
  • Vorzugsweise werden durch Oxidation der reduzierend wirkenden Substanz solche Sauerstoff- oder Stickstoffverbindungen gebildet, die bis zu einer Temperatur von mindestens 1450°C als Feststoff vorliegen. Als reduzierend wirkende Substanzen kommen in erster Linie Metalle oder metallische Verbindungen in Frage, aber auch solche chemischen Verbindungen, die in einer geringeren als ihrer höchsten Oxidationsstufe in die Innenschicht eingebracht werden können. Wesentlich ist, dass die durch Aufoxidation der reduzierend wirkenden Substanz entstehenden chemischen Verbindungen als Feststoff anfallen und somit zum Gasvolumen innerhalb der Innenschicht und damit zur Blasenbildung nicht beitragen.
  • Es hat sich als besonders günstig erwiesen, die reduzierende Wirkung der Substanz dadurch einzustellen, dass reduzierende Bedingungen beim Herstellen der Innenschicht eingestellt werden. Dabei wird eine Ausgangssubstanz während der Herstellung der Innenschicht zu der reduzierend wirkenden Substanz reduziert. Das Redoxpotenzial der Ausgangssubstanz unterscheidet sich dabei von dem Redoxpotenzial von Silizium (IV), so dass eine Reduzierung der Ausgangssubstanz möglich ist, ohne dass SiO2 in merkbarem Umfang reduziert wird.
  • Reduzierende Bedingungen beim Herstellen der Innenschicht lassen sich besonders einfach durch eine reduzierend wirkende Atmosphäre einstellen. Dadurch ist es möglich, die reduzierend wirkende Substanz aus einer Ausgangssubstanz (chemische Verbindung) zu bilden, die in einer hohen oder sogar in ihrer höchsten Oxidationsstufe vorliegt, unter der Voraussetzung, dass diese Ausgangssubstanz infolge der reduzierend wirkenden Atmosphäre reduziert wird. Dies ist vor allem bei chemischen Verbindungen der Fall, die leicht ihre Oxidationsstufe wechseln und durch CO reduzierbar sind, wie im Folgenden näher begründet wird.
  • Im Hinblick auf die Einstellung einer reduzierend wirkenden Atmosphäre hat es sich bewährt, die Innenschicht durch Lichtbogenschmelzen unter Einsatz mindestens einer Graphitelektrode herzustellen. Beim Lichtbogenschmelzen wird eine SiO2-haltige Körnung in einen Lichtbogen eingebracht und unter der Wirkung der vom Lichtbogen erzeugten Gasströmung gegen die Innenwandung des Tiegelbasiskörpers geschleudert und dort aufgeschmolzen. Im Bereich der Graphitelektrode oder der Graphitelektroden herrschen Temperaturen von einigen 1000°C, so dass der Graphit mit Sauerstoff reagiert, wobei sich aufgrund der hohen Temperatur vorwiegend reduzierend wirkendes Kohlenmonoxid bildet (Boudouard-Gleichgewicht). Aufgrund der CO-Bildung ergeben sich reduzierende Bedingungen bei der Herstellung der Innenschicht. Für die Bildung der reduzierend wirkenden Substanz in der Innenschicht sind daher sowohl Ausgangssubstanzen, die per se reduzierend wirken, als auch Ausgangssubstanzen, die unter den Bedingungen des Lichtbogenschmelzens reduziert werden, geeignet.
  • Unter Berücksichtigung dieser Randbedingung wird die reduzierend wirkende Substanz vorzugsweise aus einer Ausgangssubstanz gebildet, die eines oder mehrere der Elemente Titan, Wolfram, Molybdän, Silizium, Zirkonium oder eine Verbindung dieser Elemente enthält.Besonders bevorzugt wird die Innenschicht des Quarzglastiegels durch Lichtbogenschmelzen erzeugt indem in einen Lichtbogen eingebrachtes Einstreumaterial gegen die Innenwandung des Tiegelbasiskörpers geschleudert und dort aufgeschmolzen wird, wobei als Ausgangssubstanzen für die reduzierend wirkende Substanz Bariumtitanat (BaTiO3) oder Bariumzirkonat (BaZrO3) in einer Konzentration zwischen 0,003 mol-% bis 0,02 mol-% eingesetzt werden. Die Konzentrationsangabe bezieht sich auf die Konzentration im Einstreumaterial. Bariumtitanat bzw. Bariumzirkonat tragen als reduzierend wirkende Substanzen im Sinne der Erfindung nicht nur zu einer Blasenreduzierung bei, sondern wirken auch kristallisationsfördernd. Die Kristallisation wird durch den Barium-Anteil dieser Verbindungen gefördert, während sich die blasenreduzierende Wirkung durch den Bestandteil -TiO3 bzw. -ZrO3 im Zusammenspiel mit reduzierenden Bedingungen beim Herstellen der Innenschicht ergibt, indem diese Bestandteile zu Sub-Oxiden oder zu den Metallen reduziert werden. Dies gelingt, weil sich die Redoxpotenziale von Titan (IV) und Silizium (IV) stark voneinander unterscheiden, so dass Titan (IV) leichter zu reduzieren ist als Silizium (IV) und daher bei der Herstellung der Innenschicht von der Oxidationsstufe IV in signifikanten Mengen auf die Oxidationsstufe II oder III reduziert wird.
  • Außerdem zeichnen sich Barium und Titan sowie Zirkonium durch einen relativ kleinen Verteilungskoeffizienten in Silizium aus. Bei Konzentrationen unterhalb der genannten Untergrenze für den bevorzugten Konzentrationsbereich wird keine vollständige Kristallisation der Innenschicht erreicht. Dies gilt für den Fall einer Innenschicht aus sehr reinem, synthetischem SiO2. Verunreinigungen im SiO2 der Innenschicht fördern in der Regel die Cristobalitbildung, so dass bei verunreinigtem SiO2 eine vollständige Kristallisation der Innenschicht auch bereits bei einem
  • BaTiO3- oder BaZrO3-Gehalt von weniger als 0,003 mol-% zu erwarten ist. Die angegebene Obergrenze des bevorzugten Konzentrationsbereichs ergibt sich aus dem Umstand, dass die Innenschicht während des Tiegeleinsatzes allmählich aufgelöst wird, so dass die darin enthaltenen Substanzen in die Metallschmelze gelangen und diese verunreinigen können. Besonders bevorzugt wird ein Konzentrationsbereich für Bariumtitanat bzw. Bariumzirkonat, der zwischen 0,005 mol-% bis 0,01 mol-% liegt.
  • Alternativ oder ergänzend dazu hat sich der Einsatz von Titansilizid und/oder Wolframsilizid in einer Konzentration zwischen 0,002 mol-% bis 0,5 mol-% als reduzierend wirkende Substanz als günstig erwiesen. Aufgrund des Siliziumanteils tragen Silizide weniger zur Verunreinigung einer Siliziumschmelze bei. Die angegebene Unter- bzw. die Obergrenze für den bevorzugten Konzentrationsbereich ergeben sich aus den oben für das Bariumtitanat erläuterten Erwägungen. Besonders bevorzugt wird ein Konzentrationsbereich für Titansilizid und/oder Wolframsilizid, der zwischen 0,004 mol-% bis 0,4 mol-% liegt.
  • Daneben erweisen sich Bariumsilizide insbesondere im Hinblick auf eine hohe kristallisationsfördernde Wirkung bei gleichzeitig möglichst geringer Verunreinigung der Siliziumschmelze als besonders geeignete reduzierend wirkende Substanz in der Innenschicht. Allerdings sind Bariumsilizide nicht stabil an feuchter Luft und erfordern daher einen Einsatz unter Schutzgasatmosphäre.
  • Insgesamt wird insbesondere für die nachfolgenden genannten Metalle eine Eignung als reduzierend wirkende Substanz und damit einhergehend eine blasenreduzierende Getterwirkung erwartet: W, Mo, Ba, Ti, Ga, Ge, In, Sn, TI, Pb, Zr, Si, Erdalkalimetalle, Seltenerdmetalle und Fe, ebenso wie für unter den Bedingungen des Kristallziehprozesses per se reduzierend wirkende chemische Verbindungen in Form von Hydriden, Nitriden, Siliziden. Auch chemische Verbindungen in Form von Oxiden, Carbonaten, Titanaten, Zirkonaten, Wolframaten, Molybdaten, Ferraten, Cobaltaten, Nickelaten, Vanadaten, Niobaten, Tantalaten und Chromaten sind unter der Voraussetzung reduzierender Bedingungen beim Herstellen der Innenschicht, - insbesondere einer reduzierenden Atmosphäre - als Ausgangssubstanzen für die Bildung einer reduzierend wirkenden Substanz im Sinne dieser Erfindung geeignet, wie oben erläutert wurde.
  • Von den genannten chemischen Verbindungen zeigen insbesondere die Kationen der Erdalkalimetalle und Oxide der Seltenerdmetalle sowie Ti, Al und Zr auch eine kristallisationsfördernde Wirkung in Quarzglas.
  • Es hat sich auch bewährt, reduzierend wirkende Substanzen in Form von Oxiden oder oxidische Verbindungen wie Ferraten, Wolframaten, Molybdaten, Nickelaten, Vanadaten, Niobaten, Tantalaten in nicht vollständig aufoxidierter Form einzusetzen.
  • Die reduzierend wirkende Substanz kann in fester, flüssiger oder gasförmiger Form in die Innenschicht eingebracht werden. Als besonders günstig hat es sich jedoch erwiesen, die Innenschicht mittels SiO2-Körnung zu erzeugen, die die reduzierend wirkende Substanz oder einen Ausgangsstoff zur Bildung derselben in Form eines Dotierstoffs enthält. Dadurch wird eine besonders homogene und insbesondere eine definierte Verteilung der Substanz innerhalb der Innenschicht gewährleistet. Als Dotierstoff kann die reduzierend wirkende Substanz oder der Ausgangsstoff dafür in einer beliebigen Oxidationsstufe vorliegen, solange sichergestellt ist, dass beim Einbringen der Substanz in die Innenschicht eine reduzierende Wirkung erreicht wird.
  • Es hat sich auch bewährt, gleichzeitig mehrere reduzierend wirkende oder die Cristobalitbildung fördernde Substanzen mit unterschiedlicher chemischer Zusammensetzung in die Innenschicht einzubringen. Durch die freie Auswahl und Dosierung unterschiedlich wirkender Substanzen wird eine gleichzeitige Optimierung im Hinblick auf Getterwirkung und Cristobalitbildung vereinfacht.
  • Die reduzierend wirkende Substanz kann über die Tiegelwandung und insbesondere über die Dicke der Innenschicht gesehen, einen homogenen Konzentrationsverlauf aufweisen. Es hat sich aber auch als günstig erwiesen, in der Innenschicht einen Konzentrationsgradienten der reduzierend wirkenden Substanz einzustellen. Dabei zeigt die reduzierend wirkende Substanz über der Innenschicht einen Konzentrationsgradienten, mit einer vorzugsweise von Innen nach Außen ansteigenden Konzentration. Beim Ablösen von Cristobalit von der Innenschicht gelangt so möglichst wenig der reduzierend wirkenden Substanz in die Metallschmelze. Da beim Kristallziehprozess an der Innenwandung höhere Temperaturen als im Inneren der Tiegelwandung herrschen, genügt auch eine geringere Konzentration des Kristallisationspromotors (in Form der reduzierend wirkenden Substanz) für die Ausbildung einer dichten Cristobalitschicht. Andererseits entfaltet die reduzierend wirkende Substanz im Bereich der blasenhaltigen Außenschicht des Quarzglastiegels eine stärkere "Getterwirkung" aufgrund ihrer höheren Konzentration in diesem Bereich.
  • Vorzugsweise wird als Kristallisationspromotor Al2O3 in einer Konzentration zwischen 0,15 und 0,5 mol-%, bevorzugt zwischen 0,2 und 0,3 mol-%, eingesetzt. Die Konzentration an Al2O3 zur Einstellung einer vollständigen Kristallisation der Innenschicht ist überraschend hoch, was auf die geringe Kristallisationsneigung der Innenschicht aufgrund ihrer hohen Reinheit zurückzuführen ist.
  • In einer besonders bevorzugten Verfahrensvariante wird der Kristallisationspromotor nicht nur in die Innenschicht eingebracht, sondern außerdem in den Tiegelbasiskörper. Der Kristallisationspromotor ist dabei über die gesamte Wandstärke des Tiegelbasiskörpers verteilt, oder nur über einen Teil der Wandung. Der Tiegelbasiskörper besteht aus einem Bodenbereich und aus einer zylinderförmigen Seitenwandung. Der Kristallisationspromotor wird in den
  • Bodenbereich und/oder in mindestens einen Teil der Seitenwandung eingebracht. In den Tiegelbereichen, in denen Kristallisationspromotor enthalten ist, wird beim Einsatz des Quarzglastiegels eine Kristallisation hervorgerufen. Eine Kristallisation über den gesamten Tiegel wird erreicht, indem der Kristallisationspromotor im gesamten Tiegelbasiskörper in ausreichender Konzentration enthalten ist.
  • Hierbei ergibt sich eine weitere Verbesserung durch Reduzierung des Blasenwachstums, wenn die reduzierend wirkende Substanz ebenfalls in den Tiegelbasiskörper eingebracht wird. In dem Fall sind der Kristallisationspromotor und die reduzierend wirkende Substanz im Tiegelbasiskörper enthalten. Dies führt beim bestimmungsgemäßen Einsatz des Quarzglastiegels zu einer Kristallisation der betreffenden Tiegelbereiche unter Vermeidung oder Verminderung von Blasenbildung.
  • Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert.
  • In einem ersten Verfahrensschritt wird ein Tiegelbasiskörper nach dem bekannten Verfahren hergestellt. Hierzu wird kristalline Körnung aus natürlichem Quarz mit einer Korngröße im Bereich von 90 µm bis 315 µm mittels Heißchlorierung gereinigt und in eine Metallform eingefüllt, die um ihre Längsachse rotiert. Unter der Wirkung der Zentrifugalkraft und Zuhilfenahme einer Schablone wird aus der Schüttung an der Innenwandung der Metallform eine rotationssymmetrische, gleichmäßig dicke Quarzkörnungs-Schicht geformt.
  • In einem zweiten Verfahrensschritt wird auf der Innenwandung der Quarzkörnungs-Schicht mittels des sogenannten "Lichtbogenschmelzens" eine transparente Innenschicht erzeugt. Hierzu wird unter anhaltender Rotation hochreine SiO2-Körnung in die Metallform eingestreut und mittels eines Lichtbogens, der von oben in die Metallform abgesenkt wird, erweicht, gegen die Innenwandung des Tiegelbasiskörpers geschleudert und darauf aufgeschmolzen. An der Innenwandung wird eine Maximaltemperatur von über 2100°C erreicht. Es bildet sich eine nach außen, in Richtung auf die Metallform, fortschreitende Schmelzfront, in deren Folge die Innenschicht zu einem transparentem Quarzglas erschmolzen und die Quarzkörnungs-Schicht zu dem Tiegelbasiskörper aus opakem Quarzglas gesintert wird. Das Erschmelzen wird beendet bevor die Schmelzfront die Metallform erreicht.
  • Der Lichtbogen wird unter Atmosphärenbedingungen (an Luft) durch drei Graphitelektroden gezündet. Durch Abbrand von Graphit bilden sich CO2 und CO, wobei aufgrund der hohen Temperaturen von mehreren tausend Grad Celsius das Boudouard-Gleichgewicht deutlich zu Gunsten der CO-Bildung verschoben ist, so dass sich im Bereich des Lichtbogens eine reduzierende Atmosphäre einstellt.
  • Dabei werden in die Innenschicht eine reduzierend wirkende Substanz und ein Kristallisationspromotor im Sinne der vorliegenden Erfindung eingebracht. Die Herstellung der Innenschicht und das Einbringen des Kristallisationspromotors und der reduzierend wirkenden Substanz werden nachfolgend anhand von Ausführungsbeispielen näher erläutert:
  • Beispiel 1:
  • SiO2-Körnung wird mit 0,1 Gew.-% eines Fe2O3-Pulvers vermischt. Die Mischung wird in den opaken Tiegelbasiskörper eingestreut und dabei mittels des sogenannten "Einstreuverfahrens" unter Einsatz von Graphitelektroden, zwischen denen ein Lichtbogen erzeugt wird, erschmolzen und auf die Tiegel- Innenwandung unter Bildung einer transparenten Innenschicht geschleudert. Die Innenschicht erstreckt sich über den gesamten Tiegelbasiskörper und hat eine Dicke von 2 mm.
  • Die so erzeugte Innenschicht wurde anschließend einem sogenannten "Vacuum-Bake-Test" unterzogen, wobei die Druck- und Temperaturbedingungen beim Kristallziehprozess simuliert werden. Diese Probe wurde mit einer Vergleichsprobe, bei welcher die Innenschicht unter Einsatz eines Lichtbogens, aber ohne Zugabe eines Dotierstoffs erschmolzen wurde, verglichen. Im Vergleich zu dieser Probe wurde bei der Fe2O3-dotierten Innenschicht ein deutlich geringeres Blasenwachstum im Bereich der Innenschicht beobachtet, während die Oberfläche der Innenschicht Cristobalitbildung zeigte.
  • Ähnliche Versuche wurden mit den in Spalte 1 der Tabelle 1 genannten Substanzen durchgeführt. Die Konzentration dieser Substanzen in der Innenschicht war jeweils homogen verteilt und lag in der Regel bei 0,1 Mol-%. Sofern sich für die Einstellung der blasenreduzierenden Wirkung oder der kristallisationsfördernden Wirkung Konzentrationen in einem anderen Konzentrationsbereich als günstig erwiesen haben, wird dieser für die jeweilige Substanz in Tabelle 1 in Klammern angegeben. Tabelle 1
    "Ausgangssubstanzen zur Bildung reduzierender Substanzen und Kristallisationspromotoren"
    Substanz / Verbindung Wirkung
    Blasenreduzierung Cristobalitbildung
    W Ja Nein
    Mo Ja Nein
    WSi2 Ja (0,002 - 0,5 mol%) Nein
    TiSi2 Ja (0,002 - 0,5 mol%) Nein
    BaCO3 Gering (reduz. Atmosphäre) Ja (0,003 - 0,02 mol%)
    BaWO4 Mittel (reduz. Atmosphäre) Ja (0,003 - 0,02 mol%)
    BaZrO3 Mittel (reduz. Atmosphäre) Ja (0,003 - 0,02 mol%)
    BaTiO3 Stark Ja (0,003 - 0,02 mol%)
    Ti2O3 Ja Gering
    TiO2 Ja (reduz. Atmosphäre)
    Al2O3 Nein Ja (0,15 bis 0,5 mol-%)
    ZrO2 Kein Blasenwachstum feststellbar (reduz. Atmosphäre) Ja
  • Der Zusatz "reduz. Atmospähre" weist darauf hin, dass die betreffende Ausgangssubstanz ihre blasenreduzierende Wirkung unter der Voraussetzung reduzierender Bedingungen beim Herstellen der Innenschicht erhält.
  • Durch Zugabe von Al2O3wird lediglich eine Cristobalitbildung im Bereich der Innenschicht erzeugt, jedoch keine Verringerung des Blasenwachstums erreicht. Diese Substanz ist zur Durchführung des erfindungsgemäßen Verfahrens somit nur in Verbindung mit einer reduzierend wirkenden Substanz geeignet. Die Konzentration an Al2O3 zur Einstellung einer vollständigen Kristallisation ist überraschend hoch; der besonders bevorzugte Konzentrationsbereich liegt hier zwischen 0,2 und 0,3 mol-%. Dies wird auf die hohe Reinheit der eingesetzten SiO2-Körnung zurückgeführt.
  • Die Metalle Wolfram und Molybdän und deren in der Tabelle 1 genannten metallischen Verbindungen (WSi2) zeigen eine deutliche blasenreduzierende Wirkung, wogegen hier die kristallisationsfördernde Wirkung fehlt. Diese Substanzen sind zur Durchführung des erfindungsgemäßen Verfahrens somit nur in Verbindung mit einem geeigneten Kristallisationspromotor geeignet. Hinsichtlich Molybdän ist anzumerken, dass einige Oxidverbindungen dieses Metalls mit hoher Oxidationsstufe (insbesondere MoO3) bei vergleichsweise niedrigen Temperaturen flüchtig sind und sich nachteilig auf die Blasenreduktion auswirken können. Unter reduzierende Bedingungen ist es aber einfach zu gewährleisten, dass metallisches Molybdän in die Innenschicht gelangt, bei dessen Oxidation solche Oxide oder Nitride entstehen, die bei der Temperatur der Siliziumschmelze fest sind.
  • Beim Einbringen von TiO2 unter den reduzierenden Bedingungen des Lichtbogenschmelzens wurde eine blasenreduzierende Wirkung beobachtet, die auf die Bildung von Suboxiden des TiO2 zurückzuführen ist. Außerdem zeigt sich eine geringfügige Cristobalitbildung, von der aber zu erwarten ist, dass sie durch höhere TiO2-Dotierungen bei der Herstellung der Innenschicht verstärkt werden kann.
  • Beispiel 2:
  • Zur Herstellung einer Innenschicht bei einem Quarzglastiegel wird SiO2-Körnung mit 0,5 Gew.-% eines BaTiO3-Pulvers vermischt und aus der Mischung - wie in Beispiel 1 anhand von SiO2-Körnung beschrieben - mittels des sogenannten "Einstreuverfahrens" eine transparente Innenschicht unter Einsatz eines Lichtbogens erzeugt. Auch diese Innenschicht erstreckt sich über den gesamten Tiegelbasiskörper und hat eine Dicke von 3 mm.
  • Die Verbindung BaTiO3 besteht aus einer die Kristallisation fördernden Komponente, nämlich dem Barium-Anteil, und einer Komponente mit blasenreduzierender Wirkung, nämlich dem Titanat-Anteil (TiO3), wobei sich diese Wirkung erst beim Herstellen der Innenschicht durch das Einbringen in die Innenschicht unter reduzierenden Bedingungen ergibt. Durch den Lichtbogen wird der TiO3-Anteil reduziert.
  • Die so erzeugte Innenschicht wurde einem Kristallisationstest unterzogen, wobei die Temperaturbedingungen der Aufschmelzphase zu Beginn der Kristallzucht simuliert werden. Dabei wurde eine sehr ausgeprägte Kristallisation der Innenschicht gefunden, die die Ermittlung der Wirkung auf das Blasenwachstum erschwerte. Soweit unter diesen Bedingungen messbar fand kein wesentliches Blasenwachstum statt. Die Konzentration an BaTiO3 hat sich jedoch als unnötig hoch erwiesen.
  • Beispiel 3:
  • Daher wurde in einem weiteren Versuch zur Herstellung einer Innenschicht bei einem Quarzglastiegel die eingesetzte SiO2-Körnung lediglich mit 0,01 mol-% (etwa 0,05 Gew.-%) eines BaTiO3-Pulvers vermischt und aus der Mischung - wie in Beispiel 2 anhand von SiO2-Körnung beschrieben - mittels des sogenannten "Einstreuverfahrens" eine transparente Innenschicht unter Einsatz eines Lichtbogens erzeugt. Auch diese Innenschicht erstreckt sich über den gesamten Tiegelbasiskörper und hat eine Dicke von 3 mm.
  • Die so erzeugte Innenschicht wurde einem Kristallisationstest unterzogen. Dabei wurde eine nahezu vergleichbare Kristallisation der Innenschicht gefunden, die qualitativ als optimal eingestuft werden konnte.
  • Beispiel 4:
  • Zur Herstellung einer Innenschicht bei einem Quarzglastiegel wird SiO2-Körnung mit 0,005 mol-% eines BaWO4-Pulvers vermischt und aus der Mischung - wie in Beispiel 1 anhand von SiO2-Körnung beschrieben - mittels des sogenannten "Einstreuverfahrens" eine transparente Innenschicht unter Einsatz eines Lichtbogens erzeugt. Auch diese Innenschicht erstreckt sich über den gesamten Tiegelbasiskörper und hat eine Dicke von 3 mm.
  • Die Verbindung BaWO4 besteht aus einer die Kristallisation fördernden Komponente, nämlich dem Barium-Anteil, und einer Komponente mit blasenreduzierender Wirkung, nämlich dem Wolframat-Anteil (WO4), wobei sich diese Wirkung erst beim Herstellen der Innenschicht durch das Einbringen in die Innenschicht unter reduzierenden Bedingungen ergibt. Durch den Lichtbogen wird der WO4-Anteil reduziert.
  • Die so erzeugte Innenschicht wurde einem Kristallisationstest unterzogen. Dabei wurde eine vergleichbare Kristallisation der Innenschicht wie in Beispiel 3 gefunden. Es ergab sich ein deutlich geringes Blasenwachstum als bei der Vergleichsprobe.
  • Beispiel 5:
  • Zur Herstellung einer Innenschicht bei einem Quarzglastiegel wird SiO2-Körnung mit 0,01 mol-% eines TiSi2-Pulvers vermischt und aus der Mischung - wie in Beispiel 1 anhand von SiO2-Körnung beschrieben - mittels des sogenannten "Einstreuverfahrens" eine transparente Innenschicht unter Einsatz eines Lichtbogens erzeugt. Auch diese Innenschicht erstreckt sich über den gesamten Tiegelbasiskörper und hat eine Dicke von 3 mm.
  • Die so erzeugte Innenschicht wurde einem "Vacuum- Bake-Test" unterzogen. Dabei wurde eine deutliche Verringerung des Blasenwachstums gefunden.
  • Beispiel 6:
  • Es wird ein Tiegelbasiskörper nach dem eingangs beschriebenen Verfahren hergestellt. Kristalline Körnung aus natürlichem Quarz mit einer Korngröße im Bereich von 90 µm bis 315 µm wird mittels Heißchlorierung gereinigt und mit 0,01 mol-% (etwa 0,05 Gew.-%) BaTiO3-Körnung mit einem ähnlichen Korngrößenspektrum vermischt. Die Mischung wird in eine Metallform eingefüllt, die um ihre Längsachse rotiert. Unter der Wirkung der Zentrifugalkraft und Zuhilfenahme einer Schablone wird aus der Schüttung an der Innenwandung der Metallform eine rotationssymmetrische, gleichmäßig dicke und homogen mit BaTiO3 dotierte Quarzkörnungs-Schicht erzeugt. Auf der Innenwandung der Quarzkörnungs-Schicht wird anschließend durch "Lichtbogenschmelzen" eine transparente Innenschicht gemäß Beispiel 3. erzeugt. Die reduzierend wirkende Atmosphäre (CO-Bildung) bewirkt eine Reduzierung des Titanats zu Suboxiden von TiO3, und zwar sowohl in der Innenschicht als auch in der Quarzkörnungs-Schicht. Der Bereich der Quarzkörnungs-Schicht bildet im Quarzglastiegel den "Tiegelbasiskörper".
  • Auf diese Weise wird ein Quarzglastiegel erhalten, dessen gesamte Wandung (Tiegelbasiskörper und Innenschicht) beim bestimmungsgemäßen Einsatz unter verminderter Blasenbildung kristallisiert.

Claims (17)

  1. Verfahren zur Herstellung eines Quarzglastiegels zum Einsatz in einem Siliciumkristall-Ziehprozess nach dem Czochralski-Verfahren, in dem auf einem Tiegelbasiskörper aus Quarzglas mindestens teilweise eine Innenschicht aus SiO2 unter Einsatz eines Lichtbogenschmeizverfahrens aufgeschmolzen wird, die beim bestimmungsgemäßen Einsatz des Quarzglastiegels mit einer Metallschmelze in Kontakt ist, und in welcher dabei unter Einsatz eines Kristallisationspromotors eine Cristobalitbildung herbeigeführt wird, dadurch gekennzeichnet, dass in die Innenschicht der Kristallisationspromotor und eine während des Ziehprozesses mit gasfömigem Sauerstoff unter Bildung eines aufoxidierten Feststoffes reagierende reduzierend wirkende Substanz eingebracht werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass mindestens ein Teil des Kristallisationspromotors gleichzeitig zur Bildung der reduzierend wirkenden Substanz in die Innenschicht eingebracht wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass durch Oxidation der reduzierend wirkenden Substanz solche Sauerstoff- oder Stickstoffverbindungen gebildet werden, die bis zu einer Temperatur von mindestens 1450 °C als Feststoff vorliegen.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die reduzierende Wirkung der Substanz durch reduzierende Bedingungen beim Herstellen der Innenschicht eingestellt wird.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Innenschicht durch Lichtbogenschmelzen unter Einsatz mindestens einer Graphitelektrode hergestellt wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die reduzierend wirkende Substanz aus einer Ausgangssubstanz gebildet wird, die eines oder mehrere der Elemente Titan, Wolfram, Molybdän, Silizium, Zirkonium oder eine Verbindung dieser Elemente - bevorzugt eine Erdalkalimetallverbindung dieser Elemente - enthält.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Innenschicht des Quarzglastiegels durch Lichtbogenschmelzen erzeugt wird, indem in einen Lichtbogen eingebrachtes Einstreumaterial gegen die Innenwandung des Tiegelbasiskörpers geschleudert und dort aufgeschmolzen wird, und dass als Ausgangssubstanz für die reduzierend wirkende Substanz Bariumtitanat oder Bariumzirkonat in einer Konzentration zwischen 0,003 mol-% bis 0,02 mol-% im Einstreumaterial eingesetzt wird.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass Bariumtitanat oder Bariumzirkonat in einer Konzentration zwischen 0,005 mol-% bis 0,01 mol-% eingesetzt wird.
  9. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass als reduzierend wirkende Substanz Titansilizid und/oder Wolframsilizid in einer Konzentration zwischen 0,002 mol-% bis 0,5 mol-% eingesetzt wird.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass Titansilizid oder Wolframsilizid in einer Konzentration zwischen 0,004 mol-% bis 0,4 mol-% eingesetzt werden.
  11. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als reduzierend wirkende Substanzen Oxide oder oxidische Verbindungen, insbesondere Ferrate, Wolframate, Molybdate, Nickelate, Vanadate, Niobate, Tantalate in nicht vollständig aufoxidierter Form eingesetzt werden.
  12. Verfahren nach einem der vorhergehenden Verfahrensansprüche, dadurch gekennzeichnet, dass die Innenschicht mittels SiO2-Körnung erzeugt wird, die die reduzierend wirkende Substanz oder einen Einsatzstoff zur Bildung der reduzierend wirkenden Substanz in Form eines Dotierstoffs enthält.
  13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass gleichzeitig mehrere reduzierend wirkende Substanzen mit unterschiedlicher chemischer Zusarrimensetzung in die Innenschicht eingebracht werden.
  14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in der Innenschicht ein Konzentrationsgradient der reduzierend wirkenden Substanz eingestellt wird.
  15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Kristallisationspromotor Al2O3 in einer Konzentration zwischen 0,15 und 0,5 mol-%, vorzugsweise zwischen 0,2 und 0,3 mol-% eingesetzt wird.
  16. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kristallisationspromotor auch in den Tiegelbasiskörper eingebracht wird.
  17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass die reduzierend wirkende Substanz auch in den Tiegelbasiskörper eingebracht wird.
EP02748301A 2001-03-08 2002-03-05 Verfahren zur herstellung eines quarzglastiegels Expired - Lifetime EP1370495B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10111405 2001-03-08
DE10111405 2001-03-08
DE10139648A DE10139648B4 (de) 2001-03-08 2001-08-11 Verfahren zur Herstellung eines Quarzglastiegels
DE10139648 2001-08-11
PCT/EP2002/002395 WO2002070414A1 (de) 2001-03-08 2002-03-05 Verfahren zur herstellung eines quarzglastiegels

Publications (2)

Publication Number Publication Date
EP1370495A1 EP1370495A1 (de) 2003-12-17
EP1370495B1 true EP1370495B1 (de) 2006-11-15

Family

ID=26008726

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02748301A Expired - Lifetime EP1370495B1 (de) 2001-03-08 2002-03-05 Verfahren zur herstellung eines quarzglastiegels

Country Status (6)

Country Link
EP (1) EP1370495B1 (de)
JP (1) JP4307076B2 (de)
CN (1) CN1313399C (de)
DE (1) DE50208706D1 (de)
NO (1) NO20033920D0 (de)
WO (1) WO2002070414A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030012899A1 (en) * 2001-07-16 2003-01-16 Heraeus Shin-Etsu America Doped silica glass crucible for making a silicon ingot
JP4288646B2 (ja) * 2001-10-16 2009-07-01 ジャパンスーパークォーツ株式会社 石英ガラスルツボの表面改質方法と表面改質ルツボ
US6875515B2 (en) 2002-05-10 2005-04-05 General Electric Company Fused quartz article having controlled devitrification
CN102453956B (zh) * 2010-10-27 2016-03-23 杭州先进石英材料有限公司 一种石英玻璃坩埚及其制备方法
CN102557693B (zh) * 2012-03-06 2013-10-09 江苏有能光电科技有限公司 一种制备坩埚的复合材料及其用途
CN102677166B (zh) * 2012-06-08 2015-06-03 常州天合光能有限公司 一种多晶硅铸锭用梯度坩埚的制备方法
JP6681269B2 (ja) * 2016-05-19 2020-04-15 クアーズテック株式会社 石英ガラスルツボ
EP3428132B1 (de) 2017-07-10 2023-08-30 Heraeus Quarzglas GmbH & Co. KG Quarzglasbauteil mit hoher thermischer stabilität, halbzeug dafür und verfahren zur herstellung desselben
CN109267147A (zh) * 2018-11-29 2019-01-25 内蒙古中环光伏材料有限公司 一种石英坩埚及其采用石英坩埚拉制硅单晶的方法
CN110592663A (zh) * 2019-10-12 2019-12-20 内蒙古中环光伏材料有限公司 一种满足拉制多颗单晶的石英坩埚使用工艺
DE102020000701A1 (de) * 2020-02-03 2021-08-05 Siltronic Ag Quarzglastiegel zur Herstellung von Siliciumkristallen und Verfahren zur Herstellung von Quarzglastiegel
CN113370591B (zh) * 2021-07-12 2022-12-23 成都东骏激光股份有限公司 一种高温挥发抑制装置与方法以及装置的应用
CN113832537B (zh) * 2021-09-30 2022-08-26 西安奕斯伟材料科技有限公司 石英坩埚及拉晶炉
CN115321969B (zh) * 2022-08-30 2023-03-31 连云港桃盛熔融石英有限公司 一种熔融石英陶瓷坩埚的制作方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4102666A (en) * 1968-02-22 1978-07-25 Heraeus-Schott Quarzschmelze Gmbh Method of surface crystallizing quartz
US5389582A (en) * 1985-11-06 1995-02-14 Loxley; Ted A. Cristobalite reinforcement of quartz glass
CN1163867A (zh) * 1996-01-22 1997-11-05 Memc电子材料有限公司 恰克拉斯基法硅晶体生长系统的快速冷却
EP0911429A1 (de) * 1997-09-30 1999-04-28 Heraeus Quarzglas GmbH Quarzglastiegel zum Herstellen Siliciumeinkristall sowie Verfahren zu seiner Herstellung
DE10041582B4 (de) * 2000-08-24 2007-01-18 Heraeus Quarzglas Gmbh & Co. Kg Quarzglastiegel sowie Verfahren zur Herstellung desselben

Also Published As

Publication number Publication date
NO20033920L (no) 2003-09-04
EP1370495A1 (de) 2003-12-17
CN1522230A (zh) 2004-08-18
CN1313399C (zh) 2007-05-02
DE50208706D1 (de) 2006-12-28
JP4307076B2 (ja) 2009-08-05
NO20033920D0 (no) 2003-09-04
JP2004521851A (ja) 2004-07-22
WO2002070414A1 (de) 2002-09-12

Similar Documents

Publication Publication Date Title
EP1497484B1 (de) Quarzglastiegel und verfahren zur herstellung desselben
DE10139648B4 (de) Verfahren zur Herstellung eines Quarzglastiegels
EP1370495B1 (de) Verfahren zur herstellung eines quarzglastiegels
DE19962449C2 (de) Quarzglastiegel und Verfahren für seine Herstellung
DE60211289T2 (de) Quarzglastiegel mit innerer Kristallisierungsschicht und Verfahren zu seiner Herstellung
DE102011050767B4 (de) Züchtungsverfahren für einen Einkristall-Szintillator-Werkstoff auf der Basis von Oxysilikaten und nach dem Verfahren hergestellter Einkirstall-Szintillator-Werkstoff
DE19710672C2 (de) Quarzglas-Tiegel zum Ziehen von Einkristall und Verfahren zu seiner Herstellung
DE60220112T2 (de) Verfahren und Zwischenprodukt zur Herstellung eines Tiegels aus Quarzglas
DE102004038602B3 (de) Elektrogeschmolzenes, synthetisches Quarzglas, insbesondere für den Einsatz in der Lampen- und in der Halbleiterfertigung und Verfahren zur Herstellung desselben
DE60005659T2 (de) Mit barium dotierte siliziumschmelze zur verwendung in einem kristallzüchtungsverfahren
DE10231865B4 (de) Quarzglastiegel und Verfahren zur Herstellung eines derartigen Quarzglastiegels
DE112004002325T5 (de) Quarztiegel mit reduziertem Blasengehalt und Verfahren zu seiner Herstellung
DE2225234A1 (de) Glaskeramische Materialien und Ver fahren zu ihrer Herstellung
DE69506600T2 (de) Verfahren und Tiegel zur Herstellung eines Verbundhalbleiter-Kristalles
DE69508473T2 (de) Verfahren zur Herstellung von Silizium-Einkristall und Tiegel aus geschmolzenem Silika dafür
DE10156137B4 (de) Verfahren zur Herstellung eines Kieselglastiegels mit kristallinen Bereichen aus einem porösen Kieselglasgrünkörper
DE69414652T2 (de) Verbessertes Verfahren zur Bildung von Siliconkristallen
EP3428132B1 (de) Quarzglasbauteil mit hoher thermischer stabilität, halbzeug dafür und verfahren zur herstellung desselben
DE69011806T2 (de) Gesinterter Glas-Keramikkörper und Verfahren.
DE10041582B4 (de) Quarzglastiegel sowie Verfahren zur Herstellung desselben
DE60019663T2 (de) Hochreine anorganische Faser, daraus hergestellte Formkörper und Verfahren zu deren Herstellung
EP1076036A1 (de) Verfahren zur Herstellung von Produkten auf der Basis von kubisch stabilisiertem Zirkonoxid, Produkte erhältlich nach diesem Verfahren und deren Verwendung
EP0974559A2 (de) Komposit-Lotglas mit niedriger Aufschmelztemperatur, ein Füllstoff hierfür, sowie deren Verwendung
DE19514412A1 (de) Doppeltiegel zum Aufwachsen eines Silizium-Einkristalls
EP2982780B1 (de) Verfahren zur herstellung eines siliziumblocks, zur verfahrensdurchführung geeignete kokille aus quarzglas oder quarzgut sowie verfahren für deren herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030904

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): DE FI FR GB IT

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FI FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061115

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50208706

Country of ref document: DE

Date of ref document: 20061228

Kind code of ref document: P

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20061115

EN Fr: translation not filed
EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100327

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110305

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140417

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50208706

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151001