EP1299622A1 - Pressure pulse generator - Google Patents
Pressure pulse generatorInfo
- Publication number
- EP1299622A1 EP1299622A1 EP01950164A EP01950164A EP1299622A1 EP 1299622 A1 EP1299622 A1 EP 1299622A1 EP 01950164 A EP01950164 A EP 01950164A EP 01950164 A EP01950164 A EP 01950164A EP 1299622 A1 EP1299622 A1 EP 1299622A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- valves
- pair
- valve
- pulse generator
- pressure pulse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L33/00—Rotary or oscillatory slide valve-gear or valve arrangements, specially adapted for machines or engines with variable fluid distribution
- F01L33/04—Rotary or oscillatory slide valve-gear or valve arrangements, specially adapted for machines or engines with variable fluid distribution oscillatory
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L7/00—Rotary or oscillatory slide valve-gear or valve arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2820/00—Details on specific features characterising valve gear arrangements
- F01L2820/03—Auxiliary actuators
- F01L2820/031—Electromagnets
Definitions
- the present invention relates to a pressure pulse generator that comprises a circuit filled with pressure fluid, and at least one communication channel that is connected to the circuit and via which the pressure fluid can flow into and out of the circuit.
- the invention also relates to a pressure pulse generator element and a method of controlling the pressure pulse generator, as well as use of the pressure pulse generator for operating a valve in an internal combustion engine.
- the invention is applicable to all types of technical areas in which pressure pulses are to be generated. In particular, it is applicable to applications that poses high requirements on the speed with which the pulses can be generated and on the duration period of the individual pulses.
- Internal combustion engines define such a field in which pressure pulses can be used in order to control and operate the movement of the valves of the combustion engine instead of operating and controlling the valve movements by means of a conventional transmission of the piston movement of the engine to the valves via a cam shaft.
- the valve must comprise a suitable magnetic material in order to be displaced by the action of one or more electromagnets, and such materials contribute to an increase of the mass of conventional valves. This often results in a evil circle in which an improvement of the valve from a magnetic point of view will result in a weight increase that, in its turn, results in a need of larger and more powerful electromagnets. Accordingly, in this way, it will be difficult to achieve an economically and practically good solution to the problem of obtaining a sufficiently fast control and operation of the valves of the engine. Moreover, it is well known that electromagnets will require a certain time for magnetising and demagnetising.
- An obstacle to the accomplishing of such a pressure pulse generator may be the difficulty to achieve sufficiently rapid opening/ closing movement of the valve or valves that is/ are required in such a pressure pulse generator.
- valves are often replaced by ports in modern two-stroke engine constructions, but that the present invention results in the possibility of using valve technology in two-stroke engines in a way corresponding to that of four-stroke engines.
- An object of the present invention is to provide a pressure pulse generator that is able to deliver pressure pulses of short duration and of variable length with high time precision and rapidity in order to effect any object.
- a further object is to provide a method that makes it possible to deliver pressure pulses with high time precision and rapidity.
- a further object of the invention is to provide a pressure pulse generator element that can be used in a pressure pulse generator in order to make it easier for the latter to deliver short pressure pulses of variable length with high time precision and rapidity.
- a pressure pulse generator of the initially defined type that is characterised in that it comprises a first pair and a second pair of electronically controlled valves that are connected in series, and that the first pair of valves is arranged in said circuit upstream the at least one communication channel, and that the second pair of valves is arranged in said circuit downstream the at least one communication channel.
- valves of the pair of valves are electrically controlled, the opening and closing of the valves can be controlled with high precision.
- the movements of the valves included in a pair of valves can be co-ordinated in such a way that they occur somewhat displaced in time, whereby reduced opening/ closing times can be obtained.
- valves of the pressure pulse generator are preferably slide valves arranged to be displaced cross-wise a channel in the pressure fluid circuit that they are provided to close or open for passage of the pressure fluid.
- the valves of the pair of valves are, preferably, electromagnetically controlled, as such valves have the advantage of being able to operate both with high speed and precision.
- valves of each pair of valves are interconnected by two separate, parallel channels that lead from a first valve of the pair of valves to a second valve of the pair of valves, each valve being arranged to execute a closing or opening of each channel.
- the valves of the pair of valves are arranged to occupy a first position in which they close a first channel of said channels and open a second one of said channels, and a second position in which they open the first channel and close the second channel.
- the first valve of each respective pair of valves is arranged to move towards and occupy its first position at the same time as the second valve moves towards and occupies its second position.
- the channels are branches of a single pressure fluid conduit in the pressure fluid circuit, said branches being arranged upstream and downstream each individual pair of valves.
- the pressure pulse generator comprises means for controlling the transition of the valves between their first and second positions, said control means being arranged to mutually displace, in time, the transition between the first and second position for the valves of the respective pair of valves.
- control means comprise an electronic device arranged to control the activation or deactivation of one or more electromagnets for the purpose of affecting and moving the valves of the pair of valves, i.e. the valve bodies (slides), between their closing and opening positions, respectively.
- control means may be arranged to receive input from, for instance, sensors or the like and adjust the time displacement based on such input.
- the means may also comprise a program sequence in a computer program for controlling and emitting control signals to the valves of the pressure pulse generator, or, more precisely, to the electromagnets that operate the movements of the valves.
- the pressure pulse generator also comprises a cylinder unit and a piston that is displaceably arranged in the cylinder unit, said at least one communication channel being connected to the cylinder unit in such a way that the pressure fluid in the circuit can flow into and out of the interior of the cylinder through said communication channel in order to accomplish a displacement of the piston in the cylinder unit.
- a piston return means for example, compression spring, is preferably provided in order to apply a pressure on the piston in a direction opposite to the one in which the piston is displaced when a pressure pulse is generated as a pressure fluid with a higher pressure is permitted to pass the first, upstream pair of valves.
- the piston return means is permitted to contribute to a return of the piston to a start position by letting the second, downstream pair of valves be opened for pressure fluid passage during a sequence following the flow sequence described above.
- the movement of the piston can, in its turn, be used for controlling or operating any mechanical device.
- the piston is connected to a valve of a combustion engine and the movement of the piston is transmitted to an opening or closing movement of the valve of the combustion engine.
- the control means mentioned above thereby preferably control the activation and deactivation of said electromagnets based on the position of a crank shaft of the combustion engine.
- the invention also relates to the initially defined method for controlling a pressure pulse generator, said method being characterised in that it comprises:
- said second pair of valves being arranged in said circuit downstream the at least one communication channel.
- valves are arranged in pairs and that the opening and closing of the individual valves is performed in accordance with a predetermined sequence may be taken advantage of in order to shorten the time required for the opening and subsequent closing of a pair of valves for the passage of a pulse of the pressure fluid, as in comparison to when only individual valves are arranged instead of said pair of valves.
- the pair of valves comprise two active valves or valve bodies that are moved in opposite directions in order to simultaneously, during a short moment, permit passage of a pressure fluid through one or more parallel channels that form the portion of the pressure fluid circuit conduit where the valves are arranged.
- the valves of the first pair of valves are controlled, during a first period, to open for a flow of the pressure fluid in a direction out of the circuit through the communication channel, while at least one of the valves of the second pair of valves is kept closed in order to prevent fluid from passing the second pair of valves.
- the valves of the second pair of valves are opened for permitting a flow of the pressure fluid back to the circuit via the communication channel and to pass at least one of these valves, while at the same time at least one of the valves of the first pair of valves is kept closed in order to prevent fluid from passing the first pair of valves. In that way, a pressure pulse is permitted to affect any object or any mechanical device to perform a back and forth movement.
- valves of each pair of valves are connected by two separate, parallel channels that lead from a first valve of the pair of valves to the second valve of the pair of valves, and a first one of the pair of valves is opened for passage of fluid through a first one of these channels and closed for passage of fluid in the second channel while, at the same time, the second valve is opened for fluid passage in the second channel but is kept closed for preventing passage of fluid in the first channel.
- the change of the positions of the two valves is preferably controlled in such a way that the valves, simultaneously during a short period, hold one of the two channels open for passage of the pressure fluid.
- the valves preferably electromagnetically controlled slide valves, thereby move in opposite directions, said period can be made very short.
- the moment at which an electrical signal is given for activation of a first electromagnet, that operates a displacement of the first one of the valves is controlled in relation to the moment at which a second electrical signal is emitted for activation of a second electromagnet that operates a displacement of the second valve, based on the requested length of time of the pressure fluid pulse that is thereby generated via the open channel.
- the invention also relates to a pressure pulse generator, comprising a pair of valves that comprises a first valve and a second valve, characterised in that the first valves and the second valves are connected by means of two parallel channels that lead from a first valve of the pair of valves to a second valve of the pair of valves, and that each valve is arranged to execute a closing or opening of each channel .
- the pressure pulse generator element has the features that have been described above for each one of the pair of valves included in the pressure pulse generator, and is preferably controlled in any of the ways that have been described above for said pair of valves. Further features and advantages of the invention will be seen in the following detailed description and in the enclosed patent claims.
- Fig. 1 is a schematic view of a first embodiment of the pressure pulse generator according to the invention
- Fig. 2 is an enlarged cross-section of a pressure pulse generator element of the pressure pulse generator in Fig. 1 , in a first position;
- Fig. 3 is an enlarged cross-section of the pressure pulse generator element according to Fig. 2, in a second position;
- Fig. 4 is a schematic cross-section of a further development of the embodiment according to Fig. 1;
- Fig. 5 is a schematic cross-section of another embodiment of the invention, in a first operative position
- Fig. 6 shows the embodiment according to Fig. 5 in a second operative position.
- Fig. 1 is a schematic cross-section which shows a pressure pulse generator according to the invention, the pressure pulse generator being connected to a valve 1 in a combustion engine.
- the valve 1 may be an intake or exhaust valve.
- the valve body itself which is provided to be bearing on a valve seat (not shown) when in its closed position, is connected via a shaft 3 to a piston 4 that is arranged in a second cylinder 5, which, preferably, is arranged outside and adjacent the cylinder 2.
- the pressure pulse generator comprises a first and a second pressure pulse generator element 6, 7.
- Each such element 6, 7 comprises a first and a second valve 8, 9 and 10, 11, respectively, and is arranged in a pressure fluid circuit 12.
- the pressure fluid circuit is constituted by one or more conduits for conducting and transporting a pressure fluid therein.
- the pressure fluid circuit 12 is generally closed, and a pressure generating member 14 is arranged to generate a pressure of a pressure fluid accommodated in the circuit.
- the pressure generating member 14 may be a compressor or any other type of pump member suitable for this objective.
- the pressure fluid is flowing from the high pressure side of the pressure generating member, where pressure PI exists, to the low pressure side thereof, where pressure P2 exists, and P1>P2.
- P2 may be atmospheric pressure
- the circuit may, if requested, be open downstream the second pressure pulse generating element 7.
- the invention also includes the possibility of keeping the circuit 12 open or closed depending on outer factors such as the rpm or load of the combustion engine.
- the pressure fluid is a gas or a gas mixture.
- the pressure fluid is at least to a major part comprised by air.
- the pressure pulse generator thereby defines a pneumatic pressure pulse generator.
- the circuit 12 Via a communication channel 15, the circuit 12 is connected to a chamber 13 inside the cylinder 5, said chamber being provided on the opposite side of the piston 4 in relation to the shaft 3.
- the pressure pulse from the circuit that results in pressure fluid being delivered to the chamber 13 will result in a displacement of the piston 4 and, accordingly of the valve 1.
- Such a pulse is created when the positions of the valves 8, 9 of the first pressure pulse generator element 6 are changed, as will be described more in detail later.
- Figs. 1 to 3 the principle of generating a pressure pulse by means of a pressure pulse generating element 6, 7 according to the invention will now be described.
- the principle for generating a positive pulse by the opening of the first element 6 is also relevant for the opposite case, that is, that a negative pulse will be generated by means of opening the second element 7.
- Each pressure pulse generator element 6, 7 comprises a first and a second channel 16, 17, said channels being arranged in parallel and formed by a local branching of the main conduit of the circuit 12 at the site of the pressure pulse generating element.
- Each pair of valves is arranged at the region of the parallel channels 16, 17, and each individual valve is arranged to permit the passage of pressure fluid through one of the channels while at the same time preventing passage through the other one of said channels.
- the valves or valve bodies 8-11 comprise a magnetic material and are controlled by means of electromagnets that are suggested in Fig. 1 and have been given reference numerals 18-21.
- the valve bodies are displaceably arranged in a direction cross-wise to the channels 1.
- they are designed as discs that comprise at least one hole 22 that, in a first position of the valve is positioned in front of and opens for pressure fluid passage in a first channel of said channels 16, 17, and, in a second position, closes for preventing flow through the first channel 16 but being positioned in front of and opening for passage of a pressure fluid in the second of said channels 16, 17.
- the valves are bistable, which means that they will rest in the first or second position if there is no activation of any of the electromagnets 18-21.
- One valve or valve body 8-11 of a pair of valves 6, 7 is arranged to move towards and occupy the first position while the other valve moves towards and occupies a second position.
- a pressure pulse is generated as the positions of the two valves 8, 9 and 10, 11 respectively are changed such that, during a short moment, a passage of fluid is permitted through one of the channels 16, 17.
- the duration of the pressure pulse can be controlled to be longer than if no simultaneous opening of any one of the channels is performed during the change.
- the amount of pressure fluid delivered is, apart from the amount due to any simultaneous opening of any channel, also depending on the volume in each channel between the valve bodies.
- the invention includes a time displacement of the initiation of the movements of the valve bodies 8- 11 in order to control the pulse length.
- the time displacement is based on any suitable operation parameter of the engine, such as the rotational speed of the engine.
- the volume of the channels is minimised to enable a pressure fluid consumption as low as possible.
- the pulse lengths can also be varied by means of the inventive pressure pulse generator through a mutual displacement of the moment at which the two valves 8-11 of a pair of valves are activated.
- the activation is performed by emitting a signal that initiates the magnetising of one of the electromagnets 18-21, thereby accomplishing a displacement of the valve body 8-11.
- the signal can be emitted from any control means, and, in this case, it is based on the position of a crank case belonging to the combustion engine.
- a means 23 for returning the piston 4 to its upper position or start position is provided in accordance with the invention.
- the displacement of the piston 4 requires that the pressure of the pulse of fluid generated through the change of positions of the valve bodies 8, 9 of the first pressure generating element 6 is sufficient in order to make the force that is applied by the pressure fluid on the side of the piston 4 that is directed towards the chamber 13 exceed the force applied by the piston return means 23 on the piston 4 in an opposite direction.
- the piston return means 23 is, in Fig. 1, a compression spring but may comprise a gas accommodated in the chamber 24 in the cylinder 5 arranged on the opposite side of the piston 4 with regard to the chamber 13.
- the cylinder 5 should, in such a case, be connected to a gas container or the like in order to enable a variable pressurising of the gas contained in the cylinder 5.
- Another possible solution schematically shown in Fig. 4, includes a second pressure pulse generator, generally represented by the reference numeral 25 and corresponding to the first pressure pulse generator that has been described above, and connected to the chamber 24 and provided to generate pressure pulses for returning the piston in connection to the release of the pressure fluid from the first chamber 13 through activation or an opening of the second pair of pressure valves 10, 11.
- FIG. 5 and 6 A further embodiment of the invention is shown in Figs. 5 and 6.
- This embodiment is a simplification of the embodiment described earlier in the respect that the valve bodies or discs 8, 9 of each pair of valves 6, 7 are interconnected with one single channel 26.
- the valve bodies 8, 9 are arranged to operate principally in the same way as has been described in the first embodiment, that is, to occupy opposite, closed and opened positions with respect to passage of fluid through the channel 26.
- This more simple embodiment results in a dissymmetry in pulse lengths. If control signals for position change of the slide valves 8 and 9 are delivered with the same frequency, a dissymmetry that decreases with a decreased distance between the valve bodies 8, 9 is obtained. The resulting difference may be largely compensated by means of measures taken in the program software responsible for the frequency control.
- the invention includes that the electromagnetic operation of the valve bodies 8-11 can be supplemented with any further operation.
- a pilot valve may be arranged in order to control a pressure fluid, such as air, to contribute to the operation/position change of the valve bodies between the stabile first and second positions, and also in order to keep the valve bodies in these positions.
- the pilot valve is then preferably operatively connected to the same control means as those that control the electromagnets 18-21 of the pressure pulse generator.
- the invention also comprises the possibility of controlling the size of the pressure pulse to control the length of displacement of the valve of a combustion engine based on any operative parameter of the engine, preferably the load of the engine.
- the invention comprises and also enables transition between two-stroke operation and four-stroke operation of an internal combustion engine during operation thereof through a control of the valve movements by means of the inventive pressure pulse generator and/ or one or more of the inventive pressure pulse generator elements.
- the pressure return means 23 may be arranged on any side of the piston 4, and that the magnet members 18-21 that are used may be of different designs and that the number thereof and the position thereof can differ from what has been shown above without thereby going beyond the invention.
- the 50% reduction can be achieved by associating each valve body 8, 9 to one electromagnet in order to be activated as a result of an electric signal.
- the other electromagnet can be replaced by a return spring, for example made of metal or designed as a gas spring.
- the slide valve is still bistable, as it occupies one of two possible positions in order to enable the generation of pressure pulse when the valve bodies 8, 9 are connected in series as suggested by the invention.
- the pressure pulse generator and the pressure pulse generator element according to the invention preferably can be used in a fuel injection system, more precisely direct injection systems, and for direct injection of any other fuel, for example water or steam, in engines and other devices.
- the pressure fluid may, accordingly, be a liquid, such as hydraulic oil or water, as well as air or a gas, depending on the application field.
- valves in the two pairs of valves, upstream as well as downstream the communication channel are active valves, that is, magnetically activatable valves, and should not be confused with passive valves such as one-way valves.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Valve Device For Special Equipments (AREA)
- Magnetically Actuated Valves (AREA)
- Surgical Instruments (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Fluid-Pressure Circuits (AREA)
Abstract
Description
Claims
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE0002597A SE520993C2 (en) | 2000-07-10 | 2000-07-10 | Pressure Pulse Generator |
SE0002597 | 2000-07-10 | ||
SE0003473A SE0003473D0 (en) | 2000-09-28 | 2000-09-28 | Pressure Pulse Generator |
SE0003473 | 2000-09-28 | ||
PCT/SE2001/001598 WO2002004790A1 (en) | 2000-07-10 | 2001-07-10 | Pressure pulse generator |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1299622A1 true EP1299622A1 (en) | 2003-04-09 |
EP1299622B1 EP1299622B1 (en) | 2008-09-03 |
Family
ID=26655175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01950164A Expired - Lifetime EP1299622B1 (en) | 2000-07-10 | 2001-07-10 | Pressure pulse generator |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1299622B1 (en) |
AT (1) | ATE407283T1 (en) |
AU (1) | AU2001271190A1 (en) |
DE (1) | DE60135660D1 (en) |
ES (1) | ES2311528T3 (en) |
WO (1) | WO2002004790A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE522165C2 (en) * | 2002-05-30 | 2004-01-20 | Cargine Engineering Ab | Method and apparatus for generating pressure pulses |
SE522163C2 (en) * | 2002-05-30 | 2004-01-20 | Cargine Engineering Ab | Method and device for pressure pulse generation |
SE0301457L (en) * | 2003-05-20 | 2004-11-21 | Cargine Engineering Ab | Method and device for pneumatic operation of a tool |
SE527373C2 (en) | 2004-02-18 | 2006-02-21 | Cargine Engineering Ab | Method for generating pressure pulses, pressure pulse generator and one with such a piston motor |
SE526975C2 (en) | 2004-03-01 | 2005-11-29 | Cargine Engineering Ab | Method for generating pressure pulses, pressure pulse generator and one with such a piston motor |
DE102011000412A1 (en) | 2011-01-31 | 2012-08-02 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Piston engine e.g. sport and/or racing engine, has intake system having intake manifolds and integrated electro-mechanical pressure wave generator |
SE544218C2 (en) | 2011-10-21 | 2022-03-08 | Freevalve Ab | Pressure fluid controlled actuator |
DE102012011583A1 (en) * | 2012-06-13 | 2013-12-19 | Robert Bosch Gmbh | Device, particularly hydraulic ram for pressurization of flowable medium in motor vehicle, has pressure generating unit comprises recirculation unit which returns back flowable medium into pressure generating unit |
NO334443B1 (en) | 2012-08-22 | 2014-03-03 | Viking Heat Engines As | Pulse width regulating valve |
SE544645C2 (en) * | 2020-03-02 | 2022-10-04 | Freevalve Ab | Actuator and method for operating an actuator |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2339353A (en) * | 1942-06-16 | 1944-01-18 | William A Ray | Fluid control valve |
US5058857A (en) * | 1990-02-22 | 1991-10-22 | Mark Hudson | Solenoid operated valve assembly |
US5638781A (en) * | 1995-05-17 | 1997-06-17 | Sturman; Oded E. | Hydraulic actuator for an internal combustion engine |
WO1999061828A1 (en) * | 1998-05-22 | 1999-12-02 | United States Environmental Protection Agency | Fast valve and actuator |
US6024060A (en) * | 1998-06-05 | 2000-02-15 | Buehrle, Ii; Harry W. | Internal combustion engine valve operating mechanism |
DE19931129A1 (en) * | 1998-07-11 | 2000-01-13 | Armin Stelzig | Timing gear for 4-stroke combustion engines has valve lifter connected to hydraulic control piston, and two cylinder pressure chambers connected to pressure source/reducer via rotary slide valves |
US6044815A (en) * | 1998-09-09 | 2000-04-04 | Navistar International Transportation Corp. | Hydraulically-assisted engine valve actuator |
-
2001
- 2001-07-10 AT AT01950164T patent/ATE407283T1/en not_active IP Right Cessation
- 2001-07-10 ES ES01950164T patent/ES2311528T3/en not_active Expired - Lifetime
- 2001-07-10 EP EP01950164A patent/EP1299622B1/en not_active Expired - Lifetime
- 2001-07-10 AU AU2001271190A patent/AU2001271190A1/en not_active Abandoned
- 2001-07-10 DE DE60135660T patent/DE60135660D1/en not_active Expired - Lifetime
- 2001-07-10 WO PCT/SE2001/001598 patent/WO2002004790A1/en active Application Filing
Non-Patent Citations (1)
Title |
---|
See references of WO0204790A1 * |
Also Published As
Publication number | Publication date |
---|---|
ATE407283T1 (en) | 2008-09-15 |
AU2001271190A1 (en) | 2002-01-21 |
ES2311528T3 (en) | 2009-02-16 |
WO2002004790A1 (en) | 2002-01-17 |
EP1299622B1 (en) | 2008-09-03 |
DE60135660D1 (en) | 2008-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4878464A (en) | Pneumatic bistable electronic valve actuator | |
US4974495A (en) | Electro-hydraulic valve actuator | |
US9033309B2 (en) | Valve actuator | |
EP1299622B1 (en) | Pressure pulse generator | |
US6752106B2 (en) | Pressure pulse generator | |
US7225771B2 (en) | Method and device for pressure pulse generation | |
WO1993024738A1 (en) | Engine braking utilizing unit valve actuation | |
US6964270B2 (en) | Dual mode EGR valve | |
MXPA06006638A (en) | Multiple slave piston valve actuation system. | |
EP0468571A1 (en) | Hydraulically propelled pneumatically returned valve actuator | |
JP2005528563A5 (en) | ||
WO2013020232A1 (en) | Systems and methods for variable valve actuation | |
Lou et al. | Camless variable valve actuator with two discrete lifts | |
US4296911A (en) | Hydraulic controlled sonic induction system | |
CN100432378C (en) | A method of generating pressure pulses, a pressure pulse generator and a piston engine provided therewith | |
Mohamed | Modeling and performance evaluation of an electromechanical valve actuator for a camless IC engine | |
US11466598B2 (en) | System and method for variable actuation of valves of an internal combustion engine | |
US5996539A (en) | Method for affecting the mixture formation in cylinders of piston-type internal combustion engines by varying the valve strokes | |
Wong et al. | Modeling and simulation of a dual-mode electrohydraulic fully variable valve train for four-stroke engines | |
Mardell et al. | An integrated, full authority, electrohydraulic engine valve and diesel fuel injection system | |
EP2834479B1 (en) | Valve actuator arrangement | |
Aaltonen et al. | Electrohydraulic valvetrain for extreme value diesel engine | |
Brader et al. | Development of a piezoelectrically-controlled hydraulic actuator for a camless engine. Part 1: system design | |
AALTONEN et al. | Electrohydraulic System for High Speed Gas Exchange Valve Actuation | |
Liu et al. | Research on variable valve system based on electro-hydraulic drive |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20030122 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17Q | First examination report despatched |
Effective date: 20060914 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: HEDMAN, MATS |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60135660 Country of ref document: DE Date of ref document: 20081016 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080903 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2311528 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080903 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080903 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080903 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090203 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080903 |
|
26N | No opposition filed |
Effective date: 20090604 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090731 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080903 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080903 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20110727 Year of fee payment: 11 Ref country code: GB Payment date: 20110727 Year of fee payment: 11 Ref country code: ES Payment date: 20110727 Year of fee payment: 11 Ref country code: FR Payment date: 20110810 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20110715 Year of fee payment: 11 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20120710 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20130329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120731 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120710 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120710 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60135660 Country of ref document: DE Effective date: 20130201 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20131022 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120711 |