EP1263540B1 - Method for the production of thin-walled steel components and components produced therefrom - Google Patents

Method for the production of thin-walled steel components and components produced therefrom Download PDF

Info

Publication number
EP1263540B1
EP1263540B1 EP01900129A EP01900129A EP1263540B1 EP 1263540 B1 EP1263540 B1 EP 1263540B1 EP 01900129 A EP01900129 A EP 01900129A EP 01900129 A EP01900129 A EP 01900129A EP 1263540 B1 EP1263540 B1 EP 1263540B1
Authority
EP
European Patent Office
Prior art keywords
layers
procedure according
hardened
steel
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01900129A
Other languages
German (de)
French (fr)
Other versions
EP1263540A1 (en
Inventor
Hans-Toni Junius
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CD Waelzholz Brockhaus GmbH
Original Assignee
Cd Walzholz Produktions-Gesellschaft Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cd Walzholz Produktions-Gesellschaft Mbh filed Critical Cd Walzholz Produktions-Gesellschaft Mbh
Publication of EP1263540A1 publication Critical patent/EP1263540A1/en
Application granted granted Critical
Publication of EP1263540B1 publication Critical patent/EP1263540B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/008Continuous casting of metals, i.e. casting in indefinite lengths of clad ingots, i.e. the molten metal being cast against a continuous strip forming part of the cast product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/923Physical dimension
    • Y10S428/924Composite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/923Physical dimension
    • Y10S428/924Composite
    • Y10S428/925Relative dimension specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/923Physical dimension
    • Y10S428/924Composite
    • Y10S428/926Thickness of individual layer specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/94Pressure bonding, e.g. explosive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12458All metal or with adjacent metals having composition, density, or hardness gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12472Microscopic interfacial wave or roughness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • Y10T428/12965Both containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12986Adjacent functionally defined components

Definitions

  • the present invention relates to a method for producing thin-walled Steel components, the layers of which different steel alloys exist according to The preamble of claim 1.
  • the invention further comprises thin-walled components made of steel with a core layer and edge layers.
  • thermal treatment namely martensitic or bainitic.
  • Made from hardening steel a component with a uniform, high hardness, which however has a low toughness.
  • a cheaper combination wear-resistant surfaces with high toughness in the core zone achieved the use of case-hardened steels.
  • Through a carburizing treatment in a thermochemical hardening process produces hardened, hard surface layers, while the core layer continues to maintain high toughness.
  • use properties are a relatively complex manufacturing process across from.
  • roll-clad is still a substitute for case hardening Steel known, two or more, differently alloyed strips or sheets, preferably from cold rolled strip.
  • the core and outer layers are made of different alloys Steels intimately connected to one another in the roll gap on the surfaces.
  • annealing results from the diffusion processes of the metallic composite.
  • Such a roll cladding process is specified, for example, in DE 41 37 118 A1.
  • this creates an abrupt, abrupt transition between the different layers of material.
  • the hardship transition between paid and unrefined layers is therefore also correspondingly steep, so that due to the load-induced stress gradient produces relatively thick boundary layers Need to become.
  • DE-A-198 15 007 and DE-A-198 50 213 describe methods and procedures manufactured thin metal tapes known, in which a core material an inexpensive material through a casting process with thin metal strips be cast in layers to form a composite material, the thin Metal strips for the production of corrosion-resistant and / or particularly smooth outer layers be used. A subsequent treatment is also in progress here on the influence of other properties of the composite material.
  • the task for the present invention is a rational process for the production of thin-walled components made of steel with different Strength and / or hardness properties. Furthermore, a Component with layers of different strength and / or hardness properties be specified, which is particularly cheaper due to the reduced effort than can be produced so far.
  • the method according to the invention for the production of thin-walled components Steel that has an inner core layer and outer peripheral layers sees here before that the core and outer layers of different steel alloys exist and in a casting process to a composite material with flat Alloy gradients are connected at the interfaces and the composite deformed to the dimensions of the thin-walled components and heat-treated and the heat treatment becomes a martensitic or bainitic Not all harden, but at least one of the layers leads.
  • the method according to the invention is characterized by core and edge layers made of steel materials with different strength and / or hardness properties, namely in particular different martensitic hardenability properties, to combine with each other so that thin-walled components are available be made, which the respective advantages of case hardening and Combine roll cladding.
  • the individual layers are preferably made of steel alloys with different martensitic hardenability properties, i.e. different grades formed on carbon, chromium and manganese, the subsequent influencing the strength and / or hardness properties due to martensitic or bainitic Heat treatment takes place, i.e. a heat treatment with the steps of heating-quenching-tempering.
  • they consist of their strength and / or Hardness properties of layers of higher alloy, i.e. carbon-rich steel than that not in their strength and / or hardness properties influenceable layers.
  • In the area of the flat alloy gradient becomes a correspondingly flat carbon gradient in this case realized.
  • This transition zone between higher and lower carbon Layers extends with a wall thickness of the components of less than 4 mm over less than 20%, preferably less than 15% of the wall thickness.
  • the range of the flat alloy or carbon gradient is wider than 0.1 mm, i.e. more than an order of magnitude wider than the known one Walzplattiermaschine.
  • the strength and / or hardness properties can be influenced Layers the edge layers of the components, which are hard as a surface are and get a hardness curve, which is roughly the case hardening equals.
  • the disadvantage of case hardening is that due to the long residence time A relatively coarse grain structure occurs in the marginal zones, which leads to an increased Micro-crack sensitivity is caused by the layer arrangement according to the invention however avoided.
  • the Edge layers also have a wear-resistant fine grain structure with high toughness the edge zone, which leads to a particularly low sensitivity to microcracks.
  • components with a wall thickness can be made using the method according to the invention less than 4 mm.
  • the strength of the wall thickness and / or hardness properties of influenceable layers i.e. the martensitic hardened layers, a cross-sectional proportion of about 10% to 50%.
  • the core layer of the components in their strength and / or hardness properties be influenced, for example hardened, while the outer layers Steel alloys which cannot be influenced in their strength and / or hardness properties or stainless steels.
  • the layers which can be influenced in their strength and / or hardness properties Materials such as C 55, C 67 or other steels from EN, 100 Cr 6 or X 20 Cr13, X 35 CrMo 17 advantageously form the boundary layers, while the core layers cannot be influenced in their strength and / or hardness properties Materials such as DC 01 or C 10 exist.
  • layers also form the core layers, for example one Spring steel core made of C 60, C 67 or C 75, while the outer layers made of easily deformable Steels such as C 10 or DC 01, or also made of rust-resistant Steels like X 5 CrNi 1810.
  • the alloy gradient according to the invention between the surface and core layers can be produced in that for the production of the composite material for the Edge layers Boards made of martensitic hardenable steel parallel and spaced apart be arranged and the core layer between them with molten, low-carbon steel is cast.
  • the Surface layers become, for example, cold or surface treated hot strip used with predetermined chemical analysis, especially high carbon content. Due to the molten core material cast in between, the has a lower carbon content, local melting occurs of the boards at the material interfaces, which is due to diffusion processes a flat alloy or carbon gradient, with a depth of about 0.1 - 0.3 mm. These properties are due to the invention Connection by means of a casting process close to the final dimensions.
  • the boards are preferably at the casting wheels or the casting mold Pouring the molten core material cooled from the outside. This can even with thin blanks, the width of the alloy gradient can be controlled that it is in the range of 0.1 mm and thereby up to 10% of the total cross section is.
  • the blanks as strip steel at the edge of the casting gap be fed to a continuously operating casting plant.
  • the casting plant can be a continuous casting plant with a fixed continuous mold or for Carrying out a continuous casting and rolling process with the casting gap delimiting rotating rollers (casting wheels).
  • the Tapes are bare, scale and oxide free due to the appropriate surface treatment as well as roughened if necessary.
  • a protective glass bell is generated by supplying inert gases or inert gas mixtures.
  • the aforementioned casting is preferably followed by a hot rolling process. Due to the prevailing temperatures of above 950 ° C due to the high surface pressure and deformation ensures that complete welding of the layers safely achieved in the manner desired according to the invention will, even if the metallic joining when the Melt with the belt surface should not have been sufficient. It forms then at the latest a flat material transition gradient between the layers which is in the 0.1 mm range.
  • the surface of the rolling stock receives one Condition poor in rolling scars and scales without flaming or finishing operations.
  • the composite material is then rolled by hot and / or cold rolling Rolling degree of regularly more than 30% rolled to a thickness of 1 to 5 mm.
  • the final, preferably cold rolling true-to-shape design to the wall thickness of the components, which range up to 4.0 mm, with the surface having the smallest depths of defects and high freedom from pores has what the prerequisite for later use for highly stressed Components, for example machine components. If necessary, the final Shaping multiple cold rolling and intermediate annealing may be required.
  • the is on Dimensionally rolled composite material preferably a recrystallization or soft annealing subjected to about 730 ° C. In this soft annealed condition is suitable the composite material is good for cold forming, for example of machine components.
  • the composite molded material is used to influence its Strength and / or hardness properties subjected to a heat treatment at which results in a martensitic hardening of the hardenable layers.
  • a heat treatment at which results in a martensitic hardening of the hardenable layers.
  • partial heat treatment for example by means of laser or electron radiation, can have a locally limited influence on the strength and / or Hardness properties, that is, hardening take place.
  • an influencing the strength and / or hardness properties take place in the short-term continuous process, preferably in a protective gas oven. This enables a particularly rational Production of functionally optimized strip material and components.
  • a particularly advantageous application has one according to the aforementioned Process-manufactured, thin-walled steel component with a soft core layer and martensitic hardened surface layers, which consists of a cold-formed, hardened multi-layer composite material, which is carbon-rich, martensitic hardened surface layers and a relatively lower-carbon core layer The carbon gradient between the layers is flat.
  • This component according to the invention is characterized in that it is The hardness curve and distribution of strength come close to a case-hardened steel component.
  • martensitic curable layers can have material properties which cannot be achieved with other hardening processes are.
  • the component also boundary layers which cannot be influenced in their strength and / or hardness properties, for example made of stainless steel alloys, and a tempered core layer have, for example made of spring steel.
  • the wall thickness of the component according to the invention is preferably up to 4.0 mm.
  • the carbon gradient in the transition area extends over approximately 10 up to 30% of the wall thickness, in any case over 0.1 mm.
  • the materials for the outer and core layers are preferably one on the other matched that the hardness of the core layer at least 30% to 50% of the hardness corresponds to the boundary layers.
  • the component can consist of two different materials, for example from a low-alloy core layer and high-alloy outer layers.
  • the chemical composition of the outer layers can, however, if necessary also be different, so that a total of at least three layers with different Material properties are present. This allows one more achieve improved functional optimization of the components, such as corrosion protection or fusion weldability.
  • asymmetrical components can be made in components manufactured according to the invention Realize spring travel or self-adjusting spring travel or forces.
  • Fig. 1 shows a section through a cold-formed, martensitic surface layer hardened Component 1. This is preferably made of strip material with a total thickness of 5 formed, which is in the range of 0.3 to 4.0 mm.
  • the component shown consists of steel layer material with several layers. These include in particular a core area B made of low carbon alloy and outer layers A made of carbon-rich, martensitic hardened steel.
  • the Core layer B consists for example of Ck10, DC01, C 10, C 35 or C 53.
  • Die outer edge layers consist, for example, of Ck67, C 55, C 67, or also 102 Cr6, x5 Cr Ni 1810 or the like.
  • the boundary layers A can in turn also consist of steel alloys with different analyzes.
  • the peculiarity of the component 1 shown is that the layers A, B, A even before cold forming to the final dimension 5 according to the invention Processes have been interconnected so that wide at the layer boundaries Transition zones G have been formed, which are indicated by hatching and in which a flat surface is formed by carbon diffusion between the layer materials Has formed a carbon gradient that is in the range of several 1/10 mm.
  • the entire component 1 (FIG. 1) is, after which it becomes, for example, a machine component has been cold formed, subjected to a martensitic hardening process Service.
  • the outer layers A are hardened, while the core B is a relative one maintains great toughness.
  • the flat carbon gradient according to the invention G there is a flat voltage curve at the layer boundaries, so that there is no danger chipping of the outer layers A from the core layer B is like this for example in the case of the roll-clad strip according to the prior art is.
  • the component 1 according to the invention as shown in FIG Core layer B which is hardened in particular martensitic or bainitic, and relative have not or less tempered outer layers, whereby it consists of a cold-formed, in its strength and / or hardness properties influenceable multilayer composite consists of a carbon-rich, in their strength and / or Core layer B which can be influenced by hardness properties and relatively low-carbon in relation thereto
  • Has boundary layers A the zone of the carbon gradient G, such as explained above, runs flat between the layers A, B.
  • a spring steel that can be influenced in its strength and / or hardness properties in the core and low corrosion for example stainless alloys in the Edge layers A conceivable. This allows, for example, an asymmetrical suspension travel or specify a self-adjusting spring force.
  • Fig. 2 shows schematically a continuously operating two-roll casting and rolling system. This has two rotating, water-cooled copper rollers 2, which have a casting gap Limit from 1 - 5 mm wide. From above, the melt sump 3 is over Dip tube 4 charged with molten material B. Along the edges of the Casting nip is fed from strip material A from supply coils. With the one in the casting gap encapsulated core material B is there the connection between the as a steel hot band supplied material A and the molten material B instead. Due to the high surface pressure at temperatures above 950 ° C in hot rolling there is definitely an optimal metallic joining.
  • the heat dissipation via the copper rollers 2 ensures that Steel warmer A through that the carbon gradient G is the steel warmer A does not penetrate too far. In any case, it remains sufficiently thick Boundary layer of the carbon-rich, martensitic hardenable boundary material A is present, around components in the subsequent heat treatment and hardening processes with the hardness curve shown or the strength distribution.
  • steel layer materials can be with extremely different properties in terms of strength and / or hardness properties of the individual layers.
  • the cold-formable composite can be processed particularly well and efficiently to final dimensions. in the Contrary to the known methods, neither occurs during the subsequent hardening to a disadvantageous delay in hardness, there is still the risk of flaking off Surface layers. This is because they have a fine, tough structure, which not to break the component even under high loads or short-term overload leads.

Abstract

A process for the production of thin walled parts of steel, wherein there are layers that are at least partly differently treatable relating to their strength and hardness qualities. This process can include creating a composite material from a plurality of different layers by connecting at least one core layer and at least one surface layer together. At least one layer of the core or surface layer is cast adjacent to another layer to form a composite material having an alloy gradient that is flat at each interface between any of the core layer or the surface layer. Next, the process can include deforming the composite material along a length of these layers. Finally the process can include heat treating the layers to transform the strength and hardness qualities of at least one of these layers.

Description

Die vorliegende Erfindung bezieht sich auf ein Verfahren zur Herstellung von dünnwandigen Bauteilen aus Stahl, deren Schichten aus unterschiedlichen Stahllegierungen bestehen gemäß Oberbegriff des Anspruches 1. Ferner umfaßt die Erfindung dünnwandige Bauteile aus Stahl mit einer Kernschicht und Randschichten.The present invention relates to a method for producing thin-walled Steel components, the layers of which different steel alloys exist according to The preamble of claim 1. The invention further comprises thin-walled components made of steel with a core layer and edge layers.

Dünnwandige Stahlbauteile mit einer Wanddicke von weniger als 4 mm, für die eine besonders hohe Beanspruchbarkeit gefordert wird, beispielsweise im Maschinenund Fahrzeugbau, werden zunächst warm- und/oder kaltgeformt, spanend oder nichtspanend bearbeitet und anschließend durch thermische Behandlung vergütet, nämlich martensitisch oder bainitisch vergütet. Aus durchhärtendem Stahl entsteht dabei ein Bauteil mit über den gesamten Querschnitt durchgehender, gleichmäßiger, hoher Härte, welches allerdings eine geringe Zähigkeit hat. Eine günstigere Kombination verschleißfester Oberflächen mit hoher Zähigkeit in der Kemzone wird durch die Verwendung von Einsatzstählen erreicht. Durch eine aufkohlende Behandlung in einem thermochemischen Härteprozeß werden vergütete, harte Randschichten erzeugt, während die Kernschicht weiterhin eine hohe Zähigkeit beibehält. Den vorteilhaften Gebrauchseigenschaften steht jedoch ein relativ aufwendiges Herstellungsverfahren gegenüber. Durch die relativ lange Einsatzhärtezeit von beispielsweise 180 Minuten bei 850-950°C und die anschließende Abschreckung im Ölbad oder im Gasstrom ist nämlich ein Härteverzug unvermeidlich. Diese verursacht Maß- und Formabweichungen, welche eine aufwendige Nacharbeitung erforderlich machen, welche den Herstellungs- und Kostenaufwand ganz erheblich erhöht. Außerdem liegt ein relativ grobes Härtegefüge vor, welches eine Austenit-Korngröße nach DIN 50601 von beispielsweise 5 oder 6 hat. Dadurch entsteht eine Neigung zu Korngrenzenrissen an den interkristallinen Korngrenzen.Thin-walled steel components with a wall thickness of less than 4 mm, for one particularly high durability is required, for example in machine and Vehicle construction, are first hot and / or cold formed, cutting or processed without cutting and then tempered by thermal treatment, namely martensitic or bainitic. Made from hardening steel a component with a uniform, high hardness, which however has a low toughness. A cheaper combination wear-resistant surfaces with high toughness in the core zone achieved the use of case-hardened steels. Through a carburizing treatment in a thermochemical hardening process produces hardened, hard surface layers, while the core layer continues to maintain high toughness. The beneficial one However, use properties are a relatively complex manufacturing process across from. Due to the relatively long case hardening time of, for example 180 minutes at 850-950 ° C and the subsequent quenching in an oil bath or in Gas flow is inevitably a delay in hardness. This causes dimensional and Shape deviations, which require extensive reworking, which significantly increases the manufacturing and cost expenditure. Also lies a relatively coarse hardness structure, which has an austenite grain size according to DIN 50601 of 5 or 6, for example. This creates a tendency to grain boundary cracks at the intergranular grain boundaries.

Als Ersatz für die Einsatzhärtung ist weiterhin die Verwendung von walzplattiertem Stahl bekannt, wobei zwei oder mehrere, unterschiedlich legierte Bänder oder Tafeln, vorzugsweise aus Kaltband, zusammengewalzt werden. Durch den Druck und die Temperatur werden die Kern- und Randschichten aus unterschiedlichen legierten Stählen im Walzspalt an den Oberflächen innig miteinander verbunden. Durch die anschließende Glühung entsteht durch Diffusionsvorgänge der metallische Verbund. Ein derartiges Walzplattierverfahren wird beispielsweise in der DE 41 37 118 A1 angegeben. Dadurch entsteht jedoch ein abrupter, sprunghafter Übergang zwischen den unterschiedlichen Materialschichten. Der Härteübergang zwischen vergüteten und nicht vergüteten Schichten ist daher ebenfalls entsprechend steil, so daß aufgrund der lastinduzierten Spannungsgradienten relativ dicke Randschichten erzeugt werden müssen. Durch die relativen Spannungen besteht an der Grenzfläche zudem unvermeidlich die latente Gefahr, daß die Randzonen bei Beanspruchung durch Streckgrenzenüberschreitung im Fügebereich abplatzen. Diesem Nachteil kann wie oben erwähnt, lediglich durch dicker dimensionierte Randschichten begegnet werden, was jedoch wiederum zu einer unerwünschten höheren Wanddicke der Bauteile führt und zudem die Herstellung erschwert.The use of roll-clad is still a substitute for case hardening Steel known, two or more, differently alloyed strips or sheets, preferably from cold rolled strip. By printing and the temperature, the core and outer layers are made of different alloys Steels intimately connected to one another in the roll gap on the surfaces. Through the Subsequent annealing results from the diffusion processes of the metallic composite. Such a roll cladding process is specified, for example, in DE 41 37 118 A1. However, this creates an abrupt, abrupt transition between the different layers of material. The hardship transition between paid and unrefined layers is therefore also correspondingly steep, so that due to the load-induced stress gradient produces relatively thick boundary layers Need to become. Due to the relative tensions there is also at the interface inevitably the latent danger that the edge zones when stressed by Flake the yield point in the joining area. This disadvantage can be like mentioned above, can only be countered by thicker edge layers, however, this in turn leads to an undesirably higher wall thickness of the components leads and also complicates the manufacture.

Ausweislich der DE 196 31 999 A1 ist zur Herstellung von Verbundblechen bereits vorgeschlagen worden, in einer Stranggießanlage Kern- und Randschichten zusammenzugießen. Dadurch soll ein Stahl-Schichtwerkstoff erzeugt werden. Die Problematik bei der Erzeugung unterschiedlich vergüteter bzw. gehärteter Schichten wird jedoch nicht aufgegriffen. Ein ähnliches Stranggießverfahren wird in der DE 33 46 391 A1 angesprochen, bei dem ebenfalls Schichtbleche in eine Schmelze eingebettet werden. Die Problematik bei der Realisierung von unterschiedlich vergüteten bzw. gehärteten Schichten wird darin jedoch ebenfalls nicht angesprochen. Die vorgenannten Stranggußverfahren bzw. -anlagen sind zudem offensichtlich allein zur Herstellung relativ dicker Platinen bzw. Bleche geeignet, und nicht zur Herstellung von dünnwandigen Bauteilen. Ähnlich verhält es sich mit dem aus der US-PS 3 457 984 hervorgehenden Stand der Technik. Dieser bezieht sich lediglich darauf, den Gußstrang einer Stranggießanlage mit Blech zu ummanteln.According to DE 196 31 999 A1 is already for the production of composite sheets proposed to combine core and surface layers in a continuous caster. This is to produce a steel layer material. The problem in the production of differently tempered or hardened layers however not taken up. A similar continuous casting process is described in DE 33 46 391 A1, in which laminated sheets are also embedded in a melt become. The problem with the realization of differently remunerated or however, hardened layers are also not addressed. The aforementioned Continuous casting processes and systems are obviously only for manufacturing relatively thick boards or sheets, and not for the production of thin-walled components. The situation is similar with that from US Pat. No. 3,457,984 emerging state of the art. This only refers to the cast strand to coat a continuous caster with sheet metal.

Aus der DE-A-198 15 007 und der DE-A-198 50 213 sind Verfahren und verfahrensgemäß hergestellte dünne Metallbänder bekannt, bei denen ein Kernmaterial aus einem kostengünstigen Werkstoff durch ein Gießverfahren mit dünnen Metallbändern schichtweise zu einem Verbundmaterial vergossen werden, wobei die dünnen Metallbänder zur Herstellung korrosionsresitenter und/oder besonders gletter Außenschichten genutzt werden. Auch hier ist eine nachfolgende Behandlung in Bzug auf die Beeinflussung anderer Eigenschaften des Verbundmaterials nicht genannt.DE-A-198 15 007 and DE-A-198 50 213 describe methods and procedures manufactured thin metal tapes known, in which a core material an inexpensive material through a casting process with thin metal strips be cast in layers to form a composite material, the thin Metal strips for the production of corrosion-resistant and / or particularly smooth outer layers be used. A subsequent treatment is also in progress here on the influence of other properties of the composite material.

Angesichts dessen ergibt sich für die vorliegende Erfindung die Aufgabenstellung, ein rationelles Verfahren zur Herstellung dünnwandiger Bauteile aus Stahl mit unterschiedlichen Festigkeits- und/oder Härteeigenschaften anzugeben. Ferner soll ein Bauteil mit Schichten aus unterschiedlichen Festigkeits- und/oder Härteeigenschaften angegeben werden, das durch den verringerten Aufwand insbesondere kostengünstiger als bisher hergestellt werden kann.In view of this, the task for the present invention is a rational process for the production of thin-walled components made of steel with different Strength and / or hardness properties. Furthermore, a Component with layers of different strength and / or hardness properties be specified, which is particularly cheaper due to the reduced effort than can be produced so far.

Das erfindungsgemäße Verfahren zur Herstellung von dünnwandigen Bauteilen aus Stahl, die eine innere Kernschicht und äußere Randschichten aufweisen, sieht hierbei vor, daß die Kern- und Randschichten aus unterschiedlichen Stahllegierungen bestehen und in einem Gießverfahren zu einem Verbundwerkstoff mit flach verlaufendem Legierungsgradienten an den Grenzflächen verbunden werden und der Verbundwerkstoff auf das Maß der dünnwandigen Bauteile verformt und wärmebehandelt wird und wobei die Wärmebehandlung zu einem martensitischen oder bainitischen Härten nicht aller, jedoch mindestens einer der Schichten führt.The method according to the invention for the production of thin-walled components Steel that has an inner core layer and outer peripheral layers sees here before that the core and outer layers of different steel alloys exist and in a casting process to a composite material with flat Alloy gradients are connected at the interfaces and the composite deformed to the dimensions of the thin-walled components and heat-treated and the heat treatment becomes a martensitic or bainitic Not all harden, but at least one of the layers leads.

Man erhält dadurch Bauteile nach Anspruch 23 oder 25. This gives components according to claim 23 or 25.

Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, Kern- und Randschichten aus Stahlwerkstoffen mit unterschiedlichen Festigkeits- und/oder Härteeigenschaften, nämlich insbesondere unterschiedlichen martensitischen Härtbarkeitseigenschaften, so miteinander zu kombinieren, daß dünnwandige Bauteile zur Verfügung gestellt werden, welche die jeweiligen Vorteile der Einsatzhärtung und der Walzplattierung in sich vereinen.The method according to the invention is characterized by core and edge layers made of steel materials with different strength and / or hardness properties, namely in particular different martensitic hardenability properties, to combine with each other so that thin-walled components are available be made, which the respective advantages of case hardening and Combine roll cladding.

Im einzelnen wird durch die erfindungsgemäße Wärmebehandlung in Bezug auf die Festigkeits- und/oder Härteeigenschaften des Verbundwerkstoffs eine Festigkeitsverteilung erzeugt, die mit dem allgemein als besonders vorteilhaft angesehenen Einsatzhärteverlauf vergleichbar ist. Im Gegensatz zum Einsatzhärten tritt beim erfindungsgemäßen Verfahren jedoch praktisch kein Verzug auf, so daß ein präzises, maß- und formgenaues Bauteil zur Verfügung gestellt wird, ohne daß Maßkorrekturen erforderlich sind. Weiterhin wird durch den erfindungsgemäß vorgegebenen, flachen Legierungsgradienten an den Grenzflächen zwischen den Schichten die Bildung von inneren Werkstoffkerben, wie sie beim Walzplattieren, wie eingangs erwähnt, unvermeidlich sind, vermieden. Dank des dadurch optimierten Härte- und Festigkeitsgradienten besteht keine Gefahr mehr, daß die Randschichten durch Streckgrenzenüberschreitung im Fügebereich, also an der Grenzfläche, bei hoher Lastspannung abplatzen.In detail, the heat treatment according to the invention with respect to the Strength and / or hardness properties of the composite material a strength distribution generated with the generally regarded as particularly advantageous Case hardening history is comparable. In contrast to case hardening occurs with the invention However, there is practically no delay in the process, so that a precise, dimensionally and formally accurate component is made available without dimensional corrections required are. Furthermore, by the flat according to the invention Alloy gradients at the interfaces between the layers form the formation of internal material notches, as used in roll cladding, as mentioned at the beginning, are inevitable avoided. Thanks to the optimized hardness and strength gradient there is no longer any risk that the boundary layers through Yield point exceeded in the joining area, i.e. at the interface, at high Chipping off the load voltage.

Vorzugsweise werden die einzelnen Schichten aus Stahllegierungen mit unterschiedlichen martensitischen Härtbarkeitseigenschaften, d.h. unterschiedlichen Gehalten an Kohlenstoff, Chrom und Mangan gebildet, wobei die nachfolgende Beeinflussung der Festigkeits- und/oder Härteeigenschaften durch martensitische oder bainitische Wärmebehandlungen erfolgt, d.h. einer Wärmebehandlung mit den Schritten Aufheizen-Abschrecken-Anlassen. Im Einzelnen bestehen die in ihren Festigkeitsund/oder Härteeigenschaften beeinflußbaren Schichten aus höher legiertem, d.h. kohlenstoffreicherem Stahl als die nicht in ihren Festigkeits- und/oder Härteeigenschaften beeinflußbaren Schichten. Im Bereich des flach verlaufenden Legierungsgradienten wird in diesem Fall ein entsprechend flach verlaufender Kohlenstoffgradient realisiert. Diese Übergangszone zwischen kohlenstoffreicheren und kohlenstoffärmeren Schichten erstreckt sich bei einer Wanddicke der Bauteile von weniger als 4 mm über weniger als 20%, vorzugsweise weniger als 15% der Wanddicke. Auf jeden Fall ist der Bereich des flachen Legierungs- bzw. Kohlenstoffgradienten breiter als 0,1 mm, also um mehr als eine Größenordnung breiter als beim bekannten Walzplattierverfahren.The individual layers are preferably made of steel alloys with different martensitic hardenability properties, i.e. different grades formed on carbon, chromium and manganese, the subsequent influencing the strength and / or hardness properties due to martensitic or bainitic Heat treatment takes place, i.e. a heat treatment with the steps of heating-quenching-tempering. Specifically, they consist of their strength and / or Hardness properties of layers of higher alloy, i.e. carbon-rich steel than that not in their strength and / or hardness properties influenceable layers. In the area of the flat alloy gradient becomes a correspondingly flat carbon gradient in this case realized. This transition zone between higher and lower carbon Layers extends with a wall thickness of the components of less than 4 mm over less than 20%, preferably less than 15% of the wall thickness. On in any case, the range of the flat alloy or carbon gradient is wider than 0.1 mm, i.e. more than an order of magnitude wider than the known one Walzplattierverfahren.

Vorzugsweise bilden die in ihren Festigkeits- und/oder Härteeigenschaften beeinflußbaren Schichten die Randschichten der Bauteile, welche dadurch oberflächenhart sind und einen Härteverlauf bekommen, welcher in etwa der Einsatzhärtung gleichkommt. Der Nachteil der Einsatzhärtung, daß aufgrund der langen Verweildauer in den Randzonen eine relativ grobe Kornstruktur auftritt, die zu einer erhöhten Mikrorißempfindlichkeit führt, wird durch die erfindungsgemäße Schichtanordnung jedoch vermieden. Durch relativ geringe Verweildauern ergibt sich nämlich in den Randschichten ebenfalls ein verschleißfestes Feinkorngefüge mit hoher Zähigkeit in der Randzone, die zu einer besonders geringen Mikrorißempfindlichkeit führt. Bevorzugt lassen sich nach dem erfindungsgemäßen Verfahren Bauteile mit einer Wanddicke von weniger als 4 mm herstellen. Von der Wanddicke haben die in ihren Festigkeits- und/oder Härteeigenschaften beeinflußbaren Schichten, d.h. die martensitisch gehärteten Schichten, einen Querschnittsanteil von etwa 10% bis 50%. Alternativ kann auch die Kernschicht der Bauteile in ihren Festigkeits- und/oder Härteeigenschaften beeinflußbar sein, beispielsweise gehärtet, während die Randschichten aus nicht in ihren Festigkeits- und/oder Härteeigenschaften beeinflußbaren Stahllegierungen oder rostfreien Stählen bestehen.Preferably, the strength and / or hardness properties can be influenced Layers the edge layers of the components, which are hard as a surface are and get a hardness curve, which is roughly the case hardening equals. The disadvantage of case hardening is that due to the long residence time A relatively coarse grain structure occurs in the marginal zones, which leads to an increased Micro-crack sensitivity is caused by the layer arrangement according to the invention however avoided. Because of the relatively short dwell times, the Edge layers also have a wear-resistant fine grain structure with high toughness the edge zone, which leads to a particularly low sensitivity to microcracks. Prefers components with a wall thickness can be made using the method according to the invention less than 4 mm. The strength of the wall thickness and / or hardness properties of influenceable layers, i.e. the martensitic hardened layers, a cross-sectional proportion of about 10% to 50%. alternative can also the core layer of the components in their strength and / or hardness properties be influenced, for example hardened, while the outer layers Steel alloys which cannot be influenced in their strength and / or hardness properties or stainless steels.

Die in ihren Festigkeits- und/oder Härteeigenschaften beeinflußbaren Schichten aus Werkstoffen wie beispielsweise C 55, C 67 oder andere Stähle der EN, 100 Cr 6 oder X 20 Cr13, X 35 CrMo 17 bilden vorteilhafterweise die Randschichten, während die Kernschichten aus nicht in ihren Festigkeits- und/oder Härteeigenschaften beeinflußbaren Werkstoffen wie beispielsweise DC 01 oder C 10 bestehen. Für bestimmte Anwendungen können die in ihren Festigkeits- und/oder Härteeigenschaften beeinflußbaren Schichten jedoch ebenfalls die Kernschichten bilden, beispielsweise einen Federstahlkern aus C 60, C 67 oder C 75, während die Randschichten aus gut verformbaren Stählen wie z.B. C 10 oder DC 01 bestehen, oder auch aus rostbeständigen Stählen wie X 5 CrNi 1810.The layers which can be influenced in their strength and / or hardness properties Materials such as C 55, C 67 or other steels from EN, 100 Cr 6 or X 20 Cr13, X 35 CrMo 17 advantageously form the boundary layers, while the core layers cannot be influenced in their strength and / or hardness properties Materials such as DC 01 or C 10 exist. For certain Applications can be influenced in their strength and / or hardness properties However, layers also form the core layers, for example one Spring steel core made of C 60, C 67 or C 75, while the outer layers made of easily deformable Steels such as C 10 or DC 01, or also made of rust-resistant Steels like X 5 CrNi 1810.

Der erfindungsgemäße Legierungsgradient zwischen den Rand- und Kernschichten kann dadurch erzeugt werden, daß zur Herstellung des Verbundwerkstoffs für die Randschichten Platinen aus martensitisch härtbarem Stahl parallel mit Abstand zueinander angeordnet werden und die dazwischen befindliche Kernschicht mit schmelzflüssigem, kohlenstoffärmerem Stahl vergossen wird. Zur Ausbildung der Randschichten wird beispielsweise Kalt- oder oberflächenbehandeltes Warmband mit vorgegebener chemischer Analyse, insbesondere hohem Kohlenstoffgehalt verwendet. Durch den schmelzflüssig dazwischen eingegossenen Kernwerkstoff, der einen geringeren Kohlenstoffgehalt hat, kommt es zu einem lokalen Aufschmelzen der Platinen an den Werkstoffgrenzflächen, wodurch sich aufgrund von Diffusionsprozessen ein flacher Legierungs- bzw. Kohlenstoffgradient, mit einer Tiefe von etwa 0,1 - 0,3 mm ausbildet. Diese Eigenschaften werden durch die erfindungsgemäße Verbindung mittels eines endabmessungsnahen Gießverfahrens ermöglicht.The alloy gradient according to the invention between the surface and core layers can be produced in that for the production of the composite material for the Edge layers Boards made of martensitic hardenable steel parallel and spaced apart be arranged and the core layer between them with molten, low-carbon steel is cast. To train the Surface layers become, for example, cold or surface treated hot strip used with predetermined chemical analysis, especially high carbon content. Due to the molten core material cast in between, the has a lower carbon content, local melting occurs of the boards at the material interfaces, which is due to diffusion processes a flat alloy or carbon gradient, with a depth of about 0.1 - 0.3 mm. These properties are due to the invention Connection by means of a casting process close to the final dimensions.

Vorzugsweise werden die Platinen durch die Gießräder bzw. die Gießkokille beim Eingießen des schmelzflüssigen Kernwerkstoffs von außen gekühlt. Dadurch kann selbst bei dünnen Platinen die Breite des Legierungsgradienten so gesteuert werden, daß sie im Bereich von 0,1 mm liegt und dabei bis zu 10 % vom Gesamtquerschnitt beträgt.The boards are preferably at the casting wheels or the casting mold Pouring the molten core material cooled from the outside. This can even with thin blanks, the width of the alloy gradient can be controlled that it is in the range of 0.1 mm and thereby up to 10% of the total cross section is.

Besonders vorteilhaft ist es, daß die Platinen als Bandstahl am Rand des Gießspaltes einer kontinuierlich arbeitenden Gießanlage zugeführt werden. Alternativ kann die Gießanlage eine Stranggießanlage mit einer festen Durchlaufkokille sein oder zur Durchführung eines kontinuierlichen Gießwalzprozesses mit den Gießspalt begrenzenden, rotierenden Rollen (Gießrädem) ausgestattet sein. Erfindungsgemäß wird das Band, welches die Randschichten bildet, beidseitig längs der Rollen oder Kupferbacken am Rand des Schmelzensumpfes in den Gießspalt eingeführt. Zumindest auf ihren Innenseiten, wo der flüssige Kernwerkstoff eingegossen wird, müssen die Bänder durch entsprechende Oberflächenbehandlung blank, zunder- und oxydfrei sowie ggf. aufgerauht sein.It is particularly advantageous that the blanks as strip steel at the edge of the casting gap be fed to a continuously operating casting plant. Alternatively, you can the casting plant can be a continuous casting plant with a fixed continuous mold or for Carrying out a continuous casting and rolling process with the casting gap delimiting rotating rollers (casting wheels). According to the invention the tape that forms the edge layers on both sides along the rollers or copper jaws inserted into the casting gap at the edge of the melt sump. At least on the inside, where the liquid core material is poured in, the Tapes are bare, scale and oxide free due to the appropriate surface treatment as well as roughened if necessary.

Um eine unerwünschte Oxydation der Wandoberfläche durch die Erwärmung bei der Zuführung in den Gießspalt zu unterbinden, ist es vorteilhaft, den einlaufenden Bandstahl bzw. die Platinen unter einer oxydationsverhindernden Abdeckung zuzuführen. Bevorzugt kann dies eine Schutzgasatmosphäre sein. Eine derartige Schutzglasglocke wird durch Zuführung von Inertgasen bzw. Inertgasgemischen erzeugt. To prevent undesirable oxidation of the wall surface by heating To prevent feed in the casting gap, it is advantageous to the incoming Feed steel strip or the blanks under an anti-oxidation cover. This can preferably be a protective gas atmosphere. Such a protective glass bell is generated by supplying inert gases or inert gas mixtures.

Sobald die Schmelze des Kernwerkstoffs in Kontakt mit der Bandoberfläche kommt, wird diese auf über 950°C aufgeheizt, so daß durch Diffusionsverschweißung der Schmelze mit der Bandoberfläche eine metallische Fügung mit dem erfindungsgemäßen flachen Legierungsgradienten entsteht. Durch das die Randschichten bildende Band (Warmband) wird die Wärme weiter an die Kupferrollen oder die Kokillenwände abgegeben, so daß die Bänder nicht vollständig aufschmelzen, was nicht erwünscht wäre. Die Folge dieses Gießverbundes im endabmessungsnahen Wanddikkenbereich ist eine Steigerung der Gießleistung, da die Wärmeabfuhr durch die Aufheizung der zugeführten Randschichten erfolgt, das heißt der Gießspalt wird durch das zugeführte, kalte Material gekühlt.As soon as the melt of the core material comes into contact with the strip surface, this is heated to over 950 ° C, so that the diffusion welding Melt with the strip surface a metallic joint with the invention flat alloy gradients. By forming the boundary layers Strip (hot strip) the heat is passed on to the copper rolls or the mold walls released so that the tapes do not melt completely, which is not desirable would. The consequence of this casting compound in the wall thickness area close to the final dimensions is an increase in casting performance because the heat dissipation through the heating of the supplied boundary layers, that is, the casting gap is through the cold material supplied is cooled.

Dem vorgenannten Vergießen schließt sich vorzugsweise ein Warmwalzvorgang an. Durch die dabei herrschenden Temperaturen von oberhalb 950°C wird aufgrund der hohen Flächenpressung und Verformung sichergestellt, daß eine vollständige Verschweißung der Schichten in der erfindungsgemäß angestrebten Weise sicher erreicht wird, und zwar selbst dann, wenn die metallische Fügung beim Kontakt der Schmelze mit der Bandoberfläche nicht ausreichend gewesen sein sollte. Es bildet sich spätestens dann ein flacher Werkstoffübergangsgradient zwischen den Schichten aus, der im 0,1 mm - Bereich liegt. Die Oberfläche des Walzgutes erhält einen walznarben- und zunderarmen Zustand ohne Flämm- oder Schlichtarbeitsgänge.The aforementioned casting is preferably followed by a hot rolling process. Due to the prevailing temperatures of above 950 ° C due to the high surface pressure and deformation ensures that complete welding of the layers safely achieved in the manner desired according to the invention will, even if the metallic joining when the Melt with the belt surface should not have been sufficient. It forms then at the latest a flat material transition gradient between the layers which is in the 0.1 mm range. The surface of the rolling stock receives one Condition poor in rolling scars and scales without flaming or finishing operations.

Anschließend wird der Verbundwerkstoff durch Warm- und/oder Kaltwalzen mit einem Abwalzgrad von regelmäßig mehr als 30% auf eine Dicke von 1 bis 5 mm ausgewalzt. Vorzugsweise durch anschließendes Kaltwalzen erfolgt die endgültige, maßhaltige Formgebung auf die Wanddicke der Bauteile, welche im Bereich bis zu 4,0 mm liegt, wobei die Oberfläche geringste Fehlertiefen und hohe Porenfreiheit aufweist, was die Voraussetzung für die spätere Verwendung für hochbeanspruchte Bauteile, beispielsweise Maschinenbauteile ist. Gegebenenfalls kann zur endgültigen Formgebung mehrfaches Kaltwalzen und Zwischenglühen erforderlich sein.The composite material is then rolled by hot and / or cold rolling Rolling degree of regularly more than 30% rolled to a thickness of 1 to 5 mm. The final, preferably cold rolling true-to-shape design to the wall thickness of the components, which range up to 4.0 mm, with the surface having the smallest depths of defects and high freedom from pores has what the prerequisite for later use for highly stressed Components, for example machine components. If necessary, the final Shaping multiple cold rolling and intermediate annealing may be required.

Vor der Weiterverarbeitung durch Biegen, Stanzen oder dergleichen wird der auf Maß gewalzte Verbundwerkstoff vorzugsweise einer Rekristallisations- bzw. Weichglühung auf etwa 730°C unterzogen. In diesem weichgeglühten Zustand eignet sich der Verbundwerkstoff gut zur Kaltformung, beispielsweise von Maschinenbauteilen. Before further processing by bending, punching or the like, the is on Dimensionally rolled composite material preferably a recrystallization or soft annealing subjected to about 730 ° C. In this soft annealed condition is suitable the composite material is good for cold forming, for example of machine components.

Abschließend wird der auf Maß geformte Verbundwerkstoff zur Beeinflussung seiner Festigkeits- und/oder Härteeigenschaften einer Wärmebehandlung unterzogen, bei der eine martensitische Härtung der vergütbaren Schichten erfolgt. Durch die an sich bekannte Abfolge der Verfahrensschritte Erwärmen-Abschrecken-Anlassen werden die unterschiedlich härtbaren Schichten, beispielsweise die Randschichten, martensitisch gehärtet, während die niedriger legierten Bereiche geringere Härte aufweisen und weiterhin ihre Zähigkeit behalten.Finally, the composite molded material is used to influence its Strength and / or hardness properties subjected to a heat treatment at which results in a martensitic hardening of the hardenable layers. By itself known sequence of process steps heating-quenching-tempering the differently hardenable layers, for example the outer layers, are martensitic hardened, while the lower alloyed areas have lower hardness and keep their toughness.

Durch eine partielle Wärmebehandlung, beispielsweise mittels Laser- oder Elektronenbestrahlung, kann eine lokal begrenzte Beeinflussung der Festigkeits- und/oder Härteeigenschaften, das heißt Härtung erfolgen. Alternativ kann eine Beeinflussung der Festigkeits- und/oder Härteeigenschaften im Kurzzeit-Durchlaufverfahren erfolgen, bevorzugt in einem Schutzgasofen. Diese ermöglicht eine besonders rationelle Fertigung von funktionsoptimiertem Bandmaterial und Bauteilen.By partial heat treatment, for example by means of laser or electron radiation, can have a locally limited influence on the strength and / or Hardness properties, that is, hardening take place. Alternatively, an influencing the strength and / or hardness properties take place in the short-term continuous process, preferably in a protective gas oven. This enables a particularly rational Production of functionally optimized strip material and components.

Besonders vorteilhafte Anwendungsmöglichkeiten hat ein nach den vorgenannten Verfahren hergestelltes, dünnwandiges Bauteil aus Stahl, mit einer weichen Kernschicht und martensitisch gehärteten Randschichten, welches aus einem kaltgeformten, gehärteten Mehrschicht-Verbundwerkstoff besteht, der kohlenstoffreiche, martensitisch gehärtete Randschichten und eine relativ dazu kohlenstoffärmere Kernschicht hat, wobei der Kohlenstoffgradient zwischen den Schichten flach verläuft. Dieses erfindungsgemäße Bauteil zeichnet sich dadurch aus, daß es hinsichtlich Härteverlauf und Festigkeitsverteilung einem einsatzgehärteten Stahlbauteil nahekommt. Durch die Verwendung eines Mehrschicht-Verbundwerkstoffs aus unterschiedlich martensitisch härtbaren Schichten können dabei jedoch Materialeigenschaften vorgegeben werden, welche mit anderen Härteverfahren nicht erreichbar sind. Dank der flachen Übergangszone ist eine Angleichung der Vergleichsspannungsbedingungen an den Lastspannungsverlauf im Querschnitt gegeben. Entsprechend ergibt sich eine rationellere Fertigung bei optimierten Funktionseigenschaften, wie poren- und entkohlungsfreie Oberfläche ohne Randoxidation der Komgrenzen mit einer Austenitkorngröße feiner als 8 nach DIN 50601. Alternativ kann das Bauteil auch nicht in ihren Festigkeits- und/oder Härteeigenschaften beeinflußbare Randschichten, beispielsweise aus rostfreien Stahllegierungen, und eine vergütete Kernschicht haben, beispielsweise aus Federstahl. A particularly advantageous application has one according to the aforementioned Process-manufactured, thin-walled steel component with a soft core layer and martensitic hardened surface layers, which consists of a cold-formed, hardened multi-layer composite material, which is carbon-rich, martensitic hardened surface layers and a relatively lower-carbon core layer The carbon gradient between the layers is flat. This component according to the invention is characterized in that it is The hardness curve and distribution of strength come close to a case-hardened steel component. By using a multi-layer composite material from different However, martensitic curable layers can have material properties which cannot be achieved with other hardening processes are. Thanks to the flat transition zone, there is an approximation of the reference stress conditions given to the load voltage profile in cross section. Corresponding there is a more rational production with optimized functional properties, like a pore-free and decarburization-free surface without edge oxidation of the grain boundaries with an austenite grain size finer than 8 according to DIN 50601. Alternatively, the component also boundary layers which cannot be influenced in their strength and / or hardness properties, for example made of stainless steel alloys, and a tempered core layer have, for example made of spring steel.

Die Wandungsdicke des erfindungsgemäßen Bauteils beträgt vorzugsweise bis zu 4,0 mm. Der Kohlenstoffgradient im Übergangsbereich erstreckt sich über etwa 10 bis 30 % der Wandungsdicke, also auf jeden Fall über mehr als 0,1 mm.The wall thickness of the component according to the invention is preferably up to 4.0 mm. The carbon gradient in the transition area extends over approximately 10 up to 30% of the wall thickness, in any case over 0.1 mm.

Die Werkstoffe für die Rand- und Kernschichten werden vorzugsweise so aufeinander abgestimmt, daß die Härte der Kernschicht mindestens 30% bis 50% der Härte der Randschichten entspricht.The materials for the outer and core layers are preferably one on the other matched that the hardness of the core layer at least 30% to 50% of the hardness corresponds to the boundary layers.

Das Bauteil kann sowohl aus zwei unterschiedlichen Werkstoffen bestehen, beispielsweise aus einer niedrig legierten Kernschicht und hoch legierten Randschichten. Die chemische Zusammensetzung der Randschichten kann jedoch bei Bedarf ebenfalls unterschiedlich sein, so daß insgesamt mindestens drei Schichten mit unterschiedlichen Werkstoffeigenschaften vorhanden sind. Dadurch läßt sich eine weiter verbesserte Funktionsoptimierung der Bauteile erreichen, wie Korrosionsschutz oder Schmelzschweißbarkeit.The component can consist of two different materials, for example from a low-alloy core layer and high-alloy outer layers. The chemical composition of the outer layers can, however, if necessary also be different, so that a total of at least three layers with different Material properties are present. This allows one more achieve improved functional optimization of the components, such as corrosion protection or fusion weldability.

Weiterhin lassen sich bei erfindungsgemäß hergestellten Bauteilen asymmetrische Federwege oder selbst einstellende Federwege bzw. -kräfte realisieren.Furthermore, asymmetrical components can be made in components manufactured according to the invention Realize spring travel or self-adjusting spring travel or forces.

Weitere Merkmale und Vorteile der vorliegenden Erfindung werden deutlich anhand der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele unter Bezugnahme auf die beiliegenden Abbildungen. Darin zeigen

Fig. 1 -
einen Querschnitt durch ein erfindungsgemäßes Bauteil;
Fig. 2 -
eine schematische Darstellung einer Gießanlage zur Herstellung von erfindungsgemäßem Bandmaterial.
Further features and advantages of the present invention will become clear from the following description of preferred exemplary embodiments with reference to the accompanying figures. Show in it
Fig. 1 -
a cross section through an inventive component;
Fig. 2 -
is a schematic representation of a casting plant for the production of strip material according to the invention.

Fig. 1 zeigt einen Schnitt durch ein kaltgeformtes, martensitisch randschichtgehärtetes Bauteil 1. Dieses wird vorzugsweise aus Bandmaterial mit einer Gesamtdicke 5 gebildet, die im Bereich von 0,3 bis 4,0 mm liegt.Fig. 1 shows a section through a cold-formed, martensitic surface layer hardened Component 1. This is preferably made of strip material with a total thickness of 5 formed, which is in the range of 0.3 to 4.0 mm.

Das dargestellte Bauteil besteht aus Stahl-Schichtwerkstoff mit mehreren Schichten. Diese umfassen im einzelnen einen Kernbereich B aus kohtenstoffarmer Legierung und Randschichten A aus kohlenstoffreicherem, martensitisch gehärtetem Stahl. Die Kemschicht B besteht beispielsweise aus Ck10, DC01, C 10, C 35 oder C 53. Die äußeren Randschichten bestehen beispielsweise aus Ck67, C 55, C 67, oder auch 102 Cr6,x5 Cr Ni 1810 oder dergleichen. Die Randschichten A können ihrerseits auch aus Stahllegierungen mit jeweils unterschiedlichen Analysen bestehen.The component shown consists of steel layer material with several layers. These include in particular a core area B made of low carbon alloy and outer layers A made of carbon-rich, martensitic hardened steel. The Core layer B consists for example of Ck10, DC01, C 10, C 35 or C 53. Die outer edge layers consist, for example, of Ck67, C 55, C 67, or also 102 Cr6, x5 Cr Ni 1810 or the like. The boundary layers A can in turn also consist of steel alloys with different analyzes.

Die Besonderheit des dargestellten Bauteils 1 liegt darin, daß die Schichten A, B, A bereits vor der Kaltverformung auf das Endmaß 5 gemäß dem erfindungsgemäßen Verfahren miteinander verbunden worden sind, so daß an den Schichtgrenzen breite Übergangszonen G ausgebildet worden sind, welche schraffiert angedeutet sind und in denen sich durch Kohlenstoffdiffusion zwischen den Schichtwerkstoffen ein flacher Kohlenstoffgradient ausgebildet hat, der sich im Bereich von mehreren 1/10 mm bewegt.The peculiarity of the component 1 shown is that the layers A, B, A even before cold forming to the final dimension 5 according to the invention Processes have been interconnected so that wide at the layer boundaries Transition zones G have been formed, which are indicated by hatching and in which a flat surface is formed by carbon diffusion between the layer materials Has formed a carbon gradient that is in the range of several 1/10 mm.

Das gesamte Bauteil 1 (Fig. 1) ist, nach dem es beispielsweise zu einem Maschinenbauteil kaltgeformt worden ist, einem martensitischen Härteprozeß unterzogen worden. Dadurch sind die Randschichten A gehärtet, während der Kern B eine relativ große Zähigkeit beibehält. Dank des erfindungsgemäß flachen Kohlenstoffgradienten G liegt an den Schichtgrenzen ein flacher Spannungsverlauf vor, so daß keine Gefahr des Abplatzens der Randschichten A von der Kernschicht B besteht, wie dies beispielsweise bei dem walzplattierten Band gemäß dem Stand der Technik der Fall ist. Beim martensitischen Härten tritt praktisch kein Härteverzug, das heißt keine unerwünschte Form- und Maßänderung auf, so daß das Bauteil 1 bereits vor dem Härtevorgang auf das Endmaß 5 gebracht werden kann und keine Nacharbeit erforderlich ist, wie dies beim Einsatzhärten der Fall ist. Durch die Auswahl der Schichtwerkstoffe wird dabei jedoch ein vorteilhafter Festigkeits- und Härteverlauf erreicht, der mit der Einsatzhärtung vergleichbar oder besser ist. Die Durchhärtung der Randschichten A bei dem erfindungsgemäßen Schichtwerkstoff kann nämlich mit einer Kurzzeitwärmebehandlung erfolgen, also mit einer deutlich kürzeren Austenitisierungszeit als beim Einsatzhärten. Dadurch erhalten die Randschichten A ein feinkörnigeres Härtegefüge, als es durch Einsatzhärtung erreichbar wäre. Ein etwaiger Rißfortschritt ist folglich nicht interkristallin, sondern transkristallin geprägt, was eine deutliche Verbesserung der Zähigkeit und entsprechend eine Erhöhung der Lebensdauer mit sich bringt.The entire component 1 (FIG. 1) is, after which it becomes, for example, a machine component has been cold formed, subjected to a martensitic hardening process Service. As a result, the outer layers A are hardened, while the core B is a relative one maintains great toughness. Thanks to the flat carbon gradient according to the invention G there is a flat voltage curve at the layer boundaries, so that there is no danger chipping of the outer layers A from the core layer B is like this for example in the case of the roll-clad strip according to the prior art is. With martensitic hardening, there is practically no delay in hardness, that is, no undesired hardening Shape and size change on, so that the component 1 before the hardening process can be brought to the final dimension 5 and no rework required is, as is the case with case hardening. By choosing the layer materials however, an advantageous strength and hardness profile is achieved, which is comparable or better with case hardening. The hardening of the outer layers A in the layered material according to the invention can namely with a Short-term heat treatment take place, i.e. with a significantly shorter austenitization time than case hardening. This gives the outer layers A a finer grain size Hardness structure than would be achievable by case hardening. A possible crack progress is therefore not intercrystalline, but transcrystalline, which is a significant improvement in toughness and a corresponding increase in service life brings with it.

Alternativ kann das erfindungsgemäße Bauteil 1 gemäß Fig. 1 auch eine vergütete Kernschicht B, die insbesondere martensitisch oder bainitisch gehärtet ist, und relativ dazu nicht oder weniger vergütete Randschichten haben, wobei es aus einem kaltgeformten, in seinen Festigkeits- und/oder Härteeigenschaften beeinflußbaren Mehrschicht-Verbundwerkstoff besteht, der eine kohlenstoffreiche, in ihren Festigkeitsund/oder Härteeigenschaften beeinflußbare Kernschicht B und relativ dazu kohlenstoffärmere Randschichten A hat, wobei die Zone des Kohlenstoffgradienten G, wie vorangehend erläutert, zwischen den Schichten A, B flach verläuft. Dabei sind zur Herstellung von Federelementen besonders interessante Werkstoffpaarungen mit einem in seinen Festigkeits- und/oder Härteeigenschaften beeinflußbarem Federstahl im Kern und korrosionsarmen, beispielsweise rostfreien Legierungen in den Randschichten A denkbar. Dadurch läßt sich beispielsweise ein asymmetrischer Federweg oder eine selbst einstellende Federkraft vorgeben.Alternatively, the component 1 according to the invention as shown in FIG Core layer B, which is hardened in particular martensitic or bainitic, and relative have not or less tempered outer layers, whereby it consists of a cold-formed, in its strength and / or hardness properties influenceable multilayer composite consists of a carbon-rich, in their strength and / or Core layer B which can be influenced by hardness properties and relatively low-carbon in relation thereto Has boundary layers A, the zone of the carbon gradient G, such as explained above, runs flat between the layers A, B. Here are to Production of spring elements with particularly interesting material combinations a spring steel that can be influenced in its strength and / or hardness properties in the core and low corrosion, for example stainless alloys in the Edge layers A conceivable. This allows, for example, an asymmetrical suspension travel or specify a self-adjusting spring force.

Fig. 2 zeigt schematisch eine kontinuierlich arbeitende Zweirollen-Gießwalzanlage. Diese weist zwei rotierende, wassergekühlte Kupferrollen 2 auf, die einen Gießspalt von 1 - 5 mm Breite begrenzen. Von oben wird der Schmelzensumpf 3 über ein Tauchrohr 4 mit schmelzflüssigem Material B beaufschlagt. Entlang der Ränder des Gießspalts wird von Vorratscoils Bandmaterial A zugeführt. Mit dem im Gießspalt vergossenen Kernmaterial B findet dort die Verbindung zwischen dem als Stahlwarmband zugeführten Werkstoff A und dem schmelzflüssig zugeführten Werkstoff B statt. Durch die hohe Flächenpressung bei Temperaturen von oberhalb 950°C beim Warmwalzen erfolgt auf jeden Fall eine optimale metallische Fügung.Fig. 2 shows schematically a continuously operating two-roll casting and rolling system. This has two rotating, water-cooled copper rollers 2, which have a casting gap Limit from 1 - 5 mm wide. From above, the melt sump 3 is over Dip tube 4 charged with molten material B. Along the edges of the Casting nip is fed from strip material A from supply coils. With the one in the casting gap encapsulated core material B is there the connection between the as a steel hot band supplied material A and the molten material B instead. Due to the high surface pressure at temperatures above 950 ° C in hot rolling there is definitely an optimal metallic joining.

In der dargestellten Anlage sorgt die Wärmeabfuhr über die Kupferrollen 2 durch das Stahlwarmband A hindurch dafür, daß der Kohlenstoffgradient G das Stahlwarmband A nicht zu weit durchsetzt. Auf jeden Fall bleibt damit eine hinreichend dicke Randschicht des kohlenstoffreichen, martensitisch härtbaren Randmaterials A vorhanden, um in den nachfolgenden Wärmenbehandlungs- und Härteverfahren Bauteile mit dem dargestellten Härteverlauf bzw. der Festigkeitsverteilung zu erhalten.In the system shown, the heat dissipation via the copper rollers 2 ensures that Steel warmer A through that the carbon gradient G is the steel warmer A does not penetrate too far. In any case, it remains sufficiently thick Boundary layer of the carbon-rich, martensitic hardenable boundary material A is present, around components in the subsequent heat treatment and hardening processes with the hardness curve shown or the strength distribution.

Mit der dargestellten erfindungsgemäßen Anlage lassen sich Stahl-Schichtwerkstoffe mit extrem unterschiedlichen Eigenschaften bezüglich der Festigkeits- und/oder Härteeigenschaften der einzelnen Schichten herstellen. Der kaltverformbare Verbundwerkstoff läßt sich besonders gut und rationell bereits auf Endmaß verarbeiten. Im Gegensatz zu den bekannten Verfahren kommt es beim nachfolgenden Härten weder zu einem nachteiligen Härteverzug, noch besteht die Gefahr des Abplatzens von Randschichten. Diese weisen nämlich ein feines, zähes Härtegefüge auf, welches selbst bei hoher Beanspruchung oder Kurzzeitüberlastung nicht zum Bruch des Bauteiles führt.With the system according to the invention shown, steel layer materials can be with extremely different properties in terms of strength and / or hardness properties of the individual layers. The cold-formable composite can be processed particularly well and efficiently to final dimensions. in the Contrary to the known methods, neither occurs during the subsequent hardening to a disadvantageous delay in hardness, there is still the risk of flaking off Surface layers. This is because they have a fine, tough structure, which not to break the component even under high loads or short-term overload leads.

Claims (29)

  1. Procedure for the production of thin-walled parts made of steel, which show an inner core layer and outer surface layers, in which the core layer and the surface layers consist of differential steel alloys and are connected together by a casting procedure to a composite material with alloy gradient going flatly at the interfacials and the composite material is deformed to the size of the thin-walled parts and heat treated and wherein the heat treatment results in a martensitic or a bainitic hardening not of all, but at least of one of the layers.
  2. Procedure according to claim 1, characterized in that the hardened layer(s) consist of higher alloyed steel than the layers, which are not changed in their strength and/or hardness qualities.
  3. Procedure according to one of the claims 1 to 2, characterized in that the core layers and the surface layers include hardened layers and stainless layers.
  4. Procedure according to one of the claims 1 to 3, characterized in that the hardened layers form the surface layers.
  5. Procedure according to one of the claims 1 to 4, characterized in that the hardened layers own a wear resistant fine grain structure with high toughness and little microcrack sensitivity.
  6. Procedure according to one of the claims 1 to 5, characterized in that the hardened layers form the core layers.
  7. Procedure according to one of the claims 1 to 6, characterized in that the parts show a wall thickness of less than 4 mm.
  8. Procedure according to one of the claims 1 to 7, characterized in that the hardened layers show a quota of the cross section of 10 to 50% of the wall thickness.
  9. Procedure according to one of the claims 1 to 8, characterized in that the area of the alloy gradient is broader than 0,1 mm.
  10. Procedure according to one of the claims 1 to 9, characterized in that the alloy gradient extends on about 10-25 % of the wall thickness.
  11. Procedure according to one of the claims 1 to 10, characterized in that for the production of the composite material for the surface layers blanks made of martensitic or bainitic hardenable steel are arranged parallel by far to each other and the core layer situated in between these is spilled with glaze liquid, carbon poorer steel.
  12. Procedure according to claim 11, characterized in that the blanks are cooled from outside.
  13. Procedure according to claim 11 or 12, characterized in that the blanks are brought as steel hoops to the edge of the casting gap of a casting plant working continuously.
  14. Procedure according to claim 13, characterized in that the rope casting plant has a firm open-ended mould.
  15. Procedure according to claim 13, characterized in that the casting plant has cooled rotating rolls limiting the casting gap.
  16. Procedure according to one of the claims 1 to 15, characterized in that the deformation of the composite material is carried out by a hot-rolling process.
  17. Procedure according to one of the claims 1 to 15, characterized in that the deformation of the composite material is carried out by a cold-rolling process.
  18. Procedure according to one of the claims 1 to 17, characterized in that the composite material, which is deformed to the measure of the parts is soft-annealed and afterwards deformed to parts.
  19. Procedure according to one of the claims 1 to 18, characterized in that the hardening is carried out by a short-time heat treatment.
  20. Procedure according to one of the claims 1 to 29, characterized in that the composite material, which is formed to measure, is treated by a heat treatment for the martensitic or bainitic hardening of the hardened layers.
  21. Procedure according to one of the claims 1 to 21, characterized in that a locally determined change is carried out at the hardened layers.
  22. Procedure according to one of the claims 1 to 21, characterized in that the martensitic or bainitic hardening of the layers is carried out in a continuous operation.
  23. Thin-walled part made of steel, produced according to a procedure according to one or more of the claims 1 to 22, characterized in that it consists of a cold-rolled multilayer composite material, which owns hardened surface layers and a not hardened core layer.
  24. Thin-walled part made of steel according to claim 23, characterized in that the martensitic or bainitic hardened surface layers are carbon rich and the core layer is relatively carbon poor, in which the carbon gradient goes flatly between the layers.
  25. Thin-walled part made of steel, produced according to a procedure according to one or more of the claims 1 to 22, characterized in that it consists of a cold-rolled multilayer composite material, which owns not hardened surface layers and a hardened core layer.
  26. Part according to one of the claims 23 to 25, characterized in that the wall thickness of the part is less than 4 mm.
  27. Part according to one of the claims 23 to 26, characterized in that the carbon gradient extends in the region of about 10 to 30% of the wall thickness of the part.
  28. Part according to one of the claims 23 to 27, characterized in that the carbon gradient extends about more than 0.1 mm.
  29. Part according to one of the claims 23 to 28, characterized in that it owns in the surface zone a wear resistant fine grain structure with high toughness and little microcrack sensitivity.
EP01900129A 2000-03-13 2001-01-05 Method for the production of thin-walled steel components and components produced therefrom Expired - Lifetime EP1263540B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10011758 2000-03-13
DE10011758A DE10011758C2 (en) 2000-03-13 2000-03-13 Process for the production of thin-walled components made of steel and components produced thereafter
PCT/EP2001/000088 WO2001068293A1 (en) 2000-03-13 2001-01-05 Method for the production of thin-walled steel components and components produced therefrom

Publications (2)

Publication Number Publication Date
EP1263540A1 EP1263540A1 (en) 2002-12-11
EP1263540B1 true EP1263540B1 (en) 2004-06-30

Family

ID=7634263

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01900129A Expired - Lifetime EP1263540B1 (en) 2000-03-13 2001-01-05 Method for the production of thin-walled steel components and components produced therefrom

Country Status (13)

Country Link
US (1) US6953627B2 (en)
EP (1) EP1263540B1 (en)
AT (1) ATE270163T1 (en)
AU (1) AU2372701A (en)
BR (1) BR0109190B1 (en)
CA (1) CA2404361C (en)
CZ (1) CZ303019B6 (en)
DE (2) DE10011758C2 (en)
ES (1) ES2223770T3 (en)
HU (1) HU225711B1 (en)
MX (1) MXPA02008871A (en)
SK (1) SK286356B6 (en)
WO (1) WO2001068293A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10202212B4 (en) * 2002-01-18 2004-02-26 Thyssenkrupp Stahl Ag Method for producing a band or sheet made of a metallic composite material
DE102005006606B3 (en) 2005-02-11 2006-03-16 Thyssenkrupp Steel Ag Production of roll-plated hot roll strip, involves having rectangular plates produced from steel and placed on top of each other with surfaces of plates treated before being placed on top of each other
DE102006019567B3 (en) * 2006-04-27 2007-11-08 Daimlerchrysler Ag Method for producing formed steel components
DE102007022453B4 (en) 2007-05-10 2020-02-06 Thyssenkrupp Steel Europe Ag Multi-layer composite part and component made from it
DE102008018204A1 (en) 2008-02-04 2009-08-06 Wickeder Westfalenstahl Gmbh Composite sheet metal for welded pipes has low alloy steel core separated from outer layer of high-alloy steel by layer of copper or nickel
DE102008008113A1 (en) * 2008-02-08 2009-08-13 Schaeffler Kg Non-magnetizable rolling bearing component of an austenitic material and method for producing such a rolling bearing component
DE102008022709A1 (en) 2008-05-07 2009-11-19 Thyssenkrupp Steel Ag Use of a metallic composite material in a vehicle structure
PL2123447T3 (en) 2008-05-07 2019-05-31 Thyssenkrupp Steel Europe Ag Composite material with ballistic protective effect
US20100330389A1 (en) * 2009-06-25 2010-12-30 Ford Motor Company Skin pass for cladding thin metal sheets
DE102011106222A1 (en) * 2011-06-07 2012-12-13 Rwe Power Ag Steam generator component and method for producing a steam generator component
DE102013106570A1 (en) * 2013-06-24 2014-12-24 Thyssenkrupp Resource Technologies Gmbh Sieve bar, bar screen and method of making a sieve
DE102013017798A1 (en) * 2013-10-25 2015-04-30 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Composite steel plate
DE102014116949A1 (en) * 2014-11-19 2016-05-19 Thyssenkrupp Ag Method for producing a composite material
EP3541563B1 (en) 2016-11-18 2020-07-15 SMS Group GmbH Method and device for producing a continuous strip-shaped composite material
DE102019114276B4 (en) * 2019-05-28 2022-08-25 Schaeffler Technologies AG & Co. KG Profiled nut of a screw drive, in particular ball screw nut of a ball screw drive and method for the production thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1435936A (en) * 1965-03-08 1966-04-22 Siderurgie Fse Inst Rech Method and device for the continuous casting of liquid products
FR1495365A (en) * 1965-10-01 1967-12-20
DE3346391C2 (en) * 1983-12-22 1985-11-21 Mannesmann AG, 4000 Düsseldorf Continuous casting process and device for the production of multilayer materials
DE4137118A1 (en) * 1991-11-12 1993-05-13 Schaeffler Waelzlager Kg Cold strip for deep drawn and case hardened components - has core and roller clad bearing layer of different characteristics
DE19631999A1 (en) * 1996-08-08 1998-02-12 Schloemann Siemag Ag Production of compound strip
DE19731124C1 (en) 1997-07-19 1999-01-21 Schloemann Siemag Ag Method and device for producing coated hot and cold strip
DE19850213C2 (en) * 1998-01-23 2001-08-30 Sms Demag Ag Casting process for a thin metal strip and associated casting device
DE19815007C2 (en) * 1998-01-23 2000-07-06 Sms Demag Ag Casting process for a metal strand

Also Published As

Publication number Publication date
AU2372701A (en) 2001-09-24
EP1263540A1 (en) 2002-12-11
HU225711B1 (en) 2007-06-28
CA2404361A1 (en) 2001-09-20
US6953627B2 (en) 2005-10-11
MXPA02008871A (en) 2004-10-14
DE50102738D1 (en) 2004-08-05
US20030029530A1 (en) 2003-02-13
CZ303019B6 (en) 2012-02-29
CZ20023038A3 (en) 2003-06-18
SK286356B6 (en) 2008-08-05
WO2001068293A1 (en) 2001-09-20
HUP0300086A2 (en) 2003-04-28
SK13272002A3 (en) 2003-07-01
DE10011758C2 (en) 2003-10-16
BR0109190A (en) 2003-05-27
BR0109190B1 (en) 2011-04-05
ES2223770T3 (en) 2005-03-01
ATE270163T1 (en) 2004-07-15
CA2404361C (en) 2007-03-06
DE10011758A1 (en) 2001-09-27

Similar Documents

Publication Publication Date Title
EP2547800B1 (en) Method for producing workpieces from lightweight steel having material properties that can be adjusted over the wall thickness
EP2473297B1 (en) Method and device for producing a metal component and use of such a component
EP2446064B1 (en) Method for producing a hot press hardened component and use of a steel product for producing a hot press hardened component
EP1263540B1 (en) Method for the production of thin-walled steel components and components produced therefrom
EP3265365B1 (en) Press-hardened shaped metal sheet having different sheet thicknesses and strengths
DE3825634C2 (en) Process for the production of hot baths or heavy plates
EP0580062A1 (en) Process for manufacturing of thick armour plates
DE4019845C2 (en) Method for producing a work roll for a metal rolling mill
DE3919199C2 (en)
EP3642371A1 (en) Method for producing a steel component provided with a metallic coating protecting against corrosion
EP1274872B1 (en) Method for the production of nitrogen alloyed steel, spray compacted steel
DE3236268C2 (en) Wear-resistant cast iron alloy
DE10161465C1 (en) Production of hot strip used in vehicle chassis comprises casting steel into pre-material, hot rolling to form hot strip, cooling in first cooling step, and cooling in second cooling step after pause to coiling temperature
EP2414552B1 (en) Ball pins made of bainitic steels for passenger car and light commercial vehicle
EP0074347A2 (en) Process for making transporting screws
DE102006032617B4 (en) Process for the production of a sheet-metal semi-finished product suitable for molding
DE102006052834A1 (en) Method for producing a roller bearing ring and roller bearing ring
DE1814112A1 (en) Hard facing of rollers for hot and cold - rolling of steel and non iron metals
DE2810186C2 (en) Work roll for hot rolling non-ferrous metals and process for the production of the roll shell of such a work roll
WO1997036112A1 (en) Laminated composite material and method of improving the surface hardness of laminated composite materials
DE102018220222A1 (en) Process for producing a composite material, composite material and its use
DE102019204324A1 (en) Process for the production of a hot-rolled steel composite with different properties
DE19724661C2 (en) Process for producing a toothed gear part
AT401359B (en) METHOD FOR PRODUCING A HEART PIECE
EP1238727A2 (en) Process for manufacturing metallic strip having differing material properties through their section

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020913

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI PAYMENT 20020913

17Q First examination report despatched

Effective date: 20030416

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: SI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040630

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040630

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040630

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040630

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50102738

Country of ref document: DE

Date of ref document: 20040805

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040930

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040930

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: C.D. WAELZHOLZ-BROCKHAUS GMBH

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20040630

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050105

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050105

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2223770

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050331

BERE Be: lapsed

Owner name: C.D. *WALZHOLZ PRODUKTIONS-G.M.B.H.

Effective date: 20050131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: C.D. *WALZHOLZ PRODUKTIONS-G.M.B.H.

Effective date: 20050131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20091201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20120124

Year of fee payment: 12

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130106

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20181129

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20190208

Year of fee payment: 19

Ref country code: GB

Payment date: 20190118

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20181219

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200130

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50102738

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 270163

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200105

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200105

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200801

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200105

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200106