EP1328004A2 - Electron tube with a cooled tubular sheath - Google Patents

Electron tube with a cooled tubular sheath Download PDF

Info

Publication number
EP1328004A2
EP1328004A2 EP02102726A EP02102726A EP1328004A2 EP 1328004 A2 EP1328004 A2 EP 1328004A2 EP 02102726 A EP02102726 A EP 02102726A EP 02102726 A EP02102726 A EP 02102726A EP 1328004 A2 EP1328004 A2 EP 1328004A2
Authority
EP
European Patent Office
Prior art keywords
sheath
casing
resin
granules
ensuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02102726A
Other languages
German (de)
French (fr)
Other versions
EP1328004A3 (en
Inventor
Pierre Nugues
Jean-Paul Nesa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1328004A2 publication Critical patent/EP1328004A2/en
Publication of EP1328004A3 publication Critical patent/EP1328004A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/005Cooling methods or arrangements

Definitions

  • the invention relates to electronic amplifier tubes operating in microwave. It applies more particularly to traveling wave tubes (TOP) also called TWT (from English Traveling Wave Tube), and it is therefore about such a tube that it will be described.
  • TOP traveling wave tubes
  • TWT from English Traveling Wave Tube
  • Such tubes are used, for example, for the transmission of telecommunication between earth and satellites. They also serve as power transmitters in radars.
  • a TOP is a vacuum tube using the principle of the interaction between an electron beam and a wave electromagnetic microwave, to transmit to the wave microwave part of the energy contained in the beam of electrons, so as to obtain at the outlet of the tube a microwave wave energy greater than that of the wave injected at the inlet of the tube.
  • Figure 1 recalls the general principle of a TOP.
  • the TOP depicted is a propeller TOP, but other types of TOP such as TOP with coupled cavities, TOP with guides folded in meanders, etc., are equally concerned with the invention.
  • TOPs have an elongated tubular sheath 10 in which vacuum is created, with at one end an electron gun 11 emitting an electron beam 12 and, at a second end, a collector 14; the collector collects the electrons that have given up part of their initial energy to the electromagnetic wave that we want to amplify.
  • the electron beam 12 is substantially cylindrical over most of the length of the tube between the barrel 11 and the manifold 14 along an axis 15. This cylindrical beam shape is obtained on the one hand, thanks to the shape a cathode 16 of the electron gun 11 (convergent cathode in the form of bowl), and, on the other hand, by means of magnetic focusing provided over the entire length of the sheath 10 between the outlet of the barrel electron 11 and the collector input 14.
  • cathode 16 which emits the electron beam 12.
  • These means of focusing are permanent annular magnets 18 axially magnetized and alternating magnetization from one magnet to the next; these magnets surround the sheath 10 and are separated from each other by pole pieces 20 to high magnetic permeability.
  • the electron beam 12 changes to inside a helical conductive structure 22 along which flows the microwave electromagnetic wave to be amplified; amplification of microwave energy occurs by interaction between this wave and the electron beam 12 passing through the center thereof.
  • the propeller is used to slow down the microwave, so that its speed, along axis 15 of the electron beam 12, ie substantially equal to that of the beam of electrons 12.
  • a signal to be amplified with power Pe is injected at one end of the helical conductive structure 22 through a plug and a window 24 inside the sheath 10.
  • An amplified power signal Ps is extracted at another end of the helical conductive structure 22 at through a plug and a window 26.
  • Figures 2 and 3 show in more detail how the scabbard 10 is thus realized connecting the sheath 10 with a casing 28 enclosing the whole sleeve 10.
  • the sheath 10 proper is formed of the pole pieces 20 and spacers 30 separating the pole pieces 20.
  • the spacers 30 are, for example, made from an alloy based on copper and nickel nonmagnetic.
  • the outside diameter of the spacers 30 is smaller than that of the pole pieces 20, thus, the magnets 18 whose internal diameter is substantially equal to the outside diameter of the spacers 30 are held between the spacers, for example by means of resin.
  • the thickness of the spacers 30 measured along the axis 15 is substantially equal to the thickness of the magnets 18.
  • the propeller 22 is located inside the sheath 10 and dielectric rods 32 make it possible to support mechanically the propeller inside the sleeve 10.
  • the rods 32 are elongated along axis 15 and are, for example, three in number arranged at 120 ° around the axis 15. This 120 ° arrangement of the sticks 32 is good visible in figure 3.
  • Fins 34 mechanically hold the sleeve 10 to inside the casing 28.
  • the fins 34 also make it possible to evacuate towards the casing 28 of the heat produced inside the sheath.
  • the fins 34 are made from metal sheets, for example copper alloy.
  • the fins 34 are arranged perpendicular to the axis 15 and they are based on the one hand, at the end of the pole pieces 20 and, on the other hand, on the casing 28.
  • the production and assembly of the fins 34 are complicated to achieve. In particular, we are required to impose tight tolerances in dimensions of the pole pieces 20 and the fins 34 in order to ensure good mechanical and thermal contact between the pole pieces 20, the fins 34 and the casing 28.
  • the invention aims to simplify the mechanical maintenance of the sheath 10 relative to the casing 28 while ensuring good transfer thermal between the sleeve 10 and the casing 28.
  • the invention relates to an electronic tube comprising an elongated tubular sheath inside which develops a electron beam, a housing ensuring the mechanical maintenance of the sheath, and means for ensuring a thermal transfer from the sleeve to the casing in order to cool the sheath, characterized in that the means for ensuring the heat transfer include a resin filling a free volume located between the sleeve and the housing.
  • the resin increases the rigidity of the mounted electronic tube in its housing 28.
  • the removal of the fins improves the heat dissipation of the sheath 10 towards the casing 28. More specifically, the fins formed localized thermal bridges through which heat circulated. Replacing the fins by resin, the heat transfer is no longer localized, it is more homogeneous. This avoids possible hot spots between the fins 34.
  • the fins 34 have been replaced by a resin 36 filling the free volume between the sheath 10 and the casing 28.
  • This resin once polymerized, ensures that the times the mechanical retention of the sheath 10 relative to the casing 28 as well as the thermal transfer of the heat emitted inside the electronic tube towards the casing 28.
  • a radiator fixed to the casing 28 or similar means, not shown in Figure 4, will, for example, remove this heat by a heat transfer fluid circulating in the radiator.
  • the resin can, for example, be formed by "Stycast 3050" supplied by Emerson and Cuming, resin to which an adequate catalyst is added.
  • granules 38 made are drowned in the resin. in a material whose thermal resistance is lower than that of resin. These granules improve the heat transfer of the sheath 10 towards the casing 28.
  • metal granules by aluminum-based example.
  • the dimensions of the granules 38 are chosen so that a characteristic dimension of these granules 38, by example the diameter, if the granules 38 are substantially spherical, is substantially equal or similar while remaining less than the smallest of dimensions of the free volume left between the sheath 10 and the casing 28.
  • This characteristic is visible on figure 4 on which one distinguishes granules which can slide between the lower part of the sheath 10 and the casing 28. In this zone, the larger the granules 38, the better the heat transfer between the sleeve 10 and the casing 28.
  • the number is reduced of contact zones between the sleeve 10 and the casing 28 passing through the granules. It is through these contact zones that the heat. The fewer these areas, the better the transfer thermal.
  • the thermal conductivity is closer to that of the resin as the material constituting the powder or the granules. Thanks to this largest possible characteristic dimension of the granules 38, we is not obliged to choose a resin among that having a good conductivity thermal. This characteristic frees the choice of resin.

Abstract

The electron tube has a tubular sheath (10) in which the electron beam travels. An outer guard section (28) provides sheath mechanical maintenance. There is a resin (36) between the sheath and the guard providing thermal transfer.

Description

L'invention concerne les tubes électroniques amplificateurs fonctionnant en hyperfréquence. Elle s'applique plus particulièrement aux tubes à ondes progressives (TOP) appelés aussi TWT (de l'anglais Travelling Wave Tube), et c'est donc à propos d'un tel tube qu'elle sera décrite. De tels tubes servent par exemple à la transmission de signaux de télécommunication entre la terre et les satellites. Ils servent aussi comme émetteurs de puissance dans les radars.The invention relates to electronic amplifier tubes operating in microwave. It applies more particularly to traveling wave tubes (TOP) also called TWT (from English Traveling Wave Tube), and it is therefore about such a tube that it will be described. Such tubes are used, for example, for the transmission of telecommunication between earth and satellites. They also serve as power transmitters in radars.

On rappelle sommairement qu'un TOP est un tube à vide utilisant le principe de l'interaction entre un faisceau d'électrons et une onde électromagnétique hyperfréquence, pour transmettre à l'onde hyperfréquence une partie de l'énergie contenue dans le faisceau d'électrons, de manière à obtenir en sortie du tube une onde hyperfréquence d'énergie plus grande que celle de l'onde injectée à l'entrée du tube.We briefly recall that a TOP is a vacuum tube using the principle of the interaction between an electron beam and a wave electromagnetic microwave, to transmit to the wave microwave part of the energy contained in the beam of electrons, so as to obtain at the outlet of the tube a microwave wave energy greater than that of the wave injected at the inlet of the tube.

La figure 1 rappelle le principe général d'un TOP. Le TOP représenté est un TOP à hélice, mais d'autres types de TOP tels que les TOP à cavités couplées, les TOP à guides repliés en méandres, etc., sont tout aussi bien concernés par l'invention.Figure 1 recalls the general principle of a TOP. The TOP depicted is a propeller TOP, but other types of TOP such as TOP with coupled cavities, TOP with guides folded in meanders, etc., are equally concerned with the invention.

Les TOP comportent un fourreau tubulaire allongé 10 dans lequel le vide est fait, avec à une première extrémité un canon à électrons 11 émettant un faisceau d'électrons 12 et, à une deuxième extrémité, un collecteur 14 ; le collecteur recueille les électrons qui ont cédé une partie de leur énergie de départ à l'onde électromagnétique qu'on veut amplifier. Le faisceau d'électrons 12 est sensiblement cylindrique sur presque toute la longueur du tube entre le canon 11 et le collecteur 14 en suivant un axe 15. Cette forme cylindrique de faisceau est obtenue d'une part, grâce à la forme d'une cathode 16 du canon à électron 11 (cathode convergente en forme de cuvette), et, d'autre part, grâce à des moyens de focalisation magnétique prévus sur toute la longueur du fourreau 10 entre la sortie du canon à électrons 11 et l'entrée du collecteur 14. Dans le canon à électrons 11, c'est la cathode 16 qui émet le faisceau d'électrons 12. Ces moyens de focalisation sont des aimants permanents annulaires 18 aimantés axialement et d'aimantation alternée d'un aimant au suivant ; ces aimants entourent le fourreau 10 et sont séparés les uns des autres par des pièces polaires 20 à forte perméabilité magnétique.TOPs have an elongated tubular sheath 10 in which vacuum is created, with at one end an electron gun 11 emitting an electron beam 12 and, at a second end, a collector 14; the collector collects the electrons that have given up part of their initial energy to the electromagnetic wave that we want to amplify. The electron beam 12 is substantially cylindrical over most of the length of the tube between the barrel 11 and the manifold 14 along an axis 15. This cylindrical beam shape is obtained on the one hand, thanks to the shape a cathode 16 of the electron gun 11 (convergent cathode in the form of bowl), and, on the other hand, by means of magnetic focusing provided over the entire length of the sheath 10 between the outlet of the barrel electron 11 and the collector input 14. In the electron gun 11, it's cathode 16 which emits the electron beam 12. These means of focusing are permanent annular magnets 18 axially magnetized and alternating magnetization from one magnet to the next; these magnets surround the sheath 10 and are separated from each other by pole pieces 20 to high magnetic permeability.

Dans le cas d'un TOP à hélice, le faisceau d'électrons 12 passe à l'intérieur d'une structure conductrice en hélice 22 le long de laquelle circule l'onde électromagnétique hyperfréquence à amplifier; l'amplification d'énergie hyperfréquence se produit par interaction entre cette onde et le faisceau d'électrons 12 passant au centre de celle-ci. L'hélice sert à ralentir l'onde hyperfréquence, de telle sorte que sa vitesse, suivant l'axe 15 du faisceau d'électrons 12, soit sensiblement égale à celle du faisceau d'électrons 12.In the case of a helical TOP, the electron beam 12 changes to inside a helical conductive structure 22 along which flows the microwave electromagnetic wave to be amplified; amplification of microwave energy occurs by interaction between this wave and the electron beam 12 passing through the center thereof. The propeller is used to slow down the microwave, so that its speed, along axis 15 of the electron beam 12, ie substantially equal to that of the beam of electrons 12.

Un signal à amplifier de puissance Pe est injecté à une extrémité de la structure conductrice en hélice 22 au travers d'une fiche et d'une fenêtre 24 à l'intérieur du fourreau 10. Un signal amplifié de puissance Ps est extrait à une autre extrémité de la structure conductrice en hélice 22 au travers d'une fiche et d'une fenêtre 26.A signal to be amplified with power Pe is injected at one end of the helical conductive structure 22 through a plug and a window 24 inside the sheath 10. An amplified power signal Ps is extracted at another end of the helical conductive structure 22 at through a plug and a window 26.

Les figures 2 et 3 montrent plus en détail la façon dont le fourreau 10 est réalisé ainsi la liaison du fourreau 10 avec un carter 28 enfermant l'ensemble du fourreau 10.Figures 2 and 3 show in more detail how the scabbard 10 is thus realized connecting the sheath 10 with a casing 28 enclosing the whole sleeve 10.

Le fourreau 10 proprement dit est formé des pièces polaires 20 et d'entretoises 30 séparant les pièces polaires 20. Les entretoises 30 sont, par exemple, réalisées dans un alliage à base de cuivre et de nickel amagnétique. Le diamètre extérieur des entretoises 30 est plus faible que celui des pièces polaires 20, ainsi, les aimants 18 dont le diamètre intérieur est sensiblement égal au diamètre extérieur des entretoises 30 sont maintenus entre les entretoises, par exemple au moyen de résine. L'épaisseur des entretoises 30 mesurée suivant l'axe 15 est sensiblement égale à l'épaisseur des aimants 18. L'hélice 22 est située à l'intérieur du fourreau 10 et des bâtonnets diélectriques 32 permettent de supporter mécaniquement l'hélice à l'intérieur du fourreau 10. Les bâtonnets 32 sont allongés suivant l'axe 15 et sont, par exemple, au nombre de trois disposés à 120° autour de l'axe 15. Cette disposition à 120° des bâtonnets 32 est bien visible sur la figure 3.The sheath 10 proper is formed of the pole pieces 20 and spacers 30 separating the pole pieces 20. The spacers 30 are, for example, made from an alloy based on copper and nickel nonmagnetic. The outside diameter of the spacers 30 is smaller than that of the pole pieces 20, thus, the magnets 18 whose internal diameter is substantially equal to the outside diameter of the spacers 30 are held between the spacers, for example by means of resin. The thickness of the spacers 30 measured along the axis 15 is substantially equal to the thickness of the magnets 18. The propeller 22 is located inside the sheath 10 and dielectric rods 32 make it possible to support mechanically the propeller inside the sleeve 10. The rods 32 are elongated along axis 15 and are, for example, three in number arranged at 120 ° around the axis 15. This 120 ° arrangement of the sticks 32 is good visible in figure 3.

Des ailettes 34 maintiennent mécaniquement le fourreau 10 à l'intérieur du carter 28. Les ailettes 34 permettent également d'évacuer vers le carter 28 de la chaleur produite à l'intérieur du fourreau. Les ailettes 34 sont réalisées à partir de tôles métalliques par exemple en alliage de cuivre. Les ailettes 34 sont disposées perpendiculairement à l'axe 15 et elles sont basées d'une part, au bout des pièces polaires 20 et, d'autre part, sur le carter 28.Fins 34 mechanically hold the sleeve 10 to inside the casing 28. The fins 34 also make it possible to evacuate towards the casing 28 of the heat produced inside the sheath. The fins 34 are made from metal sheets, for example copper alloy. The fins 34 are arranged perpendicular to the axis 15 and they are based on the one hand, at the end of the pole pieces 20 and, on the other hand, on the casing 28.

En résumé, les fonctions principales du fourreau 10 sont :

  • maintenir l'étanchéité entre le vide régnant à l'intérieur du fourreau 10 et l'atmosphère extérieure ;
  • maintenir et aligner de l'hélice 22 par l'intermédiaire des bâtonnets diélectriques 32 ;
  • évacuer la chaleur produite dans le tube électronique vers l'extérieur.
Cette chaleur provient notamment de :
  • l'hélice 22 qui chauffe à la fois sous l'effet du bombardement de certains électrons mal focalisés et par effet joule, en raison des courants hyperfréquences qu'elle transporte ;
  • du collecteur 14 qui est relié mécaniquement et donc thermiquement au fourreau 10 ;
  • du canon à électrons 11 et plus particulièrement d'une cathode et de son filament de chauffage.
In summary, the main functions of the sheath 10 are:
  • maintain the seal between the vacuum inside the sheath 10 and the outside atmosphere;
  • hold and align the propeller 22 through the dielectric rods 32;
  • evacuate the heat produced in the electronic tube to the outside.
This heat comes in particular from:
  • the propeller 22 which heats both under the effect of the bombardment of certain poorly focused electrons and by the Joule effect, because of the microwave currents it carries;
  • the manifold 14 which is mechanically and therefore thermally connected to the sleeve 10;
  • electron gun 11 and more particularly a cathode and its heating filament.

Dans une réalisation expérimentale, on a constaté que la chaleur émise par les trois éléments cités ci-dessus se répartissait de la façon suivante :

  • hélice : de 1 à 7 % ;
  • collecteur : de 78 à 84 % ;
  • canon à électrons : 15 %.
  • In an experimental implementation, it was found that the heat emitted by the three elements mentioned above is distributed as follows:
  • helix: from 1 to 7%;
  • collector: 78 to 84%;
  • electron gun: 15%.
  • En raison de cette répartition, on dispose un plus grand nombre d'ailettes 34 au voisinage du collecteur 14 qu'au voisinage du canon à électrons.Because of this distribution, there are more fins 34 in the vicinity of the manifold 14 than in the vicinity of the barrel electrons.

    La réalisation et le montage des ailettes 34 sont compliqués à réaliser. On est notamment tenus d'imposer des tolérances serrées dans les dimensions des pièces polaires 20 et des ailettes 34 afin d'assurer un bon contact mécanique et thermique entre les pièces polaires 20, les ailettes 34 et le carter 28. The production and assembly of the fins 34 are complicated to achieve. In particular, we are required to impose tight tolerances in dimensions of the pole pieces 20 and the fins 34 in order to ensure good mechanical and thermal contact between the pole pieces 20, the fins 34 and the casing 28.

    L'invention a pour but de simplifier le maintien mécanique du fourreau 10 par rapport au carter 28 tout en assurant un bon transfert thermique entre le fourreau 10 et le carter 28.The invention aims to simplify the mechanical maintenance of the sheath 10 relative to the casing 28 while ensuring good transfer thermal between the sleeve 10 and the casing 28.

    A cet effet, l'invention a pour objet un tube électronique comportant un fourreau tubulaire allongé à l'intérieur duquel se développe un faisceau d'électrons, un carter assurant le maintien mécanique du fourreau, et des moyens pour assurer un transfert thermique du fourreau vers le carter afin de refroidir le fourreau, caractérisé en ce que les moyens pour assurer le transfert thermique comportent une résine remplissant un volume libre situé entre le fourreau et le carter.To this end, the invention relates to an electronic tube comprising an elongated tubular sheath inside which develops a electron beam, a housing ensuring the mechanical maintenance of the sheath, and means for ensuring a thermal transfer from the sleeve to the casing in order to cool the sheath, characterized in that the means for ensuring the heat transfer include a resin filling a free volume located between the sleeve and the housing.

    En supprimant les ailettes 34 décrites précédemment, on peut élargir les tolérances de fabrication des pièces polaires 20. L'utilisation de résine permet également d'assurer le maintien mécanique des aimants 18 et, éventuellement, de shunts magnétiques correcteurs que l'on peut fixer sur les parois extérieures du fourreau 10. Ces shunts ont pour fonction de modifier le champ magnétique créé par les aimants 18 à l'intérieur du fourreau 10.By removing the fins 34 described above, we can expand manufacturing tolerances for pole pieces 20. The use of resin also makes it possible to mechanically hold magnets 18 and, possibly, corrective magnetic shunts that can be attached to the outer walls of the sleeve 10. These shunts have the function of modify the magnetic field created by the magnets 18 inside the scabbard 10.

    De plus, la résine augmente la rigidité du tube électronique monté dans son carter 28.In addition, the resin increases the rigidity of the mounted electronic tube in its housing 28.

    La suppression des ailettes améliore la dissipation thermique du fourreau 10 vers le carter 28. Plus précisément, les ailettes formaient des ponts thermiques localisés par lesquels la chaleur circulait. En remplaçant les ailettes par de la résine, le transfert thermique n'est plus localisé, il est plus homogène. Cela permet d'éviter d'éventuels points chauds entre les ailettes 34.The removal of the fins improves the heat dissipation of the sheath 10 towards the casing 28. More specifically, the fins formed localized thermal bridges through which heat circulated. Replacing the fins by resin, the heat transfer is no longer localized, it is more homogeneous. This avoids possible hot spots between the fins 34.

    L'invention sera mieux comprise et d'autres avantages apparaítront à la lecture de la description détaillée d'un mode de réalisation donné à titre d'exemple, mode de réalisation illustré par le dessin joint dans lequel :

    • la figure 1 représente schématiquement le fonctionnement général d'un tube électronique ;
    • la figure 2 représente, en coupe par un plan contenant l'axe du faisceau d'électrons, un tube électronique connu ;
    • la figure 3 représente en coupe par un plan perpendiculaire à l'axe du faisceau d'électrons, un tube électronique connu ;
    • - la figure 4 représente en coupe par un plan perpendiculaire à l'axe du faisceau d'électrons, un tube électronique selon l'invention ;
    The invention will be better understood and other advantages will appear on reading the detailed description of an embodiment given by way of example, embodiment illustrated by the attached drawing in which:
    • Figure 1 schematically shows the general operation of an electronic tube;
    • FIG. 2 represents, in section through a plane containing the axis of the electron beam, a known electronic tube;
    • Figure 3 shows in section through a plane perpendicular to the axis of the electron beam, a known electronic tube;
    • - Figure 4 shows in section through a plane perpendicular to the axis of the electron beam, an electronic tube according to the invention;

    Pour simplifier la suite de la description, les mêmes éléments porteront les mêmes repères dans les différentes figures.To simplify the rest of the description, the same elements will bear the same references in the different figures.

    Les figures 1 à 3 ont déjà été décrites précédemment pour introduire l'invention.Figures 1 to 3 have already been described above for introduce the invention.

    Dans le tube électronique représenté sur la figure 4, les ailettes 34 ont été remplacées par une résine 36 remplissant le volume libre situé entre le fourreau 10 et le carter 28. Cette résine, une fois polymérisée, assure à la fois le maintien mécanique du fourreau 10 par rapport au carter 28 ainsi que le transfert thermique de la chaleur émise à l'intérieur du tube électronique vers le carter 28. Un radiateur fixé au carter 28 ou un moyen analogue, non représenté sur la figure 4, permettra, par exemple, d'évacuer cette chaleur par un fluide caloporteur circulant dans le radiateur. La résine peut, par exemple, être formée par du « Stycast 3050 » fourni par Emerson and Cuming, résine à laquelle on rajoute un catalyseur adéquat.In the electron tube shown in Figure 4, the fins 34 have been replaced by a resin 36 filling the free volume between the sheath 10 and the casing 28. This resin, once polymerized, ensures that the times the mechanical retention of the sheath 10 relative to the casing 28 as well as the thermal transfer of the heat emitted inside the electronic tube towards the casing 28. A radiator fixed to the casing 28 or similar means, not shown in Figure 4, will, for example, remove this heat by a heat transfer fluid circulating in the radiator. The resin can, for example, be formed by "Stycast 3050" supplied by Emerson and Cuming, resin to which an adequate catalyst is added.

    Avantageusement, on noie dans la résine des granules 38 réalisés dans un matériau dont la résistance thermique est inférieure à celle de la résine. Ces granules permettent d'améliorer le transfert thermique du fourreau 10 vers le carter 28. On peut choisir des granules métalliques par exemple à base d'aluminium.Advantageously, granules 38 made are drowned in the resin. in a material whose thermal resistance is lower than that of resin. These granules improve the heat transfer of the sheath 10 towards the casing 28. One can choose metal granules by aluminum-based example.

    Avantageusement, les dimensions des granules 38 sont choisies de telle sorte qu'une dimension caractéristique de ces granules 38, par exemple le diamètre, si les granules 38 sont sensiblement sphériques, est sensiblement égale ou voisine tout en restant inférieure à la plus petite des dimensions du volume libre laissé entre le fourreau 10 et le carter 28. Cette caractéristique est visible sur la figure 4 sur laquelle on distingue des granules pouvant se glisser entre la partie inférieure du fourreau 10 et le carter 28. Dans cette zone, plus les granules 38 ont de grandes dimensions, meilleur sera le transfert thermique entre le fourreau 10 et le carter 28. En effet, en augmentant les dimensions des granules 28, on diminue le nombre de zones de contact entre le fourreau 10 et le carter 28 en passant par les granules. C'est par ces zones de contact que transite de préférence la chaleur. Moins ces zones seront nombreuses, meilleur sera le transfert thermique. On s'est rendu compte qu'en utilisant des granules plus petits ou même de la poudre, la conductivité thermique se rapproche plus de celle de la résine que du matériau constituant la poudre ou les granules. Grâce à cette dimension caractéristique la plus grande possible des granules 38, on n'est obligé de choisir une résine parmi celle ayant une bonne conductivité thermique. Cette caractéristique libère le choix de la résine.Advantageously, the dimensions of the granules 38 are chosen so that a characteristic dimension of these granules 38, by example the diameter, if the granules 38 are substantially spherical, is substantially equal or similar while remaining less than the smallest of dimensions of the free volume left between the sheath 10 and the casing 28. This characteristic is visible on figure 4 on which one distinguishes granules which can slide between the lower part of the sheath 10 and the casing 28. In this zone, the larger the granules 38, the better the heat transfer between the sleeve 10 and the casing 28. In indeed, by increasing the dimensions of the granules 28, the number is reduced of contact zones between the sleeve 10 and the casing 28 passing through the granules. It is through these contact zones that the heat. The fewer these areas, the better the transfer thermal. We realized that by using smaller granules or even of the powder, the thermal conductivity is closer to that of the resin as the material constituting the powder or the granules. Thanks to this largest possible characteristic dimension of the granules 38, we is not obliged to choose a resin among that having a good conductivity thermal. This characteristic frees the choice of resin.

    Claims (2)

    Tube électronique comportant un fourreau tubulaire allongé (10) à l'intérieur duquel se développe un faisceau d'électrons (12), un carter (28) assurant le maintien mécanique du fourreau (10), et des moyens pour assurer un transfert thermique du fourreau (10) vers le carter (28) afin de refroidir le fourreau (10), caractérisé en ce que les moyens pour assurer le transfert thermique comportent une résine (36) remplissant un volume libre situé entre le fourreau (10) et le carter (28), en ce que les moyens pour assurer le transfert thermique comportent, noyés dans la résine, des granules (38) réalisés dans un matériau dont la résistance thermique est inférieure à celle de la résine et en ce qu'une dimension caractéristique des granules (38) est sensiblement égale tout en restant inférieure à la plus petite des dimensions du volume libre.Electronic tube comprising an elongated tubular sheath (10) inside which an electron beam (12) develops, a casing (28) ensuring the mechanical retention of the sheath (10), and means for ensuring a thermal transfer of the sheath (10) towards the casing (28) in order to cool the sheath (10), characterized in that the means for ensuring the thermal transfer comprise a resin (36) filling a free volume situated between the sheath (10) and the casing (28), in that the means for ensuring the thermal transfer comprise, embedded in the resin, granules (38) made of a material whose thermal resistance is lower than that of the resin and in that a dimension characteristic of granules (38) is substantially equal while remaining less than the smallest of the dimensions of the free volume. Tube électronique selon la revendication 1, caractérisé en ce que le matériau des granules (38) comporte de l'aluminium.Electronic tube according to claim 1, characterized in that the material of the granules (38) comprises aluminum.
    EP02102726A 2001-12-14 2002-12-11 Electron tube with a cooled tubular sheath Withdrawn EP1328004A3 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR0116243A FR2833749B1 (en) 2001-12-14 2001-12-14 COOLING OF AN ELECTRONIC TUBE
    FR0116243 2001-12-14

    Publications (2)

    Publication Number Publication Date
    EP1328004A2 true EP1328004A2 (en) 2003-07-16
    EP1328004A3 EP1328004A3 (en) 2003-07-23

    Family

    ID=8870533

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP02102726A Withdrawn EP1328004A3 (en) 2001-12-14 2002-12-11 Electron tube with a cooled tubular sheath

    Country Status (3)

    Country Link
    US (1) US6858973B2 (en)
    EP (1) EP1328004A3 (en)
    FR (1) FR2833749B1 (en)

    Families Citing this family (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US8518304B1 (en) 2003-03-31 2013-08-27 The Research Foundation Of State University Of New York Nano-structure enhancements for anisotropic conductive material and thermal interposers
    FR2857331B1 (en) * 2003-07-11 2005-12-02 Cit Alcatel DUAL CONDUCTION HEAT DISSIPATING DEVICE FOR A SPATIAL DEVICE
    FR2958448A1 (en) * 2010-03-30 2011-10-07 Astrium Sas THERMAL CONTROL DEVICE OF A RADIANT COLLECTOR TUBE HAVING A SCREEN, A FLUID LOOP AND A HIGH TEMPERATURE RADIATOR

    Citations (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE2213185A1 (en) * 1972-03-17 1973-09-27 Siemens Ag Adjustable travelling-wave tube - with polyamide in gap between electron collector and cooling jacket
    JPS5474668A (en) * 1977-11-28 1979-06-14 Nec Corp Traveliing-wave tube unit
    DE2812409A1 (en) * 1978-03-22 1979-09-27 Licentia Gmbh Electron-beam tube used as travelling-field tube - has collector electrode and cooling jacket, the gap between packed with elastomer contg. filler
    DE3433718A1 (en) * 1984-09-14 1986-03-27 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Travelling wave tube

    Family Cites Families (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4740657A (en) * 1986-02-14 1988-04-26 Hitachi, Chemical Company, Ltd Anisotropic-electroconductive adhesive composition, method for connecting circuits using the same, and connected circuit structure thus obtained
    FR2634054B1 (en) * 1988-07-05 1996-02-09 Thomson Csf CATHODE FOR ELECTRON EMISSION AND ELECTRONIC TUBE COMPRISING SUCH A CATHODE
    FR2637731A1 (en) * 1988-10-11 1990-04-13 Thomson Csf PROGRESSIVE WAVE TUBE PROVIDED WITH A WATERPROOF COUPLING DEVICE BETWEEN THE DELAYED LINE AND AN EXTERNAL MICROWAVE CIRCUIT
    FR2638891A1 (en) * 1988-11-04 1990-05-11 Thomson Csf SEALED WINDOW FOR HYPERFREQUENCY ELECTRONIC TUBE AND PROGRESSIVE WAVE TUBE HAVING THIS WINDOW
    FR2647953B1 (en) * 1989-05-30 1991-08-16 Thomson Tubes Electroniques MODEL OF CONSTRUCTION OF A PROPELLER DELAY LINE AND PROGRESSIVE WAVE TUBES USING THIS MODEL
    FR2650702B1 (en) * 1989-08-01 1996-07-05 Thomson Tubes Electroniques MICROWAVE TUBE PROVIDED WITH AT LEAST ONE COLD-SOCKET AXIAL PART IN A COAXIAL ENVELOPE
    US5288769A (en) * 1991-03-27 1994-02-22 Motorola, Inc. Thermally conducting adhesive containing aluminum nitride
    US5834337A (en) * 1996-03-21 1998-11-10 Bryte Technologies, Inc. Integrated circuit heat transfer element and method
    EP0892978A1 (en) * 1997-02-07 1999-01-27 Loctite Corporation Conductive, resin-based compositions

    Patent Citations (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE2213185A1 (en) * 1972-03-17 1973-09-27 Siemens Ag Adjustable travelling-wave tube - with polyamide in gap between electron collector and cooling jacket
    JPS5474668A (en) * 1977-11-28 1979-06-14 Nec Corp Traveliing-wave tube unit
    DE2812409A1 (en) * 1978-03-22 1979-09-27 Licentia Gmbh Electron-beam tube used as travelling-field tube - has collector electrode and cooling jacket, the gap between packed with elastomer contg. filler
    DE3433718A1 (en) * 1984-09-14 1986-03-27 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Travelling wave tube

    Non-Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Title
    PATENT ABSTRACTS OF JAPAN vol. 003, no. 096 (E-130), 15 août 1979 (1979-08-15) & JP 54 074668 A (NEC CORP), 14 juin 1979 (1979-06-14) *

    Also Published As

    Publication number Publication date
    US6858973B2 (en) 2005-02-22
    US20040004423A1 (en) 2004-01-08
    FR2833749A1 (en) 2003-06-20
    EP1328004A3 (en) 2003-07-23
    FR2833749B1 (en) 2004-04-02

    Similar Documents

    Publication Publication Date Title
    FR2527005A1 (en) ELECTRONIC POWER TUBE WITH PERFECTED GRID
    EP1328004A2 (en) Electron tube with a cooled tubular sheath
    EP0037309B1 (en) Travelling-wave tube with coupled cavities and with periodic permanent magnet focussing, and amplifier unit with such a tube
    FR2578357A1 (en) Gyrotron
    FR2631486A1 (en) HIGH INTENSITY DISCHARGE LAMP SABS ELECTRODES
    FR2691012A1 (en) Piercing gun with scaling electrode.
    EP0376827A1 (en) Electron beam tube partially cooled by direct radiation
    WO2009077407A1 (en) Microwave structure for microwave tube beam confinement device with permanent magnets and enhanced cooling
    EP0401065A1 (en) Method of construction of a helical delay line
    EP1466343B1 (en) Electronic tube with simplified collector
    EP0364335A1 (en) Travelling-wave tube with a gas-tight coupling arrangement between its slow-wave circuit and an external microwave circuit
    FR2606937A1 (en) CURVED COUPLING DELAY LINE FOR PROGRESSIVE WAVE TUBE
    FR2790595A1 (en) Helix type slow wave circuit for traveling wave tube, has rectangular cross sectional support with holes, having dielectric to fix helix in vacuum envelope
    EP1251544B1 (en) Microwave amplifier electron tube with miniature entry plug and method of fabrication
    FR2737042A1 (en) ELECTRON MULTI-STAGE ELECTRON COLLECTOR SUPPORTING HIGH VOLTAGES AND ELECTRONIC TUBE PROVIDED WITH SUCH A COLLECTOR
    EP0020218B1 (en) Radiation-cooled multistage depressed collector for a microwave tube and microwave tube comprising such a collector
    EP0454540A1 (en) Converter for the guided propagation mode of electromagnetic waves, and electronic tube incorporating such a converter
    FR2688342A1 (en) Microwave electron tube
    FR2485801A1 (en) Coupler for static focussed travelling wave tube - has rib connected to slow wave helix and guide of similar dimension to focussing magnet
    FR2683091A1 (en) IMPROVED COOLING DEVICE FOR HYPERFREQUENCY TUBE.
    EP0350360B1 (en) Frequency-agility magnetron with a tuning motor using enhanced cooling
    FR2790594A1 (en) Electron gun for microwave tube involves cold cathode has ferromagnetic support for cathode
    FR2765727A1 (en) Thermal radiator cooling mechanism for satellite travelling wave tubes
    FR2663463A1 (en) PROGRESSIVE WAVE TUBE PROVIDED WITH A COUPLING DEVICE BETWEEN ITS DELAYED LINE AND AN EXTERNAL MICROWAVE CIRCUIT.
    FR2668297A1 (en) COLLECTOR FOR MICROWAVE TUBE AND MICROWAVE TUBE COMPRISING SUCH A COLLECTOR.

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO

    AK Designated contracting states

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO

    17P Request for examination filed

    Effective date: 20031206

    AKX Designation fees paid

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

    18D Application deemed to be withdrawn

    Effective date: 20060701