EP1368714B1 - Estimation method for a variable of a process of process manufacturing using a reference vector method - Google Patents

Estimation method for a variable of a process of process manufacturing using a reference vector method Download PDF

Info

Publication number
EP1368714B1
EP1368714B1 EP02729789A EP02729789A EP1368714B1 EP 1368714 B1 EP1368714 B1 EP 1368714B1 EP 02729789 A EP02729789 A EP 02729789A EP 02729789 A EP02729789 A EP 02729789A EP 1368714 B1 EP1368714 B1 EP 1368714B1
Authority
EP
European Patent Office
Prior art keywords
model
estimation method
vector
variable
basis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02729789A
Other languages
German (de)
French (fr)
Other versions
EP1368714A2 (en
Inventor
Johannes Reinschke
Marco Miele
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1368714A2 publication Critical patent/EP1368714A2/en
Application granted granted Critical
Publication of EP1368714B1 publication Critical patent/EP1368714B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby

Definitions

  • Such estimation methods are e.g. based on neuronal Networks, generally known.
  • An example is the DE 197 27 821 A1.
  • the estimation methods previously used in the raw materials industry like neural networks or classic regression methods have problems.
  • the training effort often scales unfavorable for the model with the dimension of the input vectors. In the worst case, the training effort increases exponentially on.
  • the training process is often based on one nonlinear optimization method. This can cause that the global optimum may not be found and / or the computing time requirement becomes too large.
  • the object of the present invention is a To create an estimation method for an empirical model that reliable even with a higher-dimensional input variable vector and can be trained with acceptable computing effort.
  • the problem is solved in that the model is a support vector model is.
  • suitable Training procedures for the model are "denomination methods” (English “chunking methods”), e.g. those according to Joachims or the “Sequential Minimal Optimization” (English “Sequential Minimal Optimization ”) according to Platt. Because these processes work reliable and fast.
  • Support vector methods and support vector models are e.g. Tie monographs
  • Models are also used in the literature as regression methods referred to, the second mentioned as classification or pattern recognition process.
  • Regression methods are usually used to predict physical process variables within process automation (Process control and regulation) of a plant, during classification or pattern recognition processes e.g. serve to detect faults in the system.
  • the online computing effort is minimal.
  • the symmetric core functions can e.g. B. Gaussian radial Basic functions.
  • the model can be adjusted during times in which the computing power of the used to adapt Calculator is not otherwise needed.
  • the process can be of any nature.
  • it be a coal and ore processing process, a smelting process, a steelmaking process, a casting process, a rolling process and a pulp and paper production or processing process.
  • process 1 for a process 1 of the raw materials industry a process size of process 1 can be estimated.
  • the process 1 can be any process 1 in the raw materials industry his.
  • a smelting process is shown schematically in FIG 1a, a steel making process 1b, a casting process 1c and a rolling process 1d.
  • Processes in question especially a preparation process for Coal or ore and a production or processing process for pulp or paper.
  • a certain is first used to estimate the process size online kind of a support vector model 2 together with one Training method selected. It should be noted that the training method in terms of computing time and reliability is online-capable, i.e. on a process automation computer 2 'can be used for process 1. Because on the process automation computer 2 'of the system is the estimation method preferably implemented.
  • a support vector model 2 can e.g. - but not necessarily - that in US-A-5,950, 146 described support vector model according to Vapnik become.
  • a number N of value pairs is collected from the installation on which process 1 is running (or a similar installation).
  • This number N of pairs of values is used for the offline training of a support vector model 2 of the selected type.
  • An empirical support vector model 2 for the dependence of the process variable on the detectable signals is therefore created on the basis of the number N of value pairs.
  • the pre-trained support vector model 2 is then implemented together with the selected online training method on the process automation computer 2 'of the system.
  • a vector of detectable signals x 1 ,..., X n of process 1 is fed to the support vector model 2 as an input variable vector.
  • the support vector model 2 uses the supplied vector to determine an estimated value y * for the process variable during the course of the process 1.
  • the actual value y of the process variable can often also be determined using process 1 (but always only afterwards).
  • This value y is fed together with the input variable vector to the support vector model 2 for online training.
  • the support vector model 2 is then retrained online (ie on the process automation computer 2 ') or adjusted.
  • Model 2 is preferably created and adapted according to a "chunking method” like her z. B. is described by Joachims or as they are called “Sequential Minimal Optimization” (“Sequential Minimal Optimization ”) has been developed by Platt.
  • the model 2 is given a number N of value pairs in a step 3.
  • Each pair of values consists of a vector of detectable signals x 1 i , ..., x n i and a measured value y i corresponding to this vector for the process variable to be estimated. Based on these pairs of values, the model 2 is then trained in a step 4.
  • a vector of detectable signals x 1 ,..., Xn is then input to the support vector model 2 in a step 5.
  • a step 6 it then determines an estimated value y * for the process variable.
  • the actual value y of the process variable is then determined in a step 7.
  • the vector of detectable signals x 1 , ..., x n is buffered together with the value y in a step 8.
  • a query is then made as to whether model 2 should be retrained. Depending on the result of the query, the system either jumps back to step 5 or does a subsequent training of model 2 in step 10.
  • the entire support vector model 2 is a linear combination of these functions k.
  • w j and b are coefficients to be determined by the training process.
  • a constant intermediate quantity is first determined, to which a suitable discretization function, e.g. the signum function is applied.

Abstract

The invention relates to a method according to which a process variable of a process (1) of process manufacturing is estimated during the progression of the process (1) by means of a reference vector model (2). For preliminarily training said model, a number (N) of pairs of values is defined that comprise one vector of detectable signals (x1<i>, , xn<i>) of the process (1) and one measuring variable (y<i>) each for the process variable to be estimated that corresponds to said measured value. At least one further pair of values that is detected by means of the process (1) is defined for online post-training.

Description

Die vorliegende Erfindung betrifft ein Schätzverfahren für eine Prozessgröße eines Prozesses der Grundstoffindustrie,

  • wobei eine Anzahl von Wertepaaren vorgegeben wird,
  • wobei jedes Wertepaar einen Vektor von erfassbaren Signalen des Prozesses und einen mit diesem Vektor korrespondierenden Messwert für die zu schätzende Prozessgröße aufweist,
  • wobei anhand der Anzahl von Wertepaaren ein empirisches Modell für die Abhängigkeit der Prozessgröße von den erfassbaren Signalen erstellt wird,
  • wobei aufgrund des Modells während des Ablaufs des Prozesses anhand mindestens eines weiteren Vektors von erfassbaren Signalen ein Schätzwert für die Prozessgröße ermittelt wird,
  • wobei dem Modell mindestens ein weiteres Wertepaar vorgegeben wird, dessen Vektor während des Prozesses ermittelt worden ist und dessen Messwert nach dem Ermitteln des Vektors ermittelt worden ist,
  • wobei das erstellte Modell anhand des mindestens einen weiteren Wertepaares auf einem Prozessautomatisierungsrechner angepasst wird.
The present invention relates to an estimation method for a process variable of a process in the basic material industry,
  • where a number of pairs of values is specified,
  • wherein each pair of values has a vector of detectable signals of the process and a measured value corresponding to this vector for the process variable to be estimated,
  • an empirical model for the dependence of the process variable on the detectable signals is created on the basis of the number of value pairs,
  • an estimated value for the process variable being determined on the basis of the model during the course of the process using at least one further vector of detectable signals,
  • the model being given at least one further pair of values, the vector of which was determined during the process and the measured value of which was determined after the vector was ascertained,
  • wherein the model created is adapted on the basis of the at least one further pair of values on a process automation computer.

Derartige Schätzverfahren sind, z.B. auf der Basis neuronaler Netze, allgemein bekannt. Beispielhaft wird auf die DE 197 27 821 A1 verwiesen.Such estimation methods are e.g. based on neuronal Networks, generally known. An example is the DE 197 27 821 A1.

Die bislang in der Grundstoffindustrie verwendeten Schätzverfahren wie neuronale Netze oder klassische Regressionsverfahren weisen Probleme auf. Oft skaliert der Trainingsaufwand für das Modell ungünstig mit der Dimension der Eingangsvektoren. Im ungünstigsten Fall steigt der Trainingsaufwand exponentiell an. Häufig beruht das Trainingsverfahren auf einem nichtlinearen Optimierungsverfahren. Dies kann dazu führen, dass das globale Optimum möglicherweise nicht gefunden und/oder der Rechenzeitbedarf zu groß wird.The estimation methods previously used in the raw materials industry like neural networks or classic regression methods have problems. The training effort often scales unfavorable for the model with the dimension of the input vectors. In the worst case, the training effort increases exponentially on. The training process is often based on one nonlinear optimization method. This can cause that the global optimum may not be found and / or the computing time requirement becomes too large.

Diese Problematiken kommen noch mehr zum Tragen, wenn das Modelltraining nicht offline, sondern online erfolgen soll, d.h. auf einem der Rechner der Prozessautomatisierung (Prozesssteuerung bzw. -regelung) der Anlage. Denn für das Training (d.h. das Erstellen bzw. Anpassen des empirischen Modells anhand der Wertepaare) steht online - im Gegensatz zum offline - in der Regel nur eine relativ kurze und klar begrenzte Zeitspanne zur Verfügung. Ferner muss der Trainingsvorgang online absolut zuverlässig ablaufen.These problems come into play even more when the model training not offline, but online, i.e. on one of the process automation computers (process control or control) of the system. Because for training (i.e. creating or adapting the empirical model based on the value pairs) is online - in contrast to offline - usually only a relatively short and clearly limited Period of time available. Furthermore, the training process run absolutely reliably online.

Die Aufgabe der vorliegenden Erfindung besteht darin, ein Schätzverfahren für ein empirisches Modell zu schaffen, das auch bei einem höherdimensionalen Eingangsgrößenvektor zuverlässig und mit akzeptablem Rechenaufwand trainierbar ist.The object of the present invention is a To create an estimation method for an empirical model that reliable even with a higher-dimensional input variable vector and can be trained with acceptable computing effort.

Die Aufgabe wird dadurch gelöst, dass das Modell ein Stützvektormodell ist.The problem is solved in that the model is a support vector model is.

Denn bei Stützvektormethoden steigt der Aufwand zum Trainieren des Modells sowohl bezüglich der Zahl der zum Training verwendeten Ein/Ausgangswertepaare als auch bezüglich der Dimension des Eingangsgrößenvektors nur linear an. Geeignete Trainingsverfahren für das Modell sind "Stückelungsmethoden" (engl. "chunking methods"), z.B die gemäß Joachims oder die "Sequentielle Minimale Optimierung" (engl. "Sequential Minimal Optimisation") gemäß Platt. Denn diese Verfahren arbeiten zuverlässig und schnell.Because with support vector methods, the effort for training increases of the model both in terms of the number of people to train used input / output value pairs as well as regarding the dimension of the input quantity vector only linear. suitable Training procedures for the model are "denomination methods" (English "chunking methods"), e.g. those according to Joachims or the "Sequential Minimal Optimization" (English "Sequential Minimal Optimization ") according to Platt. Because these processes work reliable and fast.

Stützvektormethoden bzw. Stützvektormodelle sind durch die folgenden Eigenschaften charakterisiert:

  • a) Ein Stützvektormodell ist (bis auf einen Offset) eine Linearkombination von symmetrischen Kernfunktionen, die sich mathematisch als Skalarprodukt zweier identischer Funktionen schreiben lassen.
  • b) Die Koeffizienten in der in (a) genannten Linearkombination werden durch Lösen eines konvexen Optimierungsproblems (z.B. eines linearen oder quadratischen Programmierungsproblems) bestimmt.
  • Support vector methods or support vector models are characterized by the following properties:
  • a) A support vector model is (apart from an offset) a linear combination of symmetric core functions that can be mathematically written as a scalar product of two identical functions.
  • b) The coefficients in the linear combination mentioned in (a) are determined by solving a convex optimization problem (eg a linear or quadratic programming problem).
  • Stützvektormethoden und Stützvektormodelle sind z. B. in den MonographienSupport vector methods and support vector models are e.g. Tie monographs

    "Advances in Kernel Methods - Support Vector Learning" von B. Schölkopf, C.J.C. Burges, A.J. Smola, MIT Press, Cambridge (Mass.), London 1999 und"Advances in Kernel Methods - Support Vector Learning" by B. Schölkopf, C.J.C. Burges, A.J. Smola, MIT Press, Cambridge (Mass.), London 1999 and

    "An introduction to Support Vector Machines and other kernelbased learning methods" von N. Cristianini, J. Shawe-Taylor, Cambridge University Press 2000"An introduction to Support Vector Machines and other kernel-based learning methods "by N. Cristianini, J. Shawe-Taylor, Cambridge University Press 2000

    eingehend beschrieben. Darin sind auch die oben genannten Trainingsverfahren gemäß Joachims bzw. Platt dargestellt und weitere Fachliteratur genannt.described in detail. It also includes the above Training procedures according to Joachim and Platt are shown and called further specialist literature.

    Bei der empirischen Modellierung und insbesondere bei Stützvektormethoden unterscheidet man Modelle, bei denen die Ausgangsgröße stetig vom Eingangsgrößenvektor abhängt, und Modelle, bei denen die Ausgangsgröße nur diskrete Werte, insbesondere binäre Werte (also 0 und 1) annehmen kann. Die erstgenannten Modelle werden in der Literatur auch als Regressionsmethoden bezeichnet, die zweitgenannten als Klassifikations- oder Mustererkennungsverfahren.In empirical modeling and especially in support vector methods a distinction is made between models in which the output size depends on the input quantity vector, and models, where the output quantity is only discrete values, in particular can assume binary values (i.e. 0 and 1). The former Models are also used in the literature as regression methods referred to, the second mentioned as classification or pattern recognition process.

    Regressionsmethoden werden in der Regel zur Vorhersage von physikalischen Prozessgrößen innerhalb der Prozessautomatisierung (Prozesssteuerung und -regelung) einer Anlage verwendet, während Klassifikations- bzw. Mustererkennungsverfahren z.B. zur Fehler- bzw. Störungserkennung in der Anlage dienen. Regression methods are usually used to predict physical process variables within process automation (Process control and regulation) of a plant, during classification or pattern recognition processes e.g. serve to detect faults in the system.

    Wenn das Modell analytisch partiell nach den erfassbaren Signalen ableitbar ist, ist der online-Rechenaufwand minimal.If the model is analytically partially based on the detectable signals is derivable, the online computing effort is minimal.

    Die symmetrischen Kernfunktionen können z. B. Gaußsche radiale Basisfunktionen sein.The symmetric core functions can e.g. B. Gaussian radial Basic functions.

    Wenn das mindestens eine weitere Wertepaar zwischengespeichert wird und das Anpassen des Modells anhand des mindestens einen weiteren Wertepaares zu einem späteren Zeitpunkt erfolgt, kann das Anpassen des Modells während Zeiten erfolgen, in denen die Rechenleistung des zum Anpassen eingesetzten Rechners nicht anderweitig benötigt wird.If the at least one other pair of values is cached and adapting the model based on the minimum another pair of values takes place at a later point in time, the model can be adjusted during times in which the computing power of the used to adapt Calculator is not otherwise needed.

    Wenn die Abhängigkeit mehrerer Prozessgrößen von einem Vektor von erfassbaren Signalen durch ein empirisches Modell beschrieben werden soll, so ist ein solches Modell äquivalent zu einer entsprechenden Anzahl von empirischen Modellen, die die Abhängigkeit je einer dieser Prozessgrößen beschreiben.If the dependence of several process variables on one vector of detectable signals described by an empirical model such a model is equivalent to a corresponding number of empirical models that describe the dependency of one of these process variables.

    Der Prozess kann prinzipiell beliebiger Natur sein. Insbesondere kann er ein Kohle- und Erzaufbereitungsprozess, ein Verhüttungsprozess, ein Stahlerzeugungsprozess, ein Gießprozess, ein Walzprozess sowie ein Zellstoff- und Papiererzeugungsoder -verarbeitungsprozess sein.In principle, the process can be of any nature. In particular can it be a coal and ore processing process, a smelting process, a steelmaking process, a casting process, a rolling process and a pulp and paper production or processing process.

    Anhand der nachfolgenden Beschreibung eines Ausführungsbeispiels wird ein Verfahren zur Erstellung online-fähiger empirischer Modelle mittels Stützvektormethoden beschrieben. Dabei zeigen in Prinzipdarstellung

    FIG 1
    eine Anlage der Grundstoffindustrie und
    FIG 2
    ein Ablaufdiagramm.
    The following description of an exemplary embodiment describes a method for creating online-capable empirical models using support vector methods. Show in principle
    FIG. 1
    a plant of the basic material industry and
    FIG 2
    a flow chart.

    Gemäß FIG 1 soll für einen Prozess 1 der Grundstoffindustrie eine Prozessgröße des Prozesses 1 geschätzt werden. Der Prozess 1 kann dabei ein beliebiger Prozess 1 der Grundstoffindustrie sein. Schematisch dargestellt sind in FIG 1 ein Verhüttungsprozess 1a, ein Stahlerzeugungsprozess 1b, ein Gießprozess 1c und ein Walzprozess 1d. Es kommen aber auch andere Prozesse in Frage, insbesondere ein Aufbereitungsprozess für Kohle- oder Erz und ein Erzeugungs- oder Verarbeitungsprozess für Zellstoff oder Papier.1 for a process 1 of the raw materials industry a process size of process 1 can be estimated. The process 1 can be any process 1 in the raw materials industry his. A smelting process is shown schematically in FIG 1a, a steel making process 1b, a casting process 1c and a rolling process 1d. But there are also others Processes in question, especially a preparation process for Coal or ore and a production or processing process for pulp or paper.

    Zur Online-Schätzung der Prozessgröße wird zunächst eine bestimmte Art eines Stützvektormodells 2 zusammen mit einer Trainingsmethode ausgewählt. Dabei muss beachtet werden, dass die Trainingsmethode bezüglich Rechenzeit und Zuverlässigkeit online-fähig ist, d.h. auf einem Prozessautomatisierungsrechner 2' für den Prozess 1 einsetzbar ist. Denn auf dem Prozessautomatisierungsrechner 2' der Anlage ist das Schätzverfahren vorzugsweise implementiert. Als Stützvektormodell 2 kann z.B. - aber nicht notwendigerweise - das in US-A-5,950, 146 beschriebene Stützvektormodell gemäß Vapnik herangezogen werden.A certain is first used to estimate the process size online Kind of a support vector model 2 together with one Training method selected. It should be noted that the training method in terms of computing time and reliability is online-capable, i.e. on a process automation computer 2 'can be used for process 1. Because on the process automation computer 2 'of the system is the estimation method preferably implemented. As a support vector model 2 can e.g. - but not necessarily - that in US-A-5,950, 146 described support vector model according to Vapnik become.

    Ferner wird von der Anlage, auf der der Prozess 1 abläuft, (oder einer ähnlichen Anlage) eine Anzahl N von Wertepaaren gesammelt. Die Wertepaare bestehen jeweils aus einem Vektor von erfassbaren Signalen x1 i, ..., xn i, von denen die zu schätzende Prozessgröße abhängt, und einem zu diesem Vektor korrespondierenden Messwert yi für die zu schätzende Prozessgröße (i = 1, ..., N). Diese Anzahl N von Wertepaaren wird zum Offline-Training eines Stützvektormodells 2 der gewählten Art verwendet. Es wird also anhand der Anzahl N von Wertepaaren ein empirisches Stützvektormodell 2 für die Abhängigkeit der Prozessgröße von den erfassbaren Signalen erstellt. Das derart vortrainierte Stützvektormodell 2 wird dann zusammen mit der gewählten Online-Trainingsmethode auf dem Prozessautomatisierungsrechner 2' der Anlage implementiert.Furthermore, a number N of value pairs is collected from the installation on which process 1 is running (or a similar installation). The value pairs each consist of a vector of detectable signals x 1 i , ..., x n i , on which the process variable to be estimated depends, and a measured value y i corresponding to this vector for the process variable to be estimated (i = 1,. .., N). This number N of pairs of values is used for the offline training of a support vector model 2 of the selected type. An empirical support vector model 2 for the dependence of the process variable on the detectable signals is therefore created on the basis of the number N of value pairs. The pre-trained support vector model 2 is then implemented together with the selected online training method on the process automation computer 2 'of the system.

    Zur Online-Schätzung der Prozessgröße wird ein Vektor von erfassbaren Signalen x1, ..., xn des Prozesses 1 dem Stützvektormodell 2 als Eingangsgrößenvektor zugeführt. Das Stützvektormodell 2 ermittelt dann anhand des zugeführten Vektors während des Ablaufs des Prozesses 1 einen Schätzwert y* für die Prozessgröße.For online estimation of the process variable, a vector of detectable signals x 1 ,..., X n of process 1 is fed to the support vector model 2 as an input variable vector. The support vector model 2 then uses the supplied vector to determine an estimated value y * for the process variable during the course of the process 1.

    Der tatsächliche Wert y der Prozessgröße kann häufig ebenfalls anhand des Prozesses 1 (allerdings immer erst im nachhinein) ermittelt werden. Dieser Wert y wird zusammen mit dem Eingangsgrößenvektor dem Stützvektormodell 2 zum online-Training zugeführt. Anhand des aus Eingangsgrößenvektor und Prozessgröße gebildeten Wertepaares, also einerseits des Vektors von erfassbaren Signalen x1, ..., xn sowie andererseits des korrespondierenden Messwerts y für die Prozessgröße, wird das Stützvektormodell 2 dann online (d.h. auf dem Prozessautomatisierungsrechner 2') nachtrainiert bzw. angepasst.The actual value y of the process variable can often also be determined using process 1 (but always only afterwards). This value y is fed together with the input variable vector to the support vector model 2 for online training. Using the value pair formed from the input variable vector and the process variable, i.e. on the one hand the vector of detectable signals x 1 , ..., x n and on the other hand the corresponding measured value y for the process variable, the support vector model 2 is then retrained online (ie on the process automation computer 2 ') or adjusted.

    Das Erstellen und Anpassen des Modells 2 erfolgt vorzugsweise gemäß einer "Stückelungsmethode" ("chunking method") wie sie z. B. von Joachims beschrieben ist oder wie sie als sogenannte "Sequentielle Minimale Optimierung" ("Sequential Minimal Optimisation") von Platt entwickelt worden ist.Model 2 is preferably created and adapted according to a "chunking method" like her z. B. is described by Joachims or as they are called "Sequential Minimal Optimization" ("Sequential Minimal Optimization ") has been developed by Platt.

    Bei hinreichender freier Rechenkapazität des Prozessautomatisierungsrechners 2' kann das Anpassen des Modells 2 unmittelbar nach dem Ermitteln des neuen Wertepaares erfolgen. In der Regel wird es aber sinnvoller sein, das weitere Wertepaar - ggf. mehrere weitere Wertepaare - zwischenzuspeichern und das Anpassen des Modells 2 zu einem späteren Zeitpunkt mit den bis dahin akkumulierten Wertepaaren vorzunehmen.With sufficient free computing capacity of the process automation computer 2 'can adapt the model 2 immediately after determining the new pair of values. In the As a rule, however, it will make more sense to add the if necessary, several further pairs of values - to buffer and that Customize model 2 later with the up to then accumulated pairs of values.

    Der obenstehende Ablauf auf dem Prozessautomatisierungsrechners 2' wird nachfolgend in Verbindung mit FIG 2 nochmals erläutert.The process above on the process automation computer 2 'is explained again in connection with FIG 2.

    Gemäß FIG 2 wird dem Modell 2 in einem Schritt 3 eine Anzahl N von Wertepaaren vorgegeben. Jedes Wertepaar besteht dabei aus einem Vektor von erfassbaren Signalen x1 i, ..., xn i und einem zu diesem Vektor korrespondierenden Messwert yi für die zu schätzende Prozessgröße. Anhand dieser Wertepaare wird dann in einem Schritt 4 das Modell 2 trainiert.According to FIG. 2, the model 2 is given a number N of value pairs in a step 3. Each pair of values consists of a vector of detectable signals x 1 i , ..., x n i and a measured value y i corresponding to this vector for the process variable to be estimated. Based on these pairs of values, the model 2 is then trained in a step 4.

    Sodann wird in einem Schritt 5 dem Stützvektormodell 2 ein Vektor von erfassbaren Signalen x1, ..., Xn eingegeben. Es ermittelt daraufhin in einem Schritt 6 einen Schätzwert y* für die Prozessgröße. Sodann wird in einem Schritt 7 der tatsächliche Wert y der Prozessgröße ermittelt. Der Vektor von erfassbaren Signalen x1, ..., xn wird zusammen mit dem Wert y in einem Schritt 8 zwischengespeichert. Dann wird in einem Schritt 9 abgefragt, ob ein Nachtrainieren des Modells 2 erfolgen soll. Je nach dem Ergebnis der Abfrage wird entweder zum Schritt 5 zurückgesprungen oder in einem Schritt 10 ein Nachtraining des Modells 2 vorgenommen.A vector of detectable signals x 1 ,..., Xn is then input to the support vector model 2 in a step 5. In a step 6, it then determines an estimated value y * for the process variable. The actual value y of the process variable is then determined in a step 7. The vector of detectable signals x 1 , ..., x n is buffered together with the value y in a step 8. In a step 9, a query is then made as to whether model 2 should be retrained. Depending on the result of the query, the system either jumps back to step 5 or does a subsequent training of model 2 in step 10.

    Stützvektormodelle zur Modellierung stetiger Prozessgrößen sind z. B. von der Form

    Figure 00070001
    k ist eine symmetrische Kernfunktion, die sich mathematisch als Skalarprodukt zweier identischer Funktionen schreiben lässt. Als Kernfunktionen k kommen z. B. Gaußsche radiale Basisfunktionen k(xi, xj) = exp(-|xi-xj|2/c) in Frage. Alternativen, die anwendungsabhängig evtl. günstiger sein können, sind in den beiden genannten Monographien angegeben.Support vector models for modeling continuous process variables are e.g. B. from the shape
    Figure 00070001
    k is a symmetric core function that can be mathematically written as a scalar product of two identical functions. As core functions k come z. B. Gaussian radial basis functions k (x i , x j ) = exp (- | x i -x j | 2 / c) in question. Alternatives that may be cheaper depending on the application are given in the two monographs mentioned.

    Das gesamte Stützvektormodell 2 ist eine Linearkombination dieser Funktionen k. xj (j = 1, ..., N) sind die Eingangsvektoren der zum Training verwendeten Wertepaare. wj und b sind vom Trainingsverfahren zu bestimmende Koeffizienten.The entire support vector model 2 is a linear combination of these functions k. x j (j = 1, ..., N) are the input vectors of the value pairs used for training. w j and b are coefficients to be determined by the training process.

    Die Kernfunktionen k sind analytisch gegebene, in der Regel mehrfach stetig differenzierbare Funktionen. Es ist daher möglich, die partiellen Ableitungen nach allen Komponenten des Eingangsgrößenvektors x in analytischer Form zu bilden. Dadurch, dass das gesamte Stützvektormodell 2 eine Linearkombination dieser Kernfunktionen k ist, lassen sich somit vorab auch sog. Modellsensitivitäten (= partielle Ableitungen der zu schätzenden Prozessgröße bzw. des Modells 2 nach den erfassbaren Signalen x1, ..., xn) analytisch bilden und im Stützvektormodell 2 hinterlegen. Analytisch hinterlegte Modellsensivitäten haben gegenüber numerisch bestimmten Sensitivitäten den Vorteil einer höheren Genauigkeit bei in der Regel geringerem Rechenaufwand.The core functions k are analytically given functions, which are generally continuously differentiable. It is therefore possible to form the partial derivatives according to all components of the input quantity vector x in an analytical form. Because the entire support vector model 2 is a linear combination of these core functions k, so-called model sensitivities (= partial derivations of the process variable to be estimated or of model 2 according to the detectable signals x 1 , ..., x n ) can also be analyzed beforehand form and store in the support vector model 2. Compared to numerically determined sensitivities, model sensitivities stored analytically have the advantage of higher accuracy with generally less computation effort.

    Falls nicht eine kontinuierliche, sondern eine diskrete Prozessgröße modelliert werden soll, wird in der obenstehend beschriebenen Weise zunächst eine stetige Zwischengröße ermittelt, auf die eine geeignete Diskretisierungsfunktion, z.B. die Signumfunktion, angewendet wird.If not a continuous, but a discrete process variable to be modeled is described in the above A constant intermediate quantity is first determined, to which a suitable discretization function, e.g. the signum function is applied.

    Obenstehend wurde ein Schätzverfahren für eine einzelne skalare Prozessgröße beschrieben. Wenn die Abhängigkeit mehrerer Prozessgrößen von einem Vektor von erfassbaren Signalen durch ein empirisches Modell 2 beschrieben werden soll, so ist ein solches Modell 2 äquivalent zu einer entsprechenden Anzahl von empirischen Modellen, die die Abhängigkeit je einer dieser Prozessgrößen beschreiben.Above was an estimation procedure for a single scalar Process size described. If the dependence of several Process variables from a vector of detectable signals an empirical model 2 is to be described, then is a such model 2 equivalent to a corresponding number of empirical models that dependence one of these Describe process variables.

    Claims (10)

    1. Estimation method for a process variable in a process (1) in the process manufacturing industry,
      with a number (N) of value pairs being predetermined,
      with each value pair having a vector of detectable signals (x1 i, ..., xn I) for the process (1) and having a measured value (yi) which corresponds to this vector, for the process variable to be estimated,
      with an empirical model (2) for the relationship between the process variable and the detectable signals (x1, ..., xn) being produced on the basis of the number (N) of value pairs,
      with an estimated value (y*) for the process variable being determined on the basis of the model (2) while the process (1) is being carried out, on the basis of at least one further vector of detectable signals (x1, ..., xn),
      with at least one further value pair being predetermined for the model (2), whose vector has been determined during the process (1) and whose measured value (y) has been determined after the determination of the vector,
      with the model (2) that is produced being matched to a process automation computer on the basis of the at least one further value pair, and
      with the model (2) being a reference vector model (2).
    2. Estimation method according to Claim 1, characterized in that the process variable can assume any discrete values.
    3. Estimation method according to Claim 1, characterized in that the process variable can assume continuous values.
    4. Estimation method according to Claim 3, characterized in that the model (2) can be derived analytically, partially on the basis of the detectable signals (x1, ..., xn) .
    5. Estimation method according to Claim 3 or 4, characterized in that the reference vector model (2) contains Gaussian radial basic functions as symmetrical core functions (k).
    6. Estimation method according to one of the above claims, characterized in that the production and matching of the model (2) are carried out using a chunking method.
    7. Estimation method according to Claim 6, characterized in that the chunking method is in the form of sequential minimal optimization.
    8. Estimation method according to one of the above claims, characterized in that the at least one further value pair is temporarily stored, and in that the matching of the model (2) is carried out on the basis of the at least one further value pair at a later time.
    9. Estimation method for two or more process variables in a process in the process manufacturing industry, characterized in that an estimation method according to one of the above claims is used for each of the process variables.
    10. Estimation method according to one of the above claims, characterized in that the process (1) is a carbon and ore conditioning process, a smelting process (1a), a steel production process (1b), a casting process (1c), a rolling process (1d) or a pulp and paper production or processing process.
    EP02729789A 2001-03-14 2002-03-13 Estimation method for a variable of a process of process manufacturing using a reference vector method Expired - Lifetime EP1368714B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE10112267A DE10112267A1 (en) 2001-03-14 2001-03-14 Estimation method for a size of a process in the raw materials industry using a support vector method
    DE10112267 2001-03-14
    PCT/DE2002/000899 WO2002073323A2 (en) 2001-03-14 2002-03-13 Estimation method for a variable of a process of process manufacturing using a reference vector method

    Publications (2)

    Publication Number Publication Date
    EP1368714A2 EP1368714A2 (en) 2003-12-10
    EP1368714B1 true EP1368714B1 (en) 2004-11-10

    Family

    ID=7677437

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP02729789A Expired - Lifetime EP1368714B1 (en) 2001-03-14 2002-03-13 Estimation method for a variable of a process of process manufacturing using a reference vector method

    Country Status (4)

    Country Link
    EP (1) EP1368714B1 (en)
    AT (1) ATE282221T1 (en)
    DE (2) DE10112267A1 (en)
    WO (1) WO2002073323A2 (en)

    Families Citing this family (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10327663A1 (en) * 2003-06-20 2005-01-05 Abb Patent Gmbh System and method for optimizing control of the thickness quality in a rolling process

    Family Cites Families (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US619360A (en) * 1899-02-14 Insulating alternating-current circuits
    DE4130164A1 (en) * 1991-09-11 1993-03-18 Bodenseewerk Geraetetech CONTROLLER, ESPECIALLY FLIGHT CONTROLLER
    DE4338608B4 (en) * 1993-11-11 2005-10-06 Siemens Ag Method and device for managing a process in a controlled system
    DE29617200U1 (en) * 1996-10-02 1997-11-06 Siemens Ag Device for predictive diagnosis of the current quality of the technical work result of a technical system, in particular the current quality of the welding spots of a spot welding robot
    US5950146A (en) * 1996-10-04 1999-09-07 At & T Corp. Support vector method for function estimation
    DE19641432C2 (en) * 1996-10-08 2000-01-05 Siemens Ag Method and device for the pre-calculation of previously unknown parameters of an industrial process
    US6112195A (en) * 1997-03-27 2000-08-29 Lucent Technologies Inc. Eliminating invariances by preprocessing for kernel-based methods
    DE19727821A1 (en) * 1997-06-30 1999-01-21 Siemens Ag Controlling and presetting roll stand or rolling section
    US5991525A (en) * 1997-08-22 1999-11-23 Voyan Technology Method for real-time nonlinear system state estimation and control
    DE19855873A1 (en) * 1998-12-03 2000-06-15 Siemens Ag Process and arrangement for the design of a technical system

    Also Published As

    Publication number Publication date
    EP1368714A2 (en) 2003-12-10
    ATE282221T1 (en) 2004-11-15
    WO2002073323A2 (en) 2002-09-19
    WO2002073323A3 (en) 2002-10-31
    DE10112267A1 (en) 2002-11-07
    DE50201518D1 (en) 2004-12-16

    Similar Documents

    Publication Publication Date Title
    DE4008510C2 (en) Control device with optimal decision unit
    DE112019001512T5 (en) INJECTION MACHINE SYSTEM
    DE102018108779A1 (en) Estimator of an automatic machining error factor
    DE4338608A1 (en) Neural network mathematical model control for process control
    DE102018108778A1 (en) Acceleration and deceleration control unit
    DE4338607B4 (en) Method and device for managing a process in a controlled system
    WO2007124981A1 (en) Method for operating a mill system
    EP1623287B1 (en) Configuration of tools and processes for metal forming
    DE202018102632U1 (en) Device for creating a model function for a physical system
    DE19781103B4 (en) Method and device for identifying or precalculating process parameters of an industrial time-variant process
    DE102019001044A1 (en) CONTROL DEVICE AND MACHINE LEARNING DEVICE
    DE102018128890A1 (en) Method and test device for testing a driver assistance system for a motor vehicle
    EP0756219A2 (en) Method for supervising product properties and method for controlling a manufacturing process
    EP1055180B1 (en) Method and device for designing a technical system
    EP2175330A1 (en) Method and device for operating crush guard function in an electric sealing machine
    EP1368714B1 (en) Estimation method for a variable of a process of process manufacturing using a reference vector method
    EP1157317B1 (en) Method and device for reducing a number of measured values of a technical system
    DE10222700A1 (en) System optimization method for optimization of a complex technical system, e.g. optimization of motor vehicle bodywork design parameters, whereby successive approximation models are generated until sufficient accuracy is obtained
    EP3647943B1 (en) Method for determining at least one characteristic of at least a change
    DE102019208922A1 (en) Method and device for controlling a production process
    EP1071999B1 (en) Method and arrangement for computer-assisted determination of a representation specification
    EP1157311B1 (en) Method and device for designing a technical system
    EP0449363B1 (en) Circuit for determining the extreme values position of a correlation function
    DE102019207319A1 (en) Teaching data generating device and teaching data generating method
    DE102022201853A1 (en) Detection of critical traffic situations with Petri nets

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20030711

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO SI

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    RBV Designated contracting states (corrected)

    Designated state(s): AT CH DE IT LI SE

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT CH DE IT LI SE

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: SIEMENS SCHWEIZ AG

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 50201518

    Country of ref document: DE

    Date of ref document: 20041216

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20050811

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20070209

    Year of fee payment: 6

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080313

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PCAR

    Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20090518

    Year of fee payment: 8

    Ref country code: IT

    Payment date: 20090325

    Year of fee payment: 8

    Ref country code: SE

    Payment date: 20090310

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20090604

    Year of fee payment: 8

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    EUG Se: european patent has lapsed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100331

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100331

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20101001

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100313

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100314