EP1270710A1 - Procédé pour le traitement de matières grasses - Google Patents

Procédé pour le traitement de matières grasses Download PDF

Info

Publication number
EP1270710A1
EP1270710A1 EP01202375A EP01202375A EP1270710A1 EP 1270710 A1 EP1270710 A1 EP 1270710A1 EP 01202375 A EP01202375 A EP 01202375A EP 01202375 A EP01202375 A EP 01202375A EP 1270710 A1 EP1270710 A1 EP 1270710A1
Authority
EP
European Patent Office
Prior art keywords
lipid material
gas
granulate
lipid
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01202375A
Other languages
German (de)
English (en)
Inventor
Geert Feye Woerlee
Hubert Clemens Pellikaan
Antonius Wilhelmus Petrus Gerardus Peters Rit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Feyecon Development and Implementation BV
Original Assignee
Feyecon Development and Implementation BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Feyecon Development and Implementation BV filed Critical Feyecon Development and Implementation BV
Priority to EP01202375A priority Critical patent/EP1270710A1/fr
Priority to PCT/NL2002/000404 priority patent/WO2002102947A1/fr
Publication of EP1270710A1 publication Critical patent/EP1270710A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C1/00Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids
    • C11C1/02Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids from fats or fatty oils
    • C11C1/04Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids from fats or fatty oils by hydrolysis
    • C11C1/06Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids from fats or fatty oils by hydrolysis using solid catalysts
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B3/00Refining fats or fatty oils
    • C11B3/10Refining fats or fatty oils by adsorption
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C1/00Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids
    • C11C1/08Refining
    • C11C1/10Refining by distillation
    • C11C1/103Refining by distillation after or with the addition of chemicals
    • C11C1/106Refining by distillation after or with the addition of chemicals inert gases or vapors
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/12Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by hydrogenation
    • C11C3/123Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by hydrogenation using catalysts based principally on nickel or derivates

Definitions

  • the present invention is concerned with a new method of processing lipid materials, such as triglycerides and waxes, which process involves contacting such lipid materials with a reactive granulate in the presence of a gas in near supercritical state.
  • the reactive granulate employed in the present process may suitably be a catalyst, such as bleaching earth or hydrogenation catalyst, or an adsorbent, such as active carbon.
  • gases that can advantageously be used in the present method include carbon dioxide, ethane, propane and nitrous oxide.
  • the present invention specifically relates to methods of processing in which the composition of the lipid material is altered as a result of the interaction between the lipid material and the reactive granulate. This interaction may incite certain chemical reactions to occur in the lipid material and/or it may lead to selective adsorption of lipid material components onto the granulate.
  • the present invention is not concerned with an extraction or fractionation processes wherein a lipid material is separated into 2 or more lipid material fractions by means of extraction with a supercritical solvent.
  • Lipid materials such as triglycerides, waxes and fosfolipids all have in common that they are obtained from natural sources in a crude quality which is often unsuitable for human consumption or other commercial uses. Hence such crude lipid raw materials are usually subjected to a sequence of refining and other processing steps to upgrade the quality and/or applicability thereof. Processes commonly applied in the upgrading of crude lipid materials include bleaching, deodorisation, fractionation, hydrogenation, interesterification, hydrolysis etc.
  • lipid materials are well known in the art and are normally conducted at elevated temperatures and in some cases also at elevated pressures. Some of these processes may apply processing aids such as organic solvents, adsorbents and catalysts. Examples of adsorbents commonly used in the processing of lipid materials are active carbon and silica. Catalysts widely employed in oil processing include bleaching earth, hydrogenation catalysts and interesterification catalysts. Both chemical and enzymatic catalysis are used in the field of oil processing. Enzymatic interesterification, for instance, is applied on an industrial scale.
  • the application of supercritical gases in the processing of lipid materials is known in the art.
  • the known areas of application are extraction of lipid materials from plant materials and isolation of lipid fractions through supercritical extraction. These techniques have in common that the supercritical gas is added to the lipid material in an excess amount so that it may function as an extraction solvent.
  • the supercritical gas containing dissolved components is separated from the bulk of the material after which the extract is recovered by reducing the pressure and allowing the gas to escape through evaporation. This cycle is normally repeated several times, often as part of a semi-continuous process.
  • the following 2 prior art documents describe the use of supercritical gases in the processing of lipid materials, wherein said supercritical gas acts as an extraction solvent.
  • DE-A 4 306 303 (Schulmeyer et al.) relates to a process for obtaining vegetable oils by extraction with liquid or supercritical carbon dioxide, wherein the solvent flows through the comminuted oil seed or a crude oil and is subsequently passed through a bed of bleaching agent.
  • US 4,548,755 (Stahl et al) concerns a process for the extractive production of waxes from fossil, vegetable or animal starting material, by extraction with a gas at supercritical pressure and temperature conditions wherein the separation of the extract-containing gas is achieved in a separator part by pressure reduction and/or temperature change.
  • the present invention relates to methods of processing lipid materials that are more efficient than the corresponding conventional methods.
  • the present method was developed starting from the insight that in many existing processing methods, particularly in those cases where a reactive granulate is employed, the rate limiting factor is the rate of diffusion of the reactants in the lipid material. Surprisingly it was found that the diffusion rates of these reactants could be increased significantly by dissolving into the lipid material a gas at near supercritical conditions. The inclusion of a near supercritical gas was found to be particularly advantageous in processing methods that employ a reactive granulate, such as a catalyst or an adsorbent.
  • one aspect of the invention is concerned with a method of processing lipid material comprising the steps of
  • lipid material encompasses lipophilic materials that are largely, e.g. for at least 60 wt.%, made up of molecules that contain one or more long chain alkyl or alkenyl groups. Usually these long chain groups comprise at least 10 carbon atoms.
  • the aforementioned lipid materials normally possess a density which is lower than that of water and are not miscible water. Hence when admixed to water, these lipid materials will form a floating layer on top of the water surface.
  • steps c) and d) are carried out consecutively.
  • An important advantage of carrying out the method in this fashion is that the separation of granulate and lipid material is more easily achieved at elevated pressure, as under such conditions the lipid material is less viscous and displays a lower surface activity than at ambient.
  • Preferably essentially all of the gas that is dissolved into the lipid material is removed therefrom through evaporation, i.e. not by separating the gas from the lipid material when said gas in liquid, supercritical or near supercritical form, as this might lead to the extraction of lipid material components, which is not an aim of the method according to the invention.
  • the lipid material is liquid when it is contacted with the reactive granulate and also when it is separated therefrom. In order to ensure that the material is liquid it is advisable to operate the method at a temperature well above the melting point of said lipid material.
  • the gas is dissolved into the lipid material and not the reverse, i.e. when the lipid material is dissolved into the gas.
  • the lipid material contains 10-90 wt.%, more preferably if 30-70 wt.% of the dissolved gas.
  • the percentage of dissolved gas will simply be determined by the applied temperature and pressure.
  • it is crucial that the streams are mixed in such a ratio that the amount of dissolved gas is maintained within the range needed to obtain the benefits of the present invention.
  • step b) is carried out at a temperature and pressure at which the gas per se would be near its supercritical state.
  • the temperature of the gas is at least T c -60 °C and the pressure is at least 0.5xP c (i.e. P c /2), wherein T c and P c represent the critical temperature and critical pressure of the gas. More preferably the temperature of the gas is between T c -60 °C and T c +150 °C and the pressure is between 0.8xP c and 12xP c .
  • carbon dioxide is the gas which is preferentially used in the presence method, optionally in combination with one or more other gases.
  • the lipid material is contacted with the reactive granulate in the presence of carbon dioxide at a pressure of at least 40 bar, and a temperature between 0° and 200°C. More preferably the carbon dioxide is at a pressure of between 70 and 800 bar. Furthermore the carbon dioxide is preferably applied at a temperature between 40° and 120°C.
  • the reactive granulate used in the present method is preferably selected from the group consisting of catalysts, adsorbents and mixtures thereof.
  • catalysts the present method offers the advantage that, due to the increased diffusion rates, at the catalyst surface reactants be replenished more quickly and, in addition, reaction products will disappear more quickly. Both these effects will increase catalytic effectiveness.
  • adsorbents the present method offers the advantage that components dissolved in the lipid material will be captured more quickly by the absorbent than is the case for conventional methods employing the same adsorbent.
  • Reactive granulates which can be used in accordance with the present invention are preferably selected from the group consisting of bleaching earth, active carbon, hydrogenation catalyst and mixtures thereof. Most preferably the reactive granulate is bleaching earth.
  • the method comprises contacting bleaching earth and the lipid material, wherein as a result of step b) and after separation of the granulate, the Lab L-value of the lipid material is increased by at least 10 and/or the absolute Lab a-value isreduced by at least 2 and/or the absolute Lab b-value is reduced by at least 2.
  • contact-time is at least 45 seconds, more preferably at least 60 seconds. Most preferably contact time is at least 2 minutes. Usually contact-time will be less than 60 minutes, preferably less than 30 minutes and most preferably less than 15 minutes.
  • the lipid material processed by the present method is preferably selected from the group consisting of triglycerides, diglycerides, monoglycerides, fatty acids, fosfolipids, waxes and mixtures thereof. All these lipid materials are derived from lipid materials which are obtained in crude qualities from natural sources. In particular crude (i.e. unrefined) qualities of triglycerides, fosfolipids and waxes can suitably be processed through the present method.
  • Waxes that can advantageously be used in the method include beeswax, carnauba wax, wool wax, montan wax and jojoba oil. Most preferably the wax used in the present method is beeswax.
  • the liquid lipid material is contacted with the reactive granulate by suspending the granulate into the lipid material and passing the lipid material upwards through a column whilst allowing the granulate to move downwards under the influence of gravity.
  • the effective contact-time between lipid material and granulate is increased and in addition the separation of the lipid material and the granulate is greatly facilitated.
  • the reactive granulate is separated from the lipid material by means of filtration at elevated pressure, preferably a pressure of at least 70 bar.
  • elevated pressure preferably a pressure of at least 70 bar.
  • solvents in the mix of lipid material and near supercritical gas may assist in further improving processing yields and/or minimising losses of lipid material.
  • solvent is added to the lipid material in an amount of at least 2 %, preferably at least 8% by weight of the lipid material.
  • the solvent used may suitably be selected from the group consisting of acetone, ethanol, di-ethylether, hexane, water and mixtures thereof.
  • the colour of refined yellow sunflower oil at room temperature was determined with a spectrophotometer. Expressed in Lab values the colour was (77.9, 0.55, and 7.39). 100 gram of sunflower oil was put in an autoclave of 323 ml.
  • the vessel is pressurised with 158 gram carbon dioxide using a positive displacement pump.
  • the whole vessel is put in a thermostatic bath and heated to 45°C, while the vessel is mixed continuously.
  • the end pressure becomes 170 bar.
  • the autoclave now contains a liquid and gaseous carbon dioxide.
  • the liquid contains approximately 30 wt.% carbon dioxide and 70 wt.% sunflower oil.
  • the liquid is subsequently contacted, under continuous mixing, with 1 gram of activated coal and 2.5 gram of bleaching earth for 15 minutes. After this the liquid is filtered and subsequently depressurised. The yellow colour had largely disappeared and the Lab values of the treated sunflower oil were determined as (79.8, -0.22, 0.3).
  • the colour of refined greenish olive oil at room temperature was determined with a spectrophotometer. Expressed in Lab values the colour was (75.2, -0.69, and 6.63).
  • the liquid is subsequently contacted, under continuous mixing, with 1 gram of activated coal and 2.5 gram of bleaching earth for 15 minutes. After this the liquid is filtered and subsequently depressurised. The greenish colour was found to have largely disappeared and the Lab values of the treated olive oil were determined as (77.2, -0.18, 1.74).
  • the colour of yellow beeswax was determined with a spectrophotometer. Expressed in Lab values the colour was (30.9, 4.71, and 21.9).
  • the liquid is subsequently contacted, under continuous mixing, with 0.5 gram of activated coal and 1.25 gram of bleaching earth for 5 minutes. After this the liquid is filtered and subsequently depressurised. The yellow colour largely disappeared and the Lab values of the treated beeswax were determined as (39.1, -2.39, 3.22). The amount of granulate recovered after processing was 2.09 grams, meaning that it contained only 0.34 grams of beeswax.
  • Example 3 was repeated except that the process was carried out at ambient pressure, the temperature applied was 80 °C and contact time was increased to 20 minutes. Despite the fact that a longer contact time and higher temperature were applied, the yellow colour of the processes was not removed as effectively as in experiment 3. This observation was confirmed by the Lab values of the treated beeswax which were determined as (36.4, -0.54, 8.34).
  • the amount of granulate recovered after processing was 2.28 grams, meaning that it contained 0.53grams of beeswax. This shows that the used granulate obtained in this example holds 56% more beeswax than the granulate of example 3.
  • the liquid is subsequently contacted, under continuous mixing, with 0.5 gram of activated coal and 1.25 gram of bleaching earth for 15 minutes. After this the liquid is filtered and subsequently depressurised. The yellow colour was found to have disappeared and the Lab values of the treated beeswax were determined as (38.1, -2.21, 0.61).
  • the liquid is subsequently contacted, under continuous mixing, with 0.5 gram of activated coal and 1.25 gram of bleaching earth for 15 minutes. After this the liquid is filtered and subsequently depressurised . The yellow colour had disappeared and the Lab values of the treated beeswax were determined as (37.1, -1.95, 2.64).
  • the liquid is subsequently contacted, under continuous mixing, with 2.5 gram of bleaching earth for 20 minutes. After this the liquid is filtered and subsequently depressurised. The yellow colour largely vanished and the Lab values of the treated beeswax were determined as (36.3, -1.57, 0.38).
  • Example 3 was repeated, except that the contact time with activated coal and bleaching earth was reduced to 3 minutes.
  • Example 3 was repeated, but this time the contact time with activated coal and bleaching earth was reduced to 50 seconds. The yellow colour of the processed beeswax had largely disappeared. The Lab values of the treated beeswax were determined as (37.8, -2.85, 9.89).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fats And Perfumes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
EP01202375A 2001-06-19 2001-06-19 Procédé pour le traitement de matières grasses Withdrawn EP1270710A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP01202375A EP1270710A1 (fr) 2001-06-19 2001-06-19 Procédé pour le traitement de matières grasses
PCT/NL2002/000404 WO2002102947A1 (fr) 2001-06-19 2002-06-19 Procede de traitement de matieres lipidiques

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP01202375A EP1270710A1 (fr) 2001-06-19 2001-06-19 Procédé pour le traitement de matières grasses

Publications (1)

Publication Number Publication Date
EP1270710A1 true EP1270710A1 (fr) 2003-01-02

Family

ID=8180508

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01202375A Withdrawn EP1270710A1 (fr) 2001-06-19 2001-06-19 Procédé pour le traitement de matières grasses

Country Status (2)

Country Link
EP (1) EP1270710A1 (fr)
WO (1) WO2002102947A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090413A2 (fr) * 2008-01-17 2009-07-23 Pharma Marine As Procédé de purification de lipide
CN101942359A (zh) * 2010-09-27 2011-01-12 东北农业大学 一种co2超临界状态下生产低反式脂肪酸含量食用植物油脂的脱色方法
ES2350669A1 (es) * 2009-06-03 2011-01-26 Universitat Politecnica De Catalunya Proceso continuo de hidrogeneracion de aceites vegetales en fase liquida a presion y a temperatura con obtencion de una grasa con bajo contenido en isomero trans.

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2245901B1 (es) * 2004-07-15 2007-04-01 Universitat Politecnica De Catalunya Proceso de hidrogenacion parcial de trigliceridos insaturados en fase vapor a alta presion y reactor para la realizacion de dicho proceso.
US9918952B2 (en) 2012-11-28 2018-03-20 Dsm Ip Assets B.V. Powderous formulation
EP3766557A1 (fr) 2019-07-19 2021-01-20 Folium Biosciences Europe B.V. Procédé d'extraction
EP3766556A1 (fr) 2019-07-19 2021-01-20 Folium Biosciences Europe B.V. Procédé d'extraction
EP3766558A1 (fr) 2019-07-19 2021-01-20 Folium Biosciences Europe B.V. Procédé d'extraction
US20220280586A1 (en) 2019-07-19 2022-09-08 Folium Biosciences Europe B.V. Method for extraction

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2420761A (en) * 1942-10-23 1947-05-20 Universal Oil Prod Co Process for treating a liquid with a suspension of solids by passage thereof througha separator, regenerating the separated solids for re-use with untreated liquid
WO1996001304A1 (fr) * 1994-07-01 1996-01-18 Poul Möller Ledelses- Og Ingeniörrrådgivning Aps Procede d'hydrogenation d'un substrat et produits fabriques selon ce procede
WO2000005327A1 (fr) * 1998-07-24 2000-02-03 Lockheed Martin Idaho Technologies Company Procede de production de biodiesel, de lubrifiants, et d'additifs pour carburants et lubrifiants dans un milieu de liquide critique

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2420761A (en) * 1942-10-23 1947-05-20 Universal Oil Prod Co Process for treating a liquid with a suspension of solids by passage thereof througha separator, regenerating the separated solids for re-use with untreated liquid
WO1996001304A1 (fr) * 1994-07-01 1996-01-18 Poul Möller Ledelses- Og Ingeniörrrådgivning Aps Procede d'hydrogenation d'un substrat et produits fabriques selon ce procede
WO2000005327A1 (fr) * 1998-07-24 2000-02-03 Lockheed Martin Idaho Technologies Company Procede de production de biodiesel, de lubrifiants, et d'additifs pour carburants et lubrifiants dans un milieu de liquide critique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MACHER M-B ET AL: "PARTIAL HYDROGENATION OF FATTY ACID METHYL ESTERS AT SUPERCRITICAL CONDITIONS", FETT - LIPID, WILEY-VCH VERLAG,WEINHEIM, DE, vol. 101, no. 8, August 1999 (1999-08-01), pages 301 - 305, XP000848744, ISSN: 0931-5985 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090413A2 (fr) * 2008-01-17 2009-07-23 Pharma Marine As Procédé de purification de lipide
WO2009090413A3 (fr) * 2008-01-17 2010-01-14 Pharma Marine As Procédé de purification de lipide
ES2350669A1 (es) * 2009-06-03 2011-01-26 Universitat Politecnica De Catalunya Proceso continuo de hidrogeneracion de aceites vegetales en fase liquida a presion y a temperatura con obtencion de una grasa con bajo contenido en isomero trans.
CN101942359A (zh) * 2010-09-27 2011-01-12 东北农业大学 一种co2超临界状态下生产低反式脂肪酸含量食用植物油脂的脱色方法

Also Published As

Publication number Publication date
WO2002102947A1 (fr) 2002-12-27

Similar Documents

Publication Publication Date Title
EP1818388B1 (fr) Procédé d'obtention de fractions enrichies contenant de composés naturels à partir d'huile de Palme par fluides supercritiques ou presque supercritiques
AU756898B2 (en) Method for eliminating free fatty acids from fats and oils of biological origin or their vapor condensates
CA2396989C (fr) Procede d'extraction des insaponifiables des huiles vegetales au moyen de chloro-1-butane, composition comprenant ces insaponifiables
US3804819A (en) Recovery of fatty acids from tall oil heads
WO2009017425A1 (fr) Utilisation de liquides ioniques pour l'extraction ou le fractionnement de lipides
EP1270710A1 (fr) Procédé pour le traitement de matières grasses
JP2001521562A (ja) 食品グレードワックス及びその製造方法
US5298638A (en) Adsorptive removal of sulfur compounds from fatty materials
RU2224012C2 (ru) Способ извлечения каротина из каротиносодержащих материалов
US2154713A (en) Process for extracting ethereal oils
US5097012A (en) Solvent extraction of fatty acid stream with liquid water and elevated temperatures and pressures
EP0228980B1 (fr) Procédé pour la préparation d'hexaméthyltétracosanes
IL106332A (en) Preparation of neem oil for cooking
US2759954A (en) Refining crude fatty acid monoglyceride
JP6256981B2 (ja) 油からのビタミンe類の選択的な連続回収方法
List Bleaching and purifying fats and oils: theory and practice
JPH0780834B2 (ja) カロテンの回収方法
US3376326A (en) Interesterification of glycerides
WO2002004415A2 (fr) Procede de purification et de cristallisation de carotenoides d'huile palmitique
JPH0480665B2 (fr)
KR19990015859A (ko) 밀랍의 제조방법
FR2939689A1 (fr) Procede d'extraction d'un compose minieur d'un corps gras, notamment d'une huile vegetale ou animale ou de leurs co-produits au moyen de terpene.
US2852541A (en) Hydrogenation process and product
CA1249304A (fr) Separation du tertiobutylstyrene
JP3359056B2 (ja) ラノリン脂肪酸類の分離法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030703