EP1366001A2 - Prestressable low-e layer systems for window panes - Google Patents

Prestressable low-e layer systems for window panes

Info

Publication number
EP1366001A2
EP1366001A2 EP02700382A EP02700382A EP1366001A2 EP 1366001 A2 EP1366001 A2 EP 1366001A2 EP 02700382 A EP02700382 A EP 02700382A EP 02700382 A EP02700382 A EP 02700382A EP 1366001 A2 EP1366001 A2 EP 1366001A2
Authority
EP
European Patent Office
Prior art keywords
layer
stack
low
silver
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02700382A
Other languages
German (de)
French (fr)
Inventor
Heinz Schicht
Herbert Schindler
Lars Ihlo
Uwe Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP1366001A2 publication Critical patent/EP1366001A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3626Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3652Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the coating stack containing at least one sacrificial layer to protect the metal from oxidation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties

Definitions

  • the invention relates to a stack of layers with low E, capable of withstanding high thermal stress, for glazing (intended to equip buildings or vehicles), having the characteristics of the preamble of claim 1.
  • the glazing provided of a stack of layers with low E (low E means "low emissivity", therefore, low emissivity or strong reflection of waves in the infrared spectrum), are used in particular to improve thermal insulation in windows of buildings and vehicles.
  • the actual thermal insulation function is carried out in this case, most of the time, using one or more layer (s) of silver (what is called the "functional layer").
  • insulating glazing for example, it is possible to almost completely block the radiative exchange between the glasses using glazing of the double-glazing type having an emissivity of E ⁇ 0.1 on the side facing the space between the two glasses. It is thus possible to manufacture insulating glazing units with a k value of 1.1 / m 2 K.
  • Glazing provided with optimum low E layer stacks must also have the highest possible overall energy transparency (a g value as high as possible), in order to be able to use the incident solar energy for the balance energy of a building.
  • the transmission must ultimately be as high as possible in the visible range of the spectrum.
  • the reflection color of coated glazing must be neutral, as is the case with conventional insulating glazing.
  • Document DE-A1-196 32 788 discloses a stack of layers capable of prestressing of the aforementioned type, for which the anti-reflection dielectric layers consist of an oxide of the metals Sn, Zn, Ti, Si or Bi, or SiN or AIN, and the metallic sacrifice layer of an AlMgMn alloy.
  • the metallic sacrifice layer has a thickness of 5 to 10 nm.
  • the term “capable of prestressing” denotes here stacks of layers of this kind which withstand without significant degradation the high temperatures of the bending and / or quenching operations.
  • Document DE-A1-196 40 800 describes a stack of layers based on silver, according to which there is, between the metallic sacrifice layer and the upper anti-reflection layer, an intermediate layer made of an oxide, a nitride or oxynitride of the metal of the metallic sacrifice layer.
  • the upper anti-reflection treatment layer consists of an oxide, a nitride or an oxynitride of a metal other than the metal of the metallic sacrifice layer. It can also be the superposition of at least two such layers.
  • the term "upper” means that the layer or layers in question are above the or at least one of the functional layers of the stack, as opposed to the term "lower”.
  • layers of layers are known, capable of prestressed, having a silver layer as a functional layer, with two anti-reflection layers each consisting of Si 3 N 4 , and the metallic sacrifice layer of Ni or NiCr.
  • the stack of layers, capable of prestressing, described in document EP-B1-0 883 584, has anti-reflection layers preferably made of Si 3 N 4 , the metallic sacrifice layer consisting, however, in this case of silicon.
  • a stack of layers capable of prestressing, known from document DE-A1-198 50 023, is characterized in that a sub-oxidized layer of NiCrO x , with a thickness of between 0.1 and 0.2 nm, is embedded in the surrounded silver layer disposed between a lower metal sacrifice layer and an upper metal sacrifice layer.
  • the metal layers of sacrifice consist of NiCrO x sub-oxidised or NiCrO x and Ti0 2 sub-oxidized.
  • This known stack of layers must make possible a prestress and a curvature of coated glass panes, without any notable modification of the optical properties of stacking layers.
  • the diffuse dispersion (haze) after the heat treatment must, in particular, be less than 5%.
  • Document DE-CI-198 52 358 describes a stack of layers with low E, capable of withstanding high thermal stress, having a sequence of glass layers-MeO-ZnO-Zn-Ag-AlMe-MeO-Zn x Me y Y n .
  • the metallic sacrifice layer AlMe is in this case, as a constituent of the alloy above the silver layer, an aluminum alloy with one or more of the elements Si, Mg, Mn, Cu and Zn.
  • the object of the invention is to further improve a stack of layers with a low E, capable of withstanding a high thermal stress, as mentioned above.
  • stacks of layers of this kind are not necessarily used exclusively on glass substrates, that these can also be used / judiciously deposited on substrates made of other transparent materials (synthetic material) (for example polycarbonates, poly methyl etacrylate PMMA, polyethylene terephthalate PET, etc.). Synthetic (polymer-based) materials are of course not able to withstand temperatures as high as glass.
  • a metal nitride layer between the silver layer and the metallic sacrifice layer represents an effective barrier. It prevents or greatly reduces the diffusion of atoms of the sacrifice metal in the silver layer and vice versa.
  • Metal nitrides are in fact relatively stable compounds, which, for their part, show no tendency to diffusion movements towards the interior of the silver layer. The silver layer thus retains its original structure (to a large extent) on its particularly threatened upper boundary surface, even after high thermal stress. All in all, therefore, its good optical and energy properties are preserved.
  • the metallic sacrifice layer preferably consists of Cr, Ni, Al, Ti, Mg, Mn, Si, Zn or Cu, or an alloy of these metals.
  • This metallic sacrificial layer preferably also consists of one of the metals mentioned or of an alloy of these metals.
  • a layer of metallic nitride between the metallic sacrificial layer and the silver layer.
  • the lower anti-reflection layer and the upper anti-reflection layer may consist of an individual layer of oxide (s) and / or nitride (s) and / or of oxynitride (s), or of the superposition of several individual layers like this.
  • the selection and the thickness of the individual layers are carried out within the framework described so that the optical values, such as the transmission and the reflection color of the coated (glass) substrate, change significantly and reproducible during heat treatment.
  • the light transmission is, in particular, markedly increased, and the reflection color undergoes, after the heat treatment, a change in “color box”.
  • change of color box specialists designate a modification of the coloring or of the tint (reflection color) of a layer or of a stack of layers.
  • the possible colors can be described in the context of a special coordinate system, for example, the L, a *, b * colorimetry system.
  • the diffuse dispersion is at most 0.3% and the emissivity at most 5%.
  • the stack of layers must, of course, also fulfill all the other requirements concerning the properties of use and chemical resistance, which are usually required for layers of this kind.
  • stacking of layers according to the invention can also be used entirely without any post-deposition heat treatment being involved, in particular on suitable plastic substrates (for example polycarbonate), because its very good thermal insulation properties are not substantially modified by the heat treatment.
  • suitable plastic substrates for example polycarbonate
  • E. Measurement of electrochemical resistance (EMK test); this test is described in Z. Silikattechnik 32 (1981), page 216. The test makes it possible to evaluate the passivation resistance of the upper layer above the silver layer as well as the corrosion behavior of the layer of Ag;
  • the layer of ZnO: Al is reactively applied by spraying from a metal target ZnAl at 2% by weight of Al.
  • the metallic sacrifice layer is applied by spraying from a metal target, which contains 94% by weight of Al, 4.5% by weight of Mg and 1% by weight of Mn.
  • the topmost partial layer of the top anti-reflection layer is deposited by reactive sputtering from a metal target, which consists of 68% by weight of Zn, 30% by weight of Sn and 2% by weight of Sb .
  • the stack of layers according to the invention is produced on the same coating installation as in the case of the comparative example:
  • the light transmission of the stack of layers or coated glasses increases very considerably during the heat treatment, the emissivity being even lower than in the comparative example.
  • the color values change in a similar manner to that of the comparative example, which means that the "target color box" is also reached in a safe manner by virtue of the stacking of layers according to the invention.
  • Comparative Example 2 The following stack of layers was produced on the same coating installation as in the previous examples, corresponding to the state of the art:
  • the metallic sacrificial layer was deposited by spraying from a metallic target having 98% by weight of Zn and 2% by weight of Al.
  • the EMK test was carried out on the coated glass samples using this layer system, which gave a value of 120 mV.
  • the invention also applies to stacks which have several functional layers, in particular two silver layers: in this case, the nitride layer according to the invention is inserted on one of the silver layers at least, especially on both or only one of them.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Laminated Bodies (AREA)

Abstract

The invention relates to a stack of layers capable of resisting a strong thermal stress, comprising silver as a functional layer, a sacrificial metal layer disposed on top of the silver layer and anti-reflection dielectric layers. The inventive system comprises a layer of metal nitride between the silver layer and the sacrificial metal layer. Said metal nitride layer comprises, in particular, Si3 N4 and/or AlN and constitutes an effective barrier against diffusion. As a result, the optical and energy properties of the silver layer remain essentially unchanged even after a strong thermal stress (for example, bending-type prestressing and/or curvature, tempering of glass provided with the stack of layers).

Description

Systèmes de couches à E faible, capable de précontrainte, pour vitres de fenêtreLow E preloading layer systems for window panes
L'invention se rapporte à un empilement de couches à E faible, capable de résister à une sollicitation thermique forte, pour vitrages (destinés à équiper des bâtiments ou des véhicules) , ayant les caractéristiques du préambule de la revendication 1. Les vitrages, pourvus d'un empilement de couches à E faible (E faible veut dire "émissivité faible", par conséquent, une émissivité faible ou une réflexion forte des ondes dans le spectre infrarouge) , servent en particulier à l'amélioration de l'isolation thermique dans les fenêtres de bâtiments et de véhicules. La fonction d'isolation thermique proprement dite est réalisée en l'occurrence, la plupart du temps, à l'aide d'une ou plusieurs couche (s) d'argent (ce que l'on appelle la "couche fonctionnelle"). Dans le cas des vitrages isolants par exemple, on peut bloquer presque complètement l'échange radiatif entre les verres à l'aide de vitrages du type double-vitrage ayant une émissivité de E < 0,1 sur la face tournée vers l'espace entre les deux verres. Il est ainsi possible de fabriquer des vitrages isolants ayant une valeur k de 1,1 /m2K.The invention relates to a stack of layers with low E, capable of withstanding high thermal stress, for glazing (intended to equip buildings or vehicles), having the characteristics of the preamble of claim 1. The glazing, provided of a stack of layers with low E (low E means "low emissivity", therefore, low emissivity or strong reflection of waves in the infrared spectrum), are used in particular to improve thermal insulation in windows of buildings and vehicles. The actual thermal insulation function is carried out in this case, most of the time, using one or more layer (s) of silver (what is called the "functional layer"). In the case of insulating glazing for example, it is possible to almost completely block the radiative exchange between the glasses using glazing of the double-glazing type having an emissivity of E <0.1 on the side facing the space between the two glasses. It is thus possible to manufacture insulating glazing units with a k value of 1.1 / m 2 K.
Les vitrages munis d'empilements de couches à E faible optimaux doivent présenter, par ailleurs, également une transparence d'énergie globale la plus élevée possible (une valeur g la plus élevée possible) , pour pouvoir utiliser l'énergie solaire incidente pour le bilan énergétique d'un bâtiment. La transmission doit finalement être la plus élevée possible dans le domaine visible du spectre. La couleur de réflexion des vitrages revêtus doit être de couleur neutre, comme c'est le cas pour les vitrages isolants classiques. Dans certains cas, il est nécessaire ou approprié de soumettre des vitrages (un au moins des verres qui les composent) pourvus d'un empilement de couches à E faible de ce genre, à un traitement de courbure ou de précontrainte, du type bombage ou trempe. Dans ce but, on procède à 1 ' échauffement des verres, avant le traitement de courbure ou de précontrainte proprement dit, à une température d'environ 550° à 650°C. Au cours de cette sollicitation thermique, il se produit souvent, en raison de processus d'oxydation et de diffusion, des modifications structurelles de la couche d'argent. Ces modifications de la couche d'argent se manifestent, même si elles ne sont pas reconnaissables à l'oeil nu, par une détérioration des valeurs énergétiques, en particulier de la transmission et de 1 ' émissivité . Quand, par exemple, des vitrages isolants faits de deux verres de 4 mm d'épaisseur et d'un espace intermédiaire rempli d'argon d'une épaisseur de 16 mm, doivent avoir une valeur k de 1,1 /m2K, l' émissivité du système de couches des vitres en verre ne doit être au maximum que de 5%. Ceci correspond à une résistance électrique d'au maximum 4,5 Ohm par unité de surface.Glazing provided with optimum low E layer stacks must also have the highest possible overall energy transparency (a g value as high as possible), in order to be able to use the incident solar energy for the balance energy of a building. The transmission must ultimately be as high as possible in the visible range of the spectrum. The reflection color of coated glazing must be neutral, as is the case with conventional insulating glazing. In certain cases, it is necessary or appropriate to subject glazings (at least one of the glasses which compose them) provided with a stack of low E layers of this kind, to a curvature or prestressing treatment, of the bending type or tempering. To this end, the glasses are heated, before the actual bending or prestressing treatment, at a temperature of approximately 550 ° to 650 ° C. During this thermal stress, structural changes in the silver layer often occur due to oxidation and diffusion processes. These modifications of the silver layer manifest themselves, even if they are not recognizable to the naked eye, by a deterioration of the energy values, in particular of the transmission and of the emissivity. When, for example, insulating glazing made of two 4 mm thick glasses and an intermediate space filled with argon with a thickness of 16 mm, must have a k value of 1.1 / m 2 K, the emissivity of the layer system of glass panes must not be more than 5%. This corresponds to an electrical resistance of maximum 4.5 Ohm per unit area.
Il existe une demande élevée pour des empilements de couches de ce genre, capables de résister à une sollicitation thermique élevée, dont l' émissivité et la dispersion diffuse (voile) sont très faibles, même après un traitement thermique (de précontrainte) , avec préservation des propriétés optiques, sans que les autres critères de qualité de la couche, comme la dureté, la couleur et la résistance à la corrosion n'en soient perturbés.There is a high demand for stacks of layers of this kind, capable of withstanding high thermal stress, the emissivity and diffuse dispersion (haze) are very low, even after heat treatment (prestressing), with preservation optical properties, without affecting other layer quality criteria, such as hardness, color and corrosion resistance.
Diverses suggestions ont déjà été formulées dans l'optique de l'amélioration des empilements de couches de ce genre. Les valeurs optiques et énergétiques souhaitées des vitrages revêtus doivent donc être sensiblement maintenues, même dans le cas -.de vitrages en verre, qui sont soumis, après avoir été revêtus des couches, à une opération de courbure ou de précontrainte. Une détérioration des propriétés des couches à la suite du traitement thermique doit être empêchée ou tout au moins limitée.Various suggestions have already been made with a view to improving the layer stacks Of this genre. The desired optical and energy values of the coated panes must therefore be substantially maintained, even in the case of glass panes, which are subjected, after having been coated with the layers, to a bending or prestressing operation. Deterioration of the properties of the layers as a result of the heat treatment must be prevented or at least limited.
On connaît par le document DE-A1-196 32 788, un empilement de couches capable de précontrainte du genre susmentionné, pour lequel les couches diélectriques anti-réflexion se composent d'un oxyde des métaux Sn, Zn, Ti, Si ou Bi, ou de SiN ou de AIN, et la couche métallique de sacrifice d'un alliage AlMgMn. La couche métallique de sacrifice présente une épaisseur de 5 à 10 nm. On désigne ici, par le terme de "capable de précontrainte", des empilements de couches de ce genre, qui supportent sans dégradation significative les températures élevées des opérations de bombage et/ou de trempe.Document DE-A1-196 32 788 discloses a stack of layers capable of prestressing of the aforementioned type, for which the anti-reflection dielectric layers consist of an oxide of the metals Sn, Zn, Ti, Si or Bi, or SiN or AIN, and the metallic sacrifice layer of an AlMgMn alloy. The metallic sacrifice layer has a thickness of 5 to 10 nm. The term “capable of prestressing” denotes here stacks of layers of this kind which withstand without significant degradation the high temperatures of the bending and / or quenching operations.
Le document DE-A1-196 40 800 décrit un empilement de couches à base d'argent, selon lequel on dispose, entre la couche métallique de sacrifice et la couche anti-réflexion supérieure, une couche intermédiaire faite d'un oxyde, d'un nitrure ou d'un oxynitrure du métal de la couche métallique de sacrifice. La couche de traitement anti-réflexion supérieure se compose d'un oxyde, d'un nitrure ou d'un oxynitrure d'un autre métal que le métal de la couche métallique de sacrifice. Il peut aussi s'agir de la superposition d'au moins deux couches de ce type. Le terme de « supérieur » signifie que la ou les couches en question se trouvent au-dessus de la ou d'au moins une des couches fonctionnelles de l'empilement, par opposition au terme « inférieur ». Des documents EP-B1-0 567 735, EP-B1-0 717 014, EP-B1-0 771 766, EP-B1-0 646 551 et EP-A2-0 796 825, on connaît des empilements de couches, capables de précontrainte, ayant une couche d'argent en tant que couche fonctionnelle, avec deux couches anti-réflexion se composant à chaque fois de Si3N4, et la couche métallique de sacrifice de Ni ou de NiCr. L'empilement de couches, capable de précontrainte, décrit dans le document EP-B1-0 883 584, présente des couches anti-réflexion de préférence en Si3N4, la couche métallique de sacrifice se composant toutefois, dans ce cas, de silicium. Un empilement de couches, capable de précontrainte, connu du document DE-A1-198 50 023, se caractérise en ce qu'une couche sous-oxydée de NiCrOx, d'une épaisseur comprise entre 0,1 et 0,2 nm, est noyée dans la couche d'argent entourée disposée entre une couche métallique de sacrifice inférieure et une couche métallique de sacrifice supérieure. Les couches métalliques de sacrifice se composent de NiCrOx sous- oxydé ou de NiCrOx et Ti02 sous-oxydés. Cet empilement de couches connu doit rendre possible une précontrainte et une courbure des vitrages en verre revêtus, sans modification notable de ce fait des propriétés optiques d'empilement de couches. La dispersion diffuse (voile) après le traitement thermique doit être, en particulier, inférieure à 5%. Le document DE-CI-198 52 358 décrit un empilement de couches à E faible, capable de résister à une sollicitation thermique forte, ayant une séquence de couches verre-MeO-ZnO-Zn-Ag-AlMe-MeO-ZnxMeyOn. La couche métallique de sacrifice AlMe est dans ce cas, en tant que constituant de l'alliage au-dessus de la couche d'argent un alliage d'aluminium avec un ou plusieurs des éléments Si, Mg, Mn, Cu et Zn.Document DE-A1-196 40 800 describes a stack of layers based on silver, according to which there is, between the metallic sacrifice layer and the upper anti-reflection layer, an intermediate layer made of an oxide, a nitride or oxynitride of the metal of the metallic sacrifice layer. The upper anti-reflection treatment layer consists of an oxide, a nitride or an oxynitride of a metal other than the metal of the metallic sacrifice layer. It can also be the superposition of at least two such layers. The term "upper" means that the layer or layers in question are above the or at least one of the functional layers of the stack, as opposed to the term "lower". From documents EP-B1-0 567 735, EP-B1-0 717 014, EP-B1-0 771 766, EP-B1-0 646 551 and EP-A2-0 796 825, layers of layers are known, capable of prestressed, having a silver layer as a functional layer, with two anti-reflection layers each consisting of Si 3 N 4 , and the metallic sacrifice layer of Ni or NiCr. The stack of layers, capable of prestressing, described in document EP-B1-0 883 584, has anti-reflection layers preferably made of Si 3 N 4 , the metallic sacrifice layer consisting, however, in this case of silicon. A stack of layers, capable of prestressing, known from document DE-A1-198 50 023, is characterized in that a sub-oxidized layer of NiCrO x , with a thickness of between 0.1 and 0.2 nm, is embedded in the surrounded silver layer disposed between a lower metal sacrifice layer and an upper metal sacrifice layer. The metal layers of sacrifice consist of NiCrO x sub-oxidised or NiCrO x and Ti0 2 sub-oxidized. This known stack of layers must make possible a prestress and a curvature of coated glass panes, without any notable modification of the optical properties of stacking layers. The diffuse dispersion (haze) after the heat treatment must, in particular, be less than 5%. Document DE-CI-198 52 358 describes a stack of layers with low E, capable of withstanding high thermal stress, having a sequence of glass layers-MeO-ZnO-Zn-Ag-AlMe-MeO-Zn x Me y Y n . The metallic sacrifice layer AlMe is in this case, as a constituent of the alloy above the silver layer, an aluminum alloy with one or more of the elements Si, Mg, Mn, Cu and Zn.
Aucun des empilements de couches connus ne remplit toutes les propriétés indispensables d'une manière optimale. Dans la plupart des cas, les empilements de couches présentent, après le traitement thermique, une émissivité trop élevée et une dispersion diffuse (voile) relativement forte.None of the known layer stacks fulfills all the essential properties in an optimal manner. In most cases, the layers of layers have, after the heat treatment, too high an emissivity and a diffuse dispersion (strong) relatively strong.
Le but de l'invention est d'améliorer encore un empilement de couches à E faible, capable de résister à une sollicitation thermique forte, comme mentionné plus haut .The object of the invention is to further improve a stack of layers with a low E, capable of withstanding a high thermal stress, as mentioned above.
Conformément à l'invention, ce but est atteint grâce aux caractéristiques de la revendication 1. Il est entendu que des empilements de couches de ce genre ne sont pas nécessairement utilisés exclusivement sur des substrats en verre, que ceux-ci peuvent également être utilisés / déposés de manière judicieuse sur des substrats faits d'autres matériaux (en matière synthétique) transparents, (par exemple des polycarbonates, les poly étacrylate de méthyle PMMA, le polyéthylènetéréphtalate PET...) . Les matériaux en matière synthétique (à base de polymère) ne sont bien sûr pas capables de résister à des températures aussi élevées que le verre.According to the invention, this object is achieved thanks to the features of claim 1. It is understood that stacks of layers of this kind are not necessarily used exclusively on glass substrates, that these can also be used / judiciously deposited on substrates made of other transparent materials (synthetic material) (for example polycarbonates, poly methyl etacrylate PMMA, polyethylene terephthalate PET, etc.). Synthetic (polymer-based) materials are of course not able to withstand temperatures as high as glass.
Il s'est avéré qu'une couche en nitrure métallique entre la couche d'argent et la couche métallique de sacrifice représente une barrière efficace. Elle empêche ou réduit fortement la diffusion des atomes du métal de sacrifice dans la couche d'argent et inversement. Les nitrures métalliques sont en effet des composés relativement stables, qui ne présentent, de leur côté, aucune tendance à des mouvements de diffusion vers l'intérieur de la couche d'argent. La couche d'argent conserve de cette manière, sur sa surface limitrophe supérieure particulièrement menacée, même après une sollicitation thermique élevée, sa structure d'origine (dans une large mesure) . On préserve ainsi dans l'ensemble, pour l'essentiel, ses bonnes propriétés optiques et énergétiques.It has been found that a metal nitride layer between the silver layer and the metallic sacrifice layer represents an effective barrier. It prevents or greatly reduces the diffusion of atoms of the sacrifice metal in the silver layer and vice versa. Metal nitrides are in fact relatively stable compounds, which, for their part, show no tendency to diffusion movements towards the interior of the silver layer. The silver layer thus retains its original structure (to a large extent) on its particularly threatened upper boundary surface, even after high thermal stress. All in all, therefore, its good optical and energy properties are preserved.
La couche métallique de sacrifice se compose de préférence de Cr, Ni, Al, Ti, Mg, Mn, Si, Zn ou Cu, ou d'un alliage de ces métaux.The metallic sacrifice layer preferably consists of Cr, Ni, Al, Ti, Mg, Mn, Si, Zn or Cu, or an alloy of these metals.
On peut également prévoir une couche métallique de sacrifice en dessous de la couche d'argent. Cette couche métallique de sacrifice se compose de préférence également d'un des métaux cités ou d'un alliage de ces métaux. On dispose également, dans ce cas, une couche en nitrure métallique entre la couche métallique de sacrifice et la couche d'argent.It is also possible to provide a metallic layer of sacrifice below the silver layer. This metallic sacrificial layer preferably also consists of one of the metals mentioned or of an alloy of these metals. There is also, in this case, a layer of metallic nitride between the metallic sacrificial layer and the silver layer.
Dans le cas d'empilements de couches, pour lesquels la couche d'argent est déposée sur une couche de ZnO partiellement cristalline, l'utilisation d'une couche en nitrure métallique en dessous de la couche d'argent n'est pas nécessaire.In the case of layer stacks, for which the silver layer is deposited on a partially crystalline ZnO layer, the use of a metal nitride layer below the silver layer is not necessary.
La couche inférieure anti-réflexion et la couche supérieure anti-réflexion peuvent être constituées d'une couche individuelle d'oxyde (s) et/ou nitrure (s) et/ou d' oxynitrure (s) , ou de la superposition de plusieurs couches individuelles de ce genre.The lower anti-reflection layer and the upper anti-reflection layer may consist of an individual layer of oxide (s) and / or nitride (s) and / or of oxynitride (s), or of the superposition of several individual layers like this.
La sélection et l'épaisseur des couches individuelles sont effectuées dans le cadre décrit de telle sorte que les valeurs optiques, comme la transmission et la couleur de réflexion du substrat (en verre) revêtu, se modifient d'une manière significative et reproductible au cours du traitement thermique. La transmission lumineuse est, en particulier, nettement augmentée, et la couleur de réflexion subit, après le traitement thermique, un changement de « boîte de couleur ». Sous le terme de « changement de boîte de couleur », les spécialistes désignent une modification de la coloration ou de la teinte (couleur de réflexion) d'une couche ou d'un empilement de couches. Les couleurs possibles peuvent être décrites dans le cadre d'un système de coordonnées spécial par exemple, le système de colorimétrie L, a*, b* . Parce que les couleurs de couche ne peuvent pas être reproduites d'une manière absolument précise dans cet empilement de coordonnées, des domaines de tolérance de couleur sont établis entre les fournisseurs et les clients, lesquels sont alors désignés par le terme de « boîtes de couleur » (« color box » en anglais) . Par changement de boîte de couleur, on entend alors une modification de la coloration ou de la teinte telle qu'elle passe au- delà des limites d'une première boîte de couleur (état de départ) dans une autre boîte de couleur (état cible ou état consigne) .The selection and the thickness of the individual layers are carried out within the framework described so that the optical values, such as the transmission and the reflection color of the coated (glass) substrate, change significantly and reproducible during heat treatment. The light transmission is, in particular, markedly increased, and the reflection color undergoes, after the heat treatment, a change in “color box”. Under the term "change of color box", specialists designate a modification of the coloring or of the tint (reflection color) of a layer or of a stack of layers. The possible colors can be described in the context of a special coordinate system, for example, the L, a *, b * colorimetry system. Because layer colors cannot be reproduced absolutely precisely in this stack of coordinates, areas of color tolerance are established between suppliers and customers, who are then referred to as "boxes of color ”(“ color box ”in English). By change of color box, we mean a change in color or tint such that it goes beyond the limits of a first color box (starting state) in another color box (target state or setpoint state).
Après le traitement thermique, la dispersion diffuse est au maximum de 0,3% et l' émissivité au maximum de 5%. L'empilement de couches doit, bien entendu, remplir également toutes les autres exigences concernant les propriétés d'utilisation et de résistance chimique, qui sont habituellement requises pour des couches de ce genre.After the heat treatment, the diffuse dispersion is at most 0.3% and the emissivity at most 5%. The stack of layers must, of course, also fulfill all the other requirements concerning the properties of use and chemical resistance, which are usually required for layers of this kind.
C'est pourquoi l'empilement de couches selon l'invention peut être également utilisé entièrement sans qu'un traitement thermique post-dépôt ne soit impliqué, en particulier sur des substrats en matière plastique appropriées (par exemple le polycarbonate) , du fait que ses très bonnes propriétés d'isolation thermique ne sont pas substantiellement modifiées par le traitement thermique.This is why the stacking of layers according to the invention can also be used entirely without any post-deposition heat treatment being involved, in particular on suitable plastic substrates (for example polycarbonate), because its very good thermal insulation properties are not substantially modified by the heat treatment.
L'invention est décrite dans la suite de manière plus détaillée par référence à deux exemples de réalisation, qui sont opposés à chaque fois à un exemple comparatif conformément à l'état de la technique. On effectue en l'occurrence, en vue de l'évaluation des propriétés de couche, sur les verres revêtus, les mesures et les tests ci-dessous :The invention is described below in more detail with reference to two exemplary embodiments, which are opposed in each case to a comparative example in accordance with the state of the art. In this case, the following measurements and tests are carried out, with a view to evaluating the layer properties, on the coated glasses:
A. Mesure de la transmission lumineuse T à 550 nm ;A. Measurement of the light transmission T at 550 nm;
B. Mesure des paramètres de couleur en réflexion dans le système L,a*, b* ;B. Measurement of the color parameters in reflection in the system L, a *, b *;
C. Mesure de la résistance électrique superficielle ;C. Measurement of surface electrical resistance;
D. Mesure de l' émissivité E à l'aide de l'appareil Sten Lôfving MK2 ; E. Test à l'eau de condensation conformément à la norme DIN 50017 avec évaluation visuelle ;D. Measurement of emissivity E using the Sten Lôfving MK2 device; E. Condensation water test in accordance with DIN 50017 with visual evaluation;
F. Mesure de la résistance électrochimique (test EMK) ; ce test est décrit dans Z. Silikattechnik 32 (1981), page 216. Le test permet d'évaluer la résistance à la passivation de la couche supérieure au-dessus de la couche d'argent ainsi que le comportement de corrosion de la couche de Ag ;F. Measurement of electrochemical resistance (EMK test); this test is described in Z. Silikattechnik 32 (1981), page 216. The test makes it possible to evaluate the passivation resistance of the upper layer above the silver layer as well as the corrosion behavior of the layer of Ag;
G. Test de lavage Erichsen conformément à la norme ASTM 2486, avec évaluation visuelle ;G. Erichsen wash test in accordance with ASTM 2486, with visual evaluation;
H. Mesure de la résistance aux rayures ; on tire en l'occurrence une aiguille chargée à une vitesse définie sur la couche. Le poids en g, pour lequel les traces de rayure deviennent visibles, sert de mesure de la dureté aux rayures .H. Measurement of scratch resistance; in this case, a loaded needle is drawn at a defined speed on the layer. The weight in g, for which the scratch marks become visible, is used as a measure of the scratch hardness.
I. Mesure de la lumière diffusée en % à l'aide de l'appareil de mesure de la diffusion lumineuse de la société Gardner.I. Measurement of the light scattered in% using the light scattering measurement device from Gardner.
Exemple comparatif 1Comparative example 1
Sur une installation industrielle de revêtement de couches par pulvérisation cathodique, on applique, sur des verres flottés, conformément à l'état de la technique, à l'aide du procédé de pulvérisation réactive assisté par champ magnétique, l'empilement de couches suivant. L'épaisseur des couches individuelles est indiquée à chaque fois en nm :On an industrial installation for coating layers by sputtering, the following stack of layers is applied to float glass, in accordance with the state of the art, using the reactive sputtering process assisted by magnetic field. The thickness of the individual layers is indicated in nm each time:
Verre/25 Sn02/9 ZnO:Al/ll,6 Ag/6 AlMgMn/38 Sn02/ 2 ZnSnSbOx.Glass / 25 Sn0 2/9 ZnO: Al / ll, 6 Ag / 6 AlMgMn / 38 Sn0 2/2 x ZnSnSbO.
La couche de ZnO:Al est appliquée de manière réactive par pulvérisation à partir d'une cible métallique ZnAl à 2% en poids d'Al. La couche métallique de sacrifice est appliquée par pulvérisation à partir d'une cible métallique, qui contient 94% en poids d'Al, 4,5% en poids de Mg et 1% en poids de Mn. La couche partielle la plus supérieure de la couche anti-réflexion supérieure est déposée par pulvérisation réactive à partir d'une cible métallique, qui se compose de 68% en poids de Zn, 30% en poids de Sn et 2% en poids de Sb.The layer of ZnO: Al is reactively applied by spraying from a metal target ZnAl at 2% by weight of Al. The metallic sacrifice layer is applied by spraying from a metal target, which contains 94% by weight of Al, 4.5% by weight of Mg and 1% by weight of Mn. The topmost partial layer of the top anti-reflection layer is deposited by reactive sputtering from a metal target, which consists of 68% by weight of Zn, 30% by weight of Sn and 2% by weight of Sb .
Le résultat des tests susmentionnés, sur plusieurs échantillons, avant le traitement thermique, a fourni les valeurs suivantes :The results of the above tests, on several samples, before the heat treatment, provided the following values:
A. Transmission T550 = 76 - 77 %A. T550 transmission = 76 - 77%
B. Paramètres couleur a* = 4 , 06 b* = - 7 , 17B. Color parameters a * = 4, 06 b * = - 7, 17
C. Résistance électrique R = 6 , 8 - 6 , 9C. Electrical resistance R = 6, 8 - 6, 9
Ohm/superficieOhm / area
D. Emissivité E = 1 , 1 '-D. Emissivity E = 1, 1 '-
E. Test à 1 'eau de condensation Taches rougesE. Condensation test Red spots
F. Test EM 132 mVF. EM 132 mV test
G. Test de lavage 350 mouvements de va-et-vient avec une rayure moyenneG. Wash test 350 back and forth movements with a medium scratch
H. Dureté aux rayures 65 - 132 g I . Lumière diffusée 0,17%H. Scratch hardness 65 - 132 g I. Light scattered 0.17%
Plusieurs échantillons du verre revêtu ont été chauffés à 650°C et soumis à précontrainte par l'intermédiaire d'un refroidissement brusque (trempe). Les tests ou mesures effectués sur les verres précontraints ont conduit aux résultats suivants :Several samples of the coated glass were heated to 650 ° C and subjected to prestressing by means of sudden cooling (quenching). Tests or measurements carried out on pre-stressed glasses have led to the following results:
A. Transmission 50 — 88 , 9"SA. Transmission 50 - 88, 9 "S
B. Paramètres couleur a* = 1,0 b* = -5,1B. Color parameters a * = 1.0 b * = -5.1
C. Résistance électrique R = 4,3C. Electrical resistance R = 4.3
Ohm/superficie D. Emissivité E = 5,3%Ohm / area D. Emissivity E = 5.3%
H. Dureté aux rayures 64 - 208 gH. Scratch hardness 64 - 208 g
I. Lumière diffusée 0,35%I. Diffused light 0.35%
Les différences significatives des coordonnées de couleur a* et b* de l'état sans précontrainte à l'état avec précontrainte des verres montrent le changement de « boîte de couleur » en question de l'empilement de couches .The significant differences in the color coordinates a * and b * from the pre-stressed state to the pre-stressed state of the glasses show the change in “color box” in question of the stacking of layers.
Exemple de réalisation 1Example 1
On fabrique, sur la même installation de revêtement que dans le cas de l'exemple comparatif, l'empilement de couches selon l'invention suivant :The stack of layers according to the invention is produced on the same coating installation as in the case of the comparative example:
Verre/25 Sn02/9 ZnO:Al/ll,5 Ag/3 Si3N4/5 AlMgMn/38 Sn02/ 2 ZnSnSbOx.Glass / 25 Sn0 2/9 ZnO: Al / ll, 5 Ag / 3 Si 3 N 4/5 AlMgMn / 38 Sn0 2/2 x ZnSnSbO.
Les mesures et les tests sur les verres revêtus avant le traitement thermique ont fourni les valeurs suivantes :Measurements and tests on coated glasses before heat treatment provided the following values:
A. Transmission T55o = 75.5%A. Transmission T 55 o = 75.5%
B. Paramètres couleur comme pour 1 ' exemple comparatifB. Color parameters as for the comparative example
C. Résistance électrique R = 6,7C. Electrical resistance R = 6.7
Ohm/superficieOhm / area
D. Emissivité E = 7,5%D. Emissivity E = 7.5%
E. Test à 1 'eau de condensation Sans erreurE. Condensation test Error free
F. Test EMK 44 mVF. EMK 44 mV test
G. Test de lavage Après 350 mouvements de va-et-vient, aucune rayureG. Washing test After 350 back and forth movements, no scratches
H. Dureté aux rayures 64 - 218 g I. Lumière diffusée 0,14% Après la précontrainte, on a effectué, sur plusieurs échantillons, les mêmes mesures et tests que dans le cas de l'exemple comparatif, et cela avec les résultats suivants :H. Scratch hardness 64 - 218 g I. Diffused light 0.14% After prestressing, we carried out on several samples, the same measurements and tests as in the case of the comparative example, and this with the following results:
A. Transmission T550 = 88%A. Transmission T 550 = 88%
B. Paramètres couleur comme pour l'exemple comparatifB. Color parameters as for the comparative example
C. Résistance électrique R = 3,6C. Electrical resistance R = 3.6
Ohm/superficie D. Émissivité E = 4,0%Ohm / area D. Emissivity E = 4.0%
H. Dureté aux rayures 70 - 200 g I. Lumière diffusée 0,25%H. Scratch hardness 70 - 200 g I. Diffused light 0.25%
La transmission lumineuse de l'empilement de couches ou des verres revêtus augmente d'une manière très considérable pendant le traitement thermique, 1' émissivité étant encore plus faible que dans l'exemple comparatif. Les valeurs de couleur se modifient d'une manière similaire à celle de l'exemple comparatif, ce qui veut dire que la "boîte de couleur- cible" est également atteinte de manière sûre grâce à l'empilement de couches selon l'invention.The light transmission of the stack of layers or coated glasses increases very considerably during the heat treatment, the emissivity being even lower than in the comparative example. The color values change in a similar manner to that of the comparative example, which means that the "target color box" is also reached in a safe manner by virtue of the stacking of layers according to the invention.
Exemple comparatif 2 On a fabriqué, sur la même installation de revêtement que dans le cas des exemples précédents, l'empilement de couches suivant correspondant à l'état de la technique :Comparative Example 2 The following stack of layers was produced on the same coating installation as in the previous examples, corresponding to the state of the art:
Verre/25 Sn02/9 ZnO:Al/ll,5 Ag/3ZnAl/38 Sn02/2 ZnSnSbOx.Glass / 25 Sn0 2/9 ZnO: Al / ll, 5 Ag / 3ZnAl / 38 Sn0 2/2 x ZnSnSbO.
La couche métallique de sacrifice a été déposée par pulvérisation à partir d'une cible métallique ayant 98% en poids de Zn et 2% en poids d'Al. On a effectué, sur les échantillons en verre revêtus à l'aide de ce système de couches, le test EMK, qui a fourni une valeur de 120 mV. On a alors soumis les échantillons à un traitement de précontrainte. Après précontrainte, la couche présentait un léger voile. On a effectué, sur les échantillons en verre précontraints, les mesures pour les trois paramètres les plus importants, à savoir la mesure de l' émissivité E, de la résistance électrique superficielle et de la lumière diffusée. Les mesures ont fourni les valeurs suivantes :The metallic sacrificial layer was deposited by spraying from a metallic target having 98% by weight of Zn and 2% by weight of Al. The EMK test was carried out on the coated glass samples using this layer system, which gave a value of 120 mV. We then submitted the samples to a prestressing treatment. After prestressing, the layer had a slight haze. Measurements were made on the prestressed glass samples for the three most important parameters, namely the measurement of emissivity E, surface electrical resistance and scattered light. The measurements provided the following values:
C. Résistance électrique R = 3,2C. Electrical resistance R = 3.2
Ohm/superficie D. Émissivité E = 7,3%Ohm / area D. Emissivity E = 7.3%
I. Lumière diffusée 0,46%I. Diffused light 0.46%
Exemple de réalisation 2Example 2
On a fabriqué, également sur la même installation de revêtement que dans le cas des exemples précédents, des verres avec l'empilement de couches selonGlass was also produced on the same coating installation as in the previous examples, with the stack of layers according to
1 ' invention suivant :The following invention:
Verre/25 Sn02/9 ZnO:Al/ll,5 Ag/3 Si3N4/3 ZnAl/38 Sn02/Glass / 25 Sn0 2/9 ZnO: Al / ll, 5 Ag / 3 Si 3 N 4/3 ZnAl / 38 Sn0 2 /
2 ZnSnSbOx.2 ZnSnSbO x .
L'exécution du test EMK avant la précontrainte a fourni une valeur de 8 mV. L'évaluation visuelle a également mis en évidence, après la précontrainte, une couche exempte de défauts optiques. On a effectué, sur les verres précontraints, les mêmes tests que dans le cas de l'exemple comparatif. Ils ont fourni les valeurs suivantes :Performing the EMK test before prestressing provided a value of 8 mV. The visual evaluation also revealed, after prestressing, a layer free of optical defects. The same tests were carried out on the prestressed glasses as in the case of the comparative example. They provided the following values:
C. Résistance électrique R = 3,27C. Electrical resistance R = 3.27
Ohm/superficieOhm / area
D. Émissivité E = 4,2% I. Lumière diffusée 0,29%D. Emissivity E = 4.2% I. Diffused light 0.29%
Si l'on compare les propriétés des verres revêtus selon l'invention après la précontrainte avec celles des exemples comparatifs, il est claire qu'une amélioration nette est obtenue dans les deux cas, par insertion de la couche de Si3N4, épaisse de 3 nm, entre la couche d'argent et la couche métallique de sacrifice. C'est en particulier le cas en ce qui concerne la résistance à la corrosion, l' émissivité et la lumière diffusée.If we compare the properties of coated glasses according to the invention after prestressing with those of the comparative examples, it is clear that a clear improvement is obtained in both cases, by insertion of the layer of Si 3 N 4 , 3 nm thick, between the silver layer and the metallic sacrifice layer. This is particularly the case with regard to corrosion resistance, emissivity and scattered light.
L'invention s'applique aussi à des empilements qui ont plusieurs couches fonctionnelles, notamment deux couches d'argent : dans ce cas, l'insertion de la couche de nitrure selon l'invention se fait sur l'une des couches d'argent au moins, notamment sur les deux ou seulement l'une d'entre elles. The invention also applies to stacks which have several functional layers, in particular two silver layers: in this case, the nitride layer according to the invention is inserted on one of the silver layers at least, especially on both or only one of them.

Claims

Revendications claims
1. Empilement de couches à émissivité E faible, capable de résister à une sollicitation thermique forte, pour vitrages, en particulier en verre, en tant que substrat, avec une (des) couche (s) fonctionnelle (s) à base d'argent, une couche métallique de sacrifice disposée au-dessus de la couche d'argent, une couche diélectrique inférieure anti-réflexion, voisine de la surface du substrat, et une couche anti-réflexion supérieure, caractérisé en ce que l'on dispose, entre la couche d'argent et la couche métallique de sacrifice disposée au-dessus de la couche d'argent, une couche à base de nitrure (s) métallique (s) , en particulier à la base Si3N4 et/ou d'AlN.1. Stack of layers with low E emissivity, capable of withstanding high thermal stress, for glazing, in particular glass, as a substrate, with a functional layer (s) based on silver , a metallic sacrifice layer placed above the silver layer, an anti-reflection lower dielectric layer, close to the surface of the substrate, and an upper anti-reflection layer, characterized in that, between the silver layer and the metallic sacrifice layer placed above the silver layer, a layer based on metallic nitride (s), in particular on the base Si 3 N 4 and / or AlN.
2. Empilement de couches à émissivité E faible selon la revendication 1, caractérisé en ce que la couche à base de nitrure (s) métallique (s) présente une épaisseur de 0,5 à 5 nm, notamment 1 à 4 mm.2. A stack of low E emissivity layers according to claim 1, characterized in that the layer based on metallic nitride (s) has a thickness of 0.5 to 5 nm, in particular 1 to 4 mm.
3. Empilement de couches à E faible selon la revendication 1 ou 2 , caractérisé en ce que la couche à base de nitrure (s) métallique (s) présente une composition au moins approximativement stoechiométrique .3. A stack of low E layers according to claim 1 or 2, characterized in that the layer based on metallic nitride (s) has an at least approximately stoichiometric composition.
4. Empilement de couches à émissivité E faible selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la couche métallique de sacrifice supérieure se compose de Cr, Ni, Al, Ti, Mg, Mn, Si, Zn ou Cu, ou d'un alliage de ces métaux.4. Stack of low E emissivity layers according to any one of claims 1 to 3, characterized in that the metallic sacrificial upper layer consists of Cr, Ni, Al, Ti, Mg, Mn, Si, Zn or Cu , or an alloy of these metals.
5. Empilement de couches à émissivité E faible selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la couche d'argent est déposée sur une couche ZnO:Al partiellement cristalline. 5. A stack of low E emissivity layers according to any one of claims 1 to 4, characterized in that the silver layer is deposited on a partially crystalline ZnO: Al layer.
6. Empilement de couches à émissivité E faible selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'on dispose, également en dessous de la couche d'argent, une couche métallique de sacrifice qui se compose de Cr, Ni, Al, Ti, Mg, Mn, Si ou Cu, ou d'un alliage de ces métaux, et qui est séparée de la couche d'argent par une couche à base de nitrure (s) métallique (s) .6. A stack of low E emissivity layers according to any one of claims 1 to 4, characterized in that there is, also below the silver layer, a metallic sacrifice layer which is composed of Cr, Ni, Al, Ti, Mg, Mn, Si or Cu, or an alloy of these metals, and which is separated from the silver layer by a layer based on metallic nitride (s).
7. Empilement de couches à émissivité E faible selon l'une quelconque des revendications 1 à 5, caractérisé par la structure de couches suivante :7. A stack of low E emissivity layers according to any one of claims 1 to 5, characterized by the following layer structure:
Substrat/Sn02/ZnO:Al/Ag/Si3N4/AlMgMn/Sn02/ZnSnSbOx.Substrate / Sn0 2 / ZnO: Al / Ag / Si 3 N 4 / AlMgMn / Sn0 2 / ZnSnSbOx.
8. Empilement de couches à émissivité E faible selon l'une quelconque des revendications 1 à 5, caractérisé par la structure de couches suivante :8. A stack of low E emissivity layers according to any one of claims 1 to 5, characterized by the following layer structure:
Substrat/25 Sn02/9ZnO:Al/ll, 5 Ag/3 Si3N4/3 ZnAl/ 38 Sn02/2 ZnSnSbOx.Substrate / 25 Sn0 2 / 9ZnO: Al / ll, 5 Ag / 3 Si 3 N 4/3 ZnAl / 38 Sn0 2/2 ZnSnSbOx.
9. Vitrage transparent revêtu d'un empilement de couches à émissivité E faible selon l'une quelconque des revendications 1 à 8, en particulier en verre ou à base de polymère (s) , caractérisé en ce qu'il présente une transmission T550 de 84 à 88%, et/ou une dispersion diffuse de 0,2 à 0,35%, et/ou côté couches, une émissivité E de 4,0 à 5,0%. 9. Transparent glazing coated with a stack of low E emissivity layers according to any one of claims 1 to 8, in particular made of glass or based on polymer (s), characterized in that it has a T550 transmission of 84 to 88%, and / or a diffuse dispersion of 0.2 to 0.35%, and / or on the layer side, an emissivity E of 4.0 to 5.0%.
EP02700382A 2001-02-06 2002-01-23 Prestressable low-e layer systems for window panes Withdrawn EP1366001A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10105199A DE10105199C1 (en) 2001-02-06 2001-02-06 Thermally loaded low emissivity layer system used for glass window panes in buildings and vehicles comprises silver functional layer, metal nitride layer, sacrificial metal layer, dielectric base layer and reflection-reducing covering layer
DE10105199 2001-02-06
PCT/FR2002/000275 WO2002062713A2 (en) 2001-02-06 2002-01-23 Prestressable low-e layer systems for window panes

Publications (1)

Publication Number Publication Date
EP1366001A2 true EP1366001A2 (en) 2003-12-03

Family

ID=7672943

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02700382A Withdrawn EP1366001A2 (en) 2001-02-06 2002-01-23 Prestressable low-e layer systems for window panes

Country Status (13)

Country Link
US (1) US7211328B2 (en)
EP (1) EP1366001A2 (en)
JP (1) JP2004526650A (en)
KR (1) KR20030075170A (en)
CN (1) CN1289428C (en)
AU (1) AU2002233460A1 (en)
BR (1) BR0206938A (en)
CA (1) CA2435811A1 (en)
CZ (1) CZ20032116A3 (en)
DE (1) DE10105199C1 (en)
PL (1) PL369996A1 (en)
TR (1) TR200301214T2 (en)
WO (1) WO2002062713A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010063973A1 (en) 2008-12-04 2010-06-10 Saint-Gobain Glass France Substrate for the front surface of a photovoltaic panel, photovoltaic panel, and use of a substrate for the front surface of a photovoltaic panel

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10235154B4 (en) * 2002-08-01 2005-01-05 Saint-Gobain Glass Deutschland Gmbh Prestressing layer system for glass panes
DE10351616A1 (en) * 2003-11-05 2005-06-16 Arcon Ii Flachglasveredelung Gmbh & Co Kg Thermally highly stressable low-E layer system, process for the preparation and use of the substrates coated with the layer system
BE1016553A3 (en) * 2005-03-17 2007-01-09 Glaverbel Glass low emissivity.
FR2893024B1 (en) * 2005-11-08 2008-02-29 Saint Gobain SUBSTRATE PROVIDED WITH A STACK WITH THERMAL PROPERTIES
DE102005038139B4 (en) * 2005-08-12 2008-05-21 Saint-Gobain Glass Deutschland Gmbh High-thermal loadable low-E-layer system and its use
US7339728B2 (en) * 2005-10-11 2008-03-04 Cardinal Cg Company Low-emissivity coatings having high visible transmission and low solar heat gain coefficient
US7342716B2 (en) 2005-10-11 2008-03-11 Cardinal Cg Company Multiple cavity low-emissivity coatings
US7572511B2 (en) * 2005-10-11 2009-08-11 Cardinal Cg Company High infrared reflection coatings
FR2893023B1 (en) * 2005-11-08 2007-12-21 Saint Gobain SUBSTRATE PROVIDED WITH A STACK WITH THERMAL PROPERTIES
DE102006014796B4 (en) * 2006-03-29 2009-04-09 Saint-Gobain Glass Deutschland Gmbh Highly resilient low-E coating system for transparent substrates
CN100595172C (en) * 2006-10-19 2010-03-24 林嘉宏 Low radiation coated glass capable of being toughened and its production process
US8132426B2 (en) 2007-01-29 2012-03-13 Guardian Industries Corp. Method of making heat treated coated article using diamond-like carbon (DLC) coating and protective film
DE102009006832A1 (en) 2009-01-30 2010-08-05 Bayerisches Zentrum für Angewandte Energieforschung e.V. Liquid or semi-solid formulation of spectrally selective particles for coating flexible bodies and use of these
FR2949774B1 (en) * 2009-09-08 2011-08-26 Saint Gobain MATERIAL COMPRISING A GLASS SUBSTRATE COATED WITH A THIN FILM STACK
US8668990B2 (en) * 2011-01-27 2014-03-11 Guardian Industries Corp. Heat treatable four layer anti-reflection coating
US8900729B2 (en) * 2012-11-19 2014-12-02 Guardian Industries Corp. Coated article with low-E coating including zinc oxide inclusive layer(s) with additional metal(s)
US9206078B2 (en) * 2013-03-13 2015-12-08 Intermolecular, Inc. Barrier layers for silver reflective coatings and HPC workflows for rapid screening of materials for such barrier layers
DE102013004689A1 (en) 2013-03-19 2014-09-25 Remmers Baustofftechnik Gmbh Low-emissivity interior wall coating
FR3013043B1 (en) * 2013-11-08 2015-11-20 Saint Gobain SUBSTRATE COATED WITH A FUNCTIONAL LAYER STACK HAVING IMPROVED MECHANICAL PROPERTIES
FR3021967B1 (en) * 2014-06-06 2021-04-23 Saint Gobain PROCESS FOR OBTAINING A SUBSTRATE COATED WITH A FUNCTIONAL LAYER
US9469566B2 (en) 2015-03-20 2016-10-18 Cardinal Cg Company Nickel-aluminum blocker film low-emissivity coatings
US9752377B2 (en) 2015-03-20 2017-09-05 Cardinal Cg Company Nickel-aluminum blocker film controlled transmission coating
US9745792B2 (en) 2015-03-20 2017-08-29 Cardinal Cg Company Nickel-aluminum blocker film multiple cavity controlled transmission coating
US11472373B2 (en) 2017-04-17 2022-10-18 3E Nano Inc. Energy control coatings, structures, devices, and methods of fabrication thereof
KR102133217B1 (en) 2018-01-05 2020-07-14 주식회사 플렉스이비전 Low-e reflection film comprising deposited film of metal and oxide and manufacturing method thereof
US11028012B2 (en) 2018-10-31 2021-06-08 Cardinal Cg Company Low solar heat gain coatings, laminated glass assemblies, and methods of producing same
CN111217539A (en) * 2018-11-27 2020-06-02 宜城市泳瑞玻璃科技有限公司 Coating process of optical glass

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4780372A (en) * 1984-07-20 1988-10-25 The United States Of America As Represented By The United States Department Of Energy Silicon nitride protective coatings for silvered glass mirrors
US5506037A (en) * 1989-12-09 1996-04-09 Saint Gobain Vitrage International Heat-reflecting and/or electrically heatable laminated glass pane
FR2672884B1 (en) * 1991-02-20 1993-09-10 Saint Gobain Vitrage Int PROTECTIVE LAYER ON A CONDUCTIVE SUBSTRATE.
US5344718A (en) * 1992-04-30 1994-09-06 Guardian Industries Corp. High performance, durable, low-E glass
EP0586951B1 (en) * 1992-08-26 1999-10-06 Hoechst Aktiengesellschaft Bicomponent looped yarns with a fine yarn count and high strength, method of production and their use as sewing and embroidery threads
US5376455A (en) * 1993-10-05 1994-12-27 Guardian Industries Corp. Heat-treatment convertible coated glass and method of converting same
US6025094A (en) * 1994-11-23 2000-02-15 Polyplus Battery Company, Inc. Protective coatings for negative electrodes
US5514476A (en) * 1994-12-15 1996-05-07 Guardian Industries Corp. Low-E glass coating system and insulating glass units made therefrom
US5763064A (en) * 1995-06-26 1998-06-09 Asahi Glass Company Ltd. Laminate
MX9605168A (en) * 1995-11-02 1997-08-30 Guardian Industries Neutral, high performance, durable low-e glass coating system, insulating glass units made therefrom, and methods of making same.
US5770321A (en) 1995-11-02 1998-06-23 Guardian Industries Corp. Neutral, high visible, durable low-e glass coating system and insulating glass units made therefrom
US6316111B1 (en) 1996-03-01 2001-11-13 Cardinal Cg Company Heat-emperable coated glass article
DE19632788A1 (en) * 1996-08-15 1998-02-19 Fraunhofer Ges Forschung Layer system for curved and / or hardened glass panes
DE19640800C2 (en) * 1996-10-02 2002-01-17 Fraunhofer Ges Forschung Thermal insulation layer system for transparent substrates
FR2757151B1 (en) * 1996-12-12 1999-01-08 Saint Gobain Vitrage GLAZING COMPRISING A SUBSTRATE PROVIDED WITH A STACK OF THIN FILMS FOR SUN PROTECTION AND / OR THERMAL INSULATION
FR2766174B1 (en) * 1997-07-21 1999-08-20 Saint Gobain Vitrage TRANSPARENT SUBSTRATE COATED WITH AT LEAST ONE THIN FILM
DE19850023A1 (en) 1998-10-30 2000-05-04 Leybold Systems Gmbh Insulating layer system
DE19852358C1 (en) * 1998-11-13 2000-05-25 Ver Glaswerke Gmbh Low-E coating system with high thermal resistance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02062713A2 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010063973A1 (en) 2008-12-04 2010-06-10 Saint-Gobain Glass France Substrate for the front surface of a photovoltaic panel, photovoltaic panel, and use of a substrate for the front surface of a photovoltaic panel

Also Published As

Publication number Publication date
US7211328B2 (en) 2007-05-01
US20040126591A1 (en) 2004-07-01
DE10105199C1 (en) 2002-06-20
TR200301214T2 (en) 2004-12-21
CZ20032116A3 (en) 2004-09-15
WO2002062713A3 (en) 2002-12-12
CA2435811A1 (en) 2002-08-15
PL369996A1 (en) 2005-05-16
JP2004526650A (en) 2004-09-02
AU2002233460A1 (en) 2002-08-19
BR0206938A (en) 2004-02-03
CN1501896A (en) 2004-06-02
WO2002062713A2 (en) 2002-08-15
CN1289428C (en) 2006-12-13
KR20030075170A (en) 2003-09-22

Similar Documents

Publication Publication Date Title
EP1366001A2 (en) Prestressable low-e layer systems for window panes
EP1047644B1 (en) Glazing provided with a low emissive stack of layers
EP2577368B1 (en) Solar control glazing with low solar factor
BE1019346A3 (en) GLAZING OF SOLAR CONTROL.
EP1833768B1 (en) Glazing panel with a multilayer coating
EP1517866B2 (en) Method for production of a glazed piece provided with a multi-layer coating
FR2858816A1 (en) Transparent substrate incorporating an anti-glare coating made up of a stack of thin films of high and low refractive indices for motor vehicle and building glazing applications
EP1120383A2 (en) Substrate with a thin film stack, having reflexion properties for infrared and/or solar radiation
WO2009132998A1 (en) Solar-control glazing
WO2005000761A2 (en) Glazing provided with stacked thin layers which reflect infrared rays and/or solar radiation
WO2005019126A1 (en) Transparent substrate which is covered with a stack of thin layers having reflection properties in infrared and/or solar radiation
WO2015145073A1 (en) Glazing provided with a thin-layer stack for solar protection
WO2013140061A1 (en) Solar control glazing
EP3390318B1 (en) Thermal control glazing with a protective polymer film
WO2017042462A1 (en) Glazing comprising a functional coating
WO2017042463A1 (en) Glazing including a stack of thin layers
WO2004013059A2 (en) Prestressable layer system for partition glass
EP3419827B1 (en) Article comprising a protective top layer based on mixed oxide of zirconium and aluminum
EP3717433B1 (en) Functional glazing equipped with a permanent protective film
EP4204378A1 (en) Low-emissivity material with high selectivity and glazing comprising such a material
FR3108903A1 (en) Solar control glazing

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030710

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHMIDT, UWE

Inventor name: IHLO, LARS

Inventor name: SCHINDLER, HERBERT

Inventor name: SCHICHT, HEINZ

17Q First examination report despatched

Effective date: 20080124

R17C First examination report despatched (corrected)

Effective date: 20080211

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080624