EP1240652B1 - Verfahren zur herstellung stabförmiger dauermagnete - Google Patents

Verfahren zur herstellung stabförmiger dauermagnete Download PDF

Info

Publication number
EP1240652B1
EP1240652B1 EP00985202A EP00985202A EP1240652B1 EP 1240652 B1 EP1240652 B1 EP 1240652B1 EP 00985202 A EP00985202 A EP 00985202A EP 00985202 A EP00985202 A EP 00985202A EP 1240652 B1 EP1240652 B1 EP 1240652B1
Authority
EP
European Patent Office
Prior art keywords
pressed parts
permanent magnets
pressed
weight
elevations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00985202A
Other languages
English (en)
French (fr)
Other versions
EP1240652A1 (de
Inventor
Georg Werner Reppel
Volker Zellmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuumschmelze GmbH and Co KG
Original Assignee
Vacuumschmelze GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuumschmelze GmbH and Co KG filed Critical Vacuumschmelze GmbH and Co KG
Publication of EP1240652A1 publication Critical patent/EP1240652A1/de
Application granted granted Critical
Publication of EP1240652B1 publication Critical patent/EP1240652B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0205Magnetic circuits with PM in general
    • H01F7/021Construction of PM
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine
    • Y10T29/49012Rotor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49075Electromagnet, transformer or inductor including permanent magnet or core

Definitions

  • the invention relates to a method for producing permanent magnets, especially of rod-shaped permanent magnets.
  • Permanent magnets of this type are required for motors and generators. They typically have a diameter between 10 and 50 mm and a length between 20 and 200 mm.
  • the preferred magnetic direction of these permanent magnets can be axial or diametrical direction.
  • EB-A-0 124 655 describes the basic features of a manufacturing process for permanent magnets based on rare earths, Known iron and boron. In the known method, first of all a melted alloy based on rare Earth, iron and boron pulverized and then in the magnetic field Green compacts pressed, which are then sintered.
  • tablet-shaped pressed parts are particularly good pressed with a ratio of diameter to length close to 1 become. After sintering, they become these green compacts created permanent magnets first ground. The permanent magnets are then glued together so that their magnetic Preferred direction points in the same direction. To this Purpose it is necessary to stick the permanent magnets align with great accuracy. The required surface grinding, aligning and gluing the permanent magnets lead to high labor costs. Alignment in particular the permanent magnet requires a lot of work or time Devices.
  • rod-shaped permanent magnets in one Piece Another option is rod-shaped permanent magnets in one Piece.
  • the pressing of a long, rod-shaped Permanent magenta in the direction of its axis leads to more uneven Press density and the resulting large dimensional deviations.
  • special presses with large Hub required, which due to the large distances only low cycle speeds can realize.
  • the rod-shaped magnet perpendicular to its axis ("lying") to press.
  • a suitable raw form for example a rounded cuboid shape can be pressed.
  • the side faces of the Raw shape must be reground to create a circular shape To achieve cross-section, which is very expensive.
  • the invention is based on this prior art the task is to create a method with which in particular Rod-shaped permanent magnets on simple and inexpensive Can be manufactured in this way.
  • rod-shaped permanent magnets with good magnetic homogeneity are created.
  • the method advantageously requires neither a complex grinding of finished permanent magnets tedious positioning of individual parts.
  • the invention The process is therefore compared to conventional manufacturing processes much easier and cheaper.
  • Figure 1 shows a rod-shaped permanent magnet 1, the several pressed parts 2 is assembled.
  • Such permanent magnets 1 are required for motors and generators and show typically a diameter between 10 and 50 mm and a length between 20 and 200 mm.
  • the permanent magnets 1 either have an axial magnetic preferred direction 3 or a diametrical magnetic preferred direction 4.
  • the elevations 6 are preferably so formed that the diametrical magnetic preferred direction 4th the pressing parts 2 points in the same direction when the pressing parts 2 can be placed on top of each other.
  • Figures 3 and 4 show cross sections through possible embodiments of the pressed parts 2. It can be clearly seen that next to the elevation 6 on the top 5 on a bottom 7 a recess 8 complementary to the elevation 6 is formed is, so that the pressed parts 2 are assembled seamlessly can.
  • the elevation 6 and the depression 8 are preferred tapered to ensure trouble-free joining of the pressed parts 2 to enable.
  • the dimensions of the recesses 8 and ridges 6 are chosen so that there is a joint gap of usual 0.05 mm results.
  • permanent magnets 1 For the manufacture of permanent magnets 1 is generally first a rare earth alloy melted and then pulverized. Pressed parts are pressed from the powder. To set a magnetic preferred direction the pressing process in the presence of an external magnetic field. Then the pressed parts 2 are assembled and sintered at temperatures above 800 ° C. In case of Permanent magnets based on Nd-Fe-B are formed along the Top 5 and bottom 7 a liquid phase from the in the solidified state, the pressed parts 2 connects. In everyone Trap comes through during the sintering of the permanent magnets Diffusion to connect the individual parts to each other, if there was good contact between the compacts.
  • a particularly good coincidence can be supported by the Achieve gravity when the stacked rod-shaped permanent magnet 1 is sintered standing.
  • Permanent magnet 1 After sintering with known liquid plastics, such as B. vacuum or pressure impregnated methacrylate become. The plastic fills any pores and gaps and hardens after the permanent magnet 1 with the plastic has been soaked.
  • liquid plastics such as B. vacuum or pressure impregnated methacrylate
  • the method described here has a number of advantages on.
  • the permanent magnet 1 Compared to rod-shaped permanent magnets that are glued of sintered parts are, the permanent magnet 1 has a much higher strength on, since the pressed parts 2 are uniform after sintering form a solid body.
  • the method is inexpensive because the pressed parts 2 through the appropriately trained elevations 6 and depressions 8 can be positioned and that for a good adhesive bond required surface grinding of the top 5 and the Bottom 7 is omitted. On the contrary, it is even for a firm Sintered connection is advantageous if the top 5 and the bottom 7 are roughened.
  • the pressed parts 2 are pressed individually, is sufficient for that Pressing the pressed parts 2 a tool with dimensions in the Size of the dimensions of the pressed parts 2.
  • the magnetic field can be tools with little effort be kept homogeneous.
  • the permanent magnets 1 in magnetic Respects much more homogeneous. You can also use this described method permanent magnet 1 with almost any Ratio of diameter to length.
  • Nd-Fe-B powder becomes blanks in a magnetic field with a diameter of 22 mm and a height of 10 mm pressed using a pressure of 250 MPa. Each four blanks are stacked on top of each other to form a green compact and standing sintered at 1100 ° C in a vacuum for 1 hour. After this However, sintering was not connected to 60% of the finished sintered bodies. The rest of the sintered body could be through one Slightly separate the blow.
  • the present description of the method is exemplary; in particular, the joining of the pressed parts 2 should not be limited to rod-shaped magnets.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

Bei einem Herstellungsverfahren für stabförmige Dauermagnete werden zunächst Preßteile (2) gepreßt, die anschließend zu einem stabförmigen Grünling zusammengesetzt werden. Der Grünling wird anschliessend gesintert und bildet daraufhin einen stabförmigen einstückigen Dauermagneten (1).

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Dauermagneten, insbesondere von stabförmigen Dauermagneten.
Derartige Dauermagnete werden für Motoren und Generatoren benötigt. Sie weisen typischerweise einen Durchmesser zwischen 10 und 50 mm und eine Länge zwischen 20 und 200 mm auf. Die magnetische Vorzugsrichtung dieser Dauermagnete kann in axiale oder diametrale Richtung verlaufen. Die herkömmliche Fertigung dieser Magnete mit vorzugsweise diametraler Vorzugsrichtung erfordert bislang einen hohen Aufwand.
Aus der EB-A-0 124 655 sind Grundzüge eines Herstellungsverfahrens für Dauermagnete auf der Basis von Seltenen Erden, Eisen und Bor bekannt. In dem bekannten Verfahren wird zunächst eine erschmolzene Legierung auf der Basis von Seltenen Erden, Eisen und Bor pulverisiert und dann im Magnetfeld zu Grünlingen gepreßt, die danach gesintert werden.
Preßtechnisch können besonders gut tablettenförmige Preßteile mit einem Verhältnis von Durchmesser zu Länge nahe 1 gepreßt werden. Nach dem Sintern werden die aus diesen Grünlingen entstandenen Dauermagnete zunächst geschliffen. Die Dauermagnete werden anschließend so zusammengeklebt, daß ihre magnetische Vorzugsrichtung in die gleiche Richtung weist. Zu diesem Zweck ist es erforderlich, die Dauermagnete beim Kleben mit großer Genauigkeit auszurichten. Das erforderliche Flachschleifen, das Ausrichten und das Kleben der Dauermagnete führen zu hohen Arbeitskosten. Insbesondere das Ausrichten der Dauermagnete erfordert viel Arbeitszeit oder aufwendige Vorrichtungen.
Eine andere Möglichkeit ist, stabförmige Dauermagnete in einem Stück zu pressen. Das Pressen eines langen, stabförmigen Dauermagenten in Richtung seiner Achse führt jedoch zu ungleichmäßiger Preßdichte und daraus resultierend großen Maßabweichungen. Außerdem werden spezielle Pressen mit großem Hub benötigt, die wegen der großen Wege nur geringe Taktgeschwindigkeiten realisieren können. Alternativ wäre es möglich, den stabförmigen Magneten senkrecht zu seiner Achse ("liegend") zu pressen. Da es jedoch in diesem Fall nicht möglich ist, einen kreisförmigen Querschnitt durch Pressen herzustellen, muß eine geeignete Rohform, beispielsweise eine abgerundete Quaderform gepreßt werden. Die Seitenflächen der Rohform müssen nachgeschliffen werden, um einen kreisförmigen Querschnitt zu erzielen, was sehr aufwendig ist. Außerdem ist es bei großen Längen sehr schwierig, ein über die gesamte Länge des Grünlings homogenes Querfeld zu erzeugen und damit ein magnetisch homogenes Teil herzustellen.
Ein Verfahren zur Herstellung von Dauermagneten durch das Zusamenfügen von Pressteilen ist aus US 3 892 598 oder aus US 4 818 305 bekannt.
Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zu schaffen, mit dem insbesondere stabförmige Dauermagnete auf einfache und kostengünstige Weise herstellbar sind.
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den in Anspruch 1 angegebenen Merkmalen gelöst.
Bei dem Verfahren gemäß der Erfindung werden bereits die Preßteile und nicht die fertigen Sinterteile aufeinandergesetzt und durch Sintern fest untereinander verbunden. Dadurch entstehen stabförmige Dauermagnete mit guter magnetischer Homogenität. Das Verfahren erfordert vorteilhafterweise weder ein aufwendiges Schleifen von fertigen Dauermagneten noch ein mühsames Positionieren von Einzelteilen. Das erfindungsgemäße Verfahren ist daher im Vergleich zu herkömmlichen Herstellungsverfahren wesentlich einfacher und kostengünstiger.
Weitere vorteilhafte Ausgestaltungen des Verfahrens sind Gegenstand der abhängigen Ansprüche.
Nachfolgend wird die Erfindung näher anhand der beigefügten Zeichnung erläutert. Es zeigen:
Figur 1
eine perspektivische Ansicht eines mit dem Verfahren gemäß der Erfindung hergestellten stabförmigen Dauermagneten;
Figur 2
eine Draufsicht auf ein Preßteil, das zu einem stabförmigen Dauermagneten zusammengebaut werden kann;
Figur 3
einen Querschnitt durch ein weiteres Preßteil; und
Figur 4
einen Querschnitt durch ein weiteres abgewandeltes Preßteil.
Figur 1 zeigt einen stabförmigen Dauermagneten 1, der aus mehreren Preßteilen 2 zusammengefügt ist. Derartige Dauermagnete 1 werden für Motoren und Generatoren benötigt und weisen typischerweise einen Durchmesser zwischen 10 und 50 mm und eine Länge zwischen 20 und 200 mm auf. Die Dauermagnete 1 weisen entweder eine axiale magnetische Vorzugsrichtung 3 oder eine diametrale magnetische Vorzugsrichtung 4 auf.
Wie insbesondere in Figur 1 sowie Figur 2 erkennbar ist, weisen die Preßteile 2 auf einer Oberseite 5 Erhöhungen 6 auf. Falls die Preßteile 2 eine diametrale magnetische Vorzugsrichtung 4 aufweisen, sind die Erhöhungen 6 vorzugsweise so ausgebildet, daß die diametrale magnetische Vorzugsrichtung 4 der Preßteile 2 in die gleiche Richtung weist, wenn die Preßteile 2 aufeinandergesetzt werden.
Die Figuren 3 und 4 zeigen Querschnitte durch mögliche Ausführungsformen der Preßteile 2. Deutlich erkennbar ist, daß neben der Erhöhung 6 auf der Oberseite 5 auf einer Unterseite 7 eine zur Erhöhung 6 komplementäre Vertiefung 8 ausgebildet ist, so daß die Preßteile 2 fugenlos zusammengesetzt werden können. Die Erhöhung 6 und die Vertiefung 8 sind vorzugsweise konisch ausgebildet, um ein problemloses Fügen der Preßteile 2 zu ermöglichen. Die Abmessungen der Vertiefungen 8 und Erhöhungen 6 sind so gewählt, daß sich ein Fügespalt von üblicherweise 0,05 mm ergibt.
Zur Herstellung der Dauermagnete 1 wird im allgemeinen zunächst eine Selten-Erd-haltige Legierung erschmolzen und anschließend pulverisiert. Aus dem Pulver werden Preßteile gepreßt. Zur Einstellung einer magnetischen Vorzugsrichtung erfolgt der Preßvorgang in Anwesenheit eines äußeren Magnetfelds. Anschließend werden die Preßteile 2 zusammengefügt und bei Temperaturen oberhalb von 800°C gesintert. Im Falle der Dauermagnete auf Basis von Nd-Fe-B bildet sich entlang der Oberseiten 5 und Unterseiten 7 eine flüssige Phase aus, die im erstarrten Zustand die Preßteile 2 verbindet. Im jeden Falle kommt es während der Sinterung der Dauermagnete durch Diffusion zu einer Verbindung der Einzelteile untereinander, sofern ein guter Kontakt der Preßlinge bestand. Um eine gute Festigkeit der Verbindung zu erhalten, hat sich als günstig erwiesen, die Preßteile 2 nach dem Pressen in einem Magnetfeld nicht vollständig zu entmagnetisieren. Die magnetische Haftkraft hält dann die Preßteile 2 beim Hantieren und im Sinterofen bis zur Curietemperatur zusammen. Preßteile 2 mit diametraler magnetischer Vorzugsrichtung werden bevorzugt mit wechselseitiger Polung aufeinandergestapelt.
Eine besonders gute Fügung läßt sich mit Unterstützung der Schwerkraft erzielen, wenn der gestapelte stabförmige Dauermagnet 1 stehend gesintert wird.
Um eine sehr gute Korrosionsbeständigkeit des Dauermagneten 1, insbesondere an der Fügefläche, zu erreichen, kann der Dauermagnet 1 nach dem Sintern mit bekannten flüssigen Kunststoffen, wie z. B. Methacrylat vakuum- oder druckimprägniert werden. Der Kunststoff füllt evtl. vorhandene Poren und Spalten und härtet aus, nachdem der Dauermagnet 1 mit dem Kunststoff getränkt worden ist.
Das hier beschriebene Verfahren weist eine Reihe von Vorteilen auf.
Im Vergleich zu stabförmigen Dauermagneten, die durch Verkleben von fertig gesinterten Einzelteilen hergestellt worden sind, weist der Dauermagnet 1 eine wesentlich höhere Festigkeit auf, da die Preßteile 2 nach dem Sintern einen einheitlich festen Körper bilden.
Außerdem ist das Verfahren kostengünstig, da die Preßteile 2 durch die entsprechend ausgebildeten Erhöhungen 6 und Vertiefungen 8 positioniert werden und das für eine gute Klebeverbindung erforderliche Flachschleifen der Oberseite 5 und der Unterseite 7 entfällt. Es ist im Gegenteil sogar für eine feste Sinterverbindung von Vorteil, wenn die Oberseite 5 und die Unterseite 7 aufgerauht sind.
Da die Preßteile 2 einzeln gepreßt werden, genügt für das Pressen der Preßteile 2 ein Werkzeug mit Abmessungen in der Größenordnung der Abmessungen der Preßteile 2. Bei kleinen Werkzeugen kann jedoch das Magnetfeld mit geringem Aufwand homogen gehalten werden. Im Vergleich zu herkömmlichen Verfahren, in denen die stabförmigen Dauermagnete als Ganzes gepreßt werden, sind daher die Dauermagnete 1 in magnetischer Hinsicht wesentlich homogener. Außerdem können mit dem hier beschriebenen Verfahren Dauermagnete 1 mit nahezu beliebigem Verhältnis von Durchmesser zu Länge hergestellt werden.
Für eine feste Verbindung der Einzelmagnete auf Basis von Seltenen Erden, Eisen und Bor hat es sich als besonders vorteilhaft erwiesen, die Menge an flüssiger Sinterphase, d. h. den Gehalt an Seltenen Erden in der Legierung, etwas höher als normal einzustellen, etwa 1 bis 5 Gew.-% mehr Seltene Erden.
Die Erfindung wird nun anhand der folgenden Beispiele näher erläutert:
1. Beispiel:
Vergleichsbeispiel: Nd-Fe-B-Pulver wird im Magnetfeld zu Ronden mit einem Durchmesser von 22 mm und einer Höhe von 10 mm unter Anwendung eines Drucks von 250 MPa gepreßt. Jeweils vier Ronden werden zu einem Grünling aufeinandergestapelt und stehend bei 1 Stunde bei 1100°C im Vakuum gesintert. Nach dem Sintern waren jedoch 60% der fertigen Sinterkörper nicht verbunden. Die restlichen Sinterkörper ließen sich durch einen Schlag leicht trennen.
2. Beispiel:
Wie Beispiel 1, wobei jedoch das Preßwerkzeug einen Unterstempel mit einer Erhöhung und einen Oberstempel mit einer Vertiefung aufwies. Es ergaben sich die in Figur 3 dargestellten Preßteile 2. Die Preßteile 2 wurden nicht entmagnetisiert und stehend gesintert. Alle Sinterteile waren nach dem Sintern fest verbunden und ließen sich nach Schlag oder Fall aus 1 Meter Höhe nicht trennen.
Beispiel 3:
Wie Beispiel 2, die Preßteile wurden jedoch liegend gesintert. Nach dem Sintern waren 90% der Teile fest verbunden und ließen sich nach Schlag oder Fall aus 1 Meter Höhe nicht trennen.
Beispiel 4:
Wie Beispiel 1, jedoch mit einer größeren Erhöhung 6 und Vertiefung 8, wie in Figur 4 dargestellt. Beim Pressen traten teilweise Preßrisse auf. Alle fehlerfreien Preßteile waren jedoch nach dem Sintern fest verbunden und ließen sich nach Schlag oder Fall aus 1 Meter Höhe nicht trennen.
Beispiel 5:
Wie Beispiel 1, die Zusammensetzung der Legierung wurde jedoch gemäß Tabelle 1 variiert.
SE-Gehalt [Gew.%] Anteil gefügter Teile nach Sintern [%]
28,7 16
31,2 100
33,4 100
Dieses Beispiel zeigt, daß ein Überschuß an Seltenen Erden über den stöchiometrisch Seltenen-Erden-Gehalt der hartmagnetischen Phase mit der Zusammensetzung Nd2Fe14B von Vorteil für die Festigkeit der Verbindung ist.
Abschließend sei angemerkt, daß die hier gemachten Ausführungen für Dauermagnete aus einer Legierung auf der Basis von Seltenen Erden, Eisen und Bor auch für Dauermagnete aus einer Legierung mit der Zusammensetzung SE2 (Fe, Co) 14 βgilt, wobei SE wenigstens eine Selten Erde einschließlich Yttrium ist.
Ferner ist die vorliegenden Beschreibung des Verfahrens beispielhaft; insbesondere soll das Fügen der Preßteile 2 nicht auf stabförmige Magnete beschränkt sein.

Claims (10)

  1. Verfahren zur Herstellung von Dauermagneten, die eine Phase von der Zusammensetzung SE2T14B enthält, wobei T wenigstens ein Element aus der Gruppe der Elemente Fe und Co ist, mit folgenden Verfahrensschritten:
    Herstellung eines Pulvers aus einer wenigstens eine seltene Erde (SE)enthaltenden Legierung;
    Pressen des Pulvers zu Pressteilen (2);
    Zusammenfügen der Pressteile (2) mit Hilfe von auf der Oberfläche der Pressteile (2) ausgebildeten Erhöhungen (6) und Vertiefungen (8) zu einem Grünling; und
    Sintern des Grünlings, wobei der Seltenen-Erden-Gehalt der Dauermagnete 1 Gew.% größer als der stöchiometrische Seltenen-Erden-Gehalt der hartmagnetischen Phase von der Zusammensetzung Se2 T14 B und kleiner oder gleich 33,4 Gew.% ist und während des Sinterns eine flüssige Phase ausgebildet wird durch die die Pressteile (2) untereinander verbunden werden.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Breite der Fügespalten zwischen den Erhöhungen (6) und Vertiefungen (8) weniger als 0,5mm beträgt.
  3. Verfahren nach einem der Ansprüche 1 oder 2,
    dadurch gekennzeichnet, dass
    die Erhöhungen (6) und Vertiefungen (8)konisch ausgebildet sind.
  4. Verfahren nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass
    die Pressteile (2) eine magnetische Vorzugseinrichtung aufweisen und dass durch die Vertiefungen (8) und Erhöhungen (6) eine gleichmäßige Ausrichtung der magnetischen Vorzugsrichtung der zum Grünling zusammengefügten Pressteile (2) gewährleistet wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass
    die Pressteile (2) mit der Hilfe von aufgerauhten Pressstempeln gefertigt werden.
  6. Verfahren nach einem der Ansprüchel bis 5,
    dadurch gekennzeichnet, dass
    der Dauermagnet eine Selten-Erd-reiche Phase mit einem Gewichtsanteil von mindestens 2 Gew.% enthält.
  7. Verfahren nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet, dass
    auf eine gemeinsame Grenzfläche der Pressteile (2) ein Lot aus einer Selten-Erd-haltigen Legierung mit einem Gewichtsanteil an Seltenen Erden > 10 Gew.% aufgebracht wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet, dass
    die Pressteile (2) zumindest eine schwache magnetische Polarisation aufweisen.
  9. Verfahren nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet, dass
    die aufeinandergestapelten Pressteile (2) stehend gesintert werden kann.
  10. Verfahren nach eine der Ansprüche 1 bis 9,
    dadurch gekennzeichnet, dass
    der gesinterte Fügekörper mit einem Kunststoff imprägniert wird.
EP00985202A 1999-12-22 2000-12-19 Verfahren zur herstellung stabförmiger dauermagnete Expired - Lifetime EP1240652B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19962232 1999-12-22
DE19962232A DE19962232B4 (de) 1999-12-22 1999-12-22 Verfahren zur Herstellung stabförmiger Dauermagnete
PCT/EP2000/012958 WO2001046969A1 (de) 1999-12-22 2000-12-19 Verfahren zur herstellung stabförmiger dauermagnete

Publications (2)

Publication Number Publication Date
EP1240652A1 EP1240652A1 (de) 2002-09-18
EP1240652B1 true EP1240652B1 (de) 2004-03-17

Family

ID=7933952

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00985202A Expired - Lifetime EP1240652B1 (de) 1999-12-22 2000-12-19 Verfahren zur herstellung stabförmiger dauermagnete

Country Status (5)

Country Link
US (1) US6926777B2 (de)
EP (1) EP1240652B1 (de)
JP (1) JP2003518331A (de)
DE (2) DE19962232B4 (de)
WO (1) WO2001046969A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1260868C (zh) * 2001-09-03 2006-06-21 日立粉末冶金株式会社 永久磁铁型转子及其制造方法
TWI250536B (en) 2003-02-27 2006-03-01 Mitsubishi Electric Corp Ring-shaped magnet and manufacturing method thereof
US8747583B2 (en) * 2010-06-17 2014-06-10 Nissan Motor Co., Ltd. Manufacturing device for permanent magnet disposed in rotating electrical machine and manufacturing method of the same

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3887395A (en) * 1974-01-07 1975-06-03 Gen Electric Cobalt-rare earth magnets comprising sintered products bonded with cobalt-rare earth bonding agents
US3892598A (en) * 1974-01-07 1975-07-01 Gen Electric Cobalt-rare earth magnets comprising sintered products bonded with solid cobalt-rare earth bonding agents
US4289549A (en) * 1978-10-31 1981-09-15 Kabushiki Kaisha Suwa Seikosha Resin bonded permanent magnet composition
DE7836712U1 (de) * 1978-12-12 1979-06-28 Walter Hebel Gmbh & Co, 5242 Kirchen Magnete zum anheften von anschauungsmaterial und zu organisationszwecken
DE7903999U1 (de) * 1979-02-14 1979-06-28 Walter Hebel Gmbh & Co, 5242 Kirchen Magnete mit kappen zum anheften von anschauungsmaterial und zu organisationszwecken usw.
DE3047701A1 (de) * 1980-12-18 1982-07-15 Magnetfabrik Bonn Gmbh Vorm. Gewerkschaft Windhorst, 5300 Bonn Verfahren zum herstellen von anisotropen dauermagneten und danach hergestellte rohrfoermige dauermagnete
FR2526994B1 (fr) * 1982-05-11 1987-03-06 Draper Lab Charles S Procede et appareillage pour produire des aimants cobalt-terre rare en anneau a orientation radiale du champ magnetique et aimant permanent ainsi obtenu
CA1277159C (en) * 1983-05-06 1990-12-04 Setsuo Fujimura Isotropic permanent magnets and process for producing same
DE3789829T2 (de) * 1986-06-06 1994-09-01 Seiko Instr Inc Seltene Erden-Eisenmagnet und Herstellungsverfahren.
US4859410A (en) * 1988-03-24 1989-08-22 General Motors Corporation Die-upset manufacture to produce high volume fractions of RE-Fe-B type magnetically aligned material
US5049053A (en) * 1988-08-18 1991-09-17 Hitachi Metals, Ltd. Metal mold for molding anisotropic permanent magnets
SE9001409D0 (sv) * 1990-04-20 1990-04-20 Sandvik Ab Metod foer framstaellning av haardmetallkropp foer bergborrverktyg och slitdelar
DE4117104A1 (de) * 1991-05-25 1992-11-26 Vacuumschmelze Gmbh Verfahren zur herstellung eines stickstoffhaltigen dauermagneten, insbesondere sm-fe-n
US5382303A (en) * 1992-04-13 1995-01-17 Sps Technologies, Inc. Permanent magnets and methods for their fabrication
US5641363A (en) * 1993-12-27 1997-06-24 Tdk Corporation Sintered magnet and method for making
JP3132393B2 (ja) * 1996-08-09 2001-02-05 日立金属株式会社 R−Fe−B系ラジアル異方性焼結リング磁石の製造方法
DE19912470B4 (de) * 1999-03-19 2005-06-02 Vacuumschmelze Gmbh Verbundteil und Verfahren zu dessen Herstellung

Also Published As

Publication number Publication date
JP2003518331A (ja) 2003-06-03
US20030110617A1 (en) 2003-06-19
US6926777B2 (en) 2005-08-09
WO2001046969A1 (de) 2001-06-28
EP1240652A1 (de) 2002-09-18
DE50005736D1 (de) 2004-04-22
DE19962232A1 (de) 2001-07-12
DE19962232B4 (de) 2006-05-04

Similar Documents

Publication Publication Date Title
DE3784831T2 (de) Permanentmagnet-zusammenstellung und verfahren zu ihrer herstellung.
DE10307231A1 (de) Elektromotor und Verfahren zum Herstellen eines Rotors für einen derartigen Elektromotor
DE19734225C2 (de) Radial anisotroper Sintermagnet auf SE-Fe-B-Basis, und Herstellverfahren für denselben
EP3921928A1 (de) Verfahren zur fertigung eines magnetblechs und eines magnetblechstapels sowie elektrische maschine und elektrisches fahrzeug
DE112007002815T5 (de) Verfahren zur Herstellung eines ausgerichteten Körpers, eines geformten Körpers und eines gesinterten Körpers, sowie Verfahren zur Herstellung eines Permanentmagneten
DE10050703A1 (de) Verfahren zur Formung von rotierbaren Elektromagneten mit Weich- und Hartmagnetkomponenten
DE3408980A1 (de) Aus blech geformte palette und verfahren zu ihrer herstellung
DE102005043872A1 (de) Vorrichtung zum Herstellen von ringförmigen Pulverpresslingen und Verfahren zum Herstellen von gesinterten Ringmagneten
EP1240652B1 (de) Verfahren zur herstellung stabförmiger dauermagnete
EP1166293B1 (de) Verbundteil und verfahren zu dessen herstellung
DE10022717C2 (de) Vorrichtung und Verfahren zum Pressen eines Pulvers einer seltenen Erdmetalllegierung
CH663299A5 (de) Selbstanlaufender zweipoliger einphasensynchronmotor.
DE102021113180A1 (de) Anisotroper gebundener magnet und verfahren zu seiner herstellung
DE2110489A1 (de) Verfahren zur Herstellung von anisotropen Metalloxid-Magneten
DE102004034164B4 (de) Beweglicher Kern eines Solenoidventils mit Ventilstange sowie Verfahren zu dessen Herstellung
EP0799487A1 (de) Elektrisches bauteil, insbesondere spule, vorzugsweise für smd-montagetechnik
DE3626360C2 (de) Herstellungsvefahren für zwei- und mehrpolige Dauermagnete mit hoher magnetischer Energiedichte
DE3514516A1 (de) Seltenerdmagnet und verfahren zu dessen herstellung
DE2522981A1 (de) Elektrisches uhrwerkteil sowie verfahren zu seiner herstellung
DE10304092B4 (de) Bauklotzsystem
DE102021006524B4 (de) Verfahren zur Herstellung eines Rohmagneten
DD292826A5 (de) Kernkoerper aus biologisch abbaubarem material fuer planzen und blumengebinde sowie verfahren zur herstellung eines kernkoerpers
DE10148525B4 (de) Chipkarte sowie ein Verfahren zur Herstellung einer derartigen Chipkarte
DE2355051A1 (de) Koerper aus weichmagnetischen ferriten und verfahren zur herstellung der koerper
DE69104004T2 (de) Herstellungsverfahren eines dauermagnetischen Materials vom Nd-Fe-Typ.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020523

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20021104

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: METHOD FOR PRODUCING ROD-SHAPED PERMANENT MAGNETS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FI GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040317

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50005736

Country of ref document: DE

Date of ref document: 20040422

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20041220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20061218

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20071217

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080129

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20071219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701